
Rapid Overfitting of Multi-Pass SGD in Stochastic Convex Optimization

Shira Vansover-Hager 1 Tomer Koren 1 2 Roi Livni 3

Abstract
We study the out-of-sample performance of multi-
pass stochastic gradient descent (SGD) in the fun-
damental stochastic convex optimization (SCO)
model. While one-pass SGD is known to achieve
an optimal Θ(1/

√
𝑛) excess population loss given

a sample of size 𝑛, much less is understood about
the multi-pass version of the algorithm which is
widely used in practice. Somewhat surprisingly,
we show that in the general non-smooth case of
SCO, just a few epochs of SGD can already hurt
its out-of-sample performance significantly and
lead to overfitting. In particular, using a step size
𝜂 = Θ(1/

√
𝑛), which gives the optimal rate after

one pass, can lead to population loss as large as
Ω(1) after just one additional pass. More gener-
ally, we show that the population loss from the sec-
ond pass onward is of the order Θ(1/(𝜂𝑇) +𝜂

√
𝑇),

where 𝑇 is the total number of steps. These re-
sults reveal a certain phase-transition in the out-
of-sample behavior of SGD after the first epoch,
as well as a sharp separation between the rates of
overfitting in the smooth and non-smooth cases of
SCO. Additionally, we extend our results to with-
replacement SGD, proving that the same asymp-
totic bounds hold after 𝑂 (𝑛 log 𝑛) steps. Finally,
we also prove a lower bound of Ω(𝜂

√
𝑛) on the

generalization gap of one-pass SGD in dimension
𝑑 = 𝑂 (𝑛), improving on recent results of Koren
et al. (2022) and Schliserman et al. (2024).

1. Introduction
Stochastic gradient descent (SGD) is one of the most fun-
damental algorithms in machine learning and optimization,
widely used for training large-scale models. Theoretical
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analysis of SGD has traditionally focused on its behavior
in the one-pass (single-epoch) setting, particularly in the
context of convex optimization, where it is well understood
that SGD achieves an optimal excess population loss of or-
der Θ(1/

√
𝑛) when trained on a sample of size 𝑛. This rate

is known to be minimax optimal under standard assump-
tions (Nemirovskiı̆ & Yudin, 1983).

However, in practice, it is common to run multiple passes
over the training data, a scheme often referred to as multi-
pass SGD, where, in each pass, training examples are sam-
pled without-replacement, with or without reshuffling be-
tween passes. Despite its empirical success, the theoretical
implications of performing multiple passes are far less un-
derstood, particularly with respect to generalization and out-
of-sample performance. The standard intuition, based on
empirical observations, suggests that more training should
lead to better empirical performance, yet, more steps and
passes might eventually lead to overfitting as the model
becomes too closely tailored to the training data being pro-
cessed repeatedly.

Indeed, a substantial body of work has studied the conver-
gence of multi-pass SGD in finite-sum problems (e.g., Recht
& Re, 2012; Hardt et al., 2016; Nagaraj et al., 2019; Rajput
et al., 2020; Safran & Shamir, 2020; 2021; Koren et al.,
2022; Cha et al., 2023). However, these studies primarily fo-
cus on optimization convergence in terms of empirical risk
and how it is influenced by without-replacement sampling,
as opposed to with-replacement which is significantly easier
to analyze theoretically. Far less attention has been given to
convergence in terms of population risk, which quantifies
out-of-sample performance and is arguably the true goal in
the context of machine learning.

In fact, to the best of our knowledge, the following basic
question still remains, rather surprisingly, unanswered:

How does the population risk performance of
SGD, tuned to attain the minimax optimal rate
after a single pass, deteriorate (if at all) after
making just a few additional passes?

While there are several existing upper bounds on the pop-
ulation risk in the multi-pass scenario (e.g., Hardt et al.,
2016; Bassily et al., 2020), none of them give a meaningful,
nontrivial answer to this question in the general stochas-
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tic convex setting in which the Θ(1/
√
𝑛) minimax rate of

Nemirovskiı̆ & Yudin (1983) applies.

Our investigation in this work reveals a rather surprising
answer to this basic question: we show that even in the
fundamental, well-studied convex setting, multiple passes of
SGD can lead to rapid overfitting and reach a trivially-large
population loss after just one additional pass. In particular,
using the canonical stepsize of 𝜂 = Θ(1/

√
𝑛) that leads to

the minimax rate after a single pass, results in population
excess risk as high as Ω(1) after merely two passes. More
generally, we establish tight population excess risk bounds
for multi-pass SGD using any stepsize 𝜂 and number of steps
𝑇 . Our results cover without-replacement, single-shuffle and
multi-shuffle, multi-pass SGD as well as with-replacement
SGD, demonstrating similar rapid overfitting in all cases. An
illustration of the population risk bounds we obtain across
different epochs and stepsizes can be seen in Figure 1.

1.1. Our Contributions

In some more detail, we examine the out-of-sample behavior
of multi-pass SGD in the fundamental setting of Stochastic
Convex Optimization (SCO). In this setting, we operate with
a convex and Lipschitz (yet not necessarily smooth) loss
function over a bounded convex domain.

In this setting, we make the following contributions:

• We establish a tight bound of Θ(1/(𝜂𝑇) + 𝜂
√
𝑇) on the

population excess risk of multi-pass (without replacement)
SGD with stepsize 𝜂 over 𝑇 steps (see Theorems 3.1
and 3.3 in Section 3). This result applies to both the
single-shuffle and multi-shuffle variants, but also more
generally to any multi-pass scheme that processes exam-
ples according to an arbitrary sequence of permutations.

• We also prove a similar tight Θ(1/(𝜂𝑇)+𝜂
√
𝑇) population

excess risk bound for with-replacement SGD, that holds
after 𝑂 (𝑛 log 𝑛) steps (see Theorems 3.2 and 3.4).

• Finally, we also provide a new Ω(𝜂
√
𝑛) lower bound on

the empirical risk (and therefore also on the generalization
gap) of single-pass SGD. Our result holds in dimension
𝑂 (𝑛) thus improving upon previous results by Koren et al.
(2022); Schliserman et al. (2024) that were established in
dimension at least quadratic in 𝑛.

We note that all of our lower bound constructions apply in
an overparameterized regime, where the dimension scales
linearly in the sample size 𝑛. Our approach builds on recent
techniques developed for analyzing the sample complexity
of (approximate) empirical risk minimization in stochastic
convex optimization (Feldman, 2016; Amir et al., 2021;
Koren et al., 2022; Schliserman et al., 2024; Livni, 2024).
In particular, we leverage methods from Livni (2024), who
refined these constructions to achieve minimal dimension
dependence of 𝑂 (𝑛).

1.2. Discussion and Open Questions

It is insightful to contrast our lower bounds for multi-pass
SGD with existing lower bounds for gradient methods in
SCO. Most prior work on population risk lower bounds has
focused on algorithms that approximately minimize the em-
pirical risk, such as full-batch gradient descent (Amir et al.,
2021; Schliserman et al., 2024; Livni, 2024). A key observa-
tion in these works is that after just a single step of gradient
descent, the entire training set has been “touched” and so can
be effectively memorized in the optimization iterate. Once
this occurs, subsequent gradient steps can be steered toward
an overfitting solution with respect to the particular training
set at hand. Our results in the present paper reveal a similar
memorization effect for multi-pass SGD: after a single full
pass, SGD is also capable of effectively memorizing the
training set and driving the optimization towards overfitting.
However, a crucial (and quite remarkable) difference is that
this effect cannot be manifested before completing the first
pass, as doing so would contradict the classical Nemirovskiı̆
& Yudin (1983) stochastic approximation upper bounds.

Our result regarding the empirical risk of one-pass SGD
complement earlier work by Koren et al. (2022); Schlis-
erman et al. (2024) and challenges the classic learning
paradigm of minimizing empirical risk and generalization
gap in relation to SGD. It reveals that the generalization gap
is inadequate in explaining the minimax optimal generaliza-
tion behavior of one-pass SGD, which constitute one of the
fundamental cornerstones of convex optimization. Together
with our lower bounds for multi-pass SGD, this result high-
lights a sharp phase transition between the first and later
epochs: generalization bounds, such as those implied by
algorithmic stability (Bousquet & Elisseeff, 2002; Hardt
et al., 2016; Bassily et al., 2020), are ineffective during the
first pass but become tight after the second pass, whereas the
optimal performance in the first pass is only explained by
online-to-batch (aka stochastic approximation) arguments
which collapse immediately after the first pass.

Open questions. Our findings raise several intriguing
open questions for further investigation:

• First, our construction leverages techniques for lower
bounding the generalization gap in SCO in order to con-
trol the population risk of multi-pass SGD. However, in
principle, the population risk performance of multi-pass
SGD should be unrelated to its generalization gap (e.g.,
as in the case of one-pass SGD). In particular, it is an
interesting question whether our results could be repro-
duced in settings where uniform convergence holds (e.g.,
low-norm linear predictors with a Lipschitz loss), and the
generalization gap is necessarily small.

• Another interesting problem is to precisely characterize
the rate at which overfitting develops during the second
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Figure 1. An illustration of the minmax rates for the population loss
of multi-pass SGD established in Theorems 3.1 and 3.3, through
𝐾 = 5 epochs and for different stepsizes 𝜂.

pass. Indeed, our results are only effective starting from
the end of the second epoch and onward. As we discussed
earlier, generalization bounds remain vacuous at the start
of the second pass, and regret analysis fails due to its
reliance on independent samples at each iteration. Thus,
it appears that more refined techniques will be required to
analyze SGD dynamics immediately after the first pass.

• Finally, our work focuses on the general SCO setting,
which allows for non-smooth convex loss functions. Es-
tablishing population risk bound for multi-pass projected
SGD in the analogous smooth setting remains an inter-
esting open question that is likely to require significantly
different techniques than those used in the non-smooth
case. We remark that for unconstrained optimization, it is
known that variants of smooth GD and SGD can overfit,
even in dimension one (Nikolakakis et al., 2023; Zhang
et al., 2023). However, these results rely on unbounded
losses over unbounded domains, where learnability itself
is not guaranteed.1 In contrast, our focus is on constrained
optimization—a regime where learning is possible yet
ERM-based methods can fail—and the open question per-
tains to this case as well.

1.3. Additional Related Work

Convergence bounds for multi-pass SGD. Numerous
studies have explored multi-pass SGD from an optimiza-
tion perspective (e.g., Rajput et al., 2020; Safran & Shamir,
2020; Cha et al., 2023). Notably, focusing on empirical
performance in finite-sum problems, Nagaraj et al. (2019)
derived upper bounds for smooth functions, and Koren
et al. (2022) extended these results to non-smooth func-

1Indeed, with an unbounded range of function values, even
evaluating the loss of a single model, let alone learning, becomes
intractable. (E.g., without additional assumptions, standard con-
centration bounds scale linearly with the range of the random
variables.)

tions. Some works specifically study the differences in
optimization convergence rates between with-replacement
and without-replacement sampling (e.g., Recht & Re, 2012;
Yun et al., 2021; Lai & Lim, 2020; De Sa, 2020; Safran &
Shamir, 2021). Other works examine the population per-
formance of multi-pass SGD. For example, Sekhari et al.
(2021) focused on establishing upper bounds for a variant of
multi-pass SGD that uses a validation set, and in a slightly
non-standard formulation of SCO that allows for non-convex
individual functions. In contrast, our main focus is on lower
bounds for standard multi-pass SGD in the classical SCO
model (Shalev-Shwartz et al., 2010). Lei et al. (2021) derive
upper bounds using decreasing step sizes, without assum-
ing Lipschitz continuity but requiring gradient norms to be
bounded linearly by function values. In contrast, we estab-
lish tight bounds for fixed stepsize SGD under the standard
Lipschitz assumption. Other upper bounds on population
loss for the closely related with-replacement SGD can be
found in Hardt et al. (2016); Lei & Ying (2020).

Lower bounds for SGD. In terms of lower bounds, Zhang
et al. (2023) and Nikolakakis et al. (2023) analyzed SGD
with replacement and multi-pass SGD, respectively, but both
focused specifically on the unconstrained (smooth) case and
allowed for unbounded function values, which in general,
render the problem unlearnable, as discussed before. We, on
the other hand, focus exclusively on bounded domains and
functions values bounded by a constant, where the classical
Nemirovskiı̆ & Yudin (1983) results apply. More recently,
Koren et al. (2022) established lower bounds for the gener-
alization gap of one-pass SGD. They demonstrate that even
though SGD achieves optimal population loss rates after a
single pass, its empirical risk can be as high as Ω(𝜂

√
𝑇) after

𝑇 steps. Their construction was in dimension exponential
in the sample size, which was later improved to quadratic
by Schliserman et al. (2024). Here, we further improve the
dimensionality dependence to linear, which, as argued by
Feldman (2016); Livni (2024), is optimal.

Stochastic Convex Optimization (SCO). Our work be-
longs to the study of sample complexity of learning algo-
rithms in the fundamental SCO model. Previous research
has shown that in SCO some algorithms overfit when the
sample size depends on the dimension (Shalev-Shwartz
et al., 2010; Feldman, 2016), while others like online-to-
batch algorithms achieve dimension independent rates (Ne-
mirovskiı̆ & Yudin, 1983). This makes SCO a valuable
model for testing the generalization and sample complexity
of learning algorithms. Amir et al. (2021) were the first to
establish a dimension dependent lower bound for the sample
complexity of gradient descent (GD), they showed a pop-
ulation loss lower bound of Ω(𝜂

√
𝑇) after 𝑇 steps using a

step size 𝜂 in a construction with dimension exponential in
the sample size 𝑛. Later, Schliserman et al. (2024) extended
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this result to functions with dimensions proportional to the
square of the sample size, and Livni (2024) further reduced
it to linear size. This shows that to prevent GD from over-
fitting, a sample of size Ω(𝑑) must be considered. While
we build on ideas from these works, our focus is on SGD—
rather than GD—which does generalize in its first epoch.
Specifically, multi-pass SGD circumvents previous hard-
ness constructions during its first pass and begins the second
epoch with optimal generalization performance. This behav-
ior requires a careful adaptation of existing constructions
to account for the rapid deterioration of generalization after
the first epoch.

Algorithmic stability. Our work is also related to the
study of stability of learning algorithms as means to es-
tablish generalization bounds (Shalev-Shwartz et al., 2010;
Bousquet & Elisseeff, 2002). The crucial advantage of sta-
bility in the multi-epoch (without replacement) setting is the
fact it does not require individual examples to be sampled
i.i.d.—an assumption that only holds during the first pass.
Notably, Hardt et al. (2016) show bounds on uniform sta-
bility of multi-pass SGD for smooth functions and Bassily
et al. (2020) show tight stability bounds for non-smooth
functions. Their results demonstrate that in the non-smooth
case, an additional Θ(𝜂

√
𝑇) term must be added, that make

such bounds vacuous (at least for the purpose of establishing
risk bounds) unless the stepsize is extremely small as a func-
tion of 𝑇 . Importantly, these bounds apply uniformly across
epochs and do not explain why SGD generalizes well in its
first pass and overfitting starts only from the second pass.
This suggests a gap between instability and generalization
behavior, which calls for a more refined analysis that goes
beyond plain stability arguments.

2. Problem Setup
Stochastic Convex Optimization (SCO). We study out-
of-sample performance of multi-pass SGD in the context
of the fundamental stochastic convex optimization (SCO)
framework. A learning problem in SCO is defined by a con-
vex and 𝐺-Lipschitz loss function 𝑓 : 𝑊 × 𝑍 → ℝ, where
𝑍 is a sample space endowed with a population distribu-
tion Z, and𝑊 is a convex, compact domain with diameter
bounded by 𝐷. A learning algorithm receives a training set
𝑆 = {𝑧1, . . . , 𝑧𝑛} of 𝑛 i.i.d. samples from Z and outputs a
model 𝑤 ∈ 𝑊 , with the goal of minimizing the population
loss:

𝐹 (𝑤) = 𝔼𝑧∼Z [ 𝑓 (𝑤, 𝑧)] .

Let 𝑤★ ∈ arg min𝑤∈𝑊 𝐹 (𝑤) denote a minimizer of the ob-
jective. The empirical loss on the sample 𝑆 is given by:

𝐹𝑆 (𝑤) =
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖),

and we denote by 𝑤★
𝑆
∈ arg min𝑤∈𝑊 𝐹𝑆 (𝑤) its minimizer.

One-pass Stochastic Gradient Descent (SGD). One-
Pass SGD receives a training set 𝑆 = {𝑧1, . . . , 𝑧𝑛}, a step
size 𝜂 > 0, a suffix averaging parameter 𝜏 ∈ [𝑛 + 1] and a
first-order oracle 𝑂𝑧 (𝑤) ∈ 𝜕 𝑓 (𝑤, 𝑧) and proceeds as:

Initialize: 𝑤0 = 0
For 𝑡 = 1, . . . , 𝑛 : 𝑤𝑡+1 = Π𝑊

[
𝑤𝑡 − 𝜂𝑂𝑧𝑡 (𝑤𝑡 )

]
Output: 𝑤𝑛,𝜏 =

1
𝜏

𝑛∑︁
𝑡=𝑛−𝜏+1

𝑤𝑡 ,

where Π𝑊 : ℝ𝑑 → 𝑊 denotes the projections onto𝑊 . Note
that we consider general 𝜏-suffix averaging as an output.

Multi-pass SGD. In contrast to single-pass SGD, multi-
pass SGD does several passes on permutations of the same
training set. It receives a training set 𝑆 = {𝑧1, . . . , 𝑧𝑛}, a
number of epochs 𝐾, a step size 𝜂 > 0, 𝐾 permutations
{𝜋𝑘 : [𝑛] → [𝑛]}𝑘∈[𝐾 ] , a suffix averaging parameter 𝜏 ∈
[𝑛𝐾 + 1] and a first-order oracle 𝑂𝑧 (𝑤) ∈ 𝜕 𝑓 (𝑤, 𝑧), and
proceeds as follows:

Initialize: 𝑤0 = 0
For 𝑡 = 1, . . . , 𝑛𝐾 : 𝑖𝑡 = 𝜋⌊𝑡/𝑛⌋ (𝑡 mod 𝑛)

𝑤𝑡+1 = Π𝑊
[
𝑤𝑡 − 𝜂𝑂𝑧𝑖𝑡 (𝑤𝑡 )

]
Output: 𝑤𝑇,𝜏 =

1
𝜏

𝑇∑︁
𝑡=𝑇−𝜏+1

𝑤𝑡 ,

where 𝑇 = 𝑛𝐾 is the total number of steps. We note two
important special cases: the single-shuffle and multi-shuffle.
In the single-shuffle case, 𝜋1 is chosen uniformly at random,
and 𝜋1 = 𝜋𝑘 for all 𝑘 ∈ [𝐾]; in the multi-shuffle case, the
{𝜋𝑘}𝑘∈𝐾 are chosen uniformly and independently.

With-replacement SGD. With replacement SGD receives
a training set 𝑆 = {𝑧1, . . . , 𝑧𝑛}, a number of steps 𝑇 , a step
size 𝜂 > 0, a suffix averaging parameter 𝜏 ∈ [𝑛 + 1] and
a first-order oracle 𝑂𝑧 (𝑤) ∈ 𝜕 𝑓 (𝑤, 𝑧). It then proceeds as
follows:

Initialize: 𝑤0 = 0
For 𝑡 = 1, . . . , 𝑇 : 𝑖𝑡 ∼ Unif( [𝑛])

𝑤𝑡+1 = Π𝑊
[
𝑤𝑡 − 𝜂𝑂𝑧𝑖𝑡 (𝑤𝑡 )

]
Output: 𝑤𝑛,𝜏 =

1
𝜏

𝑛∑︁
𝑡=𝑛−𝜏+1

𝑤𝑡 .

Note that this is not a multi-pass algorithm per-se, as the
stochastic gradients used are independent regardless of the
total number of steps 𝑇 .
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3. Population Risk Bounds
We present a lower bound and a matching upper bound for
the population loss of multi-pass SGD for 𝐾 ≤ 𝑛 epochs.

3.1. Lower Bound for Multi-Pass SGD

We begin with stating the lower bound, which constitutes
our main contribution:

Theorem 3.1. For every 𝑛 ≥ 24, 2 ≤ 𝐾 ≤ 𝑛2, 𝑇 = 𝑛𝐾 , 𝑑 =

256𝑛, 𝜂 > 0 and 𝜏 ∈ [𝑇 +1], let𝑊 = {𝑤 ∈ ℝ2𝑑+1 : ∥𝑤∥2 ≤
1} then there are a finite sample space 𝑍 , a distribution Z
over 𝑍 , a 4-Lipschitz convex function 𝑓 (𝑤, 𝑧) in ℝ2𝑑+1 such
that for any first order oracle of 𝑓 (𝑤, 𝑧) with probability 1

2
if we run without replacement SGD for 𝑇 steps with stepsize
𝜂 and with any sequence of permutations:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (𝑤★) = Ω

(
min

{
𝜂
√
𝑇 + 1

𝜂𝑇
, 1

})
.

We note that this result applies to single, multi shuffle and
more generally for any sequence of permutations. In partic-
ular, for 𝜂 = Θ(1/

√
𝑛) that yields minimax optimal result

for one-pass, can lead up to Ω(1) population loss after just
one additional pass.

We provide here a proof sketch, the full proof is presented
in Section 5.

Proof sketch. To obtain the lower bound, we rely on the,
recently introduced, notion of a sample-dependent oracle
introduced by Livni (2024), and the reduction from sample-
dependent oracles to the standard setting of stochastic con-
vex optimization. Livni (2024) observed that if the gradi-
ents of an algorithm such as Gradient Descent (GD) are
dependent on the whole sample, then one can utilize that to
construct stochastic functions for which Gradient Descent
overfits. It also turns out that one can reduce the standard
setup of stochastic optimization to this weaker setting of a
sample dependent oracle, for GD. These observations al-
lowed the construction of distributions that cause GD to
overfit at certain regimes.

SGD, though, differ from GD that observes the whole sam-
ple at the first iteration. In particular, it is impossible for the
trajectory of SGD to depend on future seen examples. In
turn, the reduction becomes more subtle. We note that this
is not just an artifact of the proof technique, but is demon-
strated by the fact that, indeed, SGD does minimize the
population loss at the first epoch, and SGD circumvent the
hard construction of Livni (2024). Nevertheless, we build on
a similar approach, and we use a weaker sample dependent
first order oracle, that cannot depend on the whole sample
but may depend on past observations. As it turns out, such
an oracle is enough to construct lower bounds, and also
allows a reduction for the case of SGD.

Following Livni (2024), we rely on a loss function with the
following structure:

𝑓 (𝑤,𝑉) = 𝑔(𝑤,𝑉) + 𝛼ℎ(𝑤),

where 𝑔(𝑤,𝑉) is a variant of Feldman’s function (Feldman,
2016) that has the property that it has spurious empirical
risk minimizers. Namely, using this function and a specific
distribution, we can guarantee the high-probability exis-
tence of a “bad” vector, which for this bound will have high
population loss. The second term, ℎ(𝑤), is used to guide
the iterates toward this bad vector, enabling us to achieve
the lower bound. The constant 𝛼 prevents projections from
disrupting this process.

Feldman’s function and existence of a spurious empirical
minimizer. Feldman’s function, 𝑔, relies on the existence
of a set 𝑈 ⊂ ℝ𝑑 with |𝑈 | ≥ 2Ω(𝑑) such that for every
𝑢 ≠ 𝑣 ∈ 𝑈, we have

⟨𝑢, 𝑣⟩ ≤ 𝑐1 < 𝑐2 ≤ ∥𝑣∥2.

We consider the following function:

𝑔1 (𝑤,𝑉) = max
𝑣∈𝑉

{𝑐1, 𝑣 · 𝑤} .

The existence of such 𝑈 follows from a standard packing
argument. Next, we let 𝑍 = 𝑃(𝑈), the powerset of 𝑈, and
treat examples in 𝑍 as subsets of𝑈. Let Z be a distribution
over 𝑍 such that for 𝑉 ∼ Z every 𝑢 ∈ 𝑈 is in 𝑉 with
probability 𝛿.

Notice that if 𝑤 ∈ 𝑉 , then 𝑔1 (𝑤,𝑉) ≥ 𝑐2, and otherwise,
𝑔1 (𝑤,𝑉) = 𝑐1. Let 𝑆 = {𝑉1, . . . , 𝑉𝑛}. For this bound we
will define a bad vector as an ERM with high population
loss. Notice that any vector 𝑢0 ∉ ∪𝑛

𝑖=1𝑉𝑖 is an ERM since
𝐹𝑆 (𝑢0) − 𝐹𝑆 (𝑤★𝑆) = 𝑐1 − 𝑐1 = 0. If, furher, 𝑢0 ∈ 𝑈, then its
population loss is given by 𝐹 (𝑢0) ≥ 𝛿(𝑐2 − 𝑐1). By setting
𝛿 = 1

2 , we can show then that any such 𝑢0 is a bad ERM.
By further setting 𝑑 = Ω(𝑛), we can show that with high
probability such a 𝑢0 ∈ 𝑈 exists.

Reaching spurious empirical risk minimizer. Feldman’s
function demonstrated that there exists a “bad vector” in the
sense that there are minimizers of the empirical risk that
yield large population loss. However, there is no guarantee
that if we run SGD on Feldman’s function we will reach
such a minimzer (in fact, notice that SGD applied on 𝑔 will
remain at zero). Therefore, our strategy is to add a further
term ℎ that will cause SGD to converge towards 𝑢0. For
simplicity of the overview we assume here that 𝑢0 ∈ {0, 1}𝑑 .

For 𝑇 = 𝑂 (𝑑), we use the following function as ℎ:

ℎ1 (𝑤) = max
𝑖∈[𝑑 ]

{0,−𝑤(𝑖)}.
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Assume we ran SGD for 𝑛 iterations. Notice that 0 ∈
𝜕ℎ1 (0), therefore, in our setup we are allowed to return
a 0 subgradient for 𝑛 iterations. After 𝑛 iterations, we start
using ℎ after identifying a specific bad vector 𝑢0. Here, we
exploit the fact that our oracle is sample dependent, and we
use ℎ1 to take one step on each of the positive coordinates
of 𝑢0 to reach 𝜂𝑢0 in at most 𝑑 steps.

When 𝑇 ≫ 𝑑, ℎ1 won’t suffice since after 𝑑 such steps, we
can’t further increase the desired loss. To achieve the 𝑑3

term, we use the following function instead:

ℎ2 (𝑤) = max
𝑖∈[𝑑 ]

{0,−𝑤(𝑖),−(𝑤(𝑖) − 𝑤(𝑖 + 1))} .

With the following oracle:

1. If there is an index 𝑖 such that 𝑤(𝑖) = 𝑤(𝑖 + 1) ≥ 𝜂,
then output: 𝑒𝑖+1 − 𝑒𝑖 .

2. If there is no such index and if 𝑖 is the minimal index
such that 𝑤(𝑖) = 0, output: −𝑒𝑖 .

3. If neither of the above conditions holds, output: 0.

By applying these gradient steps only for the positive indices
of 𝑢0, this will allow us to achieve Ω(𝜂

√
𝑇) when 𝑇 ≈ 𝑑3.

For the case when 𝑑 ≪ 𝑇 ≪ 𝑑3, we will use ℎ2, but instead
of considering one index at a time, we consider blocks of
indices of size 𝐵 ≥ 1 to achieve the same effect.

Putting it together. To compute and reach the bad vector
we use the oracle’s sample dependence and the fact that
0 ∈ 𝜕 𝑓 (0, 𝑉) for all 𝑉 , allowing us to stay at 0. During
the first epoch, we remain at 0 to observe the examples. At
the start of the second epoch we have memorized the entire
training set 𝑆, we compute 𝑢0 ∉ ∪𝑛

𝑖=1𝑉𝑖 and take gradient
steps to reach it using ℎ.

Reduction. The construction we described assumes a
sample-dependent oracle. The key idea behind the reduction
to this case is encoding information about past examples
into the iterates. This allows the gradient to use knowledge
of previous examples by examining only the current iterate
and sample. □

3.2. Lower Bound for With-Replacement SGD

Using the same technique, we also prove a lower bound for
with-replacement SGD. The proof is given in Section 5 and
here we give a short sketch of the proof.

Theorem 3.2. For every 𝑛 ≥ 24, 2 ≤ 𝐾 ≤ 𝑛, 𝑇 = 𝐾𝑛 log 𝑛,
𝑑 = 256𝑛, 𝜂 > 0 and 𝜏 ∈ [𝑇 + 1], let 𝑊 = {𝑤 ∈ ℝ2𝑑+1 :
∥𝑤∥ ≤ 1} then there are a finite sample space 𝑍 , a distri-
bution Z over 𝑍 , a 4-Lipschitz convex function 𝑓 (𝑤, 𝑧) in
ℝ2𝑑+1 such that for any first order oracle of 𝑓 (𝑤, 𝑧) with

probability 1
4 if we run with-replacement SGD for 𝑇 steps

with stepsize 𝜂:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (𝑤★) = Ω

(
min

{
𝜂
√
𝑇 + 1

𝜂𝑇
, 1

})
.

Proof sketch. Noticing that the key idea in the construction
of Theorem 3.1 is to memorize the entire training set and
then step in a “bad direction” uninterrupted, we can also ap-
ply the same approach here. In the case of with-replacement
sampling, from folklore analysis of the coupon collector’s
problem we know that with probability 1

2 we have seen the
entire training set after 𝑂 (𝑛 log 𝑛) steps, and from that point
we can proceed similarly. □

3.3. Matching Upper Bounds

Finally, we give matching upper bounds to the two lower
bounds presented above. Both bounds are straightforward
consequences of standard techniques in convex optimization
and algorithmic stability analysis; we only state the bounds
here and defer proofs to Appendix A.

Theorem 3.3. Let 𝑓 be a convex, non-smooth, and 𝐺-
Lipschitz function, and let 𝑆 be a dataset of 𝑛 samples. If we
run multi-pass SGD (either multi-shuffle or single-shuffle)
with step size 𝜂 > 0 for 𝐾 ≥ 1 epochs, for a total of 𝑇 = 𝑛𝐾

steps. Then, for any suffix average iterate 𝜏 = Ω(𝑇), we
have the following guarantee:

𝔼
[
𝐹 (𝑤𝑇,𝜏) − 𝐹 (𝑤★)

]
= 𝑂

(
𝜂
√
𝑇 + 1

𝜂𝑇
+ 𝜂𝑇
𝑛

)
.

We will note that while the upper bound holds for the multi-
shuffle and single-shuffle cases, our lower bound holds for
every set of 𝐾 permutations. A similar result can be derived
for with-replacement SGD:

Theorem 3.4. Let 𝑓 be a convex, non-smooth, and 𝐺-
Lipschitz function, and let 𝑆 be a dataset of 𝑛 samples. If we
run with-replacement SGD with step size 𝜂 > 0 for 𝐾 ≥ 1
epochs, for a total of 𝑇 = 𝑛𝐾 steps. Then, for any suffix
average iterate 𝜏 = Ω(𝑇), we have the following guarantee:

𝔼
[
𝐹 (𝑤𝑇,𝜏) − 𝐹 (𝑤★)

]
= 𝑂

(
𝜂
√
𝑇 + 1

𝜂𝑇
+ 𝜂𝑇
𝑛

)
.

4. Empirical Risk Bounds
We further prove a lower bound of Ω(𝜂

√
𝑇) for the empirical

risk (equivalently, the generalization gap) of one-pass SGD
using a construction in dimension 𝑑 = 𝑂 (𝑛), improving on
results from Koren et al. (2022); Schliserman et al. (2024).

Theorem 4.1. For every 𝑛 ≥ 17, 𝑑 = 712𝑛 log 𝑛, 𝜂 > 0,
and 𝜏 ∈ [𝑛 + 1] let 𝑊 = {𝑤 ∈ ℝ2𝑑+1 : ∥𝑤∥ ≤ 1} then
there are a datapoint set 𝑍 and a distribution Z over 𝑍 , a
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4-Lipschitz convex function 𝑓 (𝑤, 𝑧) in ℝ2𝑑+1 such that for
any first order oracle of 𝑓 (𝑤, 𝑧) with probability 1

2 if we run
one-pass SGD with 𝜂 as a learning rate for 𝑛 steps then:

𝐹𝑆 (𝑤𝑛,𝜏) − 𝐹𝑆 (𝑤★𝑆) = Ω
(
min

{
𝜂
√
𝑛, 1

})
.

The proof is deferred to Appendix C. This result strengthens
the previous results that one-pass SGD cannot be fully ex-
plained by the classical learning framework of minimizing
empirical loss and generalization gap. Specifically, while
SGD ensures low population loss with 𝜂 = Θ(1/

√
𝑛), it can

still cause a generalization gap of up to Ω(1). Moreover,
the construction is done in nearly linear dimension (up to
a logarithmic factor), which is the lower bound for the di-
mension for such results, as uniform convergence must not
hold.

Proof sketch. We use the same kind of construction as we
did for the other proofs. Dinstinctively, though, to achieve
high empirical risk, a “bad vector” is a vector that appears
frequently in the training set, but is infrequent on the pop-
ulation. To guarantee the existence of such a vector we
change the distribution Z so that 𝑢0 ∈ 𝑉 with probability
𝛿 = 𝑂 (1/𝑛2).

A similar argument (but reversed) as before demonstrates
that there has to be a “bad vector” that is frequent at the first
1/16𝑛 of the examples, observed by the algorithm, but does
not appear at the tail of the training set.

The appearance at a constant fraction of the training set
ensures high empirical risk. On the other hand, absence
from the tail allows uninterrupted advancement there in a
similar technique as before. Our strategy then is similar
to before, to compute the bad vector 𝑢0, we also stay at 0,
this time for 𝑛/16 steps. Then if ∩𝑛/16

𝑖=1 𝑉𝑖 ≠ ∅, we select the
minimal vector 𝑢0 from this set and take gradient steps to
reach it using ℎ. □

5. Proofs of Theorems 3.1 and 3.2
We first prove the results using a weaker notion of a sample-
dependent oracle and later relax this dependence. Formally,
a sample-dependent oracle is a gradient oracle that, at each
step, has access to both the current and all previous samples.
We denote it as 𝑂𝑺 , where 𝑺 = (𝑆1, . . . , 𝑆𝑇 ) is the ordered
sequence of sample sets. At iteration 𝑡, the algorithm re-
ceives 𝑆𝑡 , which may be a set of samples rather than a single
sample. This general setting captures a broad class of algo-
rithms, including variants of SGD, as well as GD and batch
methods. The oracle is defined as:

𝑂𝑺 (𝑆1:𝑡−1; 𝑆𝑡 , 𝑤𝑡 ) =
1
|𝑆𝑡 |

∑︁
𝑧∈𝑆𝑡

𝑂𝑧 (𝑆1:𝑡−1;𝑤𝑡 ),

when 𝑆1:0 = ∅, 𝑆1:𝑡−1 = (𝑆1, . . . , 𝑆𝑡−1) and𝑂𝑧 (𝑆1:𝑡−1;𝑤) ∈
𝜕 𝑓 (𝑤, 𝑧). The trajectory induced by 𝑂𝑺 which is initialized
at 𝑤0 = 0 is specified by the following equation:

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑂𝑺 (𝑆1:𝑡−1;𝑤𝑡 , 𝑆𝑡 ).

We will state the following general Lemma for an upper
bound of Ω(𝜂

√
𝑇) and later show how it proves Theo-

rems 3.1 and 3.2.

Lemma 5.1. For every 𝑛, 𝜏epoch ≥ 24, 𝐾 ≥ 2, and step
size 𝜂 > 0, define 𝑇 = 𝜏epoch𝐾 and 𝑑 = 256𝑛 and let
𝑊 = {𝑤 ∈ ℝ2𝑑 : ∥𝑤∥ ≤ 1}. There exist a finite dataset
𝑍 , a distribution Z over 𝑍 , a 3-Lipschitz convex function
𝑓 (𝑤, 𝑧) in ℝ2𝑑 , as well as a sample-dependent first-order
oracle 𝑂𝑺 such that for every training set 𝑆 ∼ Z𝑛 drawn
i.i.d. and every sequence of samples 𝑺 = (𝑆1, . . . , 𝑆𝑇 )
where 𝑆𝑡 ⊂ 𝑆 for all 𝑡 ∈ [𝑇], if with probability 𝑝 it holds
that

⋃𝜏epoch

𝑡=1 𝑆𝑡 = 𝑆, then with probability at least 1
2 𝑝, for

every suffix averaging 𝜏:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (0) = Ω

(
min

{
𝜂

√︃
min

{
𝑛3, 𝑇

}
, 1

})
.

This Lemma shows that once an algorithm memorizes the
entire training set we can quickly lead it to overfit.

Proof. We will prove here the Lemma for the case 𝐾 ≥ 34.
For 2 ≤ 𝐾 ≤ 34 the proof is deferred to Appendix B. First
we notice that there exists 𝑑 ≤ 𝑑′ < 2𝑑 such that 𝑑′ = 2𝑚
for some 𝑚 ∈ ℕ. Our construction will be over ℝ𝑑

′
which

of course implies that such a construction can be done in
ℝ2𝑑 using only a subspace of dimension 𝑑′. From the proof
of Lemma 8 in Livni (2024) there exists𝑈 ⊂ {0, 1}𝑑′ such
that:

∀𝑢 ≠ 𝑣 ∈ 𝑈, 𝑢 · 𝑣 ≤ 5
16
𝑑′ and ∥𝑢∥2 =

7
16
𝑑′,

and
|𝑈 | > 𝑒𝑑′/258 > 𝑒𝑑/258 ≥ 2𝑑/256 = 2𝑛.

We will let 𝑍 = 𝑃(𝑈) and define a distribution Z over 𝑍
such that for a random sample 𝑉 ∼ Z, each 𝑢 ∈ 𝑈 lies
in 𝑉 with probability 1

2 . Let 𝛼 = min
{

1
𝜂
√

2𝑇
, 1

}
. First we

will assume 𝑇 ≤ 𝑑′3 and we will consider the case where
𝑇 > 𝑑′3 at the end. Let 𝐵 ∈ ℕ be such that:

𝑑′ ≤ 𝐵

(
𝑇

34

)1/3
< 2𝑑′.

One can show that without loss of generality we can assume
𝐵 is also a power of 2, in particular 𝑑′ is divisible by 𝐵 for
a large enough 𝑇 . This will imply two useful facts:

𝑑′3

𝐵3 ≤ 𝑇

34
=⇒ 𝜏epoch +

𝑑′3

𝐵3 ≤ 𝑇

34
+ 𝑇

34
=

1
17
𝑇, (1)
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since 𝑇 ≥ 34𝜏epoch and

𝑇 ≤ 272𝑑′3

𝐵3 , (2)

which we will use later. We consider blocks of indices so we
will present the following notation: for two sets of indices
𝐼, 𝐽 ⊂ [𝑑′] denote 𝐼 ≺ 𝐽 if max{𝑖 ∈ 𝐼} < min{ 𝑗 ∈ 𝐽} and
denote:

𝑒𝐼 =
1√︁
|𝐼 |

∑︁
𝑖∈𝐼

𝑒𝑖 and 𝑤(𝐼) = 1√︁
|𝐼 |

∑︁
𝑖∈𝐼

𝑤(𝑖).

We will define the functions:

ℎ(𝑤) = max
{
0, max
𝐼⊂[𝑑′ ], |𝐼 |=𝐵

{−𝑤(𝐼)},

max
𝐼≺𝐽⊂[𝑑′ ], |𝐼 |= |𝐽 |=𝐵

{−(𝑤(𝐼) − 𝑤(𝐽))}
}

𝑔(𝑤,𝑉) = 1
√
𝑑′

max
𝑣∈𝑉

{
45𝜂𝛼𝑑′2

2 · 162𝐵1.5 , 𝑤 · 𝑣
}
.

Finally our loss function will be:

𝑓 (𝑤,𝑉) = 𝑔(𝑤,𝑉) + 𝛼ℎ(𝑤). (3)

Notice that 𝑓 is convex and 3-Lipschitz. Next we define
a sample dependent oracle 𝑂𝑺 . Given 𝑤 and all examples
seen so far 𝑺1:𝑡 = {𝑆1, . . . , 𝑆𝑡 }:

1. If |𝑺1:𝑡 | ≤ 𝜏epoch output 0.

2. Otherwise check in lexicographic order if there exists
𝑢0 ∈ 𝑈 such that 𝑢0 ∉ (∪𝜏epoch

𝑡 ′=1 ∪𝑉∈𝑆𝑡′ 𝑉).
• If there doesn’t exist such 𝑢0 or 𝑢0 ∈
(∪𝑡
𝑡 ′=𝜏epoch+1 ∪𝑉∈𝑆𝑡′ 𝑉) output an arbitrary sub-

gradient.
• Otherwise we will compute the 7𝑑′

16 indices of 𝑢0 that
hold 𝑢0 = 1 denote them 𝐽 = { 𝑗1, . . . , 𝑗7𝑑′/16}. Such
a set exists since ∥𝑢0∥2 = 7𝑑′

16 and 𝑢0 ∈ {0, 1}𝑑′ . We
will divide the indices in 𝐽 to blocks of size 𝐵, for
𝑚 = 1, . . . , 7𝑑′

16𝐵 :

𝐼𝑚 = { 𝑗 (𝑚−1) ·𝐵+1, . . . , 𝑗𝑚·𝐵}.

We have three scenarios:
(a) If there is a block 𝐼 𝑗 such that 𝑤(𝐼 𝑗 ) = 𝑤(𝐼 𝑗+1) > 0

then output: 𝛼(𝑒𝐼 𝑗+1 − 𝑒𝐼 𝑗 ).
(b) If there is no such block and if 𝐼 𝑗 is the minimal

block such that 𝑤(𝐼 𝑗 ) = 0 output: −𝛼𝑒𝐼 𝑗 .
(c) If both of the conditions stated above do not hold

output: 0.

We will denote the following event:

E =
{
∪𝜏epoch

𝑡=1 𝑆𝑡 = 𝑆 and ∃𝑢0 ∈ 𝑈 : 𝑢0 ∉ ∪𝜏epoch

𝑡=1 ∪𝑉∈𝑆𝑡 𝑉
}
.

(4)
We will prove 𝑂𝑺 is a valid oracle in the following lemma
whose proof is deferred to Appendix B.1.

Lemma 5.2. 𝑂𝑺 as stated above is a valid sample depen-
dent first order oracle of 𝑓 as defined in Equation (3). Fur-
thermore if E holds it will induce a trajectory such that we
never leave the unit ball and no projection takes place.

We will now assume that E holds. Since |𝑈 | ≥ 2𝑛 from
Lemma E.2 and from the definition of 𝜏epoch,

Pr[E] = Pr[∪𝜏epoch

𝑡=1 𝑆𝑡 = 𝑆] · Pr[∃𝑢0 ∈ 𝑈 : 𝑢0 ∉ ∪𝑉∈𝑆𝑉]

≥ 1
2
𝑝.

Next we will assume that E holds. Then after at most
𝑇 ′ = 𝜏epoch + 1 + ∑ 7𝑑′

16𝐵
𝑡=1

∑𝑡
𝑡 ′=1 𝑡

′ steps we will have that for

every 𝑖 ∈ 𝐼𝑡 , 𝑤𝑇 ′ (𝑖) = 𝛼𝜂
√
𝐵

(
7𝑑′
16𝐵 + 1 − 𝑡

)
, and for every

𝑡′ ≥ 𝑇 ′, 𝑤𝑡 ′ = 𝑤𝑇 ′ which implies:

𝑤𝑡 ′ · 𝑢0 = 𝑤𝑇 ′ · 𝑢0 =
√
𝐵𝜂 𝛼

7𝑑′
16𝐵∑︁
𝑡=1

(
7𝑑′

16𝐵
+ 1 − 𝑡

)
=
√
𝐵𝜂𝛼

7𝑑′
16𝐵∑︁
𝑡=1

𝑡

≥
√
𝐵𝜂𝛼

2
·
(

7𝑑′

16𝐵

)2

=
√
𝐵𝜂𝛼

49𝑑′2

2 · (16𝐵)2 .

Since 𝑇 ′ ≤ 𝜏epoch + 𝑑′3

𝐵3 ≤ 1
17𝑇 (see Equation (1)), for every

suffix averaging 𝜏:

𝑤𝑇,𝜏 · 𝑢0 ≥ 16
17
𝑤𝑇 ′ · 𝑢0 ≥

√
𝐵𝜂𝛼

46𝑑′2

2 · (16𝐵)2 .

Also because we assumed 𝑇 ≤ 272𝑑′3
𝐵3 (see Equation (2)),

and with probability at least 1
2 𝑢0 will appear in a fresh

sample:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (0) ≥
1
2

(
46
√
𝐵𝛼𝜂𝑑′1.5

2 · (16𝐵)2 − 45
√
𝐵𝛼𝜂𝑑′1.5

2 · (16𝐵)2

)
≥ 𝛼𝜂

4 · 162

(
𝑑′

𝐵

)1.5

≥ 1
4 ·

√
2 ·

√
272 · 162

min{𝜂
√
𝑇, 1}.

This concludes the proof for the case 𝑇 ≤ 𝑑′3, when 𝑇 > 𝑑′3

if we take the construction with 𝑇 = 𝑑′3 then after 𝑇 steps
our oracle will keep giving 0, hence we can use the above
construction for any 𝑇 ′ > 𝑇 . So for 𝑇 > 𝑑′3 we have with
probability 1

2 𝑝:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (0) ≥
1

4
√

2 ·
√

272 · 162
min{𝜂

√︁
𝑑′3, 1}

≥ 1
4
√

2 ·
√

272 · 162
min{𝜂

√︁
(256𝑛)3, 1}.
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Overall in both cases with probability 1
2 𝑝:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (0) = Ω

(
min

{
1, 𝜂

√︁
min{𝑛3, 𝑇}

})
. □

We will now show how the lemma gives the desired results.

Proof of Theorem 3.1. The Ω(1/(𝜂𝑇) + 𝜂) term is given in
Lemma E.1. For the Ω(𝜂

√
𝑇) term we will use Lemma 5.1.

Let 𝑺 =
(
{𝑧𝑖1 }, . . . , {𝑧𝑖𝑇 }

)
be the ordered sequence of sam-

ples given to multi-pass SGD during a run of 𝑇 steps with
training set 𝑆 of 𝑛 samples. After the first epoch we are sure
to have observed the entire training set, so for 𝜏epoch = 𝑛 and
𝑝 = 1 from Lemma 5.1 we get the result using a sample-
dependent oracle. We can relax this dependence using the
reduction in Lemma D.2 and conclude the proof. □

Proof of Theorem 3.2. The Ω(1/(𝜂𝑇) + 𝜂) term is given in
Lemma E.1. For the Ω(𝜂

√
𝑇) term we will use Lemma 5.1.

Let 𝑺 =
(
{𝑧𝑖1 }, . . . , {𝑧𝑖𝑇 }

)
be the ordered sequence of sam-

ples given to with-replacement SGD during a run of 𝑇 steps
with training set 𝑆 with 𝑛 samples. From folklore analysis
of the coupon collector’s problem it is known that with prob-
ability 1

2 after at most 𝑛 log 𝑛 iterations we have memorized
the entire training set, so for 𝜏epoch = 𝑛 log 𝑛 and 𝑝 = 1

2 from
Lemma 5.1 we get the result using a sample-dependent or-
acle. We can relax this dependence using the reduction in
Lemma D.2 and conclude the proof. □
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A. Proofs of Upper Bounds
To establish the upper bounds, we will use stability arguments, and state the following definition for uniform stability:

Definition A.1. A randomized algorithm 𝐴 is 𝜖-uniformly stable if for all data sets 𝑆, 𝑆′ ∈ 𝑍𝑛 such that 𝑆 and 𝑆′ differ in at
most one example, we have:

sup
𝑧

𝔼 [ 𝑓 (𝐴(𝑆), 𝑧) − 𝑓 (𝐴(𝑆), 𝑧′)] ≤ 𝜖 .

We will denote by 𝜖stab the infimum over such 𝜖 .

We recall the important Lemma stating that uniform stability implies generalization in expectation:

Lemma A.2 (Lemma 7 in Bousquet & Elisseeff (2002)). Let 𝐴 be an algorithm that is 𝜖 uniformly stable, then:��𝔼𝑆,𝐴 [𝐹 (𝐴(𝑆)) − 𝐹𝑆 (𝐴(𝑆))]�� ≤ 𝜖 .
In particular using our notation: ��𝔼𝑆,𝐴 [𝐹 (𝐴(𝑆)) − 𝐹𝑆 (𝐴(𝑆))]�� ≤ 𝜖stab.

Our upper bounds will be established using the following standard inequality:

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
= 𝔼 [𝐹 (𝑤) − 𝐹𝑆 (𝑤)] + 𝔼

[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
+

≤0︷                       ︸︸                       ︷
𝔼

[
𝐹𝑆 (𝑤★𝑆) − 𝐹𝑆 (𝑤

★)
]
+

=0︷                      ︸︸                      ︷
𝔼

[
𝐹𝑆 (𝑤★) − 𝐹 (𝑤★)

]
≤ 𝔼 [𝐹 (𝑤) − 𝐹𝑆 (𝑤)] + 𝔼

[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
Using Lemma A.2 yeilds:

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 𝜖stab + 𝔼

[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
(5)

We will now continue to prove the upper bounds.

Proof of Theorem 3.3. We will prove the theorem for the average of the iterates. The proof for any suffix average 𝜏 = Ω(𝑇)
can be derived using similar arguments. To bound the stability we will use the following Lemma which was originally given
for multi-pass SGD with single-shuffle but can easily be extended to the multi shuffle case using similar arguments.

Lemma A.3 (Theorem 3.4 in Bassily et al. (2020)). Let 𝑓 : 𝑊 × 𝑍 → ℝ be a convex 𝐺-Lipschitz function. Then the uniform
stability of multi-pass SGD with multi-shuffling or single-shuffling is bounded as:

𝜖stab ≤ 2𝐺2𝜂
√
𝑇 + 4𝐺2 𝜂𝑇

𝑛
.

To bound the optimization error we will use the following:

Lemma A.4 (Theorem 6 in Koren et al., 2022). Let 𝑓 : 𝑊 × 𝑍 → ℝ be a convex and 𝐺-Lipschitz function. And let
𝑆 = {𝑧1, . . . , 𝑧𝑛} be some training set. Consider running 𝐾 ≥ 1 epochs of without replacement SGD over 𝑓 and 𝑆. Then, we
have the following guarantee for 𝑤 = 1

𝑛𝐾

∑𝑇+1
𝑡=1 𝑤𝑡 :

• For the multi-shuffle case:

𝔼
[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
≤ 2𝜂𝐺2√𝑛 + 𝐷2

2𝜂𝑛𝐾
+ 1

2
𝜂𝐺2.

• For the single-shuffle case:

𝔼
[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
≤ 8𝐺2𝜂

√
𝑛𝐾 + 8𝐺2𝜂𝐾 + 𝐷2

2𝜂𝑛𝐾
+ 𝜂𝐺

2

2
.

11



Rapid Overfitting of Multi-Pass SGD in Stochastic Convex Optimization

So for both cases

𝔼
[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
≤ 8𝐺2𝜂

√
𝑛𝐾 + 8𝐺2𝜂𝐾 + 𝐷2

2𝜂𝑛𝐾
+ 𝜂𝐺

2

2
.

Using Equation (5):

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 𝜖stab + 𝔼

[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
≤ 2𝐺2

(
𝜂
√
𝑛𝐾 + 2𝜂𝐾

)
+ 8𝐺2𝜂

√
𝑛𝐾 + 8𝐺2𝜂𝐾 + 𝐷2

2𝜂𝑛𝐾
+ 𝜂𝐺

2

2

=
𝐷2

2𝑛𝐾𝜂
+ 10𝐺2𝜂

√
𝑛𝐾 + 12𝐺2𝜂𝐾 + 1

2
𝐺2𝜂.

So we have:

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
= 𝑂

(
1
𝑛𝐾𝜂

+ 𝜂
√
𝑛𝐾 + 𝜂𝐾

)
= 𝑂

(
1
𝜂𝑇

+ 𝜂
√
𝑇 + 𝜂𝑇

𝑛

)
.

this concludes the proof. □

Proof of Theorem 3.4. We will prove the theorem for the average of the iterates. The proof for any suffix average 𝜏 = Ω(𝑇)
can be derived using similar arguments. To bound the stability we will use the following Lemma

Lemma A.5 (Theorem 3.3 in Bassily et al. (2020)). Let 𝑓 : 𝑊 × 𝑍 → ℝ be a convex 𝐺-Lipschitz function. Then the uniform
stability of SGD with-replacement is bounded as:

𝜖stab ≤ 4𝐺2𝜂
√
𝑇 + 4𝐺2 𝜂𝑇

𝑛
.

To bound the optimization error we will use the following classical result from Nemirovskiı̆ & Yudin (1983).

Lemma A.6. Assume we run SGD with stepsize 𝜂 > 0 on a convex function 𝐹′ = 𝔼Z [ 𝑓 ′ (𝑤, 𝑧)], for some distribution Z,
assume further that 𝑓 ′ is 𝐺 Lipschitz and ∥𝑤0 −𝑤★∥ ≤ 𝐷. Let 𝑤 denote the average of the 𝑇 iterates of the algorithm. Then
we have:

𝐹′ (𝑤) − 𝐹′ (𝑤★) ≤ 𝐷2

2𝜂𝑇
+ 1

2
𝐺2𝜂.

Applying Lemma A.6 on the empirical loss 𝐹′ = 𝐹𝑆 with Z being the uniform distribution over 𝑆 we have:

𝔼
[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
≤ 𝐷2

2𝑛𝐾𝜂
+ 1

2
𝐺2𝜂.

Using Equation (5) and putting everything together:

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 𝜖stab + 𝔼

[
𝐹𝑆 (𝑤) − 𝐹𝑆 (𝑤★𝑆)

]
≤ 𝐷2

2𝑛𝐾𝜂
+ 1

2
𝐺2𝜂 + 4𝐺2

(
𝜂
√
𝑛𝐾 + 𝜂𝐾

)
≤ 𝐷2

2𝑛𝐾
· 1
𝜂
+ 2𝐺2𝜂(

√
𝑛𝐾 + 𝐾).

So we have:

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
= 𝑂

(
1
𝑛𝐾𝜂

+ 𝜂
√
𝑛𝐾 + 𝜂𝐾

)
= 𝑂

(
1
𝜂𝑇

+ 𝜂
√
𝑇 + 𝜂𝑇

𝑛

)
.

this concludes the proof. □
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B. Proof of Lemma 5.1
We will prove now the Lemma for 2 ≤ 𝐾 ≤ 34. The proof for the 𝐾 ≥ 34 case is given in Section 5. From the proof of
Lemma 8 in Livni (2024) there exists𝑈 ⊂ {0, 1}𝑑 such that for every 𝑢 ≠ 𝑣 ∈ 𝑈:

⟨𝑢, 𝑣⟩ ≤ 5𝑑
16

≤ 7𝑑
16

= ∥𝑣∥2

and,
|𝑈 | ≥ 𝑒𝑑/258 ≥ 2𝑛.

We will take the power set of𝑈 as the sample space: 𝑍 = 𝑃(𝑈), identifying samples as subsets of𝑈. Define a distribution
Z over 𝑍 such that for a random sample 𝑉 ∼ Z, each 𝑢 ∈ 𝑈 lies in 𝑉 with probability 1

2 . Let 𝛼 = min
{
1, 1

𝜂
√
𝑇

}
, denote

𝑤 (1) = 𝑤 [1 : 𝑑] and 𝑤 (2) = 𝑤 [𝑑 + 1 : 2𝑑]. We will introduce the following notation for a block of indices 𝐼 ⊂ [𝑑]:

𝑒𝐼 =
1√︁
|𝐼 |

∑︁
𝑖∈𝐼

𝑒𝑖 and 𝑤(𝐼) = 1√︁
|𝐼 |

∑︁
𝑖∈𝐼

𝑤(𝑖).

For 𝐵 = 3𝑑
𝜏epoch

consider the following functions:

𝑔(𝑤,𝑉) = 1
√
𝑑

max
𝑣∈𝑉

{
5𝛼

16
√
𝐵
𝜂𝑑,

(
𝑤 (1) + 𝑤 (2) + 5𝜂𝛼

7
√
𝐵

®1
)
· 𝑣

}
, (6)

ℎ(𝑤) = 5
7
· max
𝐼⊂[𝑑 ]: |𝐼 | ≤𝐵

{
0, 𝑤 (1) (𝐼)

}
+ 2

7
· max
𝐼⊂[𝑑 ]: |𝐼 | ≤𝐵

{
0,−𝑤 (2) (𝐼)

}
. (7)

Finally, our loss function will be:
𝑓 (𝑤,𝑉) = 𝑔(𝑤,𝑉) + 𝛼ℎ(𝑤). (8)

It holds that 𝑓 is convex and 3-Lipschitz. Next we define a sample dependent oracle 𝑂𝑺 . Given 𝑤𝑡 and all the examples
seen so far 𝑺1:𝑡 = {𝑆1, . . . , 𝑆𝑡 }:

1. If |𝑺1:𝑡 | ≤ 𝜏epoch output 0.

2. Otherwise we can check if there exists 𝑢0 ∈ 𝑈 such that 𝑢0 ∉ (⋃𝜏epoch

𝑡 ′=1
⋃
𝑉∈𝑆𝑡′ 𝑉). We will check this in lexicographic

order.

(a) If there doesn’t exist such 𝑢0, or 𝑢0 ∈ (⋃𝑡
𝑡 ′=𝜏epoch+1

⋃
𝑉∈𝑆𝑡′ 𝑉), output an arbitrary sub-gradient.

(b) Otherwise we compute the following set:

𝐽0
𝑡 =

{
𝑖 ∈ [𝑑] : 𝑢0 (𝑖) = 0 and

[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡 + 5𝜂𝛼
7
√
𝐵

®1
]
(𝑖) > 0

}
if |𝐽0

𝑡 | > 0 choose min{𝐵, |𝐽0
𝑡 |} indices out of 𝐽0

𝑡 denote them 𝑍𝑡 . If |𝑍𝑡 | < |𝐽0
𝑡 | let 𝑂𝑡 = ∅. Otherwise we will let

𝑂𝑡 be at most 𝐵 elements of the following set:

𝐽1
𝑡 =

{
2𝑖 : 𝑖 ∈ [𝑑] and 𝑢0 (𝑖) = 1 and

[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡 + 5𝜂𝛼
7
√
𝐵

®1
]
(𝑖) < 𝜂𝛼

√
𝐵

}
.

Finally, output

𝛼

(
5
7
𝑒(𝑍𝑡 ) −

2
7
𝑒(𝑂𝑡 )

)
.

We will denote the following event:

E =
{
∪𝜏epoch

𝑡=1 𝑆𝑡 = 𝑆 and ∃𝑢0 ∈ 𝑈 : 𝑢0 ∉ (∪𝜏epoch

𝑡=1 ∪𝑉∈𝑆𝑡 𝑉)
}

(9)

We will prove 𝑂𝑺 is a valid oracle and that under the event of E no projections take place in the following Lemma whose
proof is deferred to the end of the proof.
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Lemma B.1. 𝑂𝑺 stated above is a valid sample dependent first order oracle of 𝑓 defined in Equation (8). Furthermore it
will induce a trajectory such that if E holds then we never leave the unit ball and no projections take place.

Since |𝑈 | ≥ 2𝑛 from Lemma E.2 and the definition of 𝜏epoch:

Pr[E] = Pr[∪𝜏epoch

𝑡=1 𝑆𝑡 = 𝑆] · Pr[∃𝑢0 ∈ 𝑈 : 𝑢0 ∉ (∪𝜏epoch

𝑡=1 ∪𝑉∈𝑆𝑡 𝑉) | ∪
𝜏epoch

𝑡=1 𝑆𝑡 = 𝑆]

= Pr[∪𝜏epoch

𝑡=1 𝑆𝑡 = 𝑆] · Pr[∃𝑢0 ∈ 𝑈 : 𝑢0 ∉ ∪𝑉∈𝑆𝑉] ≥
1
2
𝑝

Next we will assume that E holds. According to 𝑂𝑺 in every step we change at least 𝐵 indices unless we output 0. So after
at most 𝑇 ′ = 𝜏epoch + ⌈ 𝑑

𝐵
⌉ steps we will have |𝐽0

𝑡 | = |𝐽1
𝑡 | = 0 meaning that

[
𝑤

(1)
𝑇 ′ + 𝑤 (2)

𝑇 ′ + 5𝜂𝛼
7
√
𝐵
®1
]
=
𝜂𝛼√
𝐵
𝑢0. Note that:

𝑇 ′ = 𝜏epoch + ⌈ 𝑑
𝐵
⌉

≤ 𝜏epoch + ⌈
𝜏epoch

3
⌉

≤ 𝜏epoch +
𝜏epoch

3
+ 1

≤ 𝜏epoch +
𝜏epoch

3
+
𝜏epoch

24
𝜏epoch ≥ 24

≤
3𝜏epoch

2
.

From the way we defined 𝑂𝑺 for every 𝑡′ ≥ 𝑇 ′: 𝑤𝑡 ′ = 𝑤𝑇 ′ . For every 𝑖 ∈ [𝑑] such that 𝑢0 (𝑖) = 1:[
𝑤

(1)
𝑇,𝜏

+ 𝑤 (2)
𝑇,𝜏

+ 5𝜂𝛼
7
√
𝐵

®1
]
(𝑖) = 1

𝜏

𝑇∑︁
𝑡=𝑇−𝜏+1

[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡 + 5𝜂𝛼
7
√
𝐵

®1
]
(𝑖)

≥ 1
𝑇

𝑇∑︁
𝑡=1

[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡 + 5𝜂𝛼
7
√
𝐵

®1
]
(𝑖)

=
𝜂𝛼

𝑇
√
𝐵

(
5
7
· 𝑇 ′ + (𝑇 − 𝑇 ′)

)
≥ 𝜂𝛼

√
𝐵

(
5
7
· 3

2
+ 1

2

)
=

11𝜂𝛼
14

√
𝐵

Which implies: [
𝑤

(1)
𝑇,𝜏

+ 𝑤 (2)
𝑇,𝜏

+ 5𝜂𝛼
7
√
𝐵

®1
]
· 𝑢0 =

7𝑑
16

· 11𝜂𝛼
14

√
𝐵

=
11𝜂𝛼𝑑
32

√
𝐵

From the definition of Z, with probability 1
2 , 𝑢0 will appear in a new random sample so for every suffix averaging 𝜏:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (0) ≥
1
2

(
1
√
𝑑

[
𝑤

(1)
𝑇,𝜏

+ 𝑤 (2)
𝑇,𝜏

+ 5𝜂𝛼
7
√
𝐵

®1
]
· 𝑢0 −

5𝛼𝜂
16 ·

√
𝐵

√
𝑑

)
=

1
2

(
11𝜂𝛼

√
𝑑

32
√
𝐵

− 5𝛼𝜂
16 · 2

√
𝑐

√
𝑑

)
=

𝛼𝜂
√
𝑑

2 · 32 ·
√
𝐵
.

Overall we have shown that with probability 1
2 for every suffix averaging 𝜏:

𝐹 (𝑤𝑇,𝜏) − 𝐹 (0) ≥
𝛼𝜂

2 · 32
·
√︂
𝑑

𝐵
=

𝛼𝜂

2 · 32
·
√︂
𝜏epoch

3
= Ω

(
min

{
1, 𝜂

√
𝑇

})
,

since 𝑇 = 𝑂 (𝜏epoch), the proof is complete. □
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B.1. Proofs for Auxiliary Lemmas

We will prove here Lemmas 5.2 and B.1 that concern gradient oracles that were given in the proofs of Lemma 5.1.

Proof of Lemma B.1. First we note that for every 𝑢 ∈ 𝑈 :

5𝜂𝛼
7
√
𝐵

®1 · 𝑣 = 7
16
𝑑 · 5𝜂𝛼

7
√
𝐵

=
5𝜂𝛼𝑑
16

√
𝐵

(10)

So 0 ∈ 𝜕 𝑓 (0, 𝑉) for every 𝑉 ∈ 𝑃(𝑈). For that reason we can stay at 0 for as long as we want. Note that it suffices to
show that if E holds the oracle is valid since for every other scenario we output either 0 or an arbitrary subgradient. If E
holds we are clearly outputting a subgradient of 𝛼ℎ(𝑤) in Item 2b, so it is left to prove that for every 𝑉 ∈ 𝑆 we have that
0 ∈ 𝜕𝑔(𝑤𝑡 , 𝑉). Indeed,

• If for all 𝑖 ∈ [𝑑]:
[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡 + 5𝜂𝛼
7
√
𝐵
®1
]
(𝑖) ≤ 5𝜂𝛼

7
√
𝐵

then as we saw in Equation (10) this holds.

• If there exists 𝑖 ∈ [𝑑] such that:
[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡 + 5𝜂𝛼
7
√
𝐵
®1
]
(𝑖) > 5𝜂𝛼

7
√
𝐵

this can happen only after we have zeroed all the
entries that 𝑢0 has zeros on. So we are left only with positive coordinates of 𝑢0 and the proof is completed by noticing
that since 𝑢0 ∉ ∪𝑉∈𝑆𝑉 , for every 𝑣 ∈ ∪𝑉∈𝑆𝑉 :[

𝑤
(1)
𝑡 + 𝑤 (2)

𝑡 + 5𝜂𝛼
7
√
𝐵

®1
]
· 𝑣 ≤ 𝜂𝛼

√
𝐵
𝑢0 · 𝑣 =

5𝜂𝛼𝑑
16

√
𝐵
.

This completes the proof that 𝑂𝑺 is valid. To see that projections don’t take place according to this oracle for every 𝑡 ∈ [𝑇]
and 𝑖 ∈ [2𝑑] we have that: 𝑤𝑡 (𝑖) ≤ 𝜂𝛼√

𝐵
which implies:

∥𝑤𝑡 ∥2 ≤ 𝜂𝛼 ·
√︂

2𝑑
𝐵

≤ 𝜂𝛼
√︂

2𝜏epoch

3
≤ 𝜂𝛼

√
𝑇 ≤ 1,

since 𝛼 = min
{
1, 1

𝜂
√
𝑇

}
. □

Proof of Lemma 5.2. For the first part of the oracle note that 0 ∈ 𝜕 𝑓 (0, 𝑉) so we can stay at 0 for as long as we like, in
particular for 𝜏epoch steps. For the second part of the oracle, if there doesn’t exists such 𝑢0 or 𝑢0 ∈ (⋃𝑡

𝑡 ′=𝜏epoch+1
⋃
𝑉∈𝑆𝑡′ 𝑉)

we output a valid sub-gradient by definition. Otherwise, we are clearly taking gradient steps for 𝛼ℎ(𝑤). It is left to show
that in this case 0 ∈ 𝜕𝑔(𝑤𝑡 , 𝑉). Indeed, this event ensures that up to this point the oracle only output 0 or executes Items 2a
to 2c, so our only nonzero coordinates are positive coordinates of 𝑢0. Also, for every 𝑣 ∈ (⋃𝑉∈𝑆𝑡 𝑉), we have that 𝑣 ≠ 𝑢0 so
𝑣 · 𝑢0 ≤ 5𝑑′

16 which implies:

𝑤𝑡 · 𝑣 ≤
𝑑′∑︁
𝑖=1

𝑤𝑡 (𝑖)1{𝑣(𝑖) = 𝑢0 (𝑖) = 1} ≤
5𝑑′
16𝐵∑︁
𝑖=1

√
𝐵𝜂𝛼

(
7𝑑′

16𝐵
+ 1 − 𝑡

)
≤

5𝑑′
16𝐵∑︁
𝑖=0

√
𝐵𝜂𝛼

(
7𝑑′

16𝐵
− 𝑡

)
≤

≤
√
𝐵𝜂𝛼

(
5𝑑′

16𝐵
· 7𝑑′

16𝐵
− 1

2

(
5𝑑′

16𝐵

)2
)
≤
√
𝐵𝜂𝛼

45𝑑′2

2 · (16𝐵)2 .

This concludes the proof that 𝑂𝑺 is well defined. To prove we never leave the unit ball if E as depicted in Equation (4) holds,
notice that this is exactly the event where we either output 0 or execute one of Items 2a to 2c in the oracle. We will show by
induction that for all 𝑡 ∈ [𝑇]:

∥𝑤𝑡+1∥2 = ∥𝑤𝑡 − 𝜂𝑂𝑺 (𝑆1:𝑡 , 𝑤𝑡 , 𝑉𝑡 )∥2 ≤ 2𝜂2𝛼2 (𝑡 + 1).
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For the base case ∥𝑤0∥ = 0 ≤ 2𝜂2𝛼2. Now assume it holds for 𝑡 and we will prove for 𝑡 + 1. Consider the case where the
first type of update is performed with 𝑤𝑡 (𝐼 𝑗 ) = 𝑤𝑡 (𝐼 𝑗+1):

∥𝑤𝑡+1∥2 = ∥𝑤𝑡 − 𝜂𝛼𝑒𝐼 𝑗+1 + 𝜂𝛼𝑒𝐼 𝑗 ∥2

=

𝑗−1∑︁
𝑖=1

(𝑤𝑡 (𝐼𝑠))2 + (𝑤𝑡 (𝐼 𝑗 ) + 𝜂𝛼)2 + (𝑤𝑡 (𝐼 𝑗+1) − 𝜂𝛼)2 +
7𝑑′
16𝐵∑︁
𝑠= 𝑗+2

(𝑤𝑡 (𝐼𝑠))2

=

7𝑑′
16𝐵∑︁
𝑠=1

(𝑤𝑡 (𝐼𝑠))2 + 2𝜂𝛼(𝑤𝑡 (𝐼 𝑗 ) − 𝑤𝑡 (𝐼 𝑗+1)) + 2𝜂2𝛼2

=

7𝑑′
16𝐵∑︁
𝑖=1

(𝑤𝑡 (𝐼𝑠))2 + 2𝜂2𝛼2

≤ 2𝜂2𝛼2 · 𝑡 + 𝜂2𝛼2 = 𝜂2𝛼2 (1 + 𝑡).

And if the second type of update occurs:

∥𝑤𝑡+1∥2 = ∥𝑤𝑡 + 𝜂𝛼𝑒𝐼 𝑗 ∥2

=
∑︁
𝑠≠ 𝑗

(𝑤𝑡 (𝐼𝑠))2 + 𝜂2𝛼2

≤ 2𝜂2𝛼2𝑡 + 𝜂2𝛼2 ≤ 2𝜂2𝛼2.

Since 𝛼 = min
{
1, 1

𝜂
√

2𝑇

}
, this shows that for all 𝑡 ∈ [𝑇]: ∥𝑤𝑡 ∥ ≤ 2𝜂2𝛼2𝑇 = 2𝜂2𝑇 ·

{
1, 1

2𝜂2𝑇

}
≤ 1. □

C. Proof of Theorem 4.1
From the reduction in Lemma D.2 it suffices to prove the result for a sample-dependent oracle as defined in Appendix D.
This is established in the following Lemma:

Lemma C.1. For every 𝑛 ≥ 17, 𝑑 = 712𝑛 log 𝑛 and 𝜂 > 0, there are a finite datapoint set 𝑍 and a distribution Z over 𝑍 , a
3-Lipschitz convex function 𝑓 (𝑤, 𝑧) in ℝ2𝑑 and sample-dependent gradient oracle 𝑂𝑺 such that with probability 1

2 if we run
one-pass SGD with 𝜂 as a learning rate for 𝑛 steps then for every suffix averaging 𝜏 ∈ [𝑛 + 1]:

𝐹 (𝑤𝑛,𝜏) − 𝐹 (0) = Ω
(
min

{
𝜂
√
𝑛, 1

})
.

Proof of Lemma C.1. Since 𝑑 ≥ 256, from Lemma 1 in Schliserman et al. (2024), there exists𝑈 ⊂
{

1√
𝑑
,− 1√

𝑑

}𝑑
such that

|𝑈 | ≥ 2 𝑑
178 ≥ 2𝑛 and for all 𝑢 ≠ 𝑣 ∈ 𝑈: |⟨𝑢, 𝑣⟩| ≤ 1

8 . This implies that:

∀𝑢 ≠ 𝑣 ∈ 𝑈 : |{𝑖 ∈ [𝑑] : 𝑢(𝑖) = 𝑣(𝑖)}| ≤ 9
16
𝑑. (11)

Let 𝑍 = 𝑃(𝑈), and let Z be a distribution over 𝑍 such just for a new sample 𝑉 ∼ Z every 𝑢 ∈ 𝑈 will be in 𝑉 with
probability 𝛿 = 1

4𝑛2 . Let 𝛼 = min{1, 1
𝜂
√
𝑛
}. Let 𝑊 {𝑥 ∈ ℝ2𝑑 : ∥𝑥∥ ≤ 1}. Denote 𝑤 (1) = 𝑤 [1 : 𝑑], 𝑤 (2) = 𝑤 [𝑑 + 1 : 2𝑑].

For a subset of indices 𝐼 ⊂ [𝑑] denote the following:

𝑒(𝐼) = 1
|𝐼 |

∑︁
𝑖∈𝐼

𝑒𝑖 and 𝑤(𝐼) = 1
|𝐼 |

∑︁
𝑖∈𝐼

𝑤(𝑖).

We will consider the following function with blocks of indices of size at most 8 log 𝑛:

𝑓 (𝑤,𝑉) = max
𝑣∈𝑉

{
9𝛼

16 · 2
√

2
𝜂
√
𝑛,

(
𝑤 (1) + 𝑤 (2)

)
· 𝑣

}
(12)

+ max
𝐼⊂𝑑: |𝐼 | ≤8 log 𝑛

{
0, 𝑤 (1) (𝐼)

}
+ max
𝐼⊂𝑑: |𝐼 | ≤8 log 𝑛

{
0,−𝑤 (2) (𝐼)

}
.
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It holds that 𝑓 is convex and 3-Lipschitz. Now assume we have an order over the vectors in 𝑈 which is lexicographic.
Denote by 𝑢 (𝑟 ) the 𝑟-th vector in such an order. We will be interested in the following event:

E =

{
∩⌈ 𝑛

16 ⌉
𝑖=1 𝑉𝑖 ≠ ∅ and min

𝑟∈[ |𝑈 | ]
{𝑢 (𝑟 ) : 𝑢 (𝑟 ) ∈ ∩⌈ 𝑛

16 ⌉
𝑖=1 𝑉𝑖} ∈ ∩𝑛

𝑖=⌈ 𝑛
16+1⌉𝑉𝑖

}
. (13)

From Lemma E.3, E occurs with probability at least 1
2 . From now on we will assume E occurs. Let 𝑆 = {𝑉1, . . . , 𝑉𝑛} be

some training set. Next we define a sample dependent oracle 𝑂𝑺 . Given 𝑤𝑡 and at all past samples 𝑺1:𝑡 = {𝑉1, . . . , 𝑉𝑡 }:

1. If |𝑺1:𝑡 | ≤ ⌈ 𝑛16 ⌉ output 0.

2. Otherwise check if the exists 𝑢0 ∈ ∩𝑛
𝑖=1𝑉𝑖 . We will check this in lexicographic order over vectors in𝑈, so we will find

the minimal such vector.

(a) If ∩⌈ 𝑛
16 ⌉
𝑖=1 𝑉𝑖 = ∅ or 𝑢0 ∈ ∪𝑡

𝑡 ′=⌈ 𝑛
16 ⌉+1𝑉𝑖𝑡′ , output an arbitrary sub-gradient.

(b) Otherwise compute the following sets:

𝐽
𝑝
𝑡 =

{
2𝑖 : 𝑖 ∈ [𝑑] and 𝑢0 (𝑖) > 0 and

[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡

]
(𝑖) = 0

}
𝐽𝑛𝑡 =

{
𝑖 ∈ [𝑑] : 𝑢0 (𝑖) < 0 and

[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡

]
(𝑖) = 0

}
.

We will use 𝑤 (1) to take steps in the negative coordinates of 𝑢0 - 𝐽𝑛𝑡 - and 𝑤 (2) to take steps in the positive
coordinates of 𝑢0 - 𝑗 𝑝𝑡 . Choose min{8 log 𝑛, |𝐽 𝑝𝑡 |} indices out of 𝐽 𝑝𝑡 denote them 𝑃𝑡 and min{8 log 𝑛, |𝐽𝑛𝑡 |} out of
𝐽𝑛𝑡 denote them 𝑁𝑡 . Output

𝛼 (𝑒(𝑁𝑡 ) − 𝑒(𝑃𝑡 )) .

We will prove this oracle is valid and when E holds not projections take place. Its proof is deferred to Appendix C.1.

Lemma C.2. 𝑂𝑺 stated above is a valid sample dependent first order oracle of 𝑓 defined in Equation (12). Furthermore if
E holds it will induce a trajectory such that we never leave the unit ball and no projections take place.

Assuming E occurs, for 𝑇 ′ = ⌈ 𝑛16 ⌉ + ⌈ 𝑑
8 log 𝑛 ⌉ ≤

3𝑛
16 + 2 we have that

∀𝑡 ≥ 𝑇 ′ :
[
𝑤

(1)
𝑡 + 𝑤 (2)

𝑡

]
=

𝛼𝜂
√
𝑑√︁

8 log 𝑛
𝑢0 =

𝛼𝜂
√
𝑛

2
√

2
.

So for every suffix averaging 𝜏:[
𝑤

(1)
𝑛,𝜏 + 𝑤 (2)

𝑛,𝜏

]
· 𝑢0 ≥

(
1 − 𝑇

′

𝑛

) [
𝑤

(1)
𝑇

+ 𝑤 (2)
𝑇 ′

]
· 𝑢0

=

(
1 −

3𝑛
16 + 2
𝑛

)
· 𝛼𝜂

√
𝑛

2
√

2
∥𝑢0∥2

≥
(
1 −

3𝑛
16 + 𝑛

8
𝑛

)
· 𝛼𝜂

√
𝑛

2
√

2
𝑛 ≥ 16

=
11
16

· 𝛼𝜂
√
𝑛

2
√

2
.

We now have that with probability 1
2 :

𝐹𝑆 (𝑤𝑛,𝜏) − 𝐹𝑆 (0) ≥
1
𝑛

(
𝑛

16
· 11𝛼𝜂

√
𝑛

16 · 2
√

2
+ 7𝑛

8
· 9𝛼𝜂

√
𝑛

16 · 2
√

2

)
− 9𝛼𝜂

√
𝑛

16 · 2
√

2
≥ 𝛼𝜂

√
𝑛

365
=

1
365

· min{1, 𝜂
√
𝑛}.

□
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C.1. Proofs for Auxiliary Lemmas

Proof of Lemma C.2. For the first part of the oracle note that 0 ∈ 𝜕 𝑓 (0, 𝑉) so we can stay at 0 for as long as we like, in
particular for ⌈ 𝑛16 ⌉ steps. For the second part if ∩⌈ 𝑛

16 ⌉
𝑖=1 𝑉𝑖 = ∅ we keep outputting 0 which is allowed as we saw before. If

∩⌈ 𝑛
16 ⌉
𝑖=1 𝑉𝑖 ≠ ∅ we choose some 𝑢0. If 𝑢0 ∈ ∪𝑡

𝑖=⌈ 𝑛
16 ⌉+1𝑉𝑖 we output a valid sub gradient by definition, if it is not we are clearly a

taking gradient step for 𝛼ℎ(𝑤). It is thus left to show that in this case 0 ∈ 𝜕𝑔(𝑤𝑡 , 𝑉). Indeed, in this event until this point
the gradient only output 0 or executed Item 2b in the oracle so the nonzero coordinates in 𝑤𝑡 have the same sign as 𝑢0. Also
for all 𝑣 ∈ 𝑉𝑖𝑡 we have that 𝑣 ≠ 𝑢0 which suggests using Equation (11):(

𝑤
(1)
𝑡 + 𝑤 (2)

𝑡

)
· 𝑣 ≤

∑︁
𝑖:𝑣 (𝑖)=𝑢0 (𝑖)

(
𝑤

(1)
𝑡 (𝑖) + 𝑤 (2)

𝑡 (𝑖)
)
· 𝑣(𝑖) ≤ 𝛼𝜂√︁

8 log 𝑛

√
𝑑 ·

∑︁
𝑖:𝑣 (𝑖)=𝑢0 (𝑖)

𝑢0 · 𝑣(𝑖) ≤
9𝛼𝜂

16 · 2
√

2
√
𝑛.

This concludes the proof that 𝑂𝑺 is well defined. To see no projections take place if E as depicted in Equation (13) holds,
note that this is exactly the event where the oracle either outputs 0 or executes Item 2b in the oracle. In this event:

∀𝑡 ∈ [𝑛], 𝑖 ∈ [𝑑] : |𝑤𝑡 (𝑖) | ≤
𝛼𝜂√︁

8 log 𝑛
=⇒ ∥𝑤𝑡 ∥2 ≤ 𝛼𝜂

√
2𝑑√︁

8 log 𝑛
=

1
2

min{𝜂
√
𝑛, 1} ≤ 1

2
.

□

D. Reduction to Sample-Dependent Oracle
For the reduction we will further formalize the notion of sample-dependent oracle when a gradient oracle 𝑂𝑧 is data-
dependent and at step 𝑡 it is allowed to depend on the examples seen up to this step. We denote the sample-dependent oracle
by 𝑂𝑺 when 𝑺 = (𝑆1, . . . , 𝑆𝑇 ) and for 𝑡 ∈ [𝑇], 𝑆𝑡 is the set of examples given to the algorithm at step 𝑡. For example, for
SGD 𝑆𝑡 = {𝑧𝑖𝑡 } and for Gradient Descent 𝑆𝑡 = 𝑆. Then we denote the following:

𝑂𝑺 (𝑆1:𝑡−1; 𝑆𝑡 , 𝑤𝑡 ) =
1
|𝑆𝑡 |

∑︁
𝑧∈𝑆𝑡

𝑂𝑧 (𝑆1:𝑡−1;𝑤) when 𝑂𝑧 (𝑆1:𝑡−1;𝑤) ∈ 𝜕 𝑓 (𝑤, 𝑧).

when 𝑆1:0 = ∅, 𝑆1:𝑡 = (𝑆1, . . . , 𝑆𝑡 ). Finally we denote the trajectory induced by 𝑂𝑺 which is initialized at 𝑤0 = 0 and is
specified by the following equation:

𝑤𝑺
𝑡+1 = 𝑤𝑺

𝑡 − 𝜂𝑂𝑺 (𝑆1:𝑡−1;𝑤𝑡 , 𝑆𝑡 ). (14)

The following Lemma from Livni (2024) will prove the reduction to the sample dependent oracle case:

Lemma D.1 (Lemma 9 in Livni (2024)). Suppose 𝑞 ∈ ℝ𝑇 , ∥𝑞∥∞ ≤ 1 and 𝑍 is finite. And suppose that 𝑓 (𝑤, 𝑧) is a convex,
L-Lipschitz function over 𝑤 ∈ ℝ𝑑 , let 𝜂 > 0, let 𝑂𝑺 be a sample dependent first order oracle, and for every sequence of
samples 𝑺 = (𝑆1, . . . , 𝑆𝑇 ) define the sequence {𝑤𝑺

𝑡 }𝑇+1
𝑡=1 as in Equation (14).

Then, for every 𝜖 > 0 there exists an 𝐿 + 1-Lipschitz convex function 𝑓 ((𝑤, 𝑥), 𝑧) over ℝ𝑑+1 (that depends on
𝑞, 𝑓 , 𝑇, 𝜂, 𝑛, 𝑂𝑺 , 𝜖) such that for any oracle 𝑂𝑧 for 𝑓 (𝑧, ·), define 𝑢0 = 0 ∈ ℝ𝑑 and 𝑥0 = 0 ∈ ℝ and

(𝑢𝑡 , 𝑥𝑡 ) = (𝑢𝑡−1, 𝑥𝑡−1) −
𝜂

|𝑆𝑡 |
∑︁
𝑧∈𝑆𝑡

𝑂𝑧 ((𝑢𝑡 , 𝑥𝑡 ))

then if we define

𝑢𝑞 =

𝑇∑︁
𝑡=1

𝑞(𝑡)𝑢𝑡 𝑥𝑞 =

𝑇∑︁
𝑡=1

𝑞(𝑡)𝑥𝑡 𝑤𝑺
𝑞 =

𝑇∑︁
𝑡=1

𝑤𝑺
𝑡

we have that 𝑢𝑞 = 𝑤𝑺
𝑞 and for all 𝑧:

| 𝑓 ((𝑢𝑞 , 𝑥𝑞), 𝑧) − 𝑓 (𝑤𝑺
𝑞 , 𝑧) | ≤ 𝜖

| 𝑓 ((0, 0), 𝑧) − 𝑓 (0, 𝑧) | ≤ 𝜖 .

The following Lemma easily follows:

18
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Lemma D.2. Suppose 𝑍 is finite, 𝑓 (𝑤, 𝑧) is a convex, L-Lipschitz function over 𝑤 ∈ ℝ𝑑 , let 𝜂 > 0, let 𝑂𝑺 be a sample
dependent first order oracle, and for every sequence of samples 𝑺 = (𝑆1, . . . , 𝑆𝑇 ) define the sequence {𝑤𝑺

𝑡 }𝑇+1
𝑡=1 as in

Equation (14). Suppose also that for some number of steps 𝑇 and 𝜏 ∈ [𝑇 + 1] we have with probability 𝑝:

𝐹 (𝑤𝑺
𝑇,𝜏) − 𝐹 (0) ≥ ℓ

Where ℓ > 0. Then there exists an 𝐿+1-Lipschitz convex function 𝑓 ((𝑤, 𝑥), 𝑧) over ℝ𝑑+1 (that depends on 𝜏, 𝑓 , 𝑇, 𝜂, 𝑛, 𝑂𝑺 , 𝜖)
such that for any oracle 𝑂𝑧 for 𝑓 (𝑧, ·) if we define 𝑣0 = 0 ∈ ℝ𝑑+1 and

𝑣𝑡+1 = 𝑣𝑡 −
𝜂

|𝑆𝑡 |
∑︁
𝑧∈𝑆𝑡

𝑂𝑧 (𝑣𝑡 ),

we will have:
�̄� (�̂�𝑇,𝜏) − �̄� (0) ≥

ℓ

2
.

Proof. Let 𝜖 = ℓ
4 > 0, define 𝑞 ∈ ℝ𝑑 as follows:

𝑞(𝑡) =
{

1
𝑇−𝜏+2 𝜏 ≤ 𝑡 ≤ 𝑇 + 1
0 otherwise

.

For this 𝑞, 𝜖 let 𝑓 be the function whose existence follows from Lemma D.1. It is easy to see that 𝑤𝑺
𝜏 = 𝑤𝑺

𝑞 and �̂�𝜏 = (𝑢𝑞 , 𝑥𝑞).
Then with probability 𝑝 we have:

�̄� (�̂�𝑇,𝜏) − �̄� (0) = �̄� (𝑢𝑞 , 𝑥𝑞) − �̄� (0) ≥ 𝐹 (𝑤𝑺
𝑞 ) − 𝐹 (0) − 2𝜖 ≥ ℓ − 2 · ℓ

4
=
ℓ

2
.

□

E. Additional Lemmas
Lemma E.1 (Lemma 14 in Koren et al. (2022)). For any step-size 𝜂 > 0, 𝑇 ∈ ℕ and 𝑑 = ⌈16𝜂2𝑇2⌉ there exists a
deterministic convex optimization problem ℎ : 𝑊 → ℝ where𝑊 ⊂ ℝ𝑑+1 is of constant diameter such that:

ℎ(𝑤) − min
𝑤∈𝑊

ℎ(𝑤) ≥ 1
8

min
{

1
𝜂𝑇

+ 𝜂, 1
}
.

Lemma E.2. Let 𝑈 be a subspace such that |𝑈 | ≥ 2𝑛. Let 𝑍 = 𝑃(𝑈) and let Z be a distribution of 𝑍 such that for a
random sample 𝑉 ∼ Z every 𝑢 ∈ 𝑈 is in 𝑉 with probability 1

2 . Then for a sample 𝑆 = {𝑉1, . . . , 𝑉𝑛} ∼ Z𝑛 with probability
at least 1

2 it holds that: ∪𝑛
𝑖=1𝑉𝑖 ≠ 𝑈

Proof. First it holds that:
Pr

[
𝑢 ∈ ∪𝑛𝑖=1𝑉𝑖

]
= 1 − Pr

[
𝑢 ∉ ∪𝑛𝑖=1𝑉𝑖

]
= 1 − 2−𝑛.

This implies:

Pr
[
∪𝑑𝑖=1𝑉𝑖 = 𝑈

]
= Pr

[
∀𝑢 ∈ 𝑈, 𝑢 ∈ ∪𝑛𝑖=1𝑉𝑖

]
= (1 − 2−𝑛) |𝑈 | ≤ (1 − 2−𝑛)2𝑛 ≤ 1

𝑒
<

1
2
.

□

Lemma E.3 (Lemma 9 in Schliserman et al. (2024)). For 𝑑 = 712𝑛 log 𝑛 and𝑈𝑑 as depicted in Lemma 1 from Schliserman
et al. (2024), let 𝑍 = 𝑃(𝑈) and let a distribution Z over 𝑍 be such that for 𝑉 ∼ Z every 𝑢 ∈ 𝑈𝑑′ is in 𝑉 with probability

1
4𝑛2 . Let 𝑆 = {𝑉1, . . . , 𝑉𝑛} be a training set drawn i.i.d from Z. Denote 𝑃𝑡 = ∩𝑡−1

𝑖=1𝑉𝑖 and 𝑆𝑡 = ∩𝑛
𝑖=𝑡
𝑉𝑖 . More over if 𝑃𝑡 ≠ ∅

we denote according to some ordering 𝑖 ↦→ 𝑣𝑖 of the vectors in𝑈, 𝑟𝑡 = arg min{𝑟 : 𝑣𝑟 ∈ 𝑃𝑡 }, and 𝐽𝑡 = 𝑣𝑟𝑡 ∈ 𝑈𝑑 , denote the
following event:

E = {∀𝑡 ≤ 𝑇, 𝑃𝑡 ≠ ∅ and 𝐽𝑡 ∈ 𝑆𝑡 }.
Then if 𝑇 = 𝑛, Pr[E] ≥ 1

2 . In particular with probability at least 1
2 :

𝑃⌈𝑛/16⌉ ≠ ∅ and 𝐽⌈𝑛/16⌉ ∈ 𝑆⌈𝑛/16⌉ .

.
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