
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRIDMIX: EXPLORING SPATIAL MODULATION FOR
NEURAL FIELDS IN PDE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Significant advancements have been achieved in PDE modeling using neural
fields. Despite their effectiveness, existing methods rely on global modulation,
limiting their ability to reconstruct local details. While spatial modulation with
vanilla grid-based representations offers a promising alternative, it struggles with
inadequate global information modeling and over-fitting to the training spatial do-
main. To address these challenges, we propose GridMix, a novel approach that
models spatial modulation as a mixture of grid-based representations. GridMix
effectively explores global structures while preserving locality for fine-grained
modulation. Furthermore, we introduce spatial domain augmentation to enhance
the robustness of the modulated neural fields against spatial domain variations.
With all these innovations, our comprehensive approach culminates in MARBLE,
a framework that significantly advancing the capabilities of neural fields in PDE
modeling. The effectiveness of MARBLE is extensively validated on diverse
benchmarks encompassing dynamics modeling and geometric prediction.

1 INTRODUCTION

In recent years, deep learning has attracted considerable interest in its ability to solve partial differ-
ential equations (PDEs), providing data-driven approaches to approximate solutions across a broad
spectrum of problems (Lu et al., 2021; Li et al., 2021; Brandstetter et al., 2022). One particularly
innovative direction within this field is the use of neural fields, or implicit neural representations
(INRs) (Park et al., 2019; Sitzmann et al., 2020), which offer continuous parameterizations of PDE
solutions, enabling high-resolution modeling and flexible predictions across diverse geometries.

Building upon this foundation, INR-based methods (Yin et al., 2022; Serrano et al., 2023) have
demonstrated notable advancements in PDE modeling. These methods leverage INRs to encode
solutions—expressed as functions of spatial coordinates—into a low-dimensional latent space via
auto-decoding (Park et al., 2019). The solution operator is then approximated by learning how
these latent representations evolve over time or in response to varying conditions. This framework
effectively bridges the gap between complex spatial domains and the underlying PDEs, achieving
impressive efficiency and accuracy in both steady-state and transient scenarios.

Despite their potential, INR-based methods face limitations in accurately representing complex spa-
tial variations in PDE solutions, often missing fine-grained local details. This issue stems from the
use of global modulation (Perez et al., 2018), a technique that allows a base INR to represent differ-
ent functions by altering its behavior conditioned on function-specific latent representations. Specif-
ically, these latent representations are utilized to create function-specific modulation parameters that
modify the hidden activations of INRs, thereby altering the output. As these parameters are typically
shared across all spatial positions, the model’s ability to learn detailed local features and variations
is hindered (Bauer et al., 2023). Additionally, INRs are susceptible to spectral bias (Rahaman et al.,
2019), which can restrict their capability to learn high-frequency components of solutions.

To address the limitations of global modulation, we propose extending it to spatial modulation,
drawing inspiration from the success of grid-based representations in computer vision (Liu et al.,
2020; Müller et al., 2022). Grid-based representations discretize continuous space into a regular
grid, associating each grid point with a learnable vector that encodes local features. By applying
this concept to PDE modeling, we can assign grid-based modulation parameters to each function,
enabling a more fine-grained representation. However, while grid-based representations have proven
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effective at mitigating spectral bias in vision tasks under the assumption of a fixed and regular
spatial domain, their straightforward adaptation to spatial modulation for PDEs modeling presents
new challenges. To be precise, although using independent modulation parameters at each location
excels at capturing local information, it often compromises the ability to model global structures in
sparse or irregular domains, resulting in poor reconstruction quality in unseen regions. This trade-off
limits their generalization across varying spatial domains, which is crucial for robust PDE modeling.

In this paper, we introduce GridMix, a novel spatial modulation technique that builds on the strengths
of grid-based representations while tackling the aforementioned challenges. We achieve this by rep-
resenting spatial modulation as a mixture of basis functions, where each is parameterized through
grid-based representations. GridMix preserves the fine-grained locality of grid-based modulation,
allowing for detailed exploitation of local information in function reconstruction. At the same time,
it regularizes the modulation space to the linear span of a small set of learned grid basis functions,
which are shared across function instances and facilitate the extraction of global structural informa-
tion. This regularization effectively mitigates the risk of overfitting to specific spatial domains. Ad-
ditionally, we introduce Spatial Domain Augmentation, which simulates domain variations during
training to further enhance generalization to unseen regions. Together, these innovations form the
GridMix Augmented Coordinate-based Neural Fields (MARBLE) for PDE modeling, significantly
improving the learning capacity of previous approaches that relied on global modulation.

Our contributions are summarized as follows:

1. We introduce GridMix to mitigate the spatial domain over-fitting of spatial modulation.

2. We present the MARBLE framework, which combines GridMix with spatial domain aug-
mentation to boost the performance of existing INR-based methods for PDE modeling.

3. We demonstrate the effectiveness and versatility of MARBLE with extensive experiments,
including dynamics modeling and geometric prediction.

2 RELATED WORK

This section provides a brief overview of related research.

Neural PDE Solvers. Deep learning has rapidly advanced as a powerful tool for solving Partial
Differential Equations (PDEs) across diverse fields, including fluid dynamics (Kochkov et al., 2021;
Sun et al., 2023), solid mechanics (Samaniego et al., 2020; Nguyen-Thanh et al., 2020), and inverse
problems (Lu et al., 2022; Molinaro et al., 2023). Neural Operators have emerged as a leading ap-
proach within this domain, modeling the solution operator between input and output function spaces.
DeepONet (Lu et al., 2021), grounded in the universal approximation theorem, and Fourier Neural
Operator (FNO) (Li et al., 2021), leveraging spectral domain learning via Fast Fourier Transform,
are prominent examples. Recent research has centered on addressing key challenges for Neural PDE
solvers, such as handling intricate geometries and ensuring precise predictions. To tackle these is-
sues, methods like Geo-FNO (Li et al., 2023b) and MP-PDE (Brandstetter et al., 2022) have been
developed to handle irregular grids, while Factorized-FNO (Tran et al., 2023) refines FNO’s archi-
tecture and training strategy for improved performance.

Neural Fields, also known as implicit neural representations (INRs), utilize neural networks (typ-
ically MLPs) to represent continuous signals based on spatial coordinates. These models have
demonstrated exceptional performance in various vision tasks, including image representation (Sitz-
mann et al., 2020; Dupont et al., 2022), 3D shape modeling (Park et al., 2019; Tancik et al., 2020),
and novel view synthesis (Mildenhall et al., 2021). In the realm of PDE solving, INRs have been
integrated into physics-informed neural networks (PINNs) (Raissi et al., 2019) to approximate so-
lutions. While effective, traditional PINNs require training a separate model for each unique set of
initial and boundary conditions. To address this limitation, recent research has explored modulating
the intermediate features of a base INRs using instance-specific latent codes, enabling the repre-
sentation of a solution space (Yin et al., 2022; Serrano et al., 2023). These INR-based approaches
are independent to spatial discretization and scale well to high-dimensional problems. However,
INRs are susceptible to spectral bias (Rahaman et al., 2019), preferentially learning low-frequency
components, which can hinder their representational capacity.
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Grid-based Representations offer a compelling solution to the aforementioned limitation of
INRs (Liu et al., 2020; Takikawa et al., 2021; Müller et al., 2022; Lee et al., 2024b). These ap-
proaches discretize the input domain into a fine-grained grid, assigning a learnable feature vector
to each grid cell. When querying points within this space, local feature vectors are aggregated with
interpolation and integrated into INRs, either as input (Müller et al., 2022) or within intermediate
layers (Lee et al., 2024b). The inherent locality of grid-based representations enables INRs to ef-
fectively capture high-frequency signals. While existing grid-based methods excel at reconstructing
fine details within fixed domains, their generalization to unseen regions is restricted, hindering their
applicability to PDE solving. To address this challenge, we propose learning grid features as mix-
tures of basis representations, promoting domain generalization while preserving locality. A related
approach, Factor Fields (Chen et al., 2023), decomposes signals into components like coefficient
fields and basis functions. However, while Factor Fields operates in the signal space, our work
applies a similar decomposition in the modulation space. Additionally, Factor Fields focuses on
tasks outside the PDE domain, whereas our approach targets PDE-related challenges, emphasizing
domain generalization of spatial modulations.

3 METHOD

We introduce MARBLE (GirdMix Augmented Coordinate-based Neural Fields) for PDE modeling.
We begin with the problem formulation in Section 3.1. Next, we provide a preliminary overview of
CORAL (Serrano et al., 2023), an INR-based method for solving PDEs, in Section 3.2. Finally, we
describe the spatial modulation with MARBLE and the spatial domain augmentation in Section 3.3.

3.1 PROBLEM DESCRIPTION

We focus on PDE modeling tasks that involve approximating the operator G∗, which maps functions
from input space A ⊂ L2(Ω,Rda) to output space U ⊂ L2(Ω,Rdu) according to the governing
PDE. Here L2(Ω,Rdx) denotes the infinite-dimensional space of square-integrable functions with
domain Ω and range in Rdx . Two such exemplary tasks are investigated: 1) Dynamics Modeling:
Here, the objective is to capture the temporal evolution of a physical system over a forecasting
horizon. This translates to modeling the transition from state ut to state ut+δt, where δt represents
the time step. 2) Geometric Prediction: This task involves making predictions based solely on the
geometric configuration of the system. In the context of geometric prediction task, each data sample
is observed on a unique domain Xi. Conversely, for modeling system dynamics, a single domain
Xtr is employed for training the model across all examples, while a separate domain Xte is used for
evaluating the model’s performance during testing. Xtr and Xte are subsets of a full domain Xfull.

3.2 PRELIMINARY

The CORAL Framework addresses PDE modeling tasks through a two-stage training. In the first
stage, the reconstruction stage, CORAL uses two modulated INRs, fθa,ϕa

and fθu,ϕu
, to parametrize

input and output functions, respectively. Each of these INRs serves as a base model that is modu-
lated with function-specific parameters to reconstruct different functions. Specifically, INR param-
eters θa and θu are shared across all functions within their respective space, while the modulation
parameters, ϕai and ϕui

, are unique to each function. The modulation parameters are derived from
low-dimensional latent codes zai and zui through hypernetworks ha and hu: ϕai = ha(zai) and
ϕui = hu(zui). After training, each function is represented by a compact latent code, with the
reconstruction error indicating the quality of the representation. In the second stage, the forecasting
stage, CORAL learns a mapping between latent codes zai and zui using a processing network gψ .

During inference, CORAL operates in three steps, as shown in Figure 1. First, the encoder ea : A 7→
Rdz projects input ai into latent space (zai ) via auto-decoding (Park et al., 2019), as illustrated in
Figure 1(b). Given a base INR fθa,ϕa

, ea encodes the function ai by optimizing the latent code zai
to minimize the reconstruction error:

LXtr (fθa,ϕai
, ai) = Ex∼Xtr∥fθa,ϕai

(x)− ai(x)∥2, where ϕai = ha(zai). (1)

Next, the model gψ : Rdz 7→ Rdz transforms zai into the output latent code zui
. Finally, the decoder

ξu : Rdz 7→ U decodes the processed code back into the output function space through a single
forward pass, as shown in Figure 1(c).
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Figure 1: INR-based framework for PDE modeling.

Meta-Learned INRs. Typically, the encoding process could require thousands steps of gradient
descent. To reduce this fitting cost, CORAL adopts the Model-Agnostic Meta Learning (MAML)
algorithm (Finn et al., 2017) to meta-learn the parameters θa such that the encoding process can be
done in a few gradient steps (Dupont et al., 2022). More specifically, a step of the MAML inner
loop optimizes a latent code zai to fit a randomly sampled function ai as:

z
(0)
ai = 0 ; z

(k+1)
ai = z

(k)
ai −α∇z(k)

ai

LXtr
(f
θa,ϕ

(k)
ai

, ai), with ϕ(k)ai = ha(z
(k)
ai ) for 0 ≤ k ≤ K−1, (2)

where α is the inner-loop learning rate and K the number of gradient steps. The outer loop then
meta-learn the shared parameter θa by

θa ← θa − β∇θ
∑N
i=1 LXtr

(f
θa,ϕ

(K)
ai

, ai), (3)

where β denotes the outer loop learning rate and N the number of samples.

Global Modulation in CORAL. CORAL utilizes SIRENs (Sitzmann et al., 2020) as the backbone
for its INRs. SIRENs are multilayer perceptrons with sine activations, which can be formulized as

fθ(x) = WL

(
σL−1 ◦ σL−2 ◦ · · · ◦ σ0(x)

)
+ bL,with σi(ηi(x)) = sin

(
ω0(Wiηi(x) + bi)

)
, (4)

where θ = (Wi, bi)
L
i=0 are network weights and biases, ω0 is a positive scaling factor, η0(x) = x

and ηi(x) are activations of the i-th hidden layer given coordinate x. CORAL applys shift modula-
tions (Perez et al., 2018) to SIRENs to represent individual function as

fθ,ϕ(x) = WL(σL−1◦σL−2◦· · ·◦σ0(x))+bL,with σi(ηi(x)) = sin
(
ω0(Wiηi(x)+bi+ϕi)

)
, (5)

where ϕ = (ϕi)
L−1
i=1 represents modulation parameters at the i-th layer. Note that the global modula-

tions ϕi are shared across different spatial coordinates as shown in Figure 2(a). This property limits
the capacity of modulated INRs to represent complex function space. As demonstrated in previous
work (Bauer et al., 2023), this global modulation fails to capture local details because any changes
in modulations will lead to global perturbations across the reconstructed function.

3.3 SPATIAL MODULATION WITH GRIDMIX

While the original modulation design only incorporates global information of individual function to
adjust the behavior of the based INR, we propose an enhanced approach which leverages local infor-
mation for fine-grained modulation, without compromising its ability to utilize global information.

Spatial Modulation Framework. Building on prior work (Müller et al., 2022; Lee et al., 2024b)
that highlights the effectiveness of grid-based representations in enhance the learning capacity of
INRs, we extend the global modulation scheme to a spatial modulation approach (Figure 2(b)). We
achieve this by introducing a single-channel grid-based representation ϕi ∈ RH×W , where H and
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Figure 2: Different modulation strategies. We visualize the hidden activations and modulation pa-
rameters as blue and green tensors, respectively. The hidden activations has dimensions N × C,
where N represents the number of query locations and C the number of channels. The green arrow
indicates the dimension along which the modulation parameters are broadcast.

W are spatial resolution of the grid (considering a 2D domain as an example). To derive the position-
dependent shift modulation scalar ϕi(x) for a given spatial location x from this grid, we first identify
the neighboring grid points surrounding this location (in 2D, this involves four points). We then
compute ϕi(x) by interpolating the values at these neighboring points, using bilinear interpolation
in the 2D case. The spatial modulation reformulates Equation 5 as

σi(ηi(x)) = sin
(
ω0(Wiηi(x) + bi + ϕi(x))

)
. (6)

By assigning learnable parameters to each grid cell, this approach enables the model to effectively
capture and adapt to spatially varying features.

While the localized nature of spatial modulation enhances learning capacity, it also introduces limi-
tations, particularly in capturing global information. The flexibility of grid-based modulation allows
meta-learned INRs to minimize the reconstruction error LXtr

(fθa,ϕai
, ai) independently at each

location x ∈ Xtr. However, this localized focus can overlook broader contextual relationships es-
sential for a comprehensive understanding of the data. As a result, the model may become overly
specialized to the training domain Xtr, leading to over-fitting. This over-fitting impairs the model’s
ability to generalize effectively to new data in unseen test domains Xte.

Table 1: Comparing different modulations on Navier-Stokes
with irregular grid (π = 20%). We use the data on observed
domain to optimize the modulation parameters via Eq. (2) and
evaluate the reconstruction error on inference domain with the
optimized modulations. Metrics in MSE.

Observed Domain → Xtr Xte

Inference Domain → Xtr Xfull Xte Xfull

Global Modulation 1.32e-4 1.45e-4 3.48e-3 3.72e-3
Spatial Modulation 3.95e-5 5.78e-2 4.08e-1 4.67e-1

Single-channel GridMix 3.17e-3 3.88e-3 9.56e-3 9.96e-3
Multi-channel GridMix 1.90e-5 2.85e-5 1.94e-3 2.25e-3

Global Modulation + SDA 2.88e-4 3.15e-4 4.50e-4 4.85e-4
Multi-channel GridMix + SDA 7.45e-5 9.64e-5 1.38e-4 1.49e-4

To further illustrate this limi-
tation, we compare the perfor-
mance of INRs with global and
local modulations under two set-
tings: (1) the test function is ob-
served on the training domain
Xtr and reconstructed on Xfull;
and (2) the function is observed
on test domain Xte. The results
in Table 1 and Figure 3 clearly
demonstrate that, although spa-
tial modulation significantly re-
duces reconstruction error on
Xtr, it fails to capture the global
information of test data, result-
ing in a large error on Xfull.
Moreover, it performs poorly
with data observed on unseen domain in Xte. While this limitation is less critical in vision tasks,
where a fixed and regular spatial domain is typically assumed, it becomes a significant concern in the
context of PDE modeling, where generalization across varying spatial domains is a crucial metric.

GridMix. To mitigate over-fitting associated with spatial modulation with respect to the training
spatial domain, we introduce a mixture of grid-based representations for generating spatial modula-
tions, as illustrated in Figure 2(c). We begin by defining a set of grid-based representations to serve
as basis functions and construct the spatial modulations as a linear span of these basis functions.
Specifically, the grid mixture in each hidden layer is given by:

ϕi(x) =

M∑
m=1

cmi Φmi (x), where [c1, c2, . . . , cL−1] = h(z) = Whz + bh. (7)
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(a) Test data is observed on Xtr .
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(b) Test data is observed on Xte

Figure 3: Comparison between INRs with global modulation (Top), spatial modulation with vanilla
grid-based representation (Middle) and GridMix (Bottom). Each model is trained with data observed
on Xtr. During inference, test data is observed on (a) Xtr or (b) Xte and reconstructed on Xfull.

Here (Φmi )Mm=1 denoteM grid basis functions, and ci = (cmi )Mm=1 represent the mixture coefficients
at the i-th layer. These mixture coefficients are efficiently determined from a low-dimensional em-
bedding z via a linear hypernetwork h. The grid basis functions are shared across different function
instances and are learned alongside the modulated INRs.

This approach not only maintains the localized nature of grid-based modulation but also enables the
capture of global information through the shared basis functions. The rationale behind using grid
mixtures parallels the principles of spectral methods, where a problem is decomposed into simpler
components that can efficiently capture both local and global features. Additionally, GridMix act
as a form of regularization to the modulation space. For instance, in vanilla spatial modulation,
each function is assigned H ×W parameters, resulting in a high-dimensional parameter space. In
contrast, GridMix reduces this dimensionality to M , where M represents the number of shared
basis functions used across all functions. This strategy effectively prevents the modulated INRs
from over-fitting to the data distribution on a specific spatial domain, thereby improving the model’s
ability to generalize across a diverse range of previously unseen domains (see Table 1 and Figure 3).

Channel-wise Modulations. While GridMix effectively regularize the modulation space to pre-
vent over-fitting, they can also limit the model’s representational capacity. To address this issue, we
propose incorporating channel-wise modulations into GridMix. Although a single-channel approach
often performs adequately with vanilla spatial modulation, it falls short within the more constrained
framework of GridMix. Therefore, we extend single-channel grid basis functions Φmi ∈ RH×W to
multi-channel ones Φmi ∈ RH×W×C , where C is the number of channels. This extension allows
for a spatially dependent modulation vector ϕi(x), which combines the benefits of GridMix with
enhanced expressiveness. Despite this increase in representational capability, the compactness of
the modulation space is preserved by sharing the mixture coefficients across all channels.

Spatial Domain Augmentation. While our previous design improves generalization across spatial
domains through modulation strategies, we now tackle the problem from a different perspective by
refining the learning process itself. One inherent reason for the limited generalization is the lack of
domain variation during training, as the training domain Xtr remains fixed in Equations 2 and 3.
To counter this, we propose data augmentation of spatial domains to simulate domain variations
encountered during inference. To illustrate, for each run of inner and outer loops, we randomly
sample a subset of training coordinates Xsub from the fixed domain Xtr, as described below:

Inner loop: z(k+1)
ai = z(k)ai − α∇z(k)

ai

LXsub∼Xtr
(f
θa,ϕ

(k)
ai

, ai), 0 ≤ k ≤ K − 1; (8)

Outer loop: θa ← θa − β∇θ
N∑
i=1

LXsub∼Xtr
(f
θa,ϕ

(K)
ai

, ai). (9)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

By incorporating spatial domain augmentation, we enhance the robustness of modulated INRs with
respect to the variation of spatial domain.

4 EXPERIMENTS

We assessed the flexibility of our model by applying it to two different tasks: forecasting the tempo-
ral dynamics of a physical system (see Section 4.1) and predicting the steady-state behavior based
on domain geometry (see Section 4.2). Both tasks were conducted using the experimental setup de-
scribed in the CORAL paper (Serrano et al., 2023), with additional details available in Appendix B.
Moreover, a thorough ablation study of our method is presented in Section 4.3.

4.1 DYNAMICS MODELING

The objective of dynamics modeling is to forecast the temporal evolution of a physical system over
a specified horizon. To accomplish this, we follow an autoregressive framework operating within a
latent space. Formally, given a sequence of target functions (u0, uδt, ..., uTδt), where ut represents
the system state at time t and δt the time step, our aim is to predict the subsequent states ukδt for
k = 1, ..., T based on the initial condition u0. This is achieved by encoding u0 into a latent represen-
tation z0 = e(u0) and recursively generating subsequent latent codes zkδt using an autoregressive
processor gψ . Finally, the predicted latent states are decoded to obtain the corresponding estimated
functions ûkδt = ξ(zkδt), k = 1, ..., T .

Architectures. For this problem, we employ a single modulated INR fθ,ϕ to represent the func-
tion space encompassing the physical quantity across diverse initial conditions and time instances.
The modulated INR is trained by the meta-learning algorithm detailed in Section 3. For the au-
toregressive processor gψ , a Neural Ordinary Differential Equation (NODE) (Chen et al., 2018) is
adopted, enabling flexible predictions at arbitrary time steps. Given an initial latent state zt, the
NODE solver recursively computes the latent code at desired time steps t+ τ according to the equa-
tion zt+τ = gψ(zt, τ) = zt +

∫ t+τ
t

ζψ(zs)ds, where ζψ is a neural network parameterized by ψ.
The integral term is approximated using a fourth-order Runge-Kutta scheme. Training of the NODE
is formulated as the minimization problem:

argminψ Eu∼νu,t∼U(0,T ]∥gψ(e(u0), t)− e(ut)∥2, (10)

where νu denotes the distribution of physical quantity trajectories.

Datasets and Baselines. We generate two datasets of fluid dynamics using the 2D Navier-Stokes
equation (Navier-Stokes), which models a viscous, incompressible fluid on a regular domain, and
the 3D spherical Shallow-Water equation (Shallow-Water), which describes the movements of the
Earth’s atmosphere. These datasets consist of time-evolving vorticity fields (and height for Shallow-
Water), derived from diverse initial conditions. More details can be found in Appendix A.1. Several
state-of-the-art models were compared, encompassing two neural operator methods (DeepONet (Lu
et al., 2021) and FNO (Li et al., 2021)), a mesh-based network (MP-PDE (Brandstetter et al., 2022)),
and two coordinate-based approaches (DINo (Yin et al., 2022) and CORAL (Serrano et al., 2023)).
The baseline results for comparison are sourced from Serrano et al. (2023).

Evaluation Criteria. To assess the model’s spatiotemporal generalization capabilities, two eval-
uation protocols are employed. • Temporal Extrapolation: Each tracjectory is partitioned into
two equal-length sub-trajectories of 20 timestamps: an in-time (In-t) and out-of-time (Out-t) seg-
ment. The model is trained to forecast up to the end of the In-t segment and evaluated on both
horizons. This assesses the model’s ability to predict within and beyond the training regime. • Spa-
tial Subsampling: From the original domain Xfull, with a resolution of 64×64 for Navier-Stokes
and 64×128 for Shallow-Water, we randomly select π percent of points as the training grid Xtr.
A distinct grid Xte with identical sparsity is created for testing. Both grids remain constant across
different trajectories, allowing for evaluation of the model’s ability to generalize to unseen locations.

Results. Table 2 comprehensively evaluate the temporal extrapolation capabilities of various ma-
chine learning models on the Navier-Stokes and Shallow-Water datasets under different grid densi-
ties (100%, 20%, and 5%). Our method consistently yields the best or near-best Mean Squared Error,
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Table 2: Dynamics Modeling - Test results. Metrics in MSE. The best results are in bold, while the
second-best results are underlined. The “lin. int.” abbreviates linear interpolation of irregular grid
data onto a regular grid. The term “n.a.” indicates “not available”, as the Shallow-Water data is in a
2D spherical grid (latitude and longitude), making it incompatible with linear interpolation.

Xtr ↓ Xte
dataset → Navier-Stokes Shallow-Water

In-t Out-t In-t Out-t

DeepONet 4.72e-2 ± 2.84e-2 9.58e-2 ± 1.83e-2 6.54e-3 ± 4.94e-4 8.93e-3 ± 9.42e-5
FNO 5.68e-4 ± 7.62e-5 8.95e-3 ± 1.50e-3 3.20e-5 ± 2.51e-5 1.17e-4 ± 3.01e-5

π = 100% MP-PDE 4.39e-4 ± 8.78e-5 4.46e-3 ± 1.28e-3 9.37e-5 ± 5.56e-6 1.53e-3 ± 2.62e-4
regular grid DINo 1.27e-3 ± 2.22e-5 1.11e-2 ± 2.28e-3 4.48e-5 ± 2.74e-6 2.63e-3 ± 1.36e-4

CORAL 1.86e-4 ± 1.44e-5 1.02e-3 ± 8.62e-5 3.44e-6 ± 4.01e-7 4.82e-4 ± 5.16e-5
MARBLE (Ours) 3.52e-5 ± 5.31e-6 5.04e-4 ± 3.68e-5 8.21e-7 ± 1.13e-8 1.42e-4 ± 7.07e-6

DeepONet 8.37e-1 ± 2.07e-2 7.80e-1 ± 2.36e-2 1.05e-2 ± 5.01e-4 1.09e-2 ± 6.16e-4
FNO + lin. int. 3.97e-3 ± 8.03e-4 9.92e-3 ± 2.36e-3 n.a. n.a.

π = 20% MP-PDE 3,98e-2 ± 1,69e-2 1,31e-1 ± 5,34e-2 5.28e-3 ± 5.25e-4 2.56e-2 ± 8.23e-3
irregular grid DINo 9.99e-4 ± 6.71e-3 8.27e-3 ± 5.61e-3 2.20e-3 ± 1.06e-4 4.94e-3 ± 1.92e-4

CORAL 2.18e-3 ± 6.88e-4 6.67e-3 ± 2.01e-3 1.41e-3 ± 1.39e-4 2.11e-3 ± 5.58e-5
MARBLE (Ours) 1.62e-4 ± 2.42e-5 9.27e-4 ± 1.44e-4 7.06e-4 ± 4.60e-5 8.45e-4 ± 3.01e-5

DeepONet 7.86e-1 ± 5.48e-2 7.48e-1 ± 2.76e-2 1.11e-2 ± 6.94e-4 1.12e-2 ± 7.79e-4
FNO + lin. int. 3.87e-2 ± 1.44e-2 5.19e-2 ± 1.10e-2 n.a. n.a.

π = 5% MP-PDE 1.92e-1 ± 9.27e-2 4.73e-1 ± 2.17e-1 1.10e-2 ± 4.23e-3 4.94e-2 ± 2.36e-2
irregular grid DINo 8.65e-2 ± 1.16e-2 9.36e-2 ± 9.34e-3 1.22e-3 ± 2.05e-4 1.52e-2 ± 3.74e-4

CORAL 2.44e-2 ± 1.96e-2 4.57e-2 ± 1.78e-2 8.77e-3 ± 7.20e-4 1.29e-2 ± 1.92e-3
MARBLE (Ours) 1.43e-3 ± 5.66e-4 4.73e-3 ± 1.33e-3 5.92e-3 ± 3.32e-4 5.98e-3 ± 3.51e-4

substantially surpassing baseline performance in most scenarios. Specifically, at 100% grid density,
our method underscores the efficacy of spatial modulation, achieving up to a 5.3x reduction in error
for in-time predictions and a 3.4x reduction for out-of-time predictions compared to the global mod-
ulation baseline, CORAL. Additionally, our method generally outperforms FNO in most settings
and matches its performance in the Shallow-Water Out-t scenario. Even under the more challenging
20% and 5% grid density settings, our approach retains its superiority, showcasing the effectiveness
of GridMix and spatial domain augmentation in mitigating over-fitting to training domain. Notably,
on the Navier-Stokes dataset, it delivers robust performance with up to a 94.1% reduction in In-t
MSE and a 89.5% reduction in Out-t MSE compared to the best-performing baseline. These results
highlight the strength of our method in handling dynamics modeling tasks, particularly under sparse
and irregular grid, where it demonstrates both accuracy and resilience. Note that DINo outperforms
our method in the In-t case of Shallow-Water (π = 5%) but underperforms in Out-t. We attribute
this to DINo’s overly-optimized latent embeddings, which lead to over-fitting on training data.

4.2 GEOMETRY-AWARE INFERENCE

This section explores the inference of steady-state system behavior based on domain geometry. For
a system with domain Ωi, its geometry is discretely represented as a point cloud or structured mesh
Xi ⊂ Ωi. This mesh is a deformation of a reference grid X to fit the specific object shape, such
as an airfoil. The problem is formulated as an operator learning task, where the input is the grid
deformation defined on the reference grid X and the output is the corresponding physical quantity
ui defined on Ωi. We aim to develop a model that can generalize to unseen geometries.

Architectures. We utilize two modulated INRs to encode the grid transformations and physical
quantities, respectively. A simple MLP is employed as the processor gψ to learn the mapping be-
tween the latent codes of these two function spaces.

Datasets and Baselines. To evaluate the proposed method, three benchmark datasets introduced
by Li et al. (2023a) are considered, including the Euler equation (NACA-Euler), Navier-Stokes equa-
tion (Pipe) and Hyper-elastic material (Elasticity). More details can be found in Appendix A.2. Our
method is compared against three state-of-the-art models, Geo-FNO (Li et al., 2023b), Factorized-
FNO (Tran et al., 2023) and CORAL (Serrano et al., 2023), as well as two regular-grid baselines,
FNO (Li et al., 2021) and UNet (Ronneberger et al., 2015), which are applied to the data after
interpolation. The baseline results for comparison are sourced from Serrano et al. (2023).
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Table 3: Geometry-aware inference - Test results. Metrics in relative L2 error. The best results are
shown in bold, while the second-best results are underlined.

Model NACA-Euler Elasticity Pipe

FNO 3.85e-2 ± 3.15e-3 4.95e-2 ± 1.21e-3 1.53e-2 ± 8.19e-3
UNet 5.05e-2 ± 1.25e-3 5.34e-2 ± 2.89e-4 2.98e-2 ± 1.08e-2

Geo-FNO 1.58e-2 ± 1.77e-3 3.41e-2 ± 1.93e-2 6.59e-3 ± 4.67e-4
Factorized-FNO 6.20e-3 ± 3.00e-4 1.96e-2 ± 2.00e-2 7.33e-3 ± 4.66e-4

CORAL 5.90e-3 ± 1.00e-4 1.67e-2 ± 4.18e-4 1.20e-2 ± 8.74e-4
MARBLE (Ours) 5.79e-3 ± 9.67e-5 1.12e-2 ± 9.43e-5 1.03e-2 ± 2.62e-4

Results. We present our results in Table 3. Notably, our method demonstrates consistent enhance-
ment over the baseline method with global modulation across various geometry-aware inference
tasks. For instance, MARBLE achieves the lowest error rate of 1.12e-2 on Elasticity, outperforming
CORAL by 32.9%. Although it slightly underperforms compared to Geo-FNO and Factorized-FNO
on Pipe, MARBLE still delivers an improvement of 14.2% over CORAL. These results highlight
the effectiveness of GridMix in enhancing generalization to unseen geometries.

4.3 ABLATION STUDY AND ANALYSIS

Effects of Spatial Domain Augmentation and GridMix. By incrementally incorporating the pro-
posed mechanisms into the baseline model, CORAL, we observed a consistent improvement in per-
formance, as illustrated in Table 4a. The spatial domain augmentation notably enhances baseline
performance on unseen domains Xte, demonstrating its effectiveness in mitigating over-fitting to
the training domain. This approach also proves robust across varying sampling ratios (Table 4b).
Building on this, the multi-channel GridMix further elevate the performance, with improvements of
60.7% and 51.0% for In-t and Out-t, respectively. These gains align with the regular grid setting,
where error rates are reduced by 80.8% and 50.6%.

Table 4: MARBLE ablation experiments on Navier-Stokes. We use the irregular grid setting with
π = 20% to assess (a) the effects of core components, including spatial domain augmentation (SDA)
and multi-channel GridMix (MCGM). We also examine (b) the impact of SDA’s sampling ratio in
this setting. Conversely, the regular grid setting is employed to analyze (c,d) GridMix design and
(e) latent dimensions. The reported metric is MSE. Default settings are marked in gray .

(a) Core components.

SDA MCGM In-t Out-t
✗ ✗ 2.18e-3 6.67e-3
✓ ✗ 4.22e-4 1.89e-3
✓ ✓ 1.62e-4 9.27e-4

(b) Sampling ratio.

ratio In-t Out-t
0.2 5.94e-4 3.40e-3
0.4 1.62e-4 9.27e-4
0.6 1.67e-4 1.27e-3

(c) Grid resolution.

res In-t Out-t
4 4.60e-5 6.10e-4
8 3.52e-5 5.04e-4

16 3.41e-5 5.78e-4
32 4.10e-5 1.68e-3

(d) Grid basis functions.

num In-t Out-t
8 4.02e-5 8.33e-4

16 3.93e-5 5.36e-4
32 3.52e-5 5.04e-4
64 3.84e-5 5.54e-4

(e) Latent dimension.

dim In-t Out-t
16 4.04e-5 5.49e-4
32 3.52e-5 5.04e-4
64 4.70e-5 6.19e-4
128 6.66e-5 8.81e-4

GridMix Design. Table 4c and 4d explore the impact of grid resolution and the number of grid
basis functions. Our findings indicate that the performance plateaus as resolution and basis numbers
increase. We hypothesize that this saturation occurs because, although higher resolution and more
basis functions offer greater flexibility in encoding the function space into the latent space, they also
lead to increasingly complex latent trajectories that are more challenge to learn.

Latent Dimension. We investigate the influence of latent code dimension in Table 4e. GridMix
constrains the modulation’s degrees of freedom to the number of mixture coefficients, enabling the
use of a smaller latent space dimension. As demonstrated in Table 4e, the optimal performance is
achieved with a latent dimension of 32. This reduced dimension results in a more compact latent
space and simpler latent trajectories for dynamics modeling.
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Figure 4: Visualization of predictions of MARBLE on Shallow-Water dataset with π = 20%.

Table 5: Comparison with scaled baselines - Experi-
ments are conducted on Navier-Stokes (π = 20%) with
spatial domain adaptation (SDA). RecErr denotes the
test error on the reconstruction stage. Metrics in MSE.

Model # Params RecErr In-t Out-t

CORAL-128 + SDA 83.1K 4.50e-4 4.22e-4 1.89e-3
CORAL-512 + SDA 725.5K 1.69e-4 3.79e-4 1.95e-3
CORAL-768 + SDA 1,481.5K 1.44e-4 1.17e-3 5.83e-3

MARBLE (Ours) 823.1K 1.38e-4 1.62e-4 9.27e-4

Comparison with Scaled Baselines. To
account for the additional learnable pa-
rameters introduced by grid mixtures, we
compare MARBLE against scaled base-
lines. Specifically, we evaluate CORAL
with a hidden dimension of 512 (CORAL-
512), which has a comparable number
of parameters to MARBLE, and CORAL
with a hidden dimension of 768 (CORAL-
768), which has approximately twice the
number of parameters as MARBLE. As
shown in Table 5, the increase in parameters reduces the reconstruction error, leading to a better
fit of the data space. However, this does not necessarily translate to improved dynamics forecast
performance. This finding aligns with earlier research by Serrano et al. (2023), as outlined in their
Table 11. These results highlight the effectiveness of MARBLE in leveraging more parameters to
enhance the performance of operator learning within the INR-based framework.

Visualizations. Figure 4 shows the predictions of MARBLE on the irregular grid setting with π =
20% for the Shallow-Water dataset. We compare these results with CORAL, the best-performing
baseline. Notably, MARBLE excels at modeling complex spatial variations in dynamics forecasting,
particularly in the Out-t scenario. Additional visualizations can be found in Appendix C.

5 DISCUSSION AND CONCLUSION

This paper has presented MARBLE, a novel approach for PDE modeling that leverages the power
of implicit neural representations with innovative spatial modulation techniques. Our method ad-
dresses the limitations of existing INR-based methods by introducing GridMix, a spatial modulation
technique that balances the exploitation of global and local information. Additionally, we propose
spatial domain augmentation to enhance generalization across varying spatial regions. Through ex-
tensive experiments, we have demonstrated the superior performance of MARBLE in various PDE
modeling tasks, including dynamics modeling and geometric prediction.

While MARBLE significantly enhances learning capacity, it’s important to note that the complexity
of GridMix may introduce additional computational overhead and memory requirements. A promis-
ing avenue for future research would be to explore efficient implementations of GridMix, potentially
drawing inspiration from vector quantization and tensor factorization techniques commonly em-
ployed in grid-based representations (Takikawa et al., 2022; Chen et al., 2022). We also observe that
MARBLE performs below GEO-FNO on the Pipe dataset, likely due to the limitations of the SIREN
backbone, as noted by Serrano et al. (2023). While SIREN is effective for isotropic frequency dis-
tributions, it may struggle with data featuring strong directional anisotropy due to its sensitivity to
frequency-related hyperparameters. Future work could explore enhanced INR designs (Cho et al.,
2024) that better capture directional frequency variations.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of dataset generation for the benchmarks in Appendix A. The
experimental setups for our method are outlined in Appendix B. Additionally, our code is included
in the supplementary materials.
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APPENDIX

A BENCHMARKS

A.1 DYNAMICS MODELING

2D-Navier-Stokes (Navier-Stokes). We examine the 2D Navier-Stokes equation as detailed in Li
et al. (2021); Yin et al. (2022); Serrano et al. (2023), which simulates the behavior of an incompress-
ible fluid within a rectangular domain Ω = [−1, 1]2. The governing PDE is given by:

∂w(x, t)

∂t
= −u(x, t)∇w(x, t) + ν∆w(x, t) + f, x ∈ [−1, 1]2, t ∈ [0, T ] (11)

w(x, t) = ∇× u(x, t), x ∈ [−1, 1]2, t ∈ [0, T ] (12)

∇u(x, t) = 0, x ∈ [−1, 1]2, t ∈ [0, T ] (13)
where u denotes the velocity field, w represents the vorticity, ν is the fluid viscosity, and f is the
forcing term defined as:

f(x1, x2) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))) ,∀x ∈ Ω (14)
The system is subject to periodic boundary conditions. We generated data by sampling initial condi-
tions as in Li et al. (2021), producing various trajectories on a 256×256 spatial grid with a time step
δt = 1. To capture significant dynamics, we retain the trajectory starting from the 20th timestep.
Each resulting trajectory contains 40 snapshots. We split these trajectories into two segments: the
first 20 frames are utilized for training (denoted as In-t), while the remaining 20 frames are reserved
for testing the model’s extrapolation capability (referred to as Out-t). In total, we generated 256
trajectories for training and 16 for evaluation.

3D-Spherical Shallow-Water (Shallow-Water). We investigate the shallow-water equation on a
spherical surface, which models atmospheric dynamics on Earth:

du

dt
= −f · k × u− g∇h+ ν∆u (15)

dh

dt
= −h∇ · u+ ν∆h (16)

Here, k is a unit vector perpendicular to the sphere’s surface, u is the velocity field tangent to the
sphere, which can be converted to vorticity w = ∇× u, and h is the sphere’s height. Data genera-
tion was carried out using the Dedalus framework (Burns et al., 2020), following the configuration
described in Yin et al. (2022), where symmetric behavior is observed in both hemispheres. The ini-
tial velocity u0 consists of two symmetric bands, one in each hemisphere, aligned with the latitude
circles. For each point at latitude ϕ and longitude θ ∈ [−π2 ,

π
2 ]× [−π, π]:

u0(ϕ, θ) =


(
umax

en
exp

(
1

(ϕ−ϕ0)(ϕ−ϕ1)

)
, 0
)

if ϕ ∈ (ϕ0, ϕ1),(
umax

en
exp

(
1

(ϕ+ϕ0)(ϕ+ϕ1)

)
, 0
)

if ϕ ∈ (−ϕ1,−ϕ0),
(0, 0) otherwise.

(17)

where umax is the peak velocity, ϕ0 = π
7 , ϕ1 = π

2 − ϕ0, and en = exp(− 4
(ϕ1−ϕ0)2

). The initial
water height h0 is computed by solving a boundary value problem as described in Galewsky et al.
(2004), with perturbation added by h′0:

h′0(ϕ, θ) = ĥ cos(ϕ) exp

(
−
(
θ

α

)2
)[

exp

(
−
(
ϕ2 − ϕ
β

)2
)

+ exp

(
−
(
ϕ2 + ϕ

β

)2
)]

. (18)

where ϕ2 = π
4 , ĥ = 120 m, α = 1

3 , and β = 1
15 following Galewsky et al. (2004). Simulations were

executed on a latitude-longitude grid using Dedalus (Burns et al., 2020), starting with an initial grid
size of 128× 256, which was downsampled to 64× 128. Data generation involved sampling umax
from a uniform distribution U(60, 80), with snapshots taken every hour over a period of 320 hours,
yielding 320 timestamps per trajectory. We created 16 trajectories for training and 2 for testing.
However, since the early snapshots exhibited less dynamic activity, only the last 160 snapshots were
retained. These long trajectories were then segmented into sub-trajectories of 40 timestamps each,
resulting in 64 training trajectories and 8 testing trajectories. Finally, the data was rescaled: height
h was scaled by 3× 103, and vorticity w was scaled by a factor of 2.
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A.2 GEOMETRIC-AWARE INFERENCE

We utilize datasets from Li et al. (2023b) and use the original authors’ train/test split.

Euler’s Equation (Naca-Euler). This experiment focuses on transonic flow over an airfoil, gov-
erned by the Euler equations:

∂ρf
∂t

+∇ · (ρfu) = 0,
∂ρfu

∂t
+∇ · (ρfu⊗ u+ pI) = 0,

∂E

∂t
+∇ · ((E + p)u) = 0, (19)

where ρf denotes the fluid density, u represents the velocity vector, p is the pressure, and E is the
total energy. Viscous effects are disregarded. The boundary conditions are set as follows: ρ∞ = 1,
p∞ = 1.0, M∞ = 0.8, and AoA = 0, where M∞ is the Mach number and AoA stands for
the angle of attack. A no-penetration condition is applied at the airfoil surface. The airfoil shape
is parameterized using the design element method. Specifically, the initial NACA-0012 shape is
mapped onto a “cubic” design element with 8 control nodes, and the initial shape is morphed to a
different one following the control nodes’ displacement field. These control nodes can only move
vertically, with displacements following a uniform distribution d ∼ U [−0.05, 0.05]. The dataset
consists of 1000 training examples and 200 test examples, generated using a second-order implicit
finite volume solver. The mesh point locations and the Mach number at these points serve as the
input and output data, respectively.

Hyper-elastic Material (Elasticity). We consider the governing equation of a solid body as:

ρs
∂2u

∂t2
+∇ · σ = 0

where ρs is the mass density, u represents the displacement vector, and σ is the stress tensor. To close
the system, a constitutive model links the strain tensor ε to the stress tensor. Our study investigates
a unit cell problem Ω = [0, 1] × [0, 1] with a void at the center. The void’s radius follows r =
0.2 + 0.2

1+exp(r̃) with r̃ ∼ N (0, 42(−∇ + 32)−1). The bottom edge of the unit cell is clamped, and
a tension traction t = [0, 100] is applied on the top edge. We use the Rivlin-Saunders material, with
energy density parameters C1 = 1.863 × 105 and C2 = 9.79 × 103. Data was generated using a
finite element solver with around 100 quadratic quadrilateral elements. The input data, represented
as point clouds containing roughly 1000 points, was used to predict stress as the target output.

Navier-Stokes Equation (Pipe). This scenario involves simulating incompressible flow through a
pipe, governed by the Navier-Stokes equations:

∂v

∂t
+ (v · ∇)v = −∇p+ µ∇2v, ∇ · v = 0

where v denotes the velocity vector, p is the pressure, and µ = 0.005 represents the viscosity. The
inlet imposes a parabolic velocity profile with a maximum velocity of v = [1, 0]. A free boundary
condition is applied at the outlet, and no-slip conditions are enforced on the pipe’s surface. The pipe
has a length of 10 and a width of 1. Its centerline is parameterized by 4 piecewise cubic polynomials,
controlled by the vertical positions and slopes at 5 spatially uniform nodes. The vertical positions
at these control nodes follow a uniform distribution d ∼ U [−2, 2], while the slopes adhere to d ∼
U [−1, 1]. The dataset includes 1000 training examples and 200 test examples, generated using an
implicit finite element solver with approximately 4000 Taylor-Hood Q2-Q1 mixed elements. The
input data comprises the mesh point locations (129×129), and the horizontal velocity at these points
is the output.

B EXPERIMENTS SETUPS

To train our model, we follow the experimental setup and hyperparameter choices as outlined in the
original CORAL (Serrano et al., 2023) paper. The additional hyperparameters for MARBLE are
listed in Table 6.
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Table 6: The choices of hyperparameters for GridMix and spatial domain augmentation (SDA)

Hyper-parameter Navier-Stokes Shallow-Water NACA-Euler Elasticity Pipe

GridMix

grid resolution 8×8 8×16 32×8 8×8 8×8
basis functions count 32 32 64 64 64

latent dimension 32 256 128 128 128
basis learning rate 1e-2 1e-2 1e-2 1e-2 1e-2

SDA sampling ratio 0.4 0.4 - - -

C ADDITIONAL VISUALIZATIONS

We present visualizations of the predictions made by MARBLE on the Navier-Stokes dataset in
Figure 5 and on the Elasticity dataset in Figure 6.

𝐼𝑛 − 𝑡 𝑂𝑢𝑡 − 𝑡
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Figure 5: Visualization of predictions of MARBLE on Navier-Stokes dataset with π = 20%.

Reference CORAL Ours Reference CORAL Ours

Absolute 
Error

Absolute 
Error

Figure 6: Visualization of predictions of MARBLE on Elasticity dataset.

D EXTENDED RELATED WORK

Classical Grid-based Methods, such as finite difference (FDM) (Grossmann, 2007), finite el-
ement (FEM) (Huebner et al., 2001), and spectral methods (Shen et al., 2011), are foundational
techniques for solving partial differential equations. These approaches discretize the spatial domain
into a structured or unstructured grid, allowing the numerical approximation of derivatives and the
solution of governing equations. FDM rely on regular grids and approximate derivatives through dif-
ferences between neighboring grid points. While simple and efficient for structured domains, they
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struggle with complex geometries or adaptivity to dynamic domain changes. FEM use unstructured
grids and local basis functions to discretize the domain, providing higher flexibility for complex ge-
ometries and localized refinement. However, their computational cost can increase significantly with
mesh refinement. Spectral Methods decompose the solution into global basis functions (e.g., Fourier
or Chebyshev polynomials) and excel in smooth domains due to their high accuracy. Yet, they face
challenges in handling discontinuities or irregular domains. Despite their robustness and accuracy,
these methods are typically tailored to fixed domains, making generalization to unseen configura-
tions or dynamic problems challenging. Furthermore, their computational complexity scales poorly
with increasing grid resolution, especially for high-dimensional problems.

Spatial Modulation for Neural Fields. Grid-based representations (Müller et al., 2022) have
driven significant progress in reconstructing single continuous signals with neural fields. This foun-
dation has been extended to encode multiple data instances through spatial modulation (Bauer et al.,
2023; Kim et al., 2023; Lee et al., 2024a; Wessels et al., 2024). For instance, Bauer et al. (2023)
introduced a scalable approach for representing high-resolution images using spatial modulation.
Subsequent works, such as Kim et al. (2023) and Lee et al. (2024a), further enhanced the expressive
power of this technique by incorporating Transformer-based encoders. Wessels et al. (2024) took
this a step further by embedding geometric information into modulation spaces, enabling steerabil-
ity properties. While the majority of research in this area has focused on computer vision tasks,
recent work (Knigge et al., 2024) has explored grounding geometric information within modulation
spaces to preserve PDE symmetries, thereby improving generalization and data efficiency for PDE
modeling. Our work distinguishes itself by uniquely focusing on enhancing domain generalization
while preserving the locality of spatial modulations—an underexplored aspect that is critical for
PDE modeling.

E EXTENDED COMPARISONS

We compare our method with Factorized-FNO (Tran et al., 2023) in the dynamics modeling set-
ting, as shown in Table 7. Specifically, we use a 12-layer Factorized-FNO with 16 modes and a
width of 64. For the irregular grid setting, linear interpolation is used to preprocess the data for
compatibility with Factorized-FNO. As observed, Factorized-FNO demonstrates improved perfor-
mance compared to FNO across all settings. However, our method, MARBLE, consistently achieves
superior performance.

Table 7: Dynamics Modeling - Test results. Metrics in MSE. The best results are shown in bold,
while the second-best results are underlined. The “lin. int.” abbreviates linear interpolation of
irregular grid data onto a regular grid.

Xtr ↓ Xte
dataset → Navier-Stokes

In-t Out-t

DeepONet 4.72e-2 ± 2.84e-2 9.58e-2 ± 1.83e-2
FNO 5.68e-4 ± 7.62e-5 8.95e-3 ± 1.50e-3

Factorized-FNO 3.18e-4 ± 5.94e-5 5.41e-3 ± 1.12e-3
π = 100% MP-PDE 4.39e-4 ± 8.78e-5 4.46e-3 ± 1.28e-3
regular grid DINo 1.27e-3 ± 2.22e-5 1.11e-2 ± 2.28e-3

CORAL 1.86e-4 ± 1.44e-5 1.02e-3 ± 8.62e-5
MARBLE (Ours) 3.52e-5 ± 5.31e-6 5.04e-4 ± 3.68e-5

DeepONet 8.37e-1 ± 2.07e-2 7.80e-1 ± 2.36e-2
FNO + lin. int. 3.97e-3 ± 8.03e-4 9.92e-3 ± 2.36e-3

Factorized-FNO + lin. int. 3.42e-3 ± 1.15e-4 6.68e-3 ± 2.87e-4
π = 20% MP-PDE 3,98e-2 ± 1,69e-2 1,31e-1 ± 5,34e-2

irregular grid DINo 9.99e-4 ± 6.71e-3 8.27e-3 ± 5.61e-3
CORAL 2.18e-3 ± 6.88e-4 6.67e-3 ± 2.01e-3

MARBLE (Ours) 1.62e-4 ± 2.42e-5 9.27e-4 ± 1.44e-4

DeepONet 7.86e-1 ± 5.48e-2 7.48e-1 ± 2.76e-2
FNO + lin. int. 3.87e-2 ± 1.44e-2 5.19e-2 ± 1.10e-2

Factorized-FNO + lin. int. 3.11e-2 ± 3.06e-3 4.88e-2 ± 1.58e-3
π = 5% MP-PDE 1.92e-1 ± 9.27e-2 4.73e-1 ± 2.17e-1

irregular grid DINo 8.65e-2 ± 1.16e-2 9.36e-2 ± 9.34e-3
CORAL 2.44e-2 ± 1.96e-2 4.57e-2 ± 1.78e-2

MARBLE (Ours) 1.43e-3 ± 5.66e-4 4.73e-3 ± 1.33e-3
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F COMPUTATIONAL COMPLEXITY

In this section, we provide an analysis of the computational complexity of our method. Specifically,
we unroll a trajectory up to T = 40 with a batch size of 1 and report runtime and memory usage in
Figure 7. All experiments were conducted on an NVIDIA A100 GPU.

Time Complexity. Our method shows a moderate increase in runtime compared to CORAL. For
example, at a resolution of 128 × 128, our approach is approximately 1.6× slower than CORAL.
This additional overhead arises from steps like spatial modulation and interpolation in our frame-
work. Nonetheless, our method still maintains substantial efficiency compared to traditional numer-
ical methods. The pseudo-spectral method, the numerical baseline used to generate the dataset (Li
et al., 2021), requires approximately an order of magnitude more time than our method at the same
resolution.

Memory Usage. Our method incurs about 6.5× the memory overhead compared to CORAL across
varying resolutions, primarily due to additional parameters and intermediate computations required
by our enhanced representation. However, the memory cost scales predictably and remains well
within the capabilities of modern GPUs for the tested resolutions, ensuring feasibility for larger
datasets and higher resolutions in practical applications. As discussed in Section 5, this memory
overhead could potentially be mitigated through techniques such as vector quantization (Takikawa
et al., 2022) and tensor factorization (Chen et al., 2022), offering a promising direction for future
research.

32 64 128
Resolution

10 1

100

Time (s)

CORAL
Ours
Pseudo-spectral

32 64 128
Resolution

10 1

100

Memory (GB)
CORAL
Ours

Figure 7: Computational complexity of MARBLE.

G VISUALIZATION OF LATENT EMBEDDINGS

To analyze the impact of increasing the number of basis functions on model performance, we vi-
sualize the latent embeddings generated with 32 and 64 basis functions in Figure 8. Specifically,
we randomly select 5 dimensions from the latent embedding z and plot their changes over time. As
observed, the trajectories generated with 64 basis functions exhibit greater fluctuations compared to
those with 32 basis functions. This increased variability may complicate the learning process for
Neural ODEs, potentially leading to a decrease in forecasting performance.
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Figure 8: Latent embeddings generated with 32 and 64 basis functions.
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