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Abstract

Protein-protein interactions (PPIs) are governed by surface complementarity and
hydrophobic interactions at protein interfaces. However, designing diverse and
physically realistic protein structure and surfaces that precisely complement tar-
get receptors remains a significant challenge in computational protein design. In
this work, we introduce PepBridge, a novel framework for the joint design of
protein surface and structure that seamlessly integrates receptor surface geometry
and biochemical properties. Starting with a receptor surface represented as a 3D
point cloud, PepBridge generates complete protein structures through a multi-step
process. First, it employs denoising diffusion bridge models (DDBMs) to map re-
ceptor surfaces to ligand surfaces. Next, a multi-model diffusion model predicts the
corresponding structure, while Shape-Frame Matching Networks ensure alignment
between surface geometry and backbone architecture. This integrated approach
facilitates surface complementarity, conformational stability, and chemical feasi-
bility. Extensive validation across diverse protein design scenarios demonstrates
PepBridge’s efficacy in generating structurally viable proteins, representing a sig-
nificant advancement in the joint design of top-down protein structure. The code
can be found at https://github.com/guanlueli/Pepbridge.

1 Introduction

Proteins are fundamental biological macromolecules that perform their functions through intricate
interactions with other biomolecules, particularly through protein-protein interactions (PPIs) [22].
PPIs are primarily determined by surface complementarity and hydrophobic interactions at the
interface regions, which facilitate specific and stable binding [36]. Understanding and designing
PPIs is a central challenge in computational protein design, which seeks to predict sequences,
generate structures, and design proteins with tailored properties while adhering to biochemical and
geometric constraints [9]. These constraints are crucial for engineering proteins with desired binding
characteristics and functional properties. Recent studies underscore that a protein’s surface features,
such as geometry and biochemical properties, have a more direct influence on its biological function
than its sequence or backbone structure alone [20, 44, 53]. This insight is particularly relevant
to PPIs, where interacting protein complexes exhibit geometric complementarity in the 3D space.
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The interacting surfaces conform to their ligands’ shapes and chemical properties, highlighting the
importance of surface characteristics in protein design.

Protein design methods can generally be categorized into three approaches: sequence-based meth-
ods [15, 30, 49], structure-based methods [50, 55, 58], and sequence-structure co-design ap-
proaches [21, 25]. Sequence-based and structure-based methods focus on isolated aspects, which
simplifies modeling but limits their ability to explore interactions at interface regions. Co-design
approaches aim to holistically model both sequence and structure to capture their interdependence,
yet they still struggle to accurately represent interface interactions. Providing the crucial role of
protein surface analysis in predicting interaction sites and inferring PPIs [35, 46, 47], more efforts
have considered comprising surface geometry and biochemical properties for protein discovery
in parallel. For instance, Gainza et al. [14] built a surface-centric de novo design framework to
capture the physical and chemical determinants of molecular recognition for new protein binders.
Subsequent works [31] extract surface fingerprints from protein-ligand complexes for innovative
drug-controlled cell-based therapies. Another line of works [44, 48] incorporates surface point clouds
augmented with biochemical properties for protein engineering. Despite these advancements, existing
methodologies face several limitations: (i) Limited ability to generate diverse yet receptor-compatible
surface configurations. (ii) Lack of explicit modeling to establish robust correspondences between
molecular shapes and backbone structures. (iii) Absence of a comprehensive strategy for top-down
protein design, where coherent protein structures are generated based on receptor surface features.

To address these challenges, we introduce PepBridge, a novel framework for top-down protein
design based on a multi-modal diffusion approach [17, 41–43]. As shown in Figure 1, given a
receptor represented as a surface point cloud and structure annotated with geometric and biochemical
properties, PepBridge generates a complete protein structure, including both the upper surface and
the underlying residue structure. Notably, PepBridge leverages denoising diffusion bridge models
(DDBMs) [62, 63], which interpolate between paired distributions, enabling the direct mapping
of receptor surfaces to ligand surfaces while preserving physical and biochemical relevance. For
structure generation, PepBridge employs an SE(3) diffusion model for backbone prediction, a torus
diffusion model for torsion angle generation, and a logit-normal diffusion model for residue identity
prediction. To ensure alignment and consistency, we introduce a Shape-Frame Matching Network
that learns correspondences between generated ligand surfaces and backbone structures.
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Figure 1: Top-down view of the
receptor-peptide complex.

Our main contributions are as follows:

• Unified Protein Design Framework: We present PepBridge,
a novel framework that jointly designs protein surfaces and
structures by integrating receptor surface geometry and bio-
chemical properties—tackling core challenges in top-down
protein design.

• Methodological Advances: PepBridge incorporates DDBMs
to generate receptor-compatible ligand surfaces and a multi-
modal diffusion model for peptide structure prediction. Addi-
tionally, a Shape-Frame Matching Network is introduced to
align generated surfaces and backbone structures, improving
geometric and biochemical consistency.

• Effective Validation: We demonstrate the efficacy of Pep-
Bridge through extensive validation on peptide design tasks,
showcasing its ability to generate diverse, structurally viable
proteins with receptor-specific binding characteristics.

2 Preliminaries and Background

Diffusion Models. Let q0(x0) be a d-dimensional data distribution. The forward diffusion pro-
cess [17, 40, 42] is defined by the following stochastic differential equation (SDE) with an initial
condition x0 ∼ q0:

dxt = f(t)xtdt+ g(t)dωt, (1)

where t ∈ [0, T ]. f(t) and g(t) are scalar-valued drift and diffusion coefficients, respectively.
ωt ∈ Rd is a standard Wiener process. q0 usually conforms to a random Gaussian noise. The
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Figure 2: Illustration of the PepBridge architecture for joint surface-structure peptide generation.
(a) The model processes receptor-ligand pairs through a top-down structure comprising molecular
surface and frame components. (b) Two specialized diffusion models are employed simultaneously. A
diffusion bridge model leverages the receptor surface as the starting point to generate peptide surfaces.
An SE(3) diffusion model shoulders the responsibility of frame construction, which incorporates
translation and torsion angles. (c) A surface-frame matching network facilitates the interaction
between creased structures, while multi-modal diffusion reconstructs the complete peptide structure.

corresponding reverse-time SDE for sampling from q0(x0) is:

dxt = [f(t)xt − g2(t)∇xt
log qt(xt)]dt+ g(t)dω̂t, (2)

where ω̂t denotes the reverse-time Wiener process and ∇xt
log qt(xt) is the score function of the

marginal density qt.

Diffusion Bridge Models. Traditional diffusion models assume a Gaussian prior as the starting point
for the generative process. However, in many practical scenarios, including protein design, the initial
state may not follow a random Gaussian distribution, requiring a more flexible approach. To address
this limitation, diffusion bridge models [7, 62, 63] provide a framework for modeling structured
data distributions by matching the conditional score of a tractable bridge distribution. These models
enable a transport between distributions through either a reverse SDE or a probability flow ordinary
differential equation (ODE). For diffusion bridges with an initial condition x0 ∼ q0 = pdata and a
terminal condition xT = y, the forward process is:

dxt = f(t)xtdt+ g2(t)∇xt
log q(xT = y|xt) + g(t)dωt, (3)

where y is drawn from a prior distribution rather than Gaussian noise. The corresponding reverse
SDE is:

dxt = [f(t)xt − g2(t)(∇xt
log q(xt|xT = y)−∇xt

log qT |t(xT = y|xt))]dt + g(t)dω̂t, (4)

where ∇xt log q(xt|xT = y) represents the bridge score function and ω̂ is the reverse-time Wiener
process.

3 Method

3.1 Problem Statement

The protein-peptide complex pair can be represented as C = P ∪ R, where P and R denote the
peptide and receptor, respectively. For both the peptide and the receptor, we build the top-down
(Upper-Bottom) structural representation U ∪B, where U = {ui}NU denotes the spatial surface point
cloud and B = {bi}NB denotes the residue-level structure. The bottom structure B is composed
of amino acid residues, where each residue bi is characterized by its backbone frame, residue type,
and side-chain dihedral angles [12], as illustrated in Figure 1. The goal of target-aware peptide
generation is to learn a probabilistic model that captures the distribution over peptide top-down
structures, p(P|R), conditioned on the receptor as a structural and biochemical reference.
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3.2 Surface Diffusion Bridge

Peptides typically fold into complementary shapes when binding to their receptors [29]. The geo-
metric and biochemical properties of the receptor’s binding site impose natural constraints on the
conformational space of compatible peptide structures. For the sake of leveraging this relationship,
we develop a tailored diffusion bridge model [63] that treats the receptor surface UR as a prior
distribution to generate energetically favorable peptide conformations with complementary binding
surfaces UP .

Surface Representation. Firstly, we devise a pipeline for molecular surface processing and point
cloud extraction. Starting with a protein structure in PDB format, we use PyMol [10] to generate
solvent-accessible surface representations. The probe molecular surface approximates both the
Solvent-Accessible Surface Area (SASA) and Solvent Excluded Surface (SES). The resulting point
cloud consists of surface points ui, each annotated with 3D spatial coordinates and physicochemical
features, including hydrophobicity and hydrogen bonding potential [13, 31].

Diffusion Bridge via h-transform. The surfaces of receptor and peptide exhibit close interactions,
with their distributions pP and pR naturally forming pairs. We model their surface fit by reconstructing
a stochastic trajectory between observed positions. Specifically, let (U0,UT ) denote a pair of surface
datasets with empirical marginal distributions p0 and pT at times t = 0 and t = T , respectively.
Given these endpoint distributions, our objective is to reconstruct the continuous-time stochastic
process pt over t ∈ [0, T ] that interpolates between p0 and pT . Using Doob’s h-transform [11, 38],
we define a surface diffusion process that transitions from the peptide surface U0 to the receptor
surface UT . The forward SDE is given by:

dUt = f(Ut, t)dt+ g(t)2h(Ut, t,UR, T ) + g(t)dwt, (5)

where h(Ut, t,UR, T ) = ∇Ut
log p(UT |Ut)|Ut=UP ,UT=UR represents the gradient of the logarithmic

transition kernel. The corresponding time-reversed SDE is constructed as

dUt = [f(Ut, t) + g(t)2(s(Ut, t,UR, T )− h(Ut, t,UR, T ))]dt+ g(t)dŵt. (6)

As shown in Figure 2, we use the receptor surface as an informative prior in place of Gaussian
noise, enabling more efficient generation of complementary peptide surfaces tailored to the binding
site. Accordingly, we define the forward transition kernel as q(Ut|U0,UT ) = N (µ̂t, σ̂

2
t I), where

µ̂t =
αt

αT

SNRT

SNRt
UT + αtU0(1− SNRT

SNRt
) and σ̂2

t = σ2
t (1− SNRT

SNRt
). αt is a fixed signal scaling factor

and normally takes the value of 1.0. σt defines the noise schedule, and SNRt = α2
t /σ

2
t denotes

the signal-to-noise ratio at time t. During the sampling process, we start from pT ∼ pUR and
approximate the score via s(Ut, t,UR, T ) = ∇Ut

log q(Ut|UT )|Ut=UP ,UT=UR , where q(Ut|UT ) =∫
U0
q(Ut|U0,UT )qdata(U0|UT )dU0.

Surface Generation Loss. We employ denoising score-matching [42] with neural network approxi-
mation of the true score ∇Ut

log q(·), leading to the surface generation loss LU as:

LU = EtEU0,UR∼pdata(U0,UR)EUt∼q(Ut|U0,UT=UR)[w(t) ∥ sθ(Ut,UT , t)−∇Ut log q(Ut|U0,UT ) ∥2],

where q(Ut|U0,UT ) is the previously defined forward transition kernel andw(t) is the time-dependent
weighting function. sθ(·) represents the parameterized geometric network, with detailed information
provided in Appendix D.

3.3 Bottom Structure Diffusion Generation

Bottom Structure Parameterization. Following AlphaFold2 and recent works [26, 57, 58], we
parameterize the peptide backbone using four key atoms N⋆,C⋆

α,C
⋆,O⋆, which form a rigid body

frame. The rigid frame centered at Cα atom, i.e., C⋆
α = (0, 0, 0). Applying an SE(3) transformation

Tn to the local backbone frame of residue n yields the global atomic coordinates:

[Nn,Cn, (Cα)n] = Tn · [N⋆,C⋆,C⋆
α], On = Tn · T ⋆

psi(ψn) ·O⋆,

where Tn = (rn,mn) consists of a rotation matrix rn ∈ SO(3) and a translation vector mn ∈ R3.
The transformationT ⋆

psi(ψn) = (r(ψn),mpsi) encodes a rotation of O⋆ around the Cα − C bond
by torsion angle ψn. The amino acid type of the i-th residue ai ∈ {1..20} is determined by the
side-chain R group.The side-chain conformation is governed by torsion angles between side-chain
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atoms, represented as χ ∈ [0, 2π)4. A detailed description is provided in Appendices A and B.
Our approach to bottom structure prediction integrates three components: a multi-modal diffusion
process on SE(3) for backbone prediction, a torus diffusion model for torsion angle generation, and a
logit-normal diffusion model for residue identity prediction.

Frame Structure Generation. Given a sequence of N rigid transformations T = [T1, ..., TN ] ∈
SE(3)N , we model their distribution using Riemannian diffusion on SE(3)N [8]. The forward
diffusion process on the SE(3)-invariant measure is:

dTt = [0,−P 1

2
mt]dt+ [dB

SO(3)
t ,dBR3

t ], (7)

where B
SE(3)
t = [B

SO(3)
t ,BR3

t ] represent Brownian motion on SO(3) and R3, and P ∈ R3N×3N is
a projection matrix removing the center of mass 1

N

∑N
n=1mn. In Appendix C, we show the choice of

metric on SE(3), which allows decomposing the process into independent translational and rotational
components. The backward process is given by :

∇rt = ∇r log pTF−t(Tt)dt+ dB
SO(3)
t ,∇mt = P{1

2
mt +∇m log pTF−t(Tt)}dt+ PdB

SO(3)
t ,

where TF denotes the final time step. We show more details about the training and sampling in
Appendix C.

Structure Generation Loss. Backbone generation is supervised by a denoising score matching loss
LT , combining rotation and translation components. The loss function for the rotation component is
expressed mathematically as:

Lr(θ) = EtEr0,rT∼pdata(r0,rT )Ert∼pdata(rt|r0,rT )[λ
r
t ∥ ∇ log pt|0(rt|r0)− sθ(t, rt) ∥2], (8)

where the rotation weighting schedule is formulated as λrt = 1/E[∥ ∇ log pt|0(rt, r0) ∥2SO(3)].
Meanwhile, the translation loss component is written as:

Lm(θ) = EtEm0,mT
Emt [∥ m0 − sθ(t,mt) ∥2]. (9)

We observe that directly regressing Cα coordinates improves stability over using score matching for
mt. This operation ensures that the generated backbone structures remain physically consistent with
the receptor-ligand complex. The translation weight schedule is defined as λmt = (1− e−t/e−t/2).

Residue Type Prediction. Residue types aj are modeled as categorical variables embedded in logit
space via a sharp one-hot encoding: vj ∈ R20, where vj [i] = K if i = aj , otherwise −K, with
K > 0 a fixed constant. Applying a softmax transformation to vj yields a distribution over the 20-
simplex, sharply peaked at the index corresponding to aj . This effectively embeds the discrete residue
type as a concentrated categorical distribution on the simplex. We define a forward diffusion process
in logit space: q(vj

t |v
j
t−1) = N (vj

t ;
√
αtv

j
t−1, (1− αt)K

2I), with the prior p(vj
T ) = N (0,K2I),

corresponding to a logit-normal distribution [3]. The reverse process recover the categorical residue
types by sampling from the softmax output:

vj
t−1 =

√
ᾱtv

j
0 +

√
1− ᾱtϵ, ϵ ∼ N (0,K2I), (10)

with final prediction aj ∼ softmax(vj
0). The model is trained to predict ϵ using the following loss

function:
Lj

type = Et,vj
0,ϵ

∥ ϵtype
θ (vj

t , t)− ϵ ∥22, (11)

Torsion Angle Prediction. The torsion vector χi ∈ [0, 2π)5 consists of four side-chain angles and
one backbone torsion angle ψ. To model angular diffusion, we apply the DDPM framework on the
torus, using a wrap function to maintain values within [−π, π): wrap(χ) = (χ+ π)%(2π)− π. The
forward process perturbs the angles with Gaussian noise: χt = wrap(

√
ᾱtχt−1 +

√
1− ᾱtϵ), ϵ ∼

N (0, I), where ᾱt =
∏t

s=1(1 − βs) and βt ∈ [0, 1] is the noise schedule.The reverse pro-
cess approximates the posterior distribution: p(χt−1|χt) = wrapnormal

[
µθ(χ

t, t), σ2
t I
]
, where

µθ(χ
t, t) = wrap

[
1√
αt
(χt − 1−αt√

1−ᾱt
ϵang
θ (χt, t))

]
is the model-predicted mean. The network pre-

dicts the noise vector ϵθ and the training loss is defined as:

Lang = Et,χ0,ϵt ∥ wrap(ϵang
θ (χt, t)− ϵ) ∥2 . (12)
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3.4 Shape-Frame Matching Network

Our co-design network implements iterative updates to the top-down structure through a Shape-Frame
Matching Network. We denote its l-th layer as SFMNet({h(l)

U ,x
(l)
U }, {h(l)

B ,x
(l)
B }). Here, x(l)

U ∈
RNU×3, x(l)

B ∈ RNB×3 are transformed coordinates of surface and frame, while h
(l)
U ∈ RNU×dU

and h
(l)
B ∈ RNB×dB are feature embeddings. This architecture jointly transforms both features and

3D coordinates to perform interaction between surface points and backbone frames. By stacking L
layers of SFMNet, we ensure equivariant updates to the protein’s top-down structure. The single l-th
layer is formulated as a variant of the 3D equivariant graph neural network (EGNN) [39, 54]. First of
all, we get the attention score att(l)ij = 1√

dU
(h

(l)
bi
WQ)(h

(l)
ujWK + gij), where WQ ∈ RdB×dU and

WK ∈ RdU×dU are learnable matrices. A geometric structural embedding gij ∈ RdU is incorporated
into the attention computation. It is obtained by feeding the geodesic distance into a multi-layer
perceptron (MLP) as gij = MLP(∥ xbi − xuj

∥). Then we aggregate the message from both
backbone frames and surface points, and update the backbone node features h(l)

B as

νbi,uj
= ϕν(h

(l)
bi
,h(l)

uj
, att(l)ij , t, ∥ xbi − xuj

∥), h
(l+1)
bi

= ϕh(h
(l)
bi
,
∑

j∈N (bi)

νbi,uj
),

where ϕν(·) and ϕh(·) are two additional MLPs to accumulate the adjacent messages and features.
N (bi) is the neighborhood set of frame node bi that contains all surface points {uj | ∥ xbi−xuj

∥≤ γ}
that interact with this residue, where γ is the distance threshold. After that, we calculate the shift of
translation ∆ml and rotation ∆rl, adding them to the original values:

m
(l+1)
bi

= m
(l)
bi

+ ϕm(h
(l+1)
bi

), r
(l+1)
bi

= r
(l)
bi

+ ϕr(h
(l+1)
bi

). (13)

3.5 Overall Training Loss

The complete loss function combines the surface and bottom structure loss functions:

Ltotal = µT [LU , Lr, Lm, Ltype, Lang], (14)

where µ denotes the set of weighting hyperparameters balancing each loss term. This formulation
enables joint optimization over both surface geometry and residue structure for comprehensive protein
structure prediction.

4 Experiments

This section presents comprehensive experimental evaluations to demonstrate the efficacy of our
proposed method. Our investigation addresses three fundamental questions: Q1: How do the
generated samples perform in terms of quality? Q2: Does the method generate physically valid
samples? Q3: What is the impact of key architectural decisions on model performance? We evaluate
PepBridge and baseline methods on two tasks: (1) Surface-Structure Joint-design. Generation of
peptide structure and surface conditional on a specified receptor binding site. This task involves the
simultaneous generation of peptide surface characteristics and structural conformations, conditional
on a specified receptor binding site. (2) Side-chain Packing. Prediction of optimal side-chain angles
for peptides when they are bound to a specified receptor site.

4.1 Experimental Setup

Dataset. The evaluation utilized the PepMerge dataset [25], a collection derived from the integration
of PepBDB [52] and Q-BioLip [51] databases. Following the protocol established in [25], we
implemented rigorous filtering criteria: eliminating redundant entries, excluding structural data with
resolution exceeding 4 Å, and selecting peptides with sequence lengths between 3 and 25 residues.
We evaluate the generation model’s performance using multiple criteria to ensure candidates exhibit
high diversity and novelty while maintaining validity and desired distributional properties. For each
receptor, we generate 40 candidates. Additional dataset details are provided in Appendix E.1.

Baselines. We compare our approach against two distinct categories of state-of-the-art protein design
methods. The first category consists of backbone-centric approaches that do not explicitly model
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Table 1: Evaluation on surface-structure joint-design. On each target, 40 candidates are generated for
evaluation. Div., Aff. and Stab. are abbreviations for diversity, affinity and stability, respectively.

Divstru (↑) Aff. % (↑) Stab. % (↑) RMSD Å(↓) BSR (↑)

ProteinGenerator 0.54 13.47 23.48 4.35 24.62
RFDiffusion 0.38 16.53 26.82 4.17 26.71

Chroma (RIA) 0.59 17.96 16.69 3.97 74.12
PPFLOW 0.53 17.62 17.25 2.94 78.72
PepGLAD 0.32 10.47 20.39 3.83 19.34

PepFlow w/Bb 0.64 18.10 14.04 2.30 82.17
PepFlow w/Bb+Seq 0.50 19.39 19.20 2.21 85.19

PepFlow w/Bb+Seq+Ang 0.42 21.37 18.15 2.07 86.89

PepBridge w/Bb+surf 0.60 20.07 21.75 2.04 84.62
PepBridge w/Bb+Seq+surf 0.62 22.07 20.71 2.18 84.91

PepBridge w/Bb+Seq+Ang+surf 0.59 19.16 25.02 2.19 83.90

side-chain conformations, such as RFDiffusion [50], ProteinGenerator [27] and PPFLOW [26]. RFD-
iffusion generates backbones via diffusion, followed by sequence prediction with ProteinMPNN [6],
while ProteinGenerator jointly models sequence and backbone. PPFLOW [26] conditions on the tar-
get receptor and uses conditional flow matching on torus manifolds to generate peptide backbones by
modeling torsional geometry. The second category comprises full-atom models like PepGLAD [21],
Chroma [19], and PepFlow [25], which explicitly generate side-chain conformations. To evaluate
Chroma, we used its conditional generation with receptor interaction area (RIA) as the conditioning
input. Further details are provided in Appendix E.2.

4.2 Surface-Structure Joint-Design

Metrics. We evaluate the validity of the generated backbone structures using the following metrics.
(1) Diversity: The average of one minus the pairwise TM-score [59] between generated peptides. A
higher diversity score indicates higher dissimilarity and greater structural variety among the generated
peptides. (2) Affinity: Binding affinity is evaluated using Rosetta’s energy function [2], measured in
kcal/mol. We report that the proportion of generated peptides with binding energies is lower than that
of the native peptide. (3) Stability: The percentage of generated peptide-protein complexes with total
energy lower than the native complex. (4) RMSDCα

: The root mean square deviation of Cα atom
coordinates between the generated and reference peptide structures, measured in Ångströms (Å). (5)
BSR: The binding site ratio, which measures the overlap between the binding sites of the generated
and native peptides on the target protein.

Results. As shown in Table 1, PepBridge consistently benefits from explicit surface conditioning.
Among our variants, PepBridge w/Bb+Seq+surf attains the highest affinity, and PepBridge w/Bb+surf
yields the lowest RMSD across all methods, indicating strong geometric fidelity to native-like
docked poses. PepBridge w/Bb+Seq+Ang+surf ranks second in stability at 25.02% and maintains
competitive structural diversity. Surface-aware generation consistently outperforms backbone-only
counterparts. Relative to PepFlow w/Bb, PepBridge w/Bb+surf increases affinity and markedly
reduces RMSD. PepBridge w/Bb+Seq+surf continues this trend, further reducing RMSD while raising
affinity. PepBridge variants deliver strong RMSD, affinity, and stability, translating into competitive
enrichment (BSR). Modeling interface geometry through joint surface–backbone conditioning proves
especially effective for enhancing conformational accuracy and binding complementarity.

4.3 Ablation Study

To comprehensively assess the contribution of each component in our proposed model, we conduct
an ablation study by systematically removing or modifying key elements. (1) -bridge/+vanilla
diffusion: The denoising diffusion bridge model is replaced with a standard diffusion model, which
diminishes the incorporation of receptor surface geometry as prior information. (2) -bridge/+CFG
diffusion: The denoising diffusion bridge model is replaced with a classifier-free guidance diffusion
model [16], which enables receptor-guided conditional generation. However, this approach still
maintains a Gaussian prior distribution, rather than incorporating explicit geometric priors. (3)
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Table 2: Ablations on different components of PepBridge, where the best model is in bold.

Ablations Divstru (↑) Divsurf (↑) Aff. % (↑) Stab. % (↑) RMSD Å(↓) BSR (↑) Con. (↑)

PepBridge 0.59 0.46 19.16 25.02 2.19 83.90 0.43
-bridge/+vanilla diffusion 0.42 0.39 15.97 17.72 3.18 46.21 0.31
-bridge/+CFG diffusion 0.39 0.41 16.38 19.32 3.46 57.39 0.36
-surface context 0.51 – 16.17 15.37 4.21 31.37 –
-surface&frame matching 0.42 0.35 14.82 22.41 3.71 54.71 0.25

PDB:5DJA PDB:1UJ0 PDB:2R02 PDB:3AVC

Figure 3: Visualization of generated peptides by our PepBridge. Top: Generated peptides (in orange)
for receptors (in purple). The PDB ID of the receptors are 5DJA, 1UJ0, 2R02, and 3AVC. Bottom:
The generated backbone structure and surface. The ground-truth surface structure (in black) and
generated surface (in orange) are shown to compare the ability of the interface caption.

-surface context: Surface context information is removed, leaving only the backbone generation
component. (4) -surface&frame matching: The surface-frame matching mechanism is excluded
during the training of the denoising model. We also evaluate additional metrics to analyze model
performance: (1) Consistency: Surface-structure consistency is quantified using Cramér [5], which
measures the association between surface and structure clustering labels. Higher consistency values
indicate that candidates with similar structures tend to have similar surfaces, suggesting that the
model effectively captures the interdependence between backbone structures and surface features. (2)
Surface Diversity: Divsurf is computed based on surface alignment similarities. Detailed information
about the metrics can be found in Appendix E.3.

Table 2 records the ablation results. It shows that during surface generation, the basic diffusion model
struggles to capture the correct distribution compared to the diffusion bridge model, resulting in
instability and low consistency in the generated structures. Replacing the denoising diffusion bridge
model with the classifier-free guidance diffusion model still fails to capture the surface distribution
accurately. When eliminating the surface context and only generating the backbone, the performance
on affinity, RMSD, and BSR drops dramatically, since it can not get enough binding set information.
Without surface guidance, the model will generate unrealistic and unstable peptides. As for the
component of the surface-frame matching mechanism, through the result, we can know that the
network helps to achieve high stability and enhance consistency between the surface and backbone.
It also helps to reduce RMSDCα by providing effective structural patterns.

4.4 Visualization

We further present four examples of generated peptides in Figure 4.3. We observe that PepBridge
produces peptides with proper geometries and positions. The generated surface exhibits similar
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Table 3: Evaluation of different methods in the side-chain packing task, where the best and the
suboptimal approaches are bolded and underlined, respectively.

Angle MAE ◦(↓) Angle Accuracy %(↑)

χ1 χ2 χ3 χ4 All residues Core residues Surface residues

SCWRL4 29.79 30.12 52.38 62.03 45.93 66.25 34.59
DLPacker 28.35 32.62 54.69 59.60 49.00 68.03 39.56
AttnPacker 29.61 28.83 47.66 53.64 47.53 71.65 38.90
DiffPack 26.29 29.57 47.64 56.85 55.86 79.62 41.31
PepFlow w/Bb+Seq+Ang 27.61 25.60 48.20 54.02 54.29 70.47 44.06

PepBridge (ours) 25.96 26.76 46.81 52.95 56.71 73.79 46.17

conformation with the ground-truth surface, which show the ability to interact with the target binding
sites and capture the right shape. We provide additional experiments in Appendix F.

4.5 Side-chain Packing

The backbone prior state is initialized using a native peptide structure and subsequently generate
the surface and side-chain angles. We compare our approach against established methods including
SCWRL4 [23], DLPacker [34], AttnPacker [32], DiffPack [60], and PepFlow [25]. The evaluation
metrics include: (1) Angle MAE, which quantifies the mean absolute error between predicted and
ground-truth angles, and (2) Angle Accuracy, which considers torsion angles correct when their
deviation falls within 20◦. Following the methodology of [60], we present results for core residues,
surface residues, and all residues. For each peptide, we generate an ensemble of 64 conformations.

Table 3 presents the comparative results. Our model demonstrates superior performance in predicting
χ1, χ3, and χ4 angles. Particularly, PepBridge reduces the prediction error by 2% to 52.95 for the
most challenging angle χ4. This suggests that the integration of surface-level information enhances
side-chain angle prediction accuracy. Furthermore, the model exhibits particularly strong performance
in surface residue prediction with a high accuracy of 46.17%, indicating that PepBridge effectively
captures spatial relationships in interface regions. It also attains the best overall accuracy of 56.71%,
which significantly improves the prior state-of-the-art PepFlow by 4.45%.

5 Related Works

Computational Protein Design Sequence-based and structure-based approaches are two main
trajectories in computational protein design. The former models amino acid chains by language
models [15, 30, 49], whereas the latter models the 3D geometry. Notable structure-based methods
include FoldingDiff [55], which represents protein backbones through sequential angles, and RFD-
iffusion [50], which employs varied diffusion schemes for backbone generation. FrameDiff [58]
advanced this field by developing SE(3)-invariant diffusion models for protein modeling. Flow
models have also shown promise in backbone design, as demonstrated by FOLDFLOW [4] and
PPFLOW [26]. Recently, sequence-structure co-design has gained attention, with models such as
PepGLAD [21] and PepFlow [25]. PepHAR [24] further targets peptide binders via hotspot sam-
pling and multifragment autoregressive extension, enforcing geometric validity. Surface-conditioned
protein modeling represents the latest frontier in this field. Surface-VQMAE [53] introduced a
Transformer-based architecture that integrates surface geometry and captures patch-level relations.
Despite those achievements, the joint design of the surface and structure remains an unexplored area,
and we position our study as a pioneering effort in this direction.

Surface Context in design ligands Classical methods explicitly model geometric and physicochem-
ical complementarity (e.g., shape matching, lock-and-key). Mesh-based learning like MaSIF [13]
encodes surfaces with handcrafted geometric/chemical descriptors, while dMaSIF [47] accelerates
this via point-cloud surfaces with atom-level features. Recent generative methods like ShEPhERD [1]
and DSR [46] incorporate surface features into diffusion frameworks, and SurfPro [44] generates
sequences conditioned on known surfaces. However, these approaches typically assume strict com-
plementarity, require hand-crafted features, or depend on ground-truth surfaces. PepBridge instead
uses denoising diffusion bridge models to learn data-driven mappings between receptor and ligand
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interfaces, capturing flexible, non-complementary interactions crucial for peptide binding where
induced fit dominates.

Diffusion Models Diffusion models have emerged as powerful probabilistic generative models [17,
41–43]. Recent advances have extended these models to handle data with inherent invariances [37, 56],
as well as to discrete domains [28, 33]. In parallel, manifold-aware diffusion models have been
introduced, including the Riemannian Score-Based Generative Model (RSGM)[8] and the Riemannian
Diffusion Model (RDM)[18]. A significant variant, diffusion bridge models [7, 62, 63], enables
interpolation between paired endpoint distributions. In this work, we employ a diffusion bridge model
to construct a stochastic bridge between receptor and ligand distributions, enabling the generation of
complementary, high-quality samples.

6 Conclusion

This work presents PepBridge, a novel framework conditioned on receptor structures for joint protein
surface-backbone design. We employ a stochastic bridge process between receptor and ligand surfaces
with tractable marginal distributions, where the model learns by matching conditional scores of the
bridge distribution. For backbone generation, an SE(3) diffusion model is used to predict frame
geometry. The Surface-Frame Matching Network enables bidirectional information flow between
surface and backbone levels, facilitating coherent structural development. The superior performance
of PepBridge highlighs the advantages of shape-driven generation in target protein design.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix H
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Appendix B,C
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide an anonymous link to the code and also include it in the supple-
mentary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide an anonymous link to the code and data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix E

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We followed standard evaluation practices in the field by comparing methods
across diverse models, rather than relying on statistical significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to ethical standards by ensuring responsible data use,
transparency, and consideration of potential societal impacts, in line with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Introduction
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve models or datasets with a high risk for misuse, so
no special safeguards were necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of assets used in the paper are properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve human participants, so these considerations do not
apply.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs do not impact the core methodology, so no declaration is required.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Backbone Representation

As introduced in 3.3 section, every frame is composed by four atomic group N⋆,C⋆
α,C

⋆,O⋆, which
is idealized atom coordinates that assumes chemically idealized bond angles and lengths.

We use the tuple T = (r,m) to denote the Euclidean transformations corresponding to frames, where
r ∈ SO(3) for the rotation and m ∈ R3 for the translation components. We use the dot product
operator (·) to denote application of a transformation to the position of frame b ∈ R3:

b̂ = T · b
= (r,m) · b
= rb+m.

The composition of Euclidean transformations denoted as:

T = T1 · T2
(r,m) = (r1,m1) · (r2,m2)

= (r1r2, r1m2 +m1).

The group inverse of the transform T is denoted as:

T−1 = (r,m)−1

= (r−1, −r−1m)

The tuple transforms a position in local coordinates blocal ∈ R3 to a position in global coordinates
bglobal ∈ R3 as

bglobal = T · blocal

= rblocal +m .

In local position of frame, the bond angles and lengths values differ slightly per amino acid type.
Follow [58] and [57], we set the local coordinates as:

N⋆ = (−0.525, 1.363, 0.0)

C⋆
α = (0.0, 0.0, 0.0)

C⋆ = (1.526, 0.0, 0.0)

O⋆ = (0.627, 1.062, 0.0)

(15)

where C⋆
α is central in protein backbones, connecting N⋆ and C⋆ groups. Using the transformation

Tn, we manipulate idealized coordinates to construct global coordinates of backbone atoms for
residue n via:

[Nn,Cn, (Cα)n,On] =
[
Tn ·N⋆, Tn · C⋆,

Tn · C⋆
α, Tn · T ⋆

psi(ψn) ·O⋆
]
.

(16)

Given the coordinates of three atoms [Nn,Cn, (Cα)n], we construct a local rigid frame using a
Gram-Schmidt process:

ω1 = Cn − (Cα)n, ω2 = Nn − (Cα)n

e1 = ω1/∥ω1∥, u2 = ω2 − e1(e
T
1 ω2),

e2 = u2/∥u2∥,
e3 = e1 × e2,

rn = (e1, e2, e3) ,

mn = (Cα)n,

Tn = (rn,mn).

(17)
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In this construction, two directional vectors are first defined: from Cα to C and Cα to N. We
normalize the first direction ω1 to define the local x-axis e1, and orthogonalize and normalize ω2

to define the y-axis e2. The z-axis e3 is computed as the cross product of e1 and e2, forming a
right-handed orthonormal basis. The resulting frame Tn placing the local frame at the Cα of residue n.
To define the local frame for placing the oxygen atom, we begin with the residue’s central frame Tn,
then apply a secondary transformation: T ⋆

psi(ψn) = (rx(ψn),mpsi), where ψn represents a rotation
angle along x-axis. The transformation funtions are defined as:

rx(ψ) =

(
1 0 0
0 cosψ − sinψ
0 sinψ cosψ

)
, mpsi = (1.526, 0.0, 0.0). (18)

This transformation represents a rotation around the x-axis (aligned with the bond from Cα to C) by
an angle ψn, followed by a translation to the position of the carbon atom C⋆ in the idealized frame
centered at C⋆

α. The combined transformation Tn · T ⋆
psi(ψn) thus defines the final frame in which the

idealized oxygen O⋆ is placed to obtain its global coordinate.

B Diffusion on the Toric Manifold

A torsion vector χ ∈ [0, 2π)d naturally resides on a flat d-dimensional torus, which can be represented
as the quotient space Rd/L, where L = (2πZd) denotes a discrete lattice subgroup of Rd isomorphic
to Zd. This space models periodic angular data, and inherits a flat metric from its covering Euclidean
space. The tangent space of the torus at any point is identified with Rd, and all operations are
performed modulo 2π.

C Diffusion on SE(3)

Following previous work [58], we treat the group SE(3) as the product space SO(3)×R3, and endow
it with a product Riemannian metric. Specifically, for tangent vectors (a, b), (a′, b′) ∈ Tr SO(3)×R3,
the metric is defined as:

⟨(a, b), (a′, b′)⟩SE(3) = ⟨a, a′⟩SO(3) + ⟨b, b′⟩R3 .

This structure allows for a natural decomposition of differential geometric objects on SE(3) into
rotational and translational components. In particular, the gradient of a function f : SE(3) → R at
T = (r,x) is given by:

∇T f(T ) = [∇rf(r,m),∇mf(r,m)],

and the Laplace–Beltrami operator decomposes as:

∆SE(3)f(T ) = ∆SO(3)f(r,m) + ∆R3f(r,m).

We define Brownian motion on SE(3) as the product of independent Brownian motions on SO(3)
and R3:

B
SE(3)
t = [B

SO(3)
t ,BR3

t ]

where the rotational and translational components evolve independently. This product metric allows
us to treat the rotational and translational components of the forward diffusion process independently,
leading to the following decomposition of the conditional score:

∇Tt
log pt|0(Tt|T0) = [∇rt log pt|0(rt|r0),∇mt

log pt|0(mt|m0)]

The forward process on SE(3) is thus described by two independent SDEs. Let M be a compact Lie
group (e.g., SO(3)), and let χℓ denote the character of the ℓ-th irreducible unitary representation of
dimension dℓ. Then, the heat kernel (transition density of Brownian motion) on M is given by:

pt|0(xt|x0) =
∑

ℓ∈N dℓe
−λℓt/2χℓ((x0)

−1xt).

where λℓ is the eigenvalue of the Laplace–Beltrami operator associated with χℓ. Specializing to
SO(3), the heat kernel becomes the isotropic Gaussian on SO(3):

f(ω, t) =
∑

ℓ∈N(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+1/2)ω)
sin(ω/2) . (19)
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where ω is the angle of the relative rotation. The corresponding score function is:

∇ log pt|0(rt | r0) = rt

ωt
log(r⊤0 rt)

∂ωf(ω
(t), t)

f(ω(t), t)
, (20)

where ωt is the angle of the relative rotation r⊤0 rt, and the matrix logarithm term maps to the tangent
space at rt.

For the translational component, we model the forward process using a Variance Preserving SDE
(VP-SDE). The transition density is given by:

pt|0(mt|m0) = N (xt; e
−t/2m0, (1− e−t) I3). (21)

Then we can get the score as:

∇ log pt|0(mt|m0) =
1

1− e−t
(e−t/2m0 −mt). (22)

We use a learned denoising network to approximate the conditional score of the full SE(3) transfor-
mation. The score is decomposed into rotational and translational components as follows:

∇Tt log pt|0(Tt | T̂0) = (srθ (t, Tt), smθ (t, Tt)),
srθ (t, Tt) = ∇rt log pt|0(rt|r̂0),
smθ (t, Tt) = ∇mt

log pt|0(mt|m̂0).

(23)

D Architecture

Here we provide mathematical detail of PepBridge presented in method section. Let hℓ =
[hℓ1, . . . , h

ℓ
N ] ∈ RN×Dh denote the node embeddings at layer ℓ, where hℓn represents the embedding

for residue n. Similarly, let zℓ ∈ RN×N×Dz represent the edge embeddings, where zℓij encodes the
interaction between residues i and j.

Node embeddings are initialized using residue indices, atom coordinates, backbone dihedral angles,
side-chain angles hB, and the diffusion timestep t. For edge (residue-pair) embeddings, we incorporate
a combination of residue-type pairs, relative sequence positions, pairwise distances, and relative
orientations. Each of these features is individually encoded using a dedicated multi-layer perceptron
(MLP). The resulting feature vectors are concatenated and passed through another MLP to produce
the final embeddings.

The initial layer-0 embeddings for residues i and residue pairs (i, j) are computed using MLPs
applied to sinusoidal encodings ϕ(·) of the input features:

h0i = MLP([ϕ(hBi
), ϕ(t)]) ∈ RDh ,

z0ij = MLP([ϕ(hBi), ϕ(hBi), ϕ(i− j), ϕ(dis(i, j)), ϕ(ori(i, j)), ϕ(t)]) ∈ RDz ,
(24)

where Dh, Dz denote the dimensions of the node and edge embeddings, respectively. The functions
ϕ(dis(i, j)) and ϕ(ori(i, j)) represent sinusoidal encodings of the distance and relative orientation
between residues i and j.

To encode the surface of the receptor protein, we extract node-level features from the surface points
and apply an MLP to obtain embeddings. Each surface node is represented by its 3D position
(surft), hydrogen bonding potential (surfhbond), and hydrophobicity score (surfhp). These features are
concatenated and passed through an MLP to produce the surface node embeddings:

hsurf = MLP([surft, surfhbond, surfhp]). (25)

For the peptide surface representation, we encode only the 3D positional coordinates using an MLP,
omitting auxiliary features such as hydrogen bonding and hydrophobicity. At each diffusion timestep
t, the model takes as input the receptor’s node and edge embeddings, the noised peptide descriptors,
and a sinusoidal embedding of the timestep. It predicts a denoising score that guides the reverse
diffusion process toward the clean peptide descriptors at t = 0. The model architecture is based
on Invariant Point Attention (IPA), which employs SE(3)-invariant attention to capture interactions
between the receptor and the peptide. The output of the IPA module is passed through separate MLP
decoders to reconstruct various ground-truth peptide descriptors, such as atom coordinates, dihedral
angles, and residue types. Notably, certain residue types may be partially inferred from the number
of side-chain dihedral angles, due to structural constraints.
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E Experimental Details

The experiments were conducted on a computing cluster with 2 NVIDIA RTX A6000, each with 48
GB of memory. The total computation time for training was approximately 21 hours. We trained for
900000 steps with batch size 8. We used the Adam optimizer with a start learning of 5e-4. We also
schedule to decay the learning rate exponentially with a factor of 0.6 and a minimum learning rate of
1e-6. The learning rate is decayed if there is no improvement for the validation loss in 10 consecutive
evaluations.

E.1 Dataset

The filtered dataset underwent sequence-based clustering using MMseqs2 [45], resulting in 9,816
protein-peptide complexes organized into 292 distinct clusters. For systematic evaluation, we
designated 10 clusters encompassing 158 complexes as the test set, with the remaining complexes
allocated to training and validation cohorts.

E.2 Baselines

We briefly summarize the baselines and tools used in our study, including generative approaches for
protein and peptide design, as well as side-chain packing methods.

• ProteinGenerator [27] is a RoseTTAFold-based diffusion model that jointly generates
protein sequences and structures, with flexible conditioning on target sequence and structural
attributes.

• RFDiffusion [50] is a generative model fine-tuned on structure denoising tasks, enabling
high-accuracy design of monomers, binders, and symmetric protein assemblies.

• PPFLOW [26] is a target-aware peptide designer that performs conditional flow matching
on torus manifolds to model peptide torsion-angle geometry.

• PepFlow [25] is a multimodal flow-matching model for full-atom peptide design targeting
specific protein receptors. It jointly models backbone geometry, side-chain conformations,
and residue identities over appropriate geometric manifolds.

• PepGLAD [21] combines geometric latent diffusion with receptor-specific transformations
to generate full-atom peptides. The model operates in a learned latent space and adapts to
diverse binding geometries for improved generalization.

• Chroma [19] is a unified generative framework for proteins and protein complexes that inte-
grates a polymer-aware diffusion process with a scalable architecture, supporting constraint-
driven design across sequence, structure, and function.

• SCWRL4 [23] is a widely used side-chain packing tool employing a backbone-dependent
rotamer library and a statistical energy function.

• DLPacker [34] is a 3D CNN-based model for residue side-chain conformation prediction.
We utilize the official implementation along with the model weights.

• AttnPacker [32] utilizes equivariant attention mechanisms on backbone 3D geometry to
predict all side-chain coordinates simultaneously.

• DiffPack [61] is a diffusion-based generative model that autoregressively samples side-chain
angles on a toric manifold.

E.3 Training Metrics Details

RMSD. Root-Mean-Square Deviation is a widely used metric for assessing structural similarity
between proteins. In our evaluation, we align the generated peptide to the native peptide within the
complex using the Kabsch algorithm. considering only the peptide portion for superposition. We
then compute the RMSD based on normalized Cα atom distances between the generated and native
peptides. Lower RMSD values indicate greater structural similarity.

BSR. Binding Site Recovery measures the similarity of interaction patterns between the generated
and native peptide-protein complexes. Specifically, it evaluates whether the generated peptide
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engages target protein residues in a manner similar to the native peptide, potentially reflecting similar
biological functions. A residue in the protein is considered part of the binding site if its Cβ atom
lies within 6 Å of any residue in the peptide. BSR is defined as the ratio of overlapping binding site
residues between the generated and native complexes. Higher BSR values indicate greater similarity
in binding interactions.

Consistency represents the statistical association between the clustering results of surface and
structures. This metric quantifies how well a model captures the fundamental consistency between
surfaces and their corresponding structures. A model that accurately represents the joint distribution
should achieve a high score, while a low score indicates the model generates inconsistent surface-
structure pairs. The evaluation process involves clustering both surfaces and structures, assigning
discrete labels to each. These clustering labels can be interpreted as nominal variables. Given that
similar surfaces should correspond to similar structures. We employ Cramér’s V association [5]
to measure this correlation, where a value of 1.0 indicates perfect association and 0.0 indicates no
association. For surface representation, we first obtain molecular fingerprints using the methodology
described in [44]. These fingerprints serve as input for the clustering algorithm, which assigns labels
to the generated peptide surfaces.

Diversity. To assess diversity, we compute all pairwise TM-scores among the generated peptides
for a given target using the original TM-align program. TM-scores quantify structural similarity
between peptide pairs. We define diversity as 1 minus the average TM-score, where higher values
indicate greater structural variability among the generated peptides. This metric reflects the breadth
of structural exploration achieved during the design process.

E.4 Hyperparameters

Our proposed method incorporates several hyperparameters, including sample step, learning rate,
batch size and feature dimensions. To validate these hyperparameters, we conducted a random search.
The search space are presented in Table 4.

Table 4: Search space for all PepBridge. The parameters used in validation are marked in bold
Parameter Search Space

Learning rate 0.0009, 0.0007, 0.0005, 0.00001
Hidden dimension of residue feature 64, 128, 256

Hidden dimension of edge feature 64, 128, 256
Hidden dimension of surface feature 16, 24, 32

Number of attention heads 8, 16, 24
Loss weight of surface 0.1, 0.5, 1

Loss weight of backbone position 0.1, 0.5, 1
Loss weight of backbone rotation 0.1, 0.5, 1

Sampling steps 500, 1000, 1500
Training steps 500, 1000, 1500

Batch size 4, 8, 16

E.5 Computational Complexity

We compared PepBridge with several baseline methods in terms of training time, inference time per
sample, GPU usage, and model size. The time cost is reported as the total time spent divided by the
number of designed candidates. As summarized in Table 5, multi-modal processing does introduce
additional complexity relative to uni-modal approaches, our analysis shows that PepBridge achieves
a good balance between computational efficiency and performance.
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Table 5: Computational cost and resource footprint across methods. Training and inference times are
normalized per designed sample.

Method Training time Inference time (s/sample) GPU(s) used Params (M)

RFdiffusion 3 days 80–180 8×A100 ∼120
ProteinGenerator 4 weeks 152 64×V100 ∼120
PepFlow 20 hours 14–24 2×A6000 ∼7
Chroma 10 weeks 185–226 8×V100 ∼20
PepGLAD 29 hours 3 1×24 GB GPU ∼2.5
PepBridge 21 hours 16–37 2×A6000 ∼10

F Additional Experiments

F.1 Visualization

Figure 1 provides additional examples of peptides generated by PepBridge. These visualizations
include both surface and backbone structures of the generated peptides in a top-down view, further
illustrating the model’s ability to produce geometrically coherent and interface-aware designs.

PDB:4CC2 PDB:3AV9 PDB:1B07 PDB:2XS1

Figure 4: Visualization of generated peptides by PepBridge. Top: Generated peptides (in orange)
for receptors (in purple). The PDB ID of the receptors are 4CC2, 3AV9, 1B07, and 2XS1. Bottom:
The generated backbone structure and surface. The ground-truth surface structure (in black) and
generated surface (in orange) are shown to compare the ability of interface caption.

F.2 Training and Sampling Time Steps

We ablated the number of diffusion steps used during training while fixing the sampling procedure
at 1000 steps. The results are summarized in Table 6. Increasing the number of steps consistently
improved all quality metrics. The largest gains occurred up to 1000 steps, with smaller but still
measurable improvements between 1000 and 1500 steps. Given these trends, we adopt 1000 training
steps as a favorable trade-off between overall accuracy and computational cost.

We further conducted experiments to assess how different inference time steps affect the final
performance metrics using the model trained with 1000 steps. As shown in Table 7, the results
indicate that longer sampling chains (e.g., 1000 steps) improve the quality of the generated structures.
However, performance gains begin to plateau beyond 800 steps, and we observe a slight decrease in
structural diversity, suggesting a trade-off between generation determinism and diversity. Based on
this analysis, we selected 1000 steps as the default setting to achieve the best overall balance.
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Table 6: Effect of training steps on performance (sampling fixed at 1000). Higher is better (↑) except
RMSD (↓).

Divstru (↑) Aff. % (↑) Stab. % (↑) RMSD Å(↓) BSR (↑)

PepBridge (time step =500) 0.57 18.96 24.79 2.96 82.84
PepBridge (time step =800) 0.61 19.07 26.31 2.36 85.57

PepBridge (time step =1000) 0.59 19.16 25.02 2.19 83.90
PepBridge (time step =1500) 0.62 23.28 26.68 2.11 86.92

Table 7: Effect of sampling steps on performance (model trained with 1000 steps). Higher is better
(↑) except RMSD (↓).

Divstru (↑) Aff. % (↑) Stab. % (↑) RMSD Å(↓) BSR (↑)

PepBridge (time step =500) 0.61 17.42 23.97 2.85 80.05
PepBridge (time step =800) 0.62 18.77 24.58 2.69 82.33

PepBridge (time step =1000) 0.59 19.16 25.02 2.19 83.90
PepBridge (time step =1500) 0.56 18.46 24.71 2.74 83.78

G Limitations and Future Work

While PepBridge presents a structured approach to joint protein surface and backbone design,
several limitations remain that can be addressed in future work. One key limitation lies in the
simplification of surface representations. The current model relies on solvent-accessible point
clouds with biochemical annotations, which, while effective, may not fully capture finer molecular
interactions such as electrostatic potential fields and solvent dynamics. These factors play crucial roles
in protein-protein interactions and could enhance the accuracy of designed peptides if incorporated.
Another limitation is the model’s reliance on receptor geometry. PepBridge assumes that receptor
surface features sufficiently dictate the constraints on peptide binding. However, this does not
account for receptor flexibility or conformational changes upon ligand binding, which are common
in many biological systems. Addressing this aspect could make the model more applicable to
highly dynamic binding sites. Computational efficiency also poses a challenge. The diffusion
bridge model and SE(3) diffusion backbone generation require computationally intensive sampling.
While the hierarchical generation process improves efficiency, generating high-quality peptides
remains expensive, particularly for longer sequences. Further optimization is necessary to reduce the
computational cost while maintaining or improving accuracy. Additionally, the current evaluation
primarily focuses on geometric complementarity and binding affinity predictions. While these
provide useful insights, they do not fully capture the functional stability of designed peptides. Wet-lab
experiments and molecular dynamics simulations are necessary to assess real-world applicability,
ensuring that the generated structures remain stable under physiological conditions.

Future work can address these limitations in several ways. Enhancing surface representations by
incorporating higher-order biochemical features such as electrostatic potential fields, solvent effects,
or graph-based molecular embeddings could improve the precision of surface-conditioned peptide
generation. Furthermore, integrating receptor flexibility into the model by leveraging conformational
ensembles or reinforcement learning-based refinement strategies would allow for more realistic
modeling of dynamic binding sites. To improve computational efficiency, future research could
explore accelerated sampling techniques, such as adaptive noise schedules, score distillation sampling
(SDS), or flow-matching approaches. These methods could significantly reduce inference time
while preserving or enhancing model accuracy. Finally, validating PepBridge through real-world
applications, particularly in therapeutic peptide design, remains a crucial next step. Incorporating
experimental validation through biochemical assays and integrating co-evolutionary signals into
the design process could further enhance the biological relevance of the generated structures. By
addressing these challenges, PepBridge can be refined to enable more accurate, efficient, and versatile
protein design.
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