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Abstract

Probabilistic Circuits (PCs) have emerged as an
efficient framework for representing and learn-
ing complex probability distributions. However,
existing research on PCs primarily focuses on
data-driven parameter learning, with limited explo-
ration of knowledge-intensive learning and struc-
ture learning. In this work, we propose to address
these gaps by introducing a comprehensive ap-
proach to incorporating various kinds of domain
knowledge into the learning of a PC’s structure as
well as its parameters.

1 INTRODUCTION

Recent developments in the field of tractable probabilistic
models have enabled efficiently representing and learning
complex probability distributions by parameterizing them
in the form of computational graphs, commonly known as
Probabilistic Circuits (PCs) [Choi et al., 2020b]. However,
most of the works aimed at improving PCs focus on learning
them using data alone. Further, they emphasize on building
better algorithms and representations specifically tailored
for parameter learning [Peharz et al., 2020b,a, Liu et al.,
2023], assuming a fixed (often random) structure. While this
has enabled building deep and expressive PCs, it has also
made them data-hungry and susceptible to outliers Ventola
et al. [2023].

However, in many real-world scenarios, the data is scarce
or noisy. Incorporating domain knowledge into the learning
process has been shown to be one effective strategy for learn-
ing better discriminative [Kokel et al., 2020, Odom et al.,
2015] as well as generative models under such scenarios
[Altendorf et al., 2005, de Campos et al., 2008, Yang and
Natarajan, 2013]. Also note that when deploying PCs for
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decision-making in real life, several domains may inherently
demand modeling constraints involving fairness and privi-
leged information. However, knowledge-intensive learning
of PCs is relatively less explored in the literature, and we
aim to bridge this gap through this work.

When learning data distributions using probabilistic graph-
ical models such as Bayesian Networks, or Markov Net-
works, a more accurate structure that encodes more valid
independencies between variables is expected to be more
data efficient [Koller and Friedman, 2009] than a random
structure. Similarly, the underlying graph structure of a PC
not only determines its expressive power, but also encodes
factorizations of the joint distribution, which enables per-
forming exact and tractable probabilistic inference over its
random variables under appropriate constraints. Therefore,
learning a better PC structure is another way to better model
data distributions in the sparse regime.

However, compared to parameter learning, structure learn-
ing for PCs is a difficult and less explored problem. Most
prevalent approaches to structure learning for PCs are based
on heuristics [Gens and Pedro, 2013, Rooshenas and Lowd,
2014, Dang et al., 2020] and do not define a principled ob-
jective for structure learning [Adel et al., 2015, Peharz et al.,
2013]. Principled approaches propose structure and parame-
ter learning through a Bayesian approach [Trapp et al., 2019,
Zhao et al., 2016]. Recently, Yang et al. [2023] proposed to
use Bayesian structure scores for learning PC structure by
marginalizing out its parameters from the joint likelihood
under a Dirichlet prior. However, it was restricted to deter-
ministic PCs, which constitute only a restricted subclass. In
this work, we extend Bayesian structure learning to arbitrary
PCs utilizing the notion of dropout Gal and Ghahramani
[2016]. Nalisnick et al. [2019] demonstrated that dropout
can be viewed as a structured prior over the model weights,
Ventola et al. [2023] showed that the expected value of a PC
node under the dropout distribution can be tractably com-
puted. Thus, we propose to compute the Bayesian structure
score for PCs by marginalizing out their parameters under a
dropout induced posterior.
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Thus overall, in this work, we propose to integrate knowl-
edge into the learning of PCs. To do so, we first develop a
unified framework that allows encoding different types of
domain knowledge. We then demonstrate how we can incor-
porate the encoded knowledge in the form of constraints to
learn both the parameters as well as the structure of a PC,
making them more adaptable to real-world scenarios with
limited data and modeling constraints.

2 BACKGROUND

2.1 NOTATION

We use X to denote random variables and x to denote a
value of X . Sets of random variables are denoted as X
and their values as x. We use M = (θ,G) to denote a
probabilistic circuit over variables X = {X1, . . . , Xn},
having structure G and parameterized by θ. We use P (X)
to denote the joint probability distribution over X.

2.2 PROBABILISTIC CIRCUITS

Probabilistic circuits (PCs, Choi et al. [2020a]) are models
that represent probability distributions in the form of com-
putational graphs. In this work, we consider a class of PCs
called sum-product networks (SPNs, Poon and Domingos
[2011]). The structure of an SPN consists of three kinds of
nodes namely, sum nodes, product nodes, and leaf nodes.
The sum nodes represent a mixture distribution of their
children, the product nodes represent the factorized distri-
bution over their children and the leaf nodes are univariate
distributions.

In order for a PC to be a valid SPN, its structure must satisfy
smoothness and decomposability conditions. Smoothness
requires that the scope of each child of a sum node be
identical. Decomposability requires that the scopes of the
children of a product node be disjoint. These properties
allow tractable computation of marginal and conditional
probability queries in linear times in the size of the PC.

2.3 BAYESIAN INFERENCE IN PCs

We aim to learn the structure and parameters of a PC under
the Bayesian framework. While this is tractable for deter-
ministic PCs like cutset networks [Yang et al., 2023], it
remains intractable for PCs in general.

Variational inference provides a fast approximation to
Bayesian inference. Multiplicative noise like dropout in-
duces a variational posterior distribution over the parame-
ters of the PC. Recent work has shown that the posterior
predictive distribution can be tractably computed for PCs
with dropout[Ventola et al., 2023].

2.4 DOMAIN CONSTRAINTS

Real-world domains often require that models satisfy valid-
ity constraints. These constraints concisely encode informa-
tion about general trends in the domain. As a result, they
can function as an inductive bias, yielding more useful and
more accurate probabilistic models, especially in noisy and
sparse domains [Altendorf et al., 2005, Kokel et al., 2020,
Towell and Shavlik, 1994, Yang and Natarajan, 2013]

While probabilistic constraints have been used to learn
SPNs, they were limited to parameter learning [Papanto-
nis and Belle, 2021]. Recently qualitative influence based
constraints were used to learn the structure and parameters
of cutset networks [Mathur et al., 2023]. However, since
cutset networks have the additional property of determinism,
the same method cannot be used for SPNs. As far as we are
aware domain constraints have not been used to learn both
structure and parameters of PCs.

Concretely, we consider 6 types of domain constraints
namely, generalization, qualitative influence [Altendorf
et al., 2005], context-specific independence [Boutilier et al.,
1996], class imbalance [Yang et al., 2014], metric fair-
ness[Dwork et al., 2012], and privileged information [Pa-
sunuri et al., 2016].

3 LEARNING PCs WITH DOMAIN
CONSTRAINTS

We aim to solve the following problem,

Given: Dataset D = {x(i)}Ni=1 over random variables X
and a set of linear constraints over conditional queries C
To Do: Learn a probabilistic circuit M that accurately
models P (X)

3.1 LINEAR CONSTRAINTS

In this work, we focus on constraints that can be expressed as
linear functions of conditional probability queries. Formally,
we denote a conditional probability query over the PC M as
P (f(xq) = 1 | g(xq) = 1). Here, xq ∈ dom(Xq), Xq ⊆
X. f and g are boolean functions. We use the shorthand
notation P (f(xq) | g(xq)) to refer to these queries. Linear
functions of these queries can represent a wide range of con-
straints including monotonicity, synergy, class imbalance,
and fairness. We group these constraints into two categories
– equality constraints and inequality constraints.
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3.1.1 Equality constraints

Equality constraints require that two conditional probability
queries be equal. Specifically,

P (f1(xq) | g1(xq)) = P (f2(x
′
q) | g2(x′

q))

We encode these as the penalty γ(G, θ) =
∑

x δ(x)
2 where,

δ(x) = (P (f1(xq) | g1(xq))− P (f2(x
′
q) | g2(x′

q)).

Example The generalization constraint is an example of
an equality constraint. It is defined as

P (xi | x−i) = P (x′
i | x′

−i)

∀x,x′ ∈ D s.t. sim(x,x′)

where sim(x,x′) is true if x and x′ are known to be similar.
This can be encoded using f1(x) = f2(x) = I[Xi = xi]
and g1(x) = g2(x) = I[X−i = x−i].

3.1.2 Inequality constraints

Inequality constraints require one or more conditional prob-
ability query to be greater than (or lesser than) others. Such
constraints with two terms are of the form

P (f1(xq) | g1(xq)) > P (f2(x
′
q) | g2(x′

q)).

We encode these as the penalty ζ+(G, θ) =∑
x max{0, δ+(x)}2 where,

δ+(x) = P (f2(x
′
q) | g2(x′

q))− P (f1(xq) | g1(xq)) + ϵ

∃ ϵ > 0

Example The positive monotonicity constraint is an ex-
ample of an inequality constraint. The positive monotonic
constraint Xj

M+
≺ Xi is defined as

P (Xi ≤ xi | xj) > P (Xi ≤ x′
i | x′

j)

∀x,x′ s.t. xi = x′
i, x

′
j > xj

This can be encoded using f1(xi) = f2(xi) = I[Xi ≤ xi]
and g1(xj) = g2(xj) = I[X ′

j = xj ].

Note that higher-order constraints like synergies [Yang and
Natarajan, 2013] can be encoded similarly as they are still
linear functions. For eg, Xj , Xk

S+
≺ Xi is expressed as

P (Xi ≤ x′
i | x′

j , xk) + P (Xi ≤ x′
i | xj , x

′
k) >

P (Xi ≤ xi | xj , xk) + P (Xi ≤ xi | x′
j , x

′
k)

∀x,x′ s.t. xi = x′
i, x

′
j > xj , x

′
k > xk

Tables 2 shows the way to encode the remaining constraints
and Table 1 summarizes the domain sets over which the
constraints are evaluated.

1context is defined by boolean function K(x)

3.2 LEARNING

The PC learning task consists of two subtasks, namely Pa-
rameter Learning and Structure Learning.

3.2.1 Structure Learning

Formally, the structure learning task given data set D and
constraints C is

argmax
G

S(G;D) s.t C (1)

where S(G;D) is the score of the structure G with respect
to data set D.

We approach the structure learning task under the Bayesian
framework. Bayesian structure scores are a principled way
to compare two structures without committing to specific
parameter values. Formally, they are defined as the marginal
likelihood P (D | G) = Eθ∼p[P (D, θ | G)] where p is the
prior distribution over the parameters θ.

Similarly, we define structure penalty functions γS and ζS
over the structure of the PC by marginalizing the parameters
θ.

ζS(G) =Eθ∼p[ζ(G, θ)]

γS(G) =Eθ∼p[γ(G, θ)].

This allows us to define a penalized structure score

P (D | G)︸ ︷︷ ︸
Data

−λ (ζS(G) + γS(G))︸ ︷︷ ︸
Knowledge

.
(2)

Here, λ is a hyper-parameter that controls the weight of the
penalty term.

Computing expectations Computing the structure score
efficiently requires a tractable prior distribution over the
parameters θ. The structure score is tractable for the specific
case of smooth, decomposable, and deterministic PCs when
the prior on the parameters is a Dirichlet distribution Yang
et al. [2023]. However, it remains intractable for a broader
class of PCs like SPNs which are smooth and decompos-
able but may not be deterministic. In order to compute the
structure score efficiently, we use a variational approxima-
tion to the posterior. Specifically, we use the variational
posterior induced by dropout because it allows tractable
inference [Ventola et al., 2023]. Let this posterior be q. This
allows us to compute the first term efficiently as

P (D | G) = Eθ∼p[P (D, θ | G)]

≈ Eθ∼q[P (D, θ | G)]

Since the second term is still intractable, we derive a lower
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Name Domain set

Monotonicity Xi
M+
≺ Xj {(x,x′) | (xj = x′

j) ∧ (xi > x′
i) ∧ (x−ij = C) ∀x,x′ ∈ Dom(X)2}

Class imbalance (FP) {(x,x) | xt = 0 ∀x ∈ D}
Context-specific independence1 {(x,x′) | K(x) ∀x,x′ ∈ Dom(X)2

Privileged information {(x,x) | ∀x ∈ D}
Generalization {(x,x′) | sim(x,x′) ∀x,x′ ∈ D2}
Metric fairness {(x,x′) | sim(x,x′) ∀x,x′ ∈ D2}

Table 1: Domain sets for various penalties

Name f1(x) g1(x) f2(x) g2(x)

Monotonicity I[Xi ≤ xi] I[Xj = xj ] I[Xi ≤ xi] I[Xj = xj ]
Class imbalance (FP) I[Xt = 1] I[X−t = x−t] I[Xt = 0] I[X−t = x−t]
Context-specific independence1 I[Xi = xi] I[Xj = xj ]K(x) I[Xi = xi] K(x)
Privileged information I[Xi = 1] I[X−i = x−i] I[Xi = 1] I[Xobs. = xobs.]
Generalization I[Xi = 1] I[X−i = x−i] I[Xi = 1] I[X−i = x−i]
Metric fairness (Acc.) I[Xi = xi] I[X−i = x−i] I[Xi = xi] I[X−i = x−i]

Table 2: Boolean functions f1, g1, f2, g2

bound for it using Jensen’s inequality. Consider ζS(G)

ζS(G) =
∑
x

Eθ∼q[max{0, δ(x)}2]

≥
∑
x

max{0,Eθ∼q[δ(x)]}2 = ζ̂S(G).

Similarly, γS(G) is lower bounded as

γS(G) ≥
∑
x

Eθ∼q[δ(x)]
2 = γ̂S(G).

Hence, the penalized structure score can be approximated
by the expression

Eθ∼q[P (D, θ | G)]− λ(ζ̂S(G) + γ̂S(G)).

Structure learning using this score can be performed by a
standard search algorithm like hill-climbing search.

3.2.2 Parameter Learning

Formally, the parameter learning task given structure G,
data set D and constraints C is

argmax
θ

L(θ;G,D) s.t C (3)

where L is a data-dependent objective function. When L is
the likelihood, the above optimization problem becomes a
constrained maximum likelihood problem. In this work, we
set L to L̂, the lower bound of the KL divergence between
the approximate dropout posterior q and the true posterior.
Additionally, we use the penalty functions γ and ζ to write
the above problem as

argmax
θ

L̂(θ;G,D)− λ(ζ(G, θ) + γ(G, θ)) (4)

Given a penalty weight λ > 0, this optimization problem
can be solved using a standard gradient-based optimizer.
Additionally, increasing the value of λ until the penalty
term vanishes yields a solution to (3) in the limit [Bertsekas,
1996].

4 CONCLUSION

We propose a unified framework for integrating probabilistic
domain constraints into PC structure and parameter learning.
We show that different instantiations of our framework corre-
spond to domain constraints represented as linear functions
of conditional probability queries and consider 6 domain
constraints and their corresponding instantiations. Further-
more, we present knowledge-intensive structure and param-
eter learning of PCs that incorporate the aforementioned
domain constraints.

Our future work includes empirically validating the effec-
tiveness of our proposed framework, incorporating more
domain constraints, and finally, comparing our approach to
existing knowledge-intensive learning methods. Addition-
ally, a direction of future work is evaluating the impact of
different priors on parameter and structure learning in our
framework.
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