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Abstract

Large Language Models (LLMs) are known to001
have limited extrapolation ability beyond their002
pre-trained context window, constraining their003
application in downstream tasks with lengthy004
inputs. Recent studies have sought to extend005
LLMs’ context window by modifying rotary006
position embedding (RoPE), a popular posi-007
tion encoding method adopted by well-known008
LLMs such as LLaMA, PaLM, and GPT-NeoX.009
However, prior works like Position Interpola-010
tion (PI) and YaRN are resource-intensive and011
lack comprehensive experiments to assess their012
applicability. In this work, we identify the in-013
herent need for LLMs’ attention entropy (i.e.014
the information entropy of attention scores) to015
maintain stability and introduce a novel ex-016
tension to RoPE which combines adjusting017
RoPE’s base frequency and scaling the atten-018
tion logits to help LLMs efficiently adapt to a019
larger context window. We validate the superi-020
ority of our method in both fine-tuning perfor-021
mance and robustness across different context022
window sizes on various context-demanding023
tasks. Notably, our method extends the con-024
text window of LLaMA-2-7B-Chat to 16,384025
with only 100 samples and 6 training steps,026
showcasing extraordinary efficiency. Finally,027
we also explore how data compositions and028
training curricula affect context window exten-029
sion for specific downstream tasks, suggesting030
fine-tuning LLMs with lengthy conversations031
as a good starting point. We release our code032
and SFT data at https://anonymous.4open.033
science/r/Entropy-ABF-0084/README.md.034

1 Introduction035

Large Language Models (LLMs) are typically pre-036

trained with a pre-defined context window size.037

For instance, LLaMA 2 (Touvron et al., 2023b) is038

pre-trained on sequences of 4,096 tokens. When ex-039

ceeding the pre-trained context window, the perfor-040

mance of LLMs tends to deteriorate primarily due041

to the limited length extrapolation ability of their042

position encoding methods (Kazemnejad et al., 043

2023). The limited context window affects LLMs’ 044

practicality for ever-increasing context-demanding 045

tasks such as few-shot learning (Brown et al., 2020), 046

long document summarization (Huang et al., 2021) 047

and repository-level code completion (Liu et al., 048

2023). Consequently, there is an urgent need to 049

extend LLMs’ context window. 050

To meet this pressing demand, recent works 051

have witnessed progress in context window ex- 052

tension in both fine-tuned and non-fine-tuned sce- 053

narios by extending Rotary Position Embedding 054

(RoPE) (Su et al., 2021), a widely-used posi- 055

tion encoding method adopted by state-of-the-art 056

LLMs such as LLaMA (Touvron et al., 2023a,b), 057

PaLM (Chowdhery et al., 2023; Anil et al., 2023) 058

and GPT-NeoX (Black et al., 2022). For exam- 059

ple, Position Interpolation (PI) (kaiokendev, 2023; 060

Chen et al., 2023) linearly down-scales the input 061

tokens’ position indices and achieves improved 062

fine-tuning results. NTK-Aware scaling (bloc97, 063

2023b) and adjusted base frequency (ABF) (Xiong 064

et al., 2023) modify the base frequency of RoPE, 065

leading to enhanced results in fine-tuning and non- 066

fine-tuning scenarios respectively. NTK-By-Parts 067

scaling (bloc97, 2023a) treats different dimensions 068

differently and reports even better fine-tuning out- 069

comes. More recently, YaRN (Peng et al., 2023) 070

proposes scaling the attention logits given its ben- 071

eficial effects on language modeling perplexity. 072

They combine this scaling technique with NTK- 073

By-Parts scaling and report the best long-context 074

performance among existing RoPE-extension meth- 075

ods. 076

However, the underlying rationale behind the ef- 077

ficiency of the scaling operation in YaRN, which 078

results in the best-reported context window exten- 079

sion performance, remains poorly understood. In 080

this study, we first provide an interpretation of 081

this technique by analyzing its effect on stabiliz- 082

ing the information entropy of models’ attention 083
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scores and then introduce our own RoPE-extension084

method termed “entropy-aware ABF”, which com-085

bines ABF with a sophisticated utilization of dy-086

namic attention scalar.087

Moreover, despite the individual-reported effi-088

cacy of previous RoPE-extension methods, there’s089

a lack of comprehensive comparative analysis090

where different methods are put in the same evalu-091

ation testbed. This study also addresses this gap by092

answering three key questions pertinent to context093

window extension in real-world applications: (1)094

Which method exhibits the best supervised fine-095

tuning performance on context-demanding down-096

stream tasks? (2) How can each method efficiently097

utilize training data? (3) Do models trained with098

these methods have a robust performance across099

varying context window sizes?100

To answer the above questions, we conduct ex-101

periments on a diverse set of context-demanding102

tasks from LongBench (Bai et al., 2023), manipu-103

lating the training data amounts and prompt lengths104

to evaluate fine-tuned models across different di-105

mensions. The experiment results demonstrate that106

models trained with our method surpass all base-107

lines in long-context fine-tuning performance and108

also maintain a robust performance across various109

context window sizes. Notably, with only 100 long110

conversations from ShareGPT (Chiang et al., 2023)111

and 6 training steps, using four A100 GPUs for112

approximately 6 minutes, our method produces a113

model with competent performance across 12 se-114

lected context-demanding tasks. Finally, we ex-115

plore the influence of data compositions and train-116

ing curricula on context window extension for a117

given long context downstream task, suggesting118

fine-tuning the model on lengthy ShareGPT con-119

versations as a good starting point.120

2 Preliminaries121

Rotary Position Embedding (RoPE) Given a122

position index m ∈ [1, c] and an embedding vector123

x := [x0, x1, . . . , xd−1]
⊤, where d is the dimen-124

sion of each attention head, RoPE considers each125

pair of elements along the feature dimension of126

the embedding vector as complex numbers and en-127

codes position information by rotating them. The128

vector-valued complex function f(x,m) defined by129

RoPE is as follows:130

f(x,m) =


(x0 + ix1)e

imθ1 ,
(x2 + ix3)e

imθ2 ,
. . . ,

(xd−2 + ixd−1)e
imθd/2

 (1)131

i :=
√
−1 is the imaginary unit and θj = b−2j/d, 132

where b denotes the base frequency of RoPE and is 133

set to 10, 000 by default. 134

In application, RoPE is applied to both query and 135

key embeddings through the following equation: 136

f(x,m) =



x0
x1
x2
x3
...

xd−2

xd−1


⊗



cos(mθ0)
cos(mθ0)
cos(mθ1)
cos(mθ1)

...
cos(mθ(d−1)/2)

cos(mθ(d−1)/2)


+



−x1
x0
−x3
x2
...

−xd−1

xd−2


⊗



sin(mθ0)
sin(mθ0)
sin(mθ1)
sin(mθ1)

...
sin(mθ(d−1)/2)

sin(mθ(d−1)/2)


(2) 137

The fundamental components of RoPE are a se- 138

ries of trigonometric coefficients, each encoding 139

position information of different frequencies. 140

We represent these trigonometric coefficients 141

with the following function to uniquely identify 142

RoPE and its variants: 143

h(m, b, t) =
√
t∗cos( m

b
2j
d

) or
√
t∗sin( m

b
2j
d

) (3) 144

where m is the position index of the query token, b 145

is the base frequency for RoPE, and t is the scaling 146

factor for attention logits. Note that
√
t is used in 147

the equation because RoPE rotates process both the 148

query and key embeddings. 149

Before introducing RoPE-extension methods 150

that enable better context window extension, we 151

define context scaling factor s = c′

c , which is the 152

ratio between the target context window c′ and the 153

pre-trained context window c. It is of special use 154

to those methods that extend RoPE according to a 155

given target context window size. 156

Position Interpolation (PI) PI (Chen et al., 2023; 157

kaiokendev, 2023) linearly interpolates the input 158

position index m to m
s so that it falls within the 159

original context window size. Chen et al. (2023) 160

demonstrate that direct fine-tuning of LLaMA (Tou- 161

vron et al., 2023a) with an extended context win- 162

dow results in minimal improvement, as the effec- 163

tive context window of the model only increases 164

from 2,048 to 2560 after 10,000 training steps on 165

sequences of length 8,192. By contrast, PI suc- 166

ceeds in extending the context window of LLaMA 167

to 32,768 with only 1,000 training steps. 168

NTK-Aware NTK-Aware scaling (bloc97, 169

2023b) hypothesize that interpolating all di- 170

mensions equally, as done by PI, may result in 171

loss of high-frequency information. Therefore, 172

NTK-Aware scaling introduces a nonlinear inter- 173

polation strategy by adjusting the base frequency 174

b of RoPE to b
d

d−2 . This modification scales the 175
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low-frequency components of RoPE to a similar176

extent as PI, while only slightly altering the177

high-frequency components to avoid disturbing178

high-frequency information. NTK-Aware extends179

models’ context window size without training.180

However, this method can’t benefit as much as PI181

from additional training on longer sequences as182

suggested by (Peng et al., 2023).183

NTK-By-Parts NTK-By-Parts (bloc97, 2023a)184

holds that stretching all the RoPE components ei-185

ther by a scaling factor s or a base transformation186

results in token embeddings being closer to each187

other, impeding LLMs from effectively capturing188

local relationships between adjacent tokens. To189

address this issue, NTK-By-Parts scales θ(j) by a190

factor 1−γ(j)
s + γ(j), with γ(j) being assigned 0191

for high frequencies, 1 for low frequencies, and a192

predetermined constant within the range of 0 to 1193

for intermediate frequencies. According to (Peng194

et al., 2023), this method performs better than PI195

and NTK-Aware scaling for both fine-tuned and196

non-fine-tuned models.197

YaRN Yarn (Peng et al., 2023) empirically ob-198

serves that introducing a temperature t to scale199

the attention logits before the softmax function im-200

proves models’ language modeling performance.201

They find the optimal value of
√
t = 0.1 ln s + 1202

by fitting the lowest perplexity curve against var-203

ious context scaling factors s. They combine204

their finding with NTK-By-Parts scaling and term205

this method YaRN (Yet another RoPE extensioN206

method). YaRN reports the best long-context per-207

formance on language modeling tasks among exist-208

ing methods.209

Adjusted Base Frequency (ABF) ABF (Xiong210

et al., 2023) simply changes the base frequency211

of RoPE to 50,000. Both theoretical analysis and212

experiment are conducted to validate the efficacy213

of this method. Xiong et al. (2023) proves that214

ABF minimizes the distance of its embedded vec-215

tors from the ones using the original RoPE, which216

helps leverage the pre-training results. They em-217

pirically validate the efficacy of ABF by show-218

ing a lower perplexity on language modeling tasks219

and a longer effective context window in the first-220

sentence-retrieval task.221

Table 1 highlights the difference between RoPE222

and its variants by specifying the different m, b, and223

t they use in Equation 3 and whether they require224

additional training for context window extension:225

Method m b t Additional Training

RoPE m 10, 000 1 -
PI m/s 10, 000 1 continual pre-train
NTK-Aware m 10, 000

d−2
d 1 -

NTK-By-Parts (1−γ(j)
s + γ(j))m 10, 000 1 continual pre-train

YaRN (1−γ(j)
s + γ(j))m 10, 000 0.1ln(s) + 1 continual pre-train

ABF m 500, 000 1 continual pre-train

Table 1: An overview of Rotary Position Embedding
(RoPE) and its variants represented by Equation 3.

3 Proposal Method 226

YaRN (Peng et al., 2023) introduces a scaling fac- 227

tor t on the attention logits based on empirical evi- 228

dence indicating its beneficial effects on language 229

modeling perplexities. However, the underlying 230

rationale behind this technique remains poorly un- 231

derstood. In this section, we first introduce an 232

interpretation of this technique, which motivates 233

our method. 234

3.1 Interpretation of YaRN’s Scaling Factor 235

In Transformer models’ attention mecha- 236

nism (Vaswani et al., 2017), the Softmax function 237

forces attention scores assigned to contextual 238

tokens to sum to one while concurrently prevent- 239

ing any individual score from becoming zero. 240

Consequently, with an increasing number of input 241

tokens, LLMs will theoretically distribute more 242

attention across more tokens and lead to a rise in 243

what we refer to as “attention entropy”, which 244

quantifies the randomness within the distribution 245

of attention scores and is calculated using the 246

following equation: 247

attention_entropy =
∑
i

−pi ln pi (4) 248

where pi is the attention scores assigned to contex- 249

tual tokens. 250

To validate the aforementioned theoretical effect, 251

we utilized LLaMA-2-7B-Chat (Touvron et al., 252

2023b) to process 128 randomly chosen documents 253

from the Pile dataset (Gao et al., 2020). We col- 254

lect the attention scores assigned to contextual to- 255

kens for query tokens at different input positions 256

to simulate varying numbers of contextual tokens. 257

Subsequently, we compute the information entropy 258

for these attention scores on different model layers 259

via Equation 4. The resulting average attention en- 260

tropies over our randomly sampled documents are 261

visualized in Figure 1. 262

Counterintuitively, only the first two model lay- 263

ers demonstrate a steady rise in attention entropy. 264
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Figure 1: Visualization of the averaged attention en-
tropy for query tokens at different input positions in the
LLaMA-2-7B-chat model across the selected 128 doc-
uments from the Pile-arXiv dataset (Gao et al., 2020).
“Uniform” represents a uniform attention score distri-
bution, which corresponds to attention_entropy = lnn
with n denoting the number of contextual tokens.

Interestingly, we even observe that the attention265

entropies of all the subsequent layers remain re-266

markably similar when the number of contextual267

tokens increases from 1,024 to 2,048.268

This finding of LLMs maintaining a stable atten-269

tion entropy in subsequent model layers leads us270

to posit that possessing a certain degree of length-271

invariance in attention entropy in these layers is272

an important inherent characteristic. When model-273

ing longer sequences than encountered in the pre-274

training stage, LLMs might fail to concentrate well,275

leading to a performance drop. Thanks to the expo-276

nential function in Softmax, scaling the attention277

logits reduces attention entropy, thereby explaining278

why it leads to improvements in language modeling279

tasks when modeling lengthy inputs as observed in280

YaRN (Peng et al., 2023).281

3.2 Design Principles282

Previous works have explored different scaling fac-283

tors on the attention logits with different motiva-284

tions. Chiang and Cholak (2022) scales the atten-285

tion logits by log n, with n representing the length286

of the longest training sequence, to enhance the287

model’s extrapolation ability in downstream tasks288

such as machine translation.289

More recently, YaRN (Peng et al., 2023) intro-290

duces the scaling factor t = 0.1 ln s+ 1 by fitting291

the lowest perplexity curve in language modeling292

tasks. They combine these scaling factors with293

NTK-By-Parts scaling and observe improved fine-294

tuning long-context performance on language mod- 295

eling tasks. 296

ReRoPE (Su, 2023) utilized a dynamic scaling 297

factor that takes into account the number of con- 298

textual tokens for each input position: t = logcm, 299

where c denotes the pre-trained context window 300

size and m represents the position index of input 301

tokens. By introducing this scaling factor during 302

the pre-training stage, ReRoPE demonstrates en- 303

hanced extrapolation ability in language modeling 304

tasks, which is also observed in YaRN. 305

We propose “entropy-aware ABF” with the fol- 306

lowing design principles: 307

(1). Dynamic Attention Scaling: Both PI and 308

YaRN employ a constant scaling factor for all in- 309

put positions, which may excessively stretch the 310

attention logits at the front positions and hinder the 311

model’s ability to extrapolate to longer sequences. 312

Instead of using a constant scaling factor, we pro- 313

pose using a dynamic factor that takes into account 314

the number of contextual tokens for each input po- 315

sition. This allows the model to adjust the attention 316

weights more flexibly based on the level of random- 317

ness in the distribution of attention scores. 318

(2). Layer-dependent: All the existing works ap- 319

ply the scalar indiscriminately to all model layers. 320

However, based on our observations in Figure 1 321

that the first two layers consistently exhibit a near- 322

uniform attention pattern and only the latter layers 323

demonstrate the tendency to maintain concentra- 324

tion, we propose not to intervene in the first two 325

layers to align with the model’s inherent character- 326

istics. 327

(3). Facilitate Context Window Extension: Fur- 328

thermore, we hypothesize that learning to maintain 329

concentration when processing lengthy sequences 330

is critical to context window extension, and scaling 331

the attention logits can serve as an inductive bias 332

that facilitates this process. This motivates us to 333

combine “scaling the attention logits” with ABF 334

during the supervised fine-tuning stage. To lever- 335

age the pretraining results, we also propose the 336

avoidance of modifying the attention logits within 337

the pre-trained context window by setting a lower 338

bound to t. 339

Our ultimate scaling factor t is depicted as be- 340

low: 341

t =

{
1, if layer index is 0 or 1
max(logc i, 1), o.w.

342
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4 Experiments343

To analyze the real-world applicability of different344

RoPE-extension methods, we test the long-context345

performance of models trained with these methods346

on selected tasks from LongBench (Bai et al., 2023)347

and answer the three research questions we propose348

in Section 1 by adjusting training data amount and349

context window sizes. Finally, we also explore350

efficient data compositions and training curricula351

on context window extension for given downstream352

tasks.353

4.1 General Setup354

Model Variants We use LLaMA-2-7B-355

Chat (Touvron et al., 2023b) given its popularity.356

We only modify RoPE while leaving the model357

architecture unchanged.358

Training Previous works (Chen et al., 2023;359

Xiong et al., 2023; Peng et al., 2023) adopt a similar360

training curriculum by first continual pre-training361

the LLaMA base model to adapt to the modified362

position embeddings and then fine-tune on target363

long-context downstream tasks. In contrast, we364

propose directly supervised fine-tuning of the Chat365

Model to evaluate the practical applicability of dif-366

ferent RoPE-extension methods. We extend the367

context window of LLaMA-2-7B-Chat to 16k with368

detailed training setups available in Appendix A.369

SFT Data We curate a dataset of 3.5k lengthy370

conversations from ShareGPT1 (Chiang et al.,371

2023). Following the data cleaning pipeline372

in (Zheng et al., 2023), we kept English conver-373

sations only, excluded those with less than 10,000374

tokens, and split longer conversations so that we375

have a maximum sequence length of 16,384 tokens.376

Evaluation Existing works primarily assess the377

efficacy of RoPE-extension methods through the378

examination of continual pre-trained models across379

language modeling tasks and synthetic tasks. For380

example, YaRN (Chen et al., 2023) evaluates381

the perplexity scores and model performance on382

the passkey-retrieval task (Mohtashami and Jaggi,383

2023) to quantify models’ long-context perfor-384

mance. However, synthetic tasks like passkey re-385

trieval deviate largely from real-world scenarios386

while language modeling tasks have also proved387

a rudimentary metric incapable of promising suc-388

cess in downstream tasks as suggested by Pal et al.389

1https://huggingface.co/datasets/philschmid/sharegpt-raw

(2023); Sun et al. (2021). In this work, we an- 390

alyzed the long context performance of models 391

with extended context windows on selected tasks 392

from LongBench (Bai et al., 2023). Our evalua- 393

tion includes 12 tasks from four categories: single- 394

document QA, multi-document QA, summariza- 395

tion, and few-shot learning to ensure a comprehen- 396

sive evaluation of models’ long-context capabilities. 397

We intentionally exclude synthetic tasks and code 398

completion tasks from LongBench because syn- 399

thetic tasks deviate largely from real-world scenar- 400

ios, and code completion tasks have performance 401

conflicts with general instruction following abili- 402

ties learned from ShareGPT conversations, as sug- 403

gested by Dong et al. (2023). 404

4.2 Measuring Long-Context Performance 405

To answer the research question “(1) Which method 406

exhibits the best supervised fine-tuning perfor- 407

mance on context-demanding downstream tasks?”, 408

we fine-tune LLaMA-7B-Chat on 3.5k lengthy con- 409

versations and evaluate their long-context perfor- 410

mance on LongBench. 411

Table 2 illustrates the performance of each 412

method, with some results reported from the Long- 413

Bench paper (Bai et al., 2023). We highlight our 414

major observations here: 415

1) Fine-tuning the models on lengthy conver- 416

sation data is efficient for context window ex- 417

tension. Both LongChat-v1.5-7B-32k and Vicuna- 418

v1.5-7B-16k are open-source long-context models 419

extended with PI (Chen et al., 2023) through fine- 420

tuning on large amounts of conversation data. For 421

example, LongChat-v1.5-7B-32 is finetuned on 80k 422

conversations. By fine-tuning the model on lengthy 423

conversations only, our replicated PI-based model 424

outperformed the open-source versions, confirming 425

the efficacy of fine-tuning the model on lengthy 426

conversations. 427

2) PI yields better long-context fine-tuning 428

results than YaRN. While NTK-By-Parts and 429

YaRN have lower perplexity in language model- 430

ing tasks, PI has better fine-tuning performance 431

on long-context downstream tasks that are more 432

related to practical scenarios. This finding cor- 433

roborates the conclusion by Pal et al. (2023); Sun 434

et al. (2021) that language modeling perplexity is a 435

rudimentary metric incapable of promising success 436

in downstream tasks. We hypothesize that while 437

YaRN’s scalar is efficient for language modeling 438

tasks, its constant nature might affect model perfor- 439

mance on downstream tasks. 440
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Table 2: Experiment results on selected tasks from LongBench. Model names with a trailing asteroid are reported
from the LongBench paper. We name our trained models after their RoPE-extension methods.

Model Singl-Doc QA Multi-Doc QA Summarization Few-shot Learning Macro
NQA QAPR MFQA_en HPQA WMQA MSQ GR QMSM MNWS TREC TRVQA SMSM

Llama2-7B-chat-4k* 18.7 19.2 36.8 25.4 32.8 9.4 27.3 20.8 25.8 61.5 77.8 40.7 33.0
LongChat-v1.5-7B-32k* 16.9 27.7 41.4 31.5 20.6 9.7 30.8 22.7 26.4 63.5 82.3 34.2 34.0
Vicuna-v1.5-7B-16k* 19.4 26.1 38.5 25.3 20.8 9.8 27.9 22.8 27.2 71.5 86.2 40.8 34.7
PI 20.1 30.4 45.3 26.1 30.1 9.9 28.1 23.7 26.6 68.0 84.9 42.5 36.3
NTK-By-Parts 15.9 31.1 40.1 25.4 26.6 7.2 26.7 22.4 26.9 68.5 82.8 42.9 34.7
Yarn 20.3 28.9 42.8 27.8 30.7 7.2 27.4 22.5 26.8 66.0 85.6 42.6 35.7
ABF 24.6 32.8 45.6 35.1 30.3 15.2 30.8 23.0 27.4 71.0 84.7 42.7 38.6
Ours 21.9 31.0 47.1 40.1 32.7 15.1 32.3 23.0 27.1 70.5 86.7 42.0 39.1

3) ABF-based models surpass the other meth-441

ods by a significant margin. Both ABF and our442

methods exhibit consistently superior fine-tuning443

performance on all 12 long-context tasks, demon-444

strating the efficacy of adjusting RoPE’s base fre-445

quency to a large number (e.g. 50,000).446

4.3 Measuring Data Efficiency447

Data efficiency is an essential characteristic of448

RoPE-extension methods in context window ex-449

tension practice, given both the sparsity of long450

training data and the high cost of training on long451

sequences. In this section, we explore the research452

question “(2) How can each method efficiently uti-453

lize training data?” by training the model respec-454

tively on 32, 100, 1k, and 3.5k conversations. The455

results are plotted in Figure 2, and the detailed456

results for each task are in Table 5.
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Figure 2: Long-Context Performance of RoPE-
extending Methods with Different Amounts of Training
Data

457

We highlight our major observations below:458

1) ABF-based methods consistently benefit459

from increasing training data. While all RoPE-460

extension methods exhibit improved performance461

with increased training data, the performance gain462

appears marginal for PI, NTK-By-Parts, and Yarn463

when the data amount increases from 1K to 3.5K.464

Only ABF-based methods consistently demonstrate465

performance gains.466

2) Entropy-Aware ABF demonstrates extraor- 467

dinary data efficiency. Notably, with a mere 100 468

training samples and 6 training steps, our method 469

achieves competitive long-context performance 470

that only lags marginally behind the ABF method 471

trained on 3.5K samples. Without considering the 472

cost of finetuning on downstream tasks, PI (Chen 473

et al., 2023) continue pre-trains LLaMA-7B (Tou- 474

vron et al., 2023a) for 1,000 steps with 64 batch 475

size, YaRN (Peng et al., 2023) adopts 250 continual 476

pre-training steps with the same batch size. Open 477

source practice like LongChat (Li* et al., 2023) uti- 478

lizes 80k conversations from ShareGPT for instruc- 479

tion tuning. Our work demonstrates the remarkable 480

efficiency of entropy-aware ABF in context win- 481

dow extension, requiring less than 2% of the train- 482

ing resources utilized by existing methodologies. 483

We also observe that the performance gap from 484

ABF to our method is diminishing with the increase 485

in training data. This phenomenon aligns with 486

our hypothesis in Section 3.2 that while the ability 487

to maintain concentration across lengthy inputs 488

can be learned from training on more data, our 489

method serves as an inductive bias that facilitates 490

the learning process. 491

4.4 Measuring Robustness across Context 492

Windows 493

A desirable attribute for RoPE-extension methods, 494

when applied in practical context window extension 495

settings, is that the models fine-tuned using these 496

methods should maintain their performance on the 497

original context window, while also demonstrating 498

a certain degree of extrapolation capability beyond 499

the fine-tuned length. 500

To answer the research question “(3) Do models 501

trained with these methods have a robust perfor- 502

mance across varying context window sizes?”, we 503

follow LongBench (Bai et al., 2023) to assess the 504

models across different context window sizes by 505

truncating the prompt from the middle when the 506

task length exceeds a designated context window 507
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size.508

The results are depicted in Figure 3. While there509

appears a performance gain for PI, NTK-By-Parts,510

and Yarn when the context size is enlarged from 4k511

to 8k, their performance degrades when the context512

is further enlarged to 16k, demonstrating their in-513

ability to leverage the full fine-tuning context win-514

dow. In contrast, ABF and our proposed method515

consistently gain from a larger context window516

within fine-tuning length. Furthermore, entropy-517

aware ABF is the only method that can maintain518

the performance when directly extrapolating to 32k.519

4k 8k 16k 32k
Context Size

28

30

32

34

36

38

Pe
rfo

rm
an

ce

PI
NTK-By-Parts
Yarn
ABF
Ours

Figure 3: Long-Context Performance of RoPE-
extending Methods with Different Context Window
Sizes

520

4.5 Exploring the Optimal Training Data and521

Curriculums522

In this section, we explore efficient training data523

and curriculums for context window extension on524

given tasks. An important consideration in prac-525

tice is whether long in-domain training samples526

are indispensable for achieving success in context527

window extension for a particular downstream task.528

Specifically, we inquire whether short in-domain529

training samples only can still yield benefits in sce-530

narios where lengthier samples are absent, which531

is often the case. To answer the above questions,532

we conduct experiments with various training cur-533

riculums on GovReport (Huang et al., 2021) which534

is a widely used long context summarization task,535

and Longchat-Line-Retrieval (Li* et al., 2023), a536

synthetic retrieval task.537

We evaluate both long (more than 8,092 tokens)538

and short tasks (within 4,096 tokens) to guarantee539

models’ performance within the original context540

window while evaluating their long-context per-541

formance. When the training data is in-domain542

samples, we train the model for 4 epochs with a543

batch size of 8 and evaluate with the best epoch on544

the validation set. When the training data is 1,000 545

ShareGPT conversations, the model is trained for 546

two epochs with a batch size of 32 and evaluated 547

on the second epoch. 548

The results are displayed in Table 3. We con- 549

clude that training the model on short in-domain 550

samples produces suboptimal results, but starting 551

from the model finetuned on 1,000 ShareGPT con- 552

versations yields comparable results to those fine- 553

tuned on long in-domain samples, which suggests 554

a good starting point for context window extension 555

in practice. 556

It might be strange that the line-retrieval task 557

shows extremely poor performance when finetuned 558

from the Chat model on long samples. We attribute 559

it to the insufficient training of our method because 560

the answer to the line retrieval task is short, and we 561

only calculate losses on the model response tokens 562

during the instruction tuning. 563

Initialization training data GR-S GR-L LR-S LR-L

LLaMA 2 Chat None 30.84 0 76 0
LLaMA 2 Chat Short 37.91 33.6 74 26
LLaMA 2 Chat Long 38.24 36.45 10 2
Share1k None 34.10 31.14 88 48
Share1k Short 38.31 35.12 86 64
Share1k Long 38.93 35.56 92 66
Short Share1k 39.74 32.12 90 54

Table 3: Performance on two downstream tasks with
different training curriculums. GR-S: GovReport-Short.
GR-L: GovReport-Long. LR-S: Line Retrieval-Short.
LR-L: LineRetrieval-Long. In the first column, Share1k
means the fine-tuned result of the 7B Chat model on
1,000 ShareGPT conversations. Short means the fine-
tuned result of the 7B chat model on short in-domain
samples. In the second column, None means the model
is directly tested. Short means short in-domain samples.
Long means long in-domain samples.

5 Related Work 564

Extensive research has been done to enhance 565

the long-context capacity of transformer mod- 566

els (Vaswani et al., 2017) by overcoming two 567

prominent obstacles: the quadratic time and space 568

complexity of the attention mechanism (Vaswani 569

et al., 2017) and the inability of position encod- 570

ings to generalize beyond the pre-trained context 571

window. 572

More Efficient Transformers The vanilla atten- 573

tion mechanism in the Transformer architecture 574

is known for its quadratic time and space com- 575

plexity, which poses significant resource demands 576

7



for transformer models when processing lengthy577

inputs. Various works have focused on conquer-578

ing the complexity issue and proposing more ef-579

ficient Transformers. Sparse transformers (Child580

et al., 2019; Ye et al., 2019; Kitaev et al., 2020;581

Beltagy et al., 2020; Ainslie et al., 2020; Zaheer582

et al., 2020; Ding et al., 2023) replace the origi-583

nal full attention mechanism with a sparsified ver-584

sion to make the computation more efficient. Lin-585

ear transformers (Wang et al., 2020; Katharopou-586

los et al., 2020; Choromanski et al., 2020), rather587

than forcing the attention mechanism to attend to588

fewer tokens, propose an alternative approach by589

leveraging low-rank matrix multiplication or linear590

dot-product of kernel feature maps to approximate591

the original attention mechanism, achieving linear592

time complexity. Meanwhile, retrieval-augmented593

models (Guu et al., 2020; Lewis et al., 2020; Wu594

et al., 2022; Bulatov et al., 2023; Tworkowski et al.,595

2023) integrate retrieval with attention. During in-596

ference time, these models avoid directly modeling597

lengthy inputs by retrieving information from an ex-598

ternal memory that stores previous key-value pairs.599

While prior research primarily focuses on reduc-600

ing FLOPs, the bottleneck of transformer inference601

on modern computing hardware has shifted to the602

overhead from memory access (IO). Multi-query at-603

tention (MQA)(Shazeer, 2019) and grouped-query604

attention (GQA)(Ainslie et al., 2023), for instance,605

address the memory-bandwidth cost associated606

with loading the large "keys" and "values" tensors607

in the multi-head attention mechanism by propos-608

ing the use of fewer "key" and "value" heads. No-609

tably, GQA is employed in LLaMA2 (Touvron610

et al., 2023b). Additionally, FlashAttention (Dao611

et al., 2022; Dao, 2023) introduces an IO-aware ex-612

act attention approach that utilizes tiling to reduce613

memory IOs.614

Generalizable Position Encoding Due to the at-615

tention mechanism’s parallel nature, transformer616

models require position encoding (PE) methods617

to facilitate the integration of position informa-618

tion. The original transformer employed sinu-619

soidal position encoding, which constitutes an ab-620

solute PE and exhibits limited generalization ca-621

pability. Subsequently, this approach was refined622

to a learnable version (Gehring et al., 2017), as623

embraced by language model architectures such as624

GPT-3 (Brown et al., 2020). However, this adap-625

tation completely compromises the extrapolation626

ability of position encoding methods. The advent627

of relative PE (Shaw et al., 2018) theoretically sup- 628

ports infinite input lengths. Nevertheless, despite 629

recent advancements in relative PEs, such as T5 630

relative PE (Raffel et al., 2020), RoPE (Su et al., 631

2021), xPOS (Sun et al., 2022), and ALiBi (Press 632

et al., 2021), it has been demonstrated by (Kazem- 633

nejad et al., 2023) that all these methods fail when 634

extrapolating significantly beyond the pre-trained 635

context window. 636

6 Conclusions 637

In summary, through interpreting LLMs’ inherent 638

need to maintain concentration when processing 639

lengthy sequences, we propose entropy-aware ABF 640

by combining ABF with a sophisticated applied 641

scalar that scales the attention logits. Our proposed 642

method effectively extends the context window of 643

RoPE-based LLMs, addressing their limitations 644

when confronted with context-demanding tasks at 645

a minimal cost. We empirically show the superi- 646

ority of our method in both fine-tuning results and 647

robustness across different context window sizes 648

on various context-demanding tasks. Importantly, 649

our method exhibits extraordinary data efficiency 650

compared to other methods, deriving a competent 651

long-context model on LongBench with only 100 652

samples and 6 training steps, less than 2% of the 653

training resources utilized by previous works. Fi- 654

nally, we provide valuable insights into context 655

window extension for specific downstream tasks, 656

suggesting training on lengthy ShareGPT conver- 657

sations as a good starting point. 658

7 Limitations 659

While we uncover that lengthy conversation data 660

is efficient in finetuning LLMs for longer context 661

windows, the availability and length distribution of 662

such datasets are highly constrained. We leave for 663

future work the development of more efficient and 664

scalable training datasets for context window exten- 665

sion. Additionally, due to computational resource 666

constraints, our investigation was restricted to the 667

7B parameter version of the LLaMA2 Chat model. 668

Consequently, it remains an open question whether 669

larger versions of LLaMA2, or other LLMs, exhibit 670

similar characteristics to those observed in Figure 1, 671

and therefore, whether they can also benefit from 672

the methodology we have proposed. 673
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A Training Details925

The model is trained on 4 NVIDIA A100 GPUs926

with DeepSpeed (Rasley et al., 2020), ZeRO (Ra-927

jbhandari et al., 2020; Ren et al., 2021) Stage 3,928

gradient-checkpointing (Chen et al., 2016), and929

FlashAttention (Dao et al., 2022; Dao, 2023). We930

also use BF16 and TF32 mix computation precision931

for further acceleration.932

All the models are fine-tuned using AdamW933

Optimizer (Loshchilov and Hutter, 2017) with934

β1 = 0.9 and β2 = 0.95 for two epochs, com-935

puting losses on response tokens only. We use a936

cosine learning rate scheduler, set the peak learning937

rate to 2e-5, and weight decay to 0.1. For training938

on 3.5k conversations, we use a batch size of 128939

and 10 warmup steps. We use a batch size of 32 and940

0 warmup steps for fewer training data. If not ex-941

plicitly stated, we default to using 3.5k ShareGPT942

conversations for instruction tuning.943

B Additional Experiment Results944
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Model Singl-Doc QA Multi-Doc QA Summarization Few-shot Learning Macro
NQA QAPR MFQA_en HPQA WMQA MSQ GR QMSM MNWS TREC TRVQA SMSM

PI-4K 22.3 27.3 44.6 31.7 30.8 9.2 29.3 21.5 27.1 61.5 87.5 41.4 36.2
PI-8K 21.4 28.6 46.8 31.1 29 11.7 30.1 22.5 27.1 66 86.8 42.2 36.9
PI-16K 20.1 30.4 45.3 26.1 30.1 9.9 28.1 23.7 26.6 68 84.9 42.5 36.3
PI-32K 7 27.6 43.7 16.3 25.1 1.5 23.5 14.2 27 67.5 54.4 33.1 28.4
NTK-By-Parts-4k 22.8 27.3 42.5 26.5 23 10.1 28.7 21.8 27.1 63 87.3 42 35.2
NTK-By-Parts-8k 20.9 31.2 43.5 28.3 29.4 10.9 29.4 22.3 27 65 87.5 43.5 36.6
NTK-By-Parts-16k 15.9 31.1 40.1 25.4 26.6 7.2 26.7 22.4 26.9 68.5 82.8 42.9 34.7
NTK-By-Parts-32k 6.5 30.8 39.1 15.9 26.2 1.1 23.3 14.9 26.9 68.5 54.4 34.7 28.5
Yarn-4K 21 27.9 43.8 29 29.5 12.8 29.3 22.1 26.9 61.5 87.1 42.8 36.1
Yarn-8K 20.9 31.2 43.5 28.3 29.4 10.9 29.4 22.3 27 65 87.5 43.5 36.6
Yarn-16K 20.3 28.9 42.8 27.8 30.7 7.2 27.4 22.5 26.8 66 85.6 42.6 35.7
Yarn-32K 6.5 29.3 39 16 29.1 1.3 24 14.4 26.9 66.5 55.1 34.6 28.6
ABF-4K 19.5 30.6 44.1 31.1 29.5 11.5 29 21.4 27.6 64.5 87.6 41.9 36.5
ABF-8K 22.7 32.1 45.2 35.5 29.2 14.8 30.6 22.8 27.4 67 84.8 42.4 37.9
ABF-16K 24.6 32.8 45.6 35.1 30.3 15.2 30.8 23 27.4 71 84.7 42.7 38.6
ABF-32K 23.6 27.1 44.8 36.8 27.5 12.3 29.4 23.1 26.5 72 84.9 43.5 37.6
Ours-4K 21.1 30.1 43.3 28.1 31.6 11.1 28.7 21.6 27.6 64 86.8 42.1 36.3
Ours-8K 23.3 31.7 45.5 33.2 31.7 14.6 30.7 23 27 67.5 86.3 42.4 38.1
Ours-16K 21.9 31 47.1 40.1 32.7 15.1 32.3 23 27.1 70.5 86.7 42 39.1
Ours-32K 23.6 31.8 45.5 39 31.7 16.6 31.7 23.6 27.1 70.5 86 42.4 39.1

Table 4: Long-Context performance of RoPE-extension Methods with different context window sizes

Model Singl-Doc QA Multi-Doc QA Summarization Few-shot Learning Macro
NQA QAPR MFQA_en HPQA WMQA MSQ GR QMSM MNWS TREC TRVQA SMSM

PI-32 10.7 15.2 30.5 18.5 21.6 7.3 31 21.2 27.5 60 73.2 39.4 29.7
PI-100 7.2 31.4 37.1 30.9 33.4 11.6 30.5 16 27.1 64.5 78.4 38 33.8
PI-1000 20.4 31.1 39 30.7 30.5 10.4 27.9 23.5 26.6 67 84.5 41.6 36.1
PI-3500 20.1 30.4 45.3 26.1 30.1 9.9 28.1 23.7 26.6 68 84.9 42.5 36.3
NTK-By-Parts-32 4.5 22.6 31.9 10.9 23.7 0.8 20.7 13.2 26.3 65 41.3 33.4 24.5
NTK-By-Parts-100 7.9 28.6 40.1 19.1 26.9 7 24.7 18 26.1 66.5 77.3 40 31.9
NTK-By-Parts-1000 15.9 28.3 42.7 23.6 26.5 6.5 26.4 22.7 26.7 68.5 83.7 42.1 34.5
NTK-By-Parts-3500 15.9 31.1 40.1 25.4 26.6 7.2 26.7 22.4 26.9 68.5 82.8 42.9 34.7
Yarn-32 5 18.9 35.1 12 26 0.9 23.6 14.1 26.2 63.5 44.1 30.4 25
Yarn-100 6.6 30.1 39.2 17.7 27.1 2.8 24.4 16.7 25.8 66.5 76 37.9 30.9
Yarn-1000 18 28.2 42.9 26.7 28.4 9.3 27.6 22.4 26.9 65 85.1 41.9 35.2
Yarn-3500 19.7 25.4 44.6 29.3 25.9 9.5 26.5 22.2 26.7 67.5 85.6 43.7 35.5
ABF-32 10.9 15 32.2 20.3 21.6 7.5 28.3 21.2 26.9 56 41.6 35.2 26.4
ABF-100 18.8 27.6 41.2 30.9 35 10.2 31.3 22 27.2 66.5 73.8 36.7 35.1
ABF-1000 23.9 33 44.9 32 20.1 12.2 31.1 23.9 27.5 71 85.6 40.7 37.2
ABF-3500 24 30.5 45.8 37.9 30.7 15.4 31.4 23.3 27.2 70 84.2 42.6 38.6
Ours-32 14.8 15.6 36.4 29.6 25.9 12.9 32.2 21.4 26.9 55 67.3 38.1 31.3
Ours-100 20.6 26.4 45.9 37.7 35.6 16.4 32.2 22 26.9 67.5 80.2 37.3 37.4
Ours-1000 23.5 33 45 34.3 24.8 16.4 30.9 23.8 27.9 71 87.7 41 38.3
Ours-3500 21.9 31 47.1 40.1 32.7 15.1 32.3 23 27.1 70.5 86.7 42 39.1

Table 5: Long-context performance of RoPE-extension methods with different amounts of training data
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