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Abstract
We introduce the Non-Equilibrium Transport
Sampler (NETS), an algorithm for sampling from
unnormalized probability distributions. NETS
builds on non-equilibrium sampling strategies that
transport a simple base distribution into the tar-
get distribution in finite time, as pioneered in
Neal’s annealed importance sampling (AIS). In
the continuous-time setting, this transport is ac-
complished by evolving walkers using Langevin
dynamics with a time-dependent potential, while
simultaneously evolving importance weights to
debias their solutions following Jarzynski’s equal-
ity. The key innovation of NETS is to add to
the dynamics a learned drift term that offsets the
need for these corrective weights by minimizing
their variance through an objective that can be
estimated without backpropagation and provably
bounds the Kullback-Leibler divergence between
the estimated and target distributions. NETS pro-
vides unbiased samples and features a tunable
diffusion coefficient that can be adjusted after
training to maximize the effective sample size.
In experiments on standard benchmarks, high-
dimensional Gaussian mixtures, and statistical lat-
tice field theory models, NETS shows compelling
performances.

1. Introduction
The aim of this paper is to sample probability distributions
on Rd known only up to normalization. This problem,
central to applications from statistical physics (Faulkner
& Livingstone, 2023; Wilson, 1974; Hénin et al., 2022)
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to Bayesian inference (Neal, 1993), becomes particularly
challenging for non-log-concave targets. In such cases, tra-
ditional ergodic sampling methods based on Markov Chain
Monte Carlo (MCMC) or Langevin dynamics often exhibit
prohibitively slow convergence rates.

An alternative approach offered by non-equilibrium sam-
pling strategies is to transport samples on non-stationary
distributions that evolve from a simple base distribution
(e.g., a normal distribution) to the target in finite time. Meth-
ods like Annealed Importance Sampling (AIS) (Neal, 2001),
Sequential Monte Carlo (SMC) (Del Moral, 1997; Doucet
et al., 2001), and their continuous-time variants based on
Jarzynski’s equality (Hartmann et al., 2018) achieve this
transport through a dynamical quench, using importance
weights to correct for the bias arising when the walkers’
distribution lags behind their evolving target. However,
these methods can fail when the lag is too strong, leading to
high-variance weights.

We address this limitation by modifying the dynamics via
some additional transport learned to guide toward the target.
In the context of quenches performed via Langevin dynam-
ics on an evolving potential, we show that an optimal drift
can be added to eliminate the need for importance weights
entirely, and can be characterized as the minimizer of objec-
tive functions amenable to empirical estimation. This leads
to an unbiased sampling strategy where importance weights,
while still available for exact correction, have substantially
reduced variance due to the improved transport.

In sum, our work makes the following main contributions:

• We introduce the Non-Equilibrium Transport Sampler
(NETS), which augments Langevin dynamics on an
evolving potential with learned transport. We show that
the method remains unbiased through a generalization
of Jarzynski’s equality, and that it can be used in concert
with sequential Monte-Carlo (SMC) strategies.

• We demonstrate that the optimal drift for this additional
transport minimizes an objective function, based on
physics-informed neural networks (PINN), whose gradi-
ent can be estimated without backpropagating through
the sampling equations.

• We show that the PINN objective has two key properties:
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it is off-policy (requiring no samples from the target
density) and it bounds the KL-divergence between the
sampler and target distributions.

• We discuss other possible objectives to make connections
with Action Matching (AM) as well as Controlled Monte
Carlo Diffusions (CMCD).

• We establish that NETS’s performance can be optimized
post-training by tuning both the integration time-step
and diffusion coefficient, which we demonstrate through
high-dimensional numerical experiments.

1.1. Related work

Dynamical Measure Transport. Modern generative mod-
els for continuous data often employ dynamical measure
transport, where samples from a base density are trans-
formed into samples from a target density by solving ordi-
nary or stochastic differential equations (ODE/SDE) with
learnable drift coefficients. This approach, pioneered in
(Chen et al., 2018; Grathwohl et al., 2019), has developed
in several directions, notably with score-based diffusion
models (Ho et al., 2020; Song et al., 2020) that frame drift
estimation as quadratic regression. This formulation has led
to more general frameworks (Albergo & Vanden-Eijnden,
2022; Lipman et al., 2022; Albergo et al., 2023; Liu et al.,
2022; De Bortoli et al., 2021; Neklyudov et al., 2023). A
key requirement of these methods is access to samples from
both base and target distributions. Our work shows that sim-
ilar models building on dynamical transport can be learned
without prior access to data from the target.

Augmenting sampling with learning. Augmenting
MCMC and importance sampling proceures with transport
has been an active area of research for the past decade. Early
work makes use of the independence Metropolis algorithm
(Hastings, 1970; Liu, 1996), in which proposals come from
a transport map (Parno & Marzouk, 2018; Noé et al., 2019;
Albergo et al., 2019; Gabrié et al., 2022) that are accepted
or rejected based off their likelihood ratio with the target.
These methods were further improved by combining them
with AIS and SMC perspectives, learning incremental maps
that connect a sequence of interpolating densities between
the base and target (Arbel et al., 2021; Matthews et al.,
2022; Midgley et al., 2023). Similar works in the high-
energy physics community posit that interleaving stochastic
updates within a sequence of maps can be seen as a form
of non-equilibrium sampling (Caselle et al., 2022; Bonanno
et al., 2024).

Following the success of generative models based on dy-
namical transport, several approaches have emerged to ap-
ply these ideas to sampling. Some translate concepts from
diffusion models to minimize the KL divergence between
model and target (Vargas et al., 2023; Berner et al., 2024),

while others reformulate sampling as a stochastic optimal
control (SOC) problem (Zhang & Chen, 2021; Behjoo &
Chertkov, 2024; Hua et al., 2024). However, these methods
face a limitation: learning the optimal drift is a complicated
optimization problem which becomes computationally pro-
hibitive in high dimensions, and simplified approaches such
as Akhound-Sadegh et al. (2024) introduce bias into their
objective function. Alternative perspectives include using
denoising oracles to simplify the sampling problem (Bruna
& Han, 2024) and adapting graph-based distribution model-
ing techniques for sampling, including off-policy training
(Malkin et al., 2023; Sendera et al., 2024).

Vargas et al. (2024) establish Controlled Monte Carlo Dif-
fusions (CMCD), another unbiased sampler that, like ours,
augments the dynamics with learned transport. The methods
differ in how this drift is learned: CMCD derives a gradient-
form objective through path integrals and Girsanov’s theo-
rem, requiring either backpropagation through the SDE or
computation with a numerically unstable reference measure
on a fixed grid. Our approach, based on Fokker-Planck equa-
tion manipulations, yields new objectives for the additional
drift that avoid backpropagation entirely. Moreover, our
optimize-then-discretize framework allows for post-training
adaptation of both step size and time-dependent diffusion,
providing tunable parameters to enhance performance. One
of our objectives is a Physics-Informed Neural Network
(PINN) loss, which has appeared elsewhere for sampling
(Máté & Fleuret, 2023; Tian et al., 2024; Fan et al., 2024).
We establish two key results: this objective is valid for an-
nealed Langevin dynamics, and it directly controls both the
KL divergence and the importance weights arising from
Jarzynski’s equality.

2. Methods
2.1. Setup and Notations

We assume that the target distribution is absolutely contin-
uous with respect to the Lebesgue measure on Rd, with
probability density function (PDF) ρ1(x) = Z−1

1 e−U1(x):
here x ∈ Rd, U : Rd → R is a known energy poten-
tial, assumed twice differentiable and bounded below, and
Z1 =

∫
Rd e

−U1(x)dx < ∞ is an unknown normalization
constant, referred to as the partition function in physics and
the evidence in statistics. Our aim is to generate samples
from ρ1(x) so as to be able to estimate expectations with
respect to this density. Additionally we wish to estimate Z1.

To this end, we introduce a family of time-dependent po-
tentials Ut(x) that interpolate between a simple initial po-
tential U0(x) (e.g., U0(x) = 1

2 |x|2) at t = 0 and the tar-
get potential U1(x) at t = 1. While linear interpolation,
Ut(x) = (1− t)U0(x)+ tU1(x), provides a straightforward
choice, more sophisticated interpolation schemes are often

2



NETS: A Non-Equilibrium Transport Sampler

preferable. Our only requirements are that Ut=0 = U0,
Ut=1 = U1, and Ut(x) is twice differentiable in (t, x) ∈
[0, 1] × Rd. We assume that the time-dependent PDF as-
sociated with this potential Ut(x) is normalizable for all
t ∈ [0, 1] and denote it as

ρt(x) = Z−1
t e−Ut(x), Zt =

∫

Rd

e−Ut(x)dx <∞, (1)

so that ρt=0(x) = ρ0(x) and ρt=1(x) = ρ1(x); we also
assume that ρ0(x) is simple to sample (either directly or via
MCMC or Langevin dynamics) and that its partition func-
tion Z0 is known. To simplify the notations we introduce
the free energy

Ft = − logZt, (2)

and note the useful identity

∂tFt =

∫

Rd

∂tUt(x)ρt(x)dx. (3)

since −∂t log
∫
Rd e

−Ut =
∫
Rd ∂tUte

−Ut/
∫
Rd e

−Ut .

2.2. Non-equilibrium Sampling with Importance
Weights

Annealed importance sampling (AIS) uses a finite sequence
of MCMC moves that satisfy detailed-balance locally in
time but not globally, thereby introducing a bias that can
be corrected with weights. Here we use a time-continuous
variant of AIS based on Jarzynski equality.

By definition of the PDF in (1), ∇ρt(x) = −∇Ut(x)ρt(x)
and hence, for any ϵt ≥ 0, we have

0 = ϵt∇ · (∇Utρt +∇ρt). (4)

Since we also have

∂tρt = −(∂tUt − ∂tFt)ρt, (5)

we can combine these last two equations to deduce that

∂tρt = ϵt∇ · (∇Utρt +∇ρt)− (∂tUt − ∂tFt)ρt. (6)

The effect of the last term at the right hand-side of this
equation can be accounted for by using weights. To see how,
extend the phase space to (x, a) ∈ Rd+1 and introduce the
PDF ft(x, a) solution to the Fokker-Planck equation (FPE)

∂tft = ϵt∇ · (∇Utft +∇ft) + ∂tUt∂aft, (7)

with initial condition ft=0(x, a) = δ(a)ρ0(x). A direct
calculation using (3) (for details see Appendix A) shows
that

ρt(x) =

∫
R eaft(x, a)da∫

Rd+1 eaft(y, a)dady
. (8)

Therefore we can use the solution to the SDE associated with
the FPE (7) in the extended space to estimate expectations
with respect to ρt(x):

Proposition 2.1 (Jarzynski equality). Let (Xt, At) solve
the coupled system of SDE/ODE

dXt = −ϵt∇Ut(Xt)dt+
√
2ϵtdWt, X0 ∼ ρ0, (9)

dAt = −∂tUt(Xt)dt, A0 = 0, (10)

where ϵt ≥ 0 is a time-dependent diffusion coefficient and
Wt ∈ Rd is the Wiener process. Then for all t ∈ [0, 1] and
any test function h : Rd → R, we have

∫

Rd

h(x)ρt(x)dx =
E[eAth(Xt)]

E[eAt ]
,

Zt/Z0 = e−Ft+F0 = E[eAt ]

(11)

where the expectations are taken over the law of (Xt, At).

The proof of this proposition is given in Appendix A
and it relies on the identity

∫
Rd h(x)ρt(x) =∫

R+1d e
ah(x)ft(x, a)dadx/

∫
Rd+1 ft(x, a)dadx which

follows from (8). The second equation in (11) for the free
energy Ft is what is referred to as Jarzynski’s equality, and
was originally surmised in the context of non-equilibrium
thermodynamics (Jarzynski, 1997).

Remark 2.2. We stress that it is key to use the weights
eAt in (11) because ρt(x) is not the PDF of Xt in general.
Indeed, if we denote by ρ̃t(x) the PDF of Xt, it satisfies

∂tρ̃t = ϵt∇ · (∇Utρ̃t +∇ρ̃t), ρ̃t=0 = ρ. (12)

This FPE misses the term −(∂tUt − ∂tFt)ρt at the right
hand-side of (6), and as a result ρ̃t(x) ̸= ρt(x) in general –
intuitively, ρ̃t(x) lags behind ρt(x) when the potential Ut(x)
evolves and this lag is what the weights in (11) correct for.

It is important to realize that, while (11) is exact, estimators
based on this relation can be high variance if the lag between
the PDF ρ̃t(x) of Xt and ρt(x) is too pronounced. This
issue can be alleviated by using resampling methods as is
done in SMC (Doucet et al., 2001). Here we will address it
by adding some additional drift in (9) that will reduce the
lag and as a result lower the variance of the weights.

2.3. Non-equilibrium Sampling with Perfect Transport

We can add a transport term to eliminate the need of the
weights. To see how, let bt(x) ∈ Rd be a velocity field
which at all times t ∈ [0, 1] satisfies

∇ · (btρt) = −∂tρt. (13)

We stress that this is an equation for bt(x) in which ρt(x) is
prescribed and given by (1): In Appendix C we show how
to express the solution to (13) via Feynman-Kac formula.
If (13) is satisfied, then we can combine this equation with
(4) and (5) to arrive at

∂tρt = ϵt∇ · (∇Utρt +∇ρt)−∇ · (btρt), (14)
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which is a standard FPE. Therefore the solution to the SDE
associated with (14) allows us to sample ρt(x) directly
(without weights). We phrase this result as:

Proposition 2.3 (Sampling with perfect additional trans-
port.). Let bt(x) be a solution to (13) and let Xb

t satisfy the
SDE

dXb
t = −ϵt∇Ut(X

b
t )dt+ bt(X

b
t )dt+

√
2ϵtdWt, (15)

with Xb
0 ∼ ρ0 and where ϵt ≥ 0 is a time-dependent diffu-

sion coefficient. Then ρt(x) is the PDF of Xb
T , i.e. for all

t ∈ [0, 1] and, given any test function h : Rd → R, we have
∫

Rd

h(x)ρt(x)dx = E[h(Xb
t )], (16)

where the expectation at the right-hand side is taken over
the law of (Xb

t ).

This proposition is proven in Appendix A and it shows that
we can in principle get rid of the weights altogether by
adding the drift bt(x) in the Langevin SDE. This possibil-
ity was first noted in Vaikuntanathan & Jarzynski (2008)
and is also exploited in Tian et al. (2024) for deterministic
dynamics (i.e. setting ϵt = 0 in (15)) and in Vargas et al.
(2024) using the SDE (15). Of course, in practice we need
to estimate bt(x), and also correct for sampling errors if
this drift is imperfectly learned. Let us discuss this second
question first, and defer the derivation of objectives to learn
bt(x) to Secs. 2.5 and E. In Appendix C we show how to
express the solution to (13) via Feynman-Kac formula.

2.4. Non-Equilibrium Transport Sampler

Let us now combine the approaches discussed in Secs. 2.2
and 2.3 to design samplers in which we use an added trans-
port, possibly imperfect, and importance weights.

To this end, suppose that we wish to add an additional
transport term−∇· (b̂tρt) in (6), where b̂t(x) ∈ Rd is some
given velocity that does not necessarily solve (13). Using
the expression in (1) for ρt(x), we have the identity

−∇ · (b̂tρt) = −∇ · b̂tρt +∇Ut · b̂tρt (17)

Therefore we can rewrite (4) equivalently as

∂tρt = ϵt∇ · (∇Utρt +∇ρt)−∇ · (b̂tρt)
+ (∇ · b̂t −∇Ut · b̂t − ∂tUt + ∂tFt)ρt

(18)

We can now proceed as we did with (4) and extend state
space to account for the effect of the terms (∇ · b̂t −∇Ut ·
b̂t − ∂tUt + ∂tFt)ρt in this equation via weights, while
having the term −∇ · (b̂t(x)ρt(x)) contribute to some ad-
ditional transport. This leads us to a result originally ob-
tained in Vaikuntanathan & Jarzynski (2008) and recently
re-derived in Vargas et al. (2024):

Proposition 2.4 (Nonequilibrium Transport Sampler
(NETS)). Let (X b̂

t , A
b̂
t) solve the coupled system of

SDE/ODE

dX b̂
t = −ϵt∇Ut(X

b̂
t )dt+ b̂t(X

b̂
t )dt+

√
2ϵtdWt, (19)

dAb̂
t = ∇ · b̂t(X b̂

t )dt−∇Ut(X
b̂
t ) · b̂t(X b̂

t )dt

− ∂tUt(X
b̂
t )dt,

(20)

with X b̂
0 ∼ ρ0 and Ab̂

0 = 0, and where ϵt ≥ 0 is a time-
dependent diffusion coefficient. Then for all t ∈ [0, 1] and
any test function h : Rd → R, we have

∫

Rd

h(x)ρt(x)dx =
E[eAb̂

th(X b̂
t )]

E[eAb̂
t ]

,

Zt/Z0 = e−Ft+F0 = E[eA
b̂
t ].

(21)

where the expectations are taken over the law of (X b̂
t , A

b̂
t).

A proof of this proposition using manipulations of the FPE
is given in Appendix A, which will allow us to write down
a variety of new loss functions for learning b̂t; for an al-
ternative proof using Girsanov theorem, see Vargas et al.
(2024). For completeness, in Appendix B we also give
a time-discretized version of Proposition 2.4, and in Ap-
pendix D we generalize it in two ways: to include inertia
and to turn t into a vector coordinate for multimarginal sam-
pling. We also discuss the connection between NETS and
the method of Vargas et al. (2024) in Appendix F.

Notice that, if b̂t(x) = 0, the equations in Proposition 2.4
simply reduce to those in Proposition 2.1, whereas if
b̂t(x) = bt(x) solves (13) we can show that

Ab
t = −Ft + F0, (22)

i.e. the weights have zero variance and give the free energy
difference. Indeed, by expanding both sides of (13) and
dividing them by ρt(x) > 0, this equation can equivalently
be written as

∇ · bt −∇Ut · bt = ∂tUt − ∂tFt. (23)

As a result, when b̂t(x) = bt(x), (20) reduces to

dAb
t = −∂tFtdt, Ab

0 = 0, (24)

and the solution to this equation is (22). In practice, achiev-
ing zero variance of the weights by estimating bt(x) exactly
is not generally possible, but having a good approximation
of bt(x) can help reducing this variance dramatically, as we
will illustrate below via experiments.

2.5. Estimating the Drift bt(x) via a PINN Objective

Equation (23) can be used to derive an objective for both
bt(x) and Ft. The reason is that in this equation the un-
known ∂tFt can be viewed as factor that guarantees solv-
ability: indeed, integrating both sides of (13) gives 0 =
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−∂t
∫
Rd Ut(x)ρt(x)dx+ ∂tFt, which, by (3), is satisfied if

and only if Ft is (up to a constant fixed by F0 = − logZ0)
the exact free energy (2). This offers the possibility to learn
both bt(x) and Ft variationally using an objective fitting the
framework of physics informed neural networks (PINNs):

Proposition 2.5 (PINN objective). Given any T ∈ (0, 1]

and any PDF ρ̂t(x) > 0 consider the objective for (b̂, F̂ )
given by:

LT
PINN[b̂, F̂ ] =

∫ T

0

E
[∣∣qt(xt)

∣∣2]dt, (25)

where xt ∼ ρ̂t and we denote

qt(x) = ∇· b̂t(x)−∇Ut(x)· b̂t(x)−∂tUt(x)+∂tF̂t. (26)

Then minb̂,F̂ LT
PINN[b̂, F̂ ] = 0, and all minimizers (b, F ) are

such that and bt(x) solves (23) and Ft is the free energy (2)
for all t ∈ [0, T ].

This result is proven in Appendix A: in practice, we will use
T ∈ (0, 1] for annealing but ultimately we are interested in
the result when T = 1. Note that since the expectation over
an arbitrary ρ̂t(x) in (25), it can be used as an off-policy
objective. It is however natural to use ρ̂t(x) = ρt(x) since
it allows us to put statistical weight in the objective precisely
in the regions where we need bt(x) to transport probabil-
ity mass. In either case, there is no need to backpropagate
through simulation of the SDE used to produce data. We
show in Section 2.7 below how the expectation over ρt(x)
can be estimated without bias to arrive at an empirical esti-
mator for (25) when ρ̂t(x) = ρt(x). Note also that, while
minimization of the objective (25) gives an estimate F̂t of
the free energy, it is not needed at sampling time when
solving (19). An objective similar to (25) was also recently
posited in Máté & Fleuret (2023); Tian et al. (2024) for use
with deterministic flows. Here, we devise it in the context
of augmenting annealed Langevin dynamics.

In addition to the above results, in Appendix D we supply
extensions to the setup to the case where there are mul-
tiple marginals and where the stochastic dynamics have
inertia. We also discuss an alternative objective, relying on
the action matching formalism (Neklyudov et al., 2023), in
Appendix E.

2.6. Control of the Kullback-Leibler Divergence

One advantage of the PINN objective (25) is that we know
that its minimum is zero, and hence we can track its value
to monitor convergence when minimizing (25) by gradient
descent, as we do below. Another advantage of the loss (25)
is that it controls the quality of the transport as measured by
the Kullback-Leibler divergence:

Proposition 2.6 (KL control). Let ρ̂t be the solution to the

Fokker-Planck equation

∂tρ̂t +∇ · (b̂tρ̂t) = ϵt∇ · (∇Utρ̂t +∇ρ̂t), (27)

with ρ̂t=0 = ρ0 and where b̂t(x) is some predefined velocity
field and ϵt ≥ 0. Then, we have

DKL(ρ̂t=1||ρ1) ≤
√

LT=1
PINN(b̂, F ). (28)

where Ft is the free energy. In addition, given any estimate
F̂t such that

∫ 1

0
|∂tF̂t − ∂Ft|2dt ≤ δ for some δ ≥ 0, we

have

DKL(ρ̂t=1||ρ1) ≤
√

2LT=1
PINN(b̂, F̂ ) + 2δ. (29)

This proposition is proven in Appendix A. Notice that
the bound (28) can be estimated by using ∂tFt =

E[eAb̂
t∂tUt(X

b̂
t )]/E[eA

b̂
t ] in the PINN loss (25).

2.7. Implementation

If we minimize (25) off-policy, i.e. with samples xt from
some ρ̂t ̸= ρt, this is perfectly valid, but may be inefficient
for learning b̂t over the support necessary for the problem.
If we decide instead to set ρ̂t(x) = ρt(x), since the SDEs
in (19) and (20) can be used with any b̂t(x) to estimate
expectation over ρt(x) via (21), we can write the PINN
objective on-policy as

LT
PINN[b̂, F̂ ] =

∫ T

0

E
[
eA

b̂
t |qt(X b̂

t )|2
]

E
[
eA

b̂
t

] dt (30)

These expectations can be estimated empirically over a pop-
ulation of solutions to (19) and (20). Crucially, since we
can switch from off-policy to on-policy after taking the gra-
dient of the PINN objective, when computing the gradient
of (30) over b̂t(x), (X b̂

t , A
b̂
t) can be considered indepen-

dent of b̂t(x) and do not need to be differentiated over. In
other words, the method does not require backpropagation
through the simulation even if used on-policy, i.e. even
though it uses the current value of b̂t to estimate the loss
and its gradient. Finally note that we can use the ODE (20)
for Ab̂

t to write (30) as

LT
PINN[b̂, F̂ ] =

∫ T

0

E
[
eA

b̂
t

∣∣∂tAb̂
t + ∂tF̂t

∣∣2]

E
[
eA

b̂
t

] dt (31)

Since E[eAb̂
t∂tA

b̂
t ]/E[eA

b̂
t ] = ∂t logE[eA

b̂
t ] = −∂tFt, (31)

clearly shows that this loss controls the variance of ∂tAb̂
t ,

which directly connects the Jarzynski weights to the PINN
objective.

The computation of the divergence ∇ · bt(x) in the PINN
objective given in (25) can be avoided by using Hutchinson’s
trace estimator, see Appendix G.

5



NETS: A Non-Equilibrium Transport Sampler

Algorithm 1 Training: Note that the resultant set of walkers
across time slices {xi

k} are detached from the computational
graph when taking a gradient step (off-policy learning).

1: Initialize: n walkers, x0 ∼ ρ0, A0 = 0, K time steps,
model parameters for {b̂t, F̂t}, diffusion coefficient ϵt,
learning rate η

2: repeat
3: Randomize time grid: t0, t1, . . . , tK ∼

Uniform(0, T ), sort such that t0 < t1 < · · · < tK
4: for k = 0, . . . ,K do
5: ∆tk = tk+1 − tk,
6: for each walker i = 1, . . . , n do
7: xi

k+1 = xi
k + [b̂tk(x

i
k)− ϵtk∇Utk(x

i
k)]∆tk

+
√
2ϵtk(W

i
tk+1
−W i

tk
)

8: Ai
k+1 = Ai

k + [∇ · b̂tk(xi
k)− ∂tUtk(x

i
k)

−b̂tk(xi
k) · ∇Utk(x

i
k)]∆tk

9: Estimate (30) by replacing the expectation by an em-
pirical average over the n walkers and the time inte-
gral by an empirical average over t0, . . . , tK .

10: Take gradient descent step to update the model pa-
rameters.

11: until converged

Learning bt(x) and Ft for t ∈ [0, 1] from the start can be
challenging if the initial b̂t(x) is far from exact and the
weights gets large variance as t increases. This problem can
be alleviated by estimating bt(x) sequentially. In practice,
this amounts to annealing T from a small initial value to
T = 1, in such a way that bt(x) is learned sufficiently
accurately so that variance of the weights remains small.
This variance can be estimated on the fly, which also give
us an estimate of the effective sample size (ESS) of the
population at all times t ∈ [0, 1].

Note that we can also employ resampling strategies of the
type used in SMC to keep the variance of the weights
low (Doucet et al., 2001; Bolić et al., 2004).

Details for the numerical implementation of the minimiza-
tion of the objective (25) is summarized in Algorithm 1.

2.8. Learning the Ut of Stochastic Interpolants

The choice of the potential Ut used in the annealing can
have a significant impact on both the learnability of bt and
the numerical stability of solving (19). A desirable char-
acteristic is that Ut gives a density ρt that is geometrically
smooth in its evolution between ρ0 and ρ1, so that transport
via vector fields is simple. One approach toward achieving
this is to use the drift associated with a stochastic interpolant
(Albergo & Vanden-Eijnden, 2022; Lipman et al., 2022),
i.e., the stochastic process defined as

It = αtx0 + βtx1, x0 ∼ ρ0, x1 ∼ ρ1, (32)

where the coefficients αt, βt satisfy α0 = β1 = 1, α1 =
β0 = 0 and α̇t < 0, β̇t > 0. The PDF ρt of It satisfies (13)
with a drift bt given by

bt(x) = E[α̇tx0 + β̇tx1 | It = x], (33)

where the expectation is taken over the law of x0, x1 condi-
tional on It = x. When ρ0 := N (0, Id), an application of
Stein’s lemma indicates that the gradient of the potential Ut

associated with ρt is given by

∇Ut(x) = α−1
t E[x0 | It = x]. (34)

While theoretically appealing, these relations are not im-
mediately useful for two reasons. First, this velocity field
can only be regressed when samples from ρ1 are readily
available, which is not the case in our setting. Second,
the potential Ut associated with this ρt is not analytically
known. However, by combining (33) with (34) and using
x = E[It | It = x], we notice that bt can be written as

bt(x) = (α̇tαt − α2
t β̇tβ

−1
t )∇Ut(x) + β̇tβ

−1
t x, (35)

which we can exploit to directly learn the Ut associated
with the interpolant and, in the process, solve the transport
problem. A convenient choice is to set, for example, αt =√
1− t2 and βt = t, so that (35) reduces to

tbt(x) = x−∇Ut(x). (36)

If we parameterize the potential as Ut = Ûf
t with

Ûf
t (x) = (1− t) 12 |x|2 + tU1(x) + t(1− t)f̂t(x), (37)

where f̂t(x) : [0, 1] × Rd → R is a neural network, (36)
gives us an expression for the drift also in terms of f̂t:

b̂ft (x) = t−1(x−∇Ûf
t (x))

= x−∇U1(x)− (1− t)∇f̂t(x).
(38)

This allows us to write the PINN objective (25) as an objec-
tive for (f̂ , F̂ ):

LPINN[f̂ , F̂ ] =

∫ 1

0

E
[
|qft (xt)|2

]
dt, (39)

where qft (xt) is obtained from (26) by replacing Ut with
(37) and bt with (38):

qft(x) = ∇·b̂ft(x)−∇Ûf
t (x)·b̂ft(x)−∂tÛf

t (x)+∂tF̂t. (40)

When minimized to zero, the objective (39) yields both a
drift b̂ft and a potential Ûf

t such that the resulting density
ρt = e−Ûf

t +F̂t matches the PDF of the interpolant It and
possesses favorable transport properties.
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GMM (d = 2)

Algorithm ESS ↑ W2 ↓
FAB 0.653 ± 0.017 12.0 ± 5.73
PIS 0.295 ± 0.018 7.64 ± 0.92
DDS 0.687 ± 0.208 9.31 ± 0.82
pDEM 0.634 ± 0.084 12.20 ± 0.14
iDEM 0.734 ± 0.092 7.42 ± 3.44
CMCD-KL 0.268 ± 0.069 9.32 ± 0.71
CMCD-LV 0.655 ± 0.023 4.01 ± 0.25
NETS-AM ϵt = 5 (ours) 0.808 ± 0.031 3.89 ± 0.22
NETS-PINN ϵt = 0 (ours) 0.954 ± 0.003 3.55 ± 0.57
NETS-PINN ϵt = 4 (ours) 0.979 ± 0.002 3.14 ± 0.46
NETS-PINN-resample (ours) 0.993 ± 0.004 3.27 ± 0.31

Table 1. Performance of NETS in terms of ESS and W2 metrics
for 40-mode GMM (d = 2) with comparative results quoted from
Akhound-Sadegh et al. (2024) for reproducibility.

3. Numerical Experiments
In what follows, we test the NETS method, for both the
PINN objective (25) and the action matching objective
(119), on standard challenging sampling benchmarks. We
then study how the method scales in comparison to baselines,
particularly AIS on its own, by testing it on an increasingly
high dimensional Gaussian Mixture Models (GMM). Fol-
lowing that, we show that it has orders of magnitude better
statistical efficiency as compared to AIS on its own when
applied to the study of lattice field theories, even past the
phase transition of these theories and in 400 dimensions (an
L = 20× L = 20 lattice).

3.1. 40-Mode Gaussian Mixture

A common benchmark for machine learning augmented
samplers that originally appeared in the paper introduc-
ing Flow Annealed Importance Sampling Bootstrap (FAB)
(Midgley et al., 2023) is a 40-mode GMM in 2-dimensions
for which the means of the mixture components span from
−40 to 40. The high variance and many wells make this
problem challenging for re-weighting or locally updating
MCMC processes. We choose as a time dependent potential
Ut(x) that linearly interpolates the means of the GMM with
U0(x) the potential for a standard multivariate Gaussian
with standard deviation scale σ = 2.

We train a simple feed-forward neural network of width
256 against both the PINN objective (25), parameterizing
(b̂, F̂ ), or the action matching objective (119), parame-
terizing ϕ̂. We compare the learned model from both
objectives to recent related literature: FAB, Path Integral
Sampler (PIS) (Zhang & Chen, 2021), Denoising Diffu-
sion Sampler (DDS) (Vargas et al., 2023), and Denoising
Energy Matching (pDEM, iDEM) (Akhound-Sadegh et al.,
2024). For reproducibility with the benchmarks provided
in the latter method, we compute the effective sample size
(ESS) estimated from 2000 generated samples as well as
the 2−Wasserstein (W2) distance between the model and
the target. As noted in Table 1, all proposed variants of

NETS outperform existing methods. In addition, because
our method can be turned into an SMC method by including
resampling during the generation, we can push the accep-
tance rate of the same learned PINN model to nearly 100%
by using a single resampling step when the ESS of the walk-
ers dropped below 98%. NETS uses 100 sampling steps and
an ϵt = 0.0, 4.0 in the SDE. Note that NETS and CMCD
as published use different interpolating potentials on this
example based on code conventions, but they could be the
same.

3.2. Funnel and Student-t Mixture

We next test NETS on Neal’s funnel, a challenging syn-
thetic target distribution which exhibits correlations at dif-
ferent scales across its 10 dimensions, as well as the 50-
dimensional Mixture of Student-T (MoS) distribution used
in (Blessing et al., 2024). The definitions of the target densi-
ties and the interpolating potentials are given in Appendix H.
Heuristically, the first dimension is Gaussian with variance
σ2 = 9, and the other 9 dimensions are conditionally Gaus-
sian with variance exp(x0), creating the funnel.

We again parameterize (b̂, F̂ ) or ϕ̂ using simple feed for-
ward neural networks, this time of hidden size 512. We
use 100 sampling steps for both, with diffusion coefficients
given in the caption of Table 2. Following (Blessing et al.,
2024), we compute the maximum mean discrepancy (MMD)
andW2 distance between 2000 samples from the model and
2000 samples from the target and compare to related meth-
ods in Table 2. NETS outperforms other methods with both
losses on the high dimensional MoS target in both metrics.
In addition this can be improved using SMC-style resam-
pling in the interpolation when the ESS drops below 70%.
NETS matches the best performance in MMD for the Funnel
distribution, but it is slightly worse inW2.

Algorithm Funnel (d = 10) MoS (d = 50)

MMD ↓ W2 ↓ MMD ↓ W2 ↓
FAB (Midgley et al., 2023) 0.032 ± 0.000 153.894 ± 3.916 0.093 ± 0.014 1204.160 ± 147.7
GMMVI (Arenz et al., 2023) 0.031 ± 0.000 105.620 ± 3.472 0.135 ± 0.017 1255.216 ± 296.9
PIS (Zhang & Chen, 2022) – – – 0.218 ± 0.007 2113.172 ± 31.17
DDS (Vargas et al., 2023) 0.172 ± 0.031 142.890 ± 9.552 0.131 ± 0.001 2154.884 ± 3.861
AFT (Arbel et al., 2021) 0.159 ± 0.010 145.138 ± 6.061 0.395 ± 0.082 2648.410 ± 301.3
CRAFT (Arbel et al., 2021) 0.115 ± 0.003 134.335 ± 0.663 0.257 ± 0.024 1893.926 ± 117.3
CMCD-KL (Vargas et al., 2024) 0.095 ± 0.003 513.339 ± 192.4 – – – –
NETS-AM (ours) 0.041 ± 0.001 435.793 ± 96.17 0.0396 ± 0.001 407.827 ± 69.64
NETS-PINN (ours) 0.033 ± 0.002 388.91 ± 141.5 0.032 ± 0.001 482.393 ± 174.6
NETS-PINN-resample (ours) 0.027 ± 0.003 343.78 ± 65.25 0.030 ± 0.000 400.076 ± 59.31

Table 2. Performance of NETS on Neal’s Funnel and Mixture of
Student-T distributions, measured in MMD and W2 distances from
the true distribution. Benchmarking is in accordance with the setup
of (Blessing et al., 2024). Diffusion coefficient ϵt = 5, 4 was used
for NETS-AM on the Funnel and MoS, respectively. Equivalently,
ϵt = 5, 5 were used by NETS-PINN. Bold numbers are within
standard deviation the best performing. Note that NETS still has
perfect sample in the ϵt → ∞ limit, but would require finer time
discretization than the 100 sampling steps used here (see Figure
4).
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Figure 1. Comparison of the performance of annealed
Langevin dynamics alone, transport alone, and annealed
Langevin coupled with transport when sampling the 40-
mode GMM from (Midgley et al., 2023). Left: Annealed
Langevin run for 250 steps with ϵt = 4.0, failing to capture
the modes with 0% ESS. Center: Learning using the PINN
loss and sampling with 100 steps and ϵt = 0 achieves an
ESS of 95%. Right: Same learning and now sampling with
ϵt = 4.0 achieves an ESS of 98%.
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Figure 2. Demonstration of high-dimensional sampling with our
method using the PINN loss in (25) and a study of how diffusivity
impacts performance, with and without transport. Left: NETS
can achieve high ESS through transport alone, and the effect of
increased diffusivity has more of a positive effect on performance
with sampling than without. AIS cannot achieve ESS above ≈ 0
in high dimension. Right: Kernel density estimates of 2-d cross
sections of the high-dimensional, multimodal distribution arising
from the model and ground truth.

3.3. Scaling on High-dimensional GMMs

In order to demonstrate that the method generalizes to high
dimension, we study sampling from multimodal GMMs in
higher and higher dimensions and observe how the perfor-
mance scales. In addition, we are curious to understand
how the factor in the sampling SDE coming from annealed
Langevin dynamics, ∇U , interacts with the learned drift b̂
or ∇ϕ̂ as we change the diffusivity. We construct 8-mode
target GMMs in d = 36, 64, 128, 200 dimensions and learn
b̂ with the PINN loss in each scenario. We use the same feed
forward neural network of width 512 and depth 4 to param-
eterize both b̂ and F̂ for all dimensions tested and train for
4000 training iterations. Figure 2 summarizes the results.
On the left plot, we note that AIS on its own cannot produce
any effective samples, while even in 200 dimensions, NETS
works with transport alone with 60% ESS. As we increase
the diffusivity ϵt and therefore the effect of the Langevin
term coming from the gradient of the potential, we note
that all methods converge to nearly independent sampling,
and the discrepancy in performance across dimensions is
diminished. Note that the caveat to achieve this is that the
step size in the SDE integrator must be taken smaller to
accommodate the increased diffusivity, especially for the
ϵt = 80 data point. The number of sampling steps used
to discretize the SDEs in these experiments ranged from

K = 100 for ϵt = 0 up to K = 2000 for ϵt = 80. Nonethe-
less, it suggests that diffusion can be more helpful when
there is already some successful transport than without.

3.4. Lattice φ4 Theory

We next apply NETS to the simulation of a statistical lattice
field theory at and past the phase transition from which
the lattice goes from disordered, to semi-ordered, to fully
ordered (neighboring sites are highly correlated to be of the
same sign and magnitude). We study the lattice φ4 theory
in D = 2 spacetime dimensions (Vierhaus, 2010; Albergo
et al., 2019). The random variables in this circumstance are
field configurations φ ∈ RL×L, where L is the extent of
space and time. The interpolating energy function under
which we seek to sample is defined as:

Ut(φ) =
∑

x∼y

|φx − φy|2 +
∑

x

[
m2

tφ
2
x + λtφ

4
x

]
, (41)

where the sums are taken over the lattices sites x, or adjacent
sites x ∼ y, and λt are time-dependent parameters of the
theory that define the phase of the lattice (ranging from
disordered to ordered, otherwise known as magnetized). A
derivation of this energy function is given in Appendix I.
Importantly, sampling the lattice configurations becomes
challenging when approaching the phase transition between
the disordered and ordered phases. As an example, we
identify the phase transition on L = 16 (d = 256) and
L = 20 (d = 400) lattices and run NETS with the action
matching loss, with ϕ̂t a simple feed forward neural network.
We use the free theory λ0 = 0 as the base distribution under
which we initially draw samples. The definition of the target
parameter values m2

1, λ1 both at the phase transition and in
the ordered phase are given in the Appendix I. In Figure
3, the top row shows samples from NETS for L = 20 at
the phase transition, where correlations begin to appear
in the lattice configurations. NETS is almost 2 orders of
magnitude more statistically efficient than AIS (the same
setup without the transport) in sampling at the critical point,
as seen in the plot showing ESS over time. Note also that
NETS can produce unbiased estimates of the magnetization
as compared to a Hybrid Monte Carlo (HMC) ground truth.
The bottom row shows samples past the phase transition and
into the ordered phase, where the lattices begin to take on
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Figure 3. Comparison of the performance of NETS to AIS on two different settings for the study of φ4 theory. Top row, left: 10
example generative lattice configurations with parameters L = 20, m2 = −1.0, λ = 0.9, which demarcates the phase transition to the
antiferromagnetic phase. Top row, right: Performance of AIS (purple curve) vs. NETS (red curve) in terms of effective sample size
over time of integration t, and a histogram of the average magnetization of 4000 lattice configurations, sampled with AIS, NETS, and
HMC (superposed in this order). Note that NETS is closer to the HMC target and re-weights correctly. Re-weighted AIS was not plotted
because the weights were too high variance. Bottom row: Equivalent setup for L = 16, m2 = −1.0, λ = 0.8, past the phase transition
and into the ordered phase. Note that the field configurations generated by NETS are either all positive across lattice sites or all negative.
AIS fails to sample the correct distribution, and its weights are too high variance to be used on the histogram.

either all positive or all negative values. Again in this regime,
NETS is nearly 2 orders of magnitude more statistically
efficient.

While NETS performs significantly better than conventional
annealed samplers on the challenging field theory problem,
algorithms built out of dynamical transport still experience
slowdowns near phase transitions because of the difficulty of
resolving the dynamics of the integrators near these critical
points. As such, we need to use 1500-2000 steps in the
integrator to properly resolve the dynamics of the SDE.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs of Section 2
Here we provide the proofs of the statements made in Sec. 2 which, for the reader convenience, we recall.

Proof of Proposition 2.1. Let ft(x, a) with (x, a) ∈ Rd+1 be the PDF of the joint process (Xt, At) defined by the SDE (9)
and (10). This PDF solves the FPE

∂tft = ϵt∇ · (∇Utft +∇ft) + ∂tUt∂aft, ft=0(x, a) = δ(a)ρ0(x). (42)

Define
gt(x) =

∫

R
eaft(x, a)da. (43)

We can derive an equation for gt(x) by multiplying both sides of the FPE (42) by ea and integrating over a ∈ R. Using
∫

R
ea∂tft(x, a)da = ∂t

∫

R
eaft(x, a)da = ∂tgt,

∫

R
eaϵt∇ · (∇Utft +∇ft)da = ϵt∇ ·

(
∇Ut

∫

R
eaft(x, a)da+∇

∫

R
eaft(x, a)da

)

= ϵt∇ · (∇Utgt +∇gt),∫

R
ea∂tUt∂aftda = ∂tUt

∫

R
ea∂aftda

= −∂tUt

∫

R
eaftda = −∂tUtgt,

(44)

where we arrived at the second equality in the third equation by integration by parts, we deduce that

∂tgt = ϵt∇ · (∇Utgt +∇gt)− ∂tUtgt, gt=0(x) = ρ0(x) = e−U0(x)+F0 . (45)

The solution to this parabolic PDE is unique and it can be checked by direct substitution that it is given by

gt(x) = e−Ut(x)+F0 . (46)

Note that this solution is not normalized since it contains F0 rather than Ft. In fact it is easy to see that
∫

Rd

gt(x)dx =

∫

Rd+1

eaft(x, a)dxda = e−Ft+F0 , (47)

where the first equality follows from the definition of gt and the second from its explicit expression and the definition of the
free energy that implies

∫
Rd e

−Ut(x)dx = e−Ft . Equation (46) is the second equation in (11). From (46) we also deduce
that, given any test function h : Rd → R, we have

∫
Rd+1 e

ah(x)ft(x, a)dxda∫
Rd+1 eaft(x, a)dxda

=

∫
Rd h(x)gt(x)dx∫

Rd gt(x)dx

=

∫
Rd h(x)e

−Ut(x)+F0dx∫
Rd e−Ut(x)+F0

=

∫
Rd h(x)e

−Ut(x)dx∫
Rd e−Ut(x)dx

= eFt

∫

Rd

h(x)e−Ut(x)dx

=

∫

Rd

h(x)ρt(x)dx.

(48)

Since by definition of ft(x, a) the left hand-side of this equation can be expressed as the ratio of expectations over (Xt, At)
in the first equation in (11) we are done.
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Proof of Proposition 2.3. If bt satisfies (13), then ρt satisfies the FPE (14). Since (15) is the SDE associated with this FPE,
(16) holds.

Proof of Proposition 2.4. We can follow the same steps as in the proof of Proposition 2.1 by considering the PDF f b̂
t (x, a)

of (X b̂
t , A

b̂
t). This PDF solves the FPE

∂tf
b̂
t = ϵt∇ · (∇Utf

b̂
t +∇f b̂

t )−∇ · (b̂tf b̂
t )− (∇ · b̂t −∇Ut − ∂tUt)∂af

b̂
t ,

f b̂
t=0(x, a) = δ(a)ρ0(x).

(49)

Define

gb̂t (x) =

∫

R
eaf b̂

t (x, a)da. (50)

We can derive an equation for gb̂t (x) by multiplying both sides of the FPE (49) by ea and integrating over a ∈ R. Using

∫

R
ea∂tf

b̂
t da = ∂t

∫

R
eaf b̂

t da = ∂tg
b̂
t ,

∫

R
eaϵt∇ · (∇Utf

b̂
t +∇f b̂

t )da = ϵt∇ ·
(
∇Ut

∫

R
eaf b̂

t da+∇
∫

R
eaf b̂

t da
)
,

−
∫

R
ea∇ · (b̂tf b̂

t )da = −∇ ·
(
b̂t

∫

R
eaf b̂

t da
)

= −∇ · (b̂tgb̂t ),

−
∫

R
ea(∇ · b̂t −∇Ut − ∂tUt)∂af

b̂
t da = −(∇ · b̂t −∇Ut − ∂tUt)

∫

R
ea∂af

b̂
t da

= (∇ · b̂t −∇Ut − ∂tUt)

∫

R
eaf b̂

t da

= (∇ · b̂t −∇Ut − ∂tUt)g
b̂
t ,

(51)

where we arrived at the second equality in the fourth equation by integration by parts, we deduce that

∂tg
b̂
t = ϵt∇ · (∇Utg

b̂
t +∇gb̂t )−∇ · (b̂tgb̂t ) + (∇ · b̂t −∇Ut − ∂tUt)g

b̂
t ,

gb̂t=0(x) = ρ0(x) = e−U0(x)+F0 .
(52)

The solution to this parabolic PDE is unique and it can be checked by direct substitution that it is given by

gb̂t (x) = e−Ut(x)+F0 . (53)

This solution is not normalized since it contains F0 rather than Ft, and it is easy to see that

∫

Rd

gb̂t (x)dx =

∫

Rd+1

eaf b̂
t (x, a)dxda = e−Ft+F0 . (54)

where the first equality follows from the definition of gb̂t and the second from its explicit expression and the definition of the
free energy that implies

∫
Rd e

−Ut(x)dx = e−Ft . Equation (54) is the second equation in (21). From (53) we also deduce
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that, given any test function h : Rd → R, we have

∫
Rd+1 e

ah(x)f b̂
t (x, a)dxda∫

Rd+1 eaf b̂
t (x, a)dxda

=

∫
Rd h(x)g

b̂
t (x)dx∫

Rd gb̂t (x)dx

=

∫
Rd h(x)e

−Ut(x)+F0dx∫
Rd e−Ut(x)+F0

=

∫
Rd h(x)e

−Ut(x)dx∫
Rd e−Ut(x)dx

= eFt

∫

Rd

h(x)e−Ut(x)dx

=

∫

Rd

h(x)ρt(x)dx.

(55)

Since by definition of f b̂
t (x, a) the left hand-side of this equation can be expressed as the ratio of expectations over (X b̂

t , A
b̂
t)

in the first equation in (21) we are done.

Proof of Proposition 2.5. Clearly the minimum value of (25) is zero and the minimizing pair (b̂, F̂ ) must satisfy

∇ · b̂t −∇Ut · b̂t − ∂tUt + ∂tF̂t = 0 (56)

By multiplying both sides of this equation by ρt is can be written as

∇ · (b̂tρt)− ∂tUtρt + ∂tF̂tρt = 0 (57)

This equation requires a solvability condition obtained by integrating it over Rd. This gives

−
∫

Rd

∂tUt(x)ρt(x)dx+ ∂tF̂t = 0, (58)

which, by (3), implies that ∂tF̂t = ∂tFt. In turn, this implies that (57) is equivalent to (13), i.e. b̂t solves (13).

Proof of Proposition 2.6. Consider

DKL(ρ̂t||ρt) =
∫

Rd

log

(
ρ̂t(x)

ρt(x)

)
ρ̂t(x)dx (59)

where ρ̂t satisfies (27). Taking the time-derivative of this expression we deduce that (using (27), ρt(x) = e−Ut(x)+Ft , the
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identity ϵt∇ · (∇Utρ̂t +∇ρ̂t) = ϵt∇ · (ρt∇(ρ̂t/ρt)), and multiple integrations by parts)

∂tDKL(ρ̂t||ρt) =
∫

Rd

[
log

(
ρ̂t(x)

ρt(x)

)
∂tρ̂t(x)−

∂tρt(x)

ρt(x)
ρ̂t(x)

]
dx

=

∫

Rd

log

(
ρ̂t(x)

ρt(x)

)
·
(
−∇ · (b̂t(x)ρ̂t(x)) + ϵt∇ · (∇Ut(x)ρ̂t(x) +∇ρ̂t(x))

)
dx

+

∫

Rd

(∂tUt(x)− ∂tFt)ρ̂t(x)dx

=

∫

Rd

[
b̂t(x) · ∇ log

(
ρ̂t(x)

ρt(x)

)
+ ∂tUt − ∂tFt

]
ρ̂t(x)dx

− ϵt

∫

Rd

∇ log

(
ρ̂t(x)

ρt(x)

)
· ∇
(
ρ̂t(x)

ρt(x)

)
ρt(x)dx

=

∫

Rd

[
b̂t(x) · ∇ρ̂t(x) +

(
b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

)
ρ̂t(x)

]
dx

− ϵt

∫

Rd

∣∣∣∣∇ log

(
ρ̂t(x)

ρt(x)

)∣∣∣∣
2

ρ̂t(x)dx

=

∫

Rd

[
−∇ · b̂t(x) + b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

]
ρ̂t(x)dx

− ϵt

∫

Rd

∣∣∣∣∇ log

(
ρ̂t(x)

ρt(x)

)∣∣∣∣
2

ρ̂t(x)dx.

(60)

Therefore

DKL(ρ̂t=1||ρ1) =
∫ 1

0

∫

Rd

[
−∇ · b̂t(x) + b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

]
ρ̂t(x)dxdt

−
∫ 1

0

ϵt

∫

Rd

∣∣∣∣∇ log

(
ρ̂t(x)

ρt(x)

)∣∣∣∣
2

ρ̂t(x)dxdt

≤
∫ 1

0

∫

Rd

[
−∇ · b̂t(x) + b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

]
ρ̂t(x)dxdt

≤
[∫ 1

0

∫

Rd

∣∣∣−∇ · b̂t(x) + b̂t(x) · ∇Ut(x) + ∂tUt − ∂tFt

∣∣∣
2

ρ̂t(x)dxdt

]1/2

=

√
LT=1

PINN(b̂, F )

(61)

which gives (28). To establish (29) observe that

L1
PINN(b̂, F )

=

∫ 1

0

∫

Rd

∣∣∣∇ · b̂t(x)− b̂t(x) · ∇Ut(x)− ∂tUt + ∂tFt

∣∣∣
2

ρ̂t(x)dxdt

≤ 2

∫ 1

0

∫

Rd

[∣∣∣∇ · b̂t(x)− b̂t(x) · ∇Ut(x)− ∂tUt + ∂tF̂t

∣∣∣
2

+
∣∣∣∂tFt − ∂tF̂t

∣∣∣
2
]
ρ̂t(x)dxdt

= 2L1
PINN(b̂, F̂ ) + 2

∫ 1

0

|∂tFt − ∂tF̂t|2dt

(62)

Therefore, if
∫ 1

0
|∂tF̂t − ∂tFt|2dt ≤ δ, we have

L1
PINN(b̂, F ) ≤ 2L1

PINN(b̂, F̂ ) + 2δ (63)

Combining this bound with (28) gives (29).

B. Time-discretized Version of Proposition 2.4
Here we show how to generalize the result in Proposition 2.4 if we time discretize the SDE in (19) using Euler-Marayuma
scheme and use some suitable time-discretized version of the ODE (20).
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Proposition B.1. Let 0 = t0 < t1 < · · · < tK = 1 be a time grid on [0, 1], denote ∆tk = tk+1 − tk for k = 0, . . . ,K − 1,
set X̃ b̂

0 ∼ ρ0 and Ãb̂
0 = 0, and for k = 0, . . . ,K − 1 define X̃ b̂

tk+1
, Ãb̂

tk+1
recursively via

X̃ b̂
tk+1

= X̃ b̂
tk
− ϵtk∇Utk(X̃

b̂
tk
)∆tk + b̂tk(X̃

b̂
tk
)∆tk +

√
2ϵtk(Wtk+1

−Wtk), (64)

Ãb̂
tk+1

= Ãb̂
tk

+ Utk(X̂
b̂
tk
)− Utk+1

(X̂ b̂
tk+1

) +R+
k (X̃

b̂
tk
, X̃ b̂

tk+1
)−R−

k (X̃
b̂
tk+1

, X̃ b̂
tk
), (65)

where we defined

R±
k (x, y) =

1

4ϵtk∆tk

∣∣y − x+∆tk(ϵtk∇Utk(x)∓ btk(x))
∣∣2 (66)

Then for all k = 0, . . . ,K and any test function h : Rd → R, we have

∫

Rd

h(x)ρtk(x)dx =
E[eÃ

b̂
tkh(X̃ b̂

tk
)]

E[eÃ
b̂
tk ]

, Ztk = e−Ftk = E[eÃ
b̂
tk ], (67)

where the expectations are taken over the law of (X̃ b̂
tk
, Ãb̂

tk
)

Note that the weights in (67) correct for the bias coming for both the time evolution of Ut(x) and the fact that the Euler-
Maruyama update in (64) does not satisfy the detailed-balance condition locally. It cab be checked by direct calculation
that (65) is a consistent time-discretization of the ODE (20).

Proof. For simplicity of notations we will prove (67) for k = K: the argument for all the other k = 1, . . . ,K − 1 is similar.
The update rule in (65) implies that

Ãb̂
tK =

K−1∑

k=0

(
Utk(X̂

b̂
tk
)− Utk+1

(X̂ b̂
tk+1

) +R+
k (X̃

b̂
tk
, X̃ b̂

tk+1
)−R−

k (X̃
b̂
tk+1

, X̃ b̂
tk
)
)

= U0(X̃
b̂
t0)− UK(X̃ b̂

tK ) +

K−1∑

k=0

(
R+

k (X̃
b̂
tk
, X̃ b̂

tk+1
)−R−

k (X̃
b̂
tk+1

, X̃ b̂
tk
)
)
,

(68)

Now, given the test function h : Rd → R, consider

I[h] ≡ E
[
eÃ

b̂
tK h(X̃ b̂

tK )
]

(69)

Since the transition probability density function of the Euler-Maruyama update in (64) reads

ρ+tk(xk+1|xk) = (4πϵtk∆tk)
−d/2 exp

(
−R+

k (xk, xk+1)
)
, (70)

the joint probability density function of the path (X̃ b̂
t0 , X̃

b̂
t1 , . . . , X̃

b̂
tK ) is given by

ρ(x0, . . . , xK) = exp (−U0(x0) + F0)

K−1∏

k=0

ρ+tk,∆tk
(xk+1|xk)

= C exp

(
−U0(x0) + F0 −

K−1∑

k=0

R+
k (xk, xk+1)

) (71)

where C =
∏K−1

k=0 (4πϵtk∆tk)
−d/2. We can use this density along with the explicit expression for Ãb̂

TK
in (68) to express

the expectation (69) as an integral over ρ(x0, x1, . . . , xK)

I[h] = C

∫

Rd(K+1

dx0 · · · dxK exp

(
−U0(x0) + F0 −

K−1∑

k=0

R+
k (xk, xk+1)

)

× exp

(
U0(x0)− UK(xK) +

K−1∑

k=0

(
R+

k (xk, xk+1)−R−
k (xk+1, xk)

))
h(xK)

(72)
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where the second exponential comes from the factor eÃ
b̂
K . (72) simplifies into

I[h] = C

∫

Rd(K+1

dx0 · · · dxK exp

(
−UK(xK) + F0 −

K−1∑

k=0

R−
k (xk+1, xk)

))
h(xK) (73)

In this expression we recognize a product of factors involving

ρ−tk(xk|xk+1) = (4πϵtk)
−d/2 exp

(
−R−

k (xk+1, xk)
)
, (74)

which is the transition probability density function of the time-reversed update

Ỹ b̂
tk

= Ỹ b̂
tk+1
− ϵtk∇Utk(Ỹ

b̂
tk+1

)∆tk − b̂tk(Ỹ
b̂
tk+1

)∆tk +
√

2ϵtk(Wtk+1
−Wtk). (75)

This implies in particular that we can perform the integrals in (73) sequentially over x0, x1, .., xK−1 to be left with

I[h] =

∫

Rd

exp (−UK(xK) + F0)h(xK)dxK (76)

Therefore
I[1] =

∫

Rd

exp (−UK(xK) + F0) dxK = e−FK+F0 , (77)

which is the second equation in (67), and

I[h]

I[1]
= eFK−F0

∫

Rd

exp (−UK(xK) + F0)h(xK)dxK =

∫

Rd

h(x)ρtK (x)dx (78)

which is the first equation in (67).

C. Solving for the Optimal Drift via Feynman-Kac Formula
Without loss of generality, we can always look for a solution to (23) in the form of bt(x) = ∇ϕt(x), so that this equation
becomes the Poisson equation

∆ϕt −∇Ut · ∇ϕt = ∂tUt − ∂tFt. (79)

The solution to this equation can be expressed via Feynman-Kac formula:
Proposition C.1. Let Xt,x

τ satisfy the following SDE

dXt,x
τ = −∇Ut(X

t,x
τ )dτ +

√
2dWτ , Xt,x

τ=0 = x (80)

where Ut is evaluated fixed at t ∈ [0, 1] fixed. Assume geometric ergodicity of the semi-group associated with (80), i.e.
the probability distribution of the solutions to this SDE converges exponentially fast towards their unique equilibrium
distribution with density ρt(x). Then for all (t, x) ∈ [0, 1]× Rd we have

ϕt(x) =

∫ ∞

0

E
[
∂tFt − ∂tUt(X

t,x
τ )
]
dτ (81)

where the expectation is taken over the law of Xt,x
τ .

Proof. By Ito formula,

dϕt(X
t,x
τ ) =

(
∆ϕt(X

t,x
τ )−∇Ut(X

t,x
τ ) · ∇ϕt(X

t,x
τ )
)
dτ +

√
2∇ϕt(X

t,x
τ ) · dWτ

=
(
∂tUt(X

t,x
τ )− ∂tFt

)
dτ +

√
2∇ϕt(X

t,x
τ ) · dWτ

(82)

where the differential is taken with respect to τ at t fixed, and we used (79) to get the second equality. If we integrate this
relation on τ ∈ [0, T ] and take expectation, we deduce that

E
[
ϕt(X

t,x
T )
]
− ϕt(x) =

∫ T

0

E
[
∂tUt(X

t,x
τ )− ∂tFt

]
dτ (83)

where we use Ito isometry to zero the expectation of the martingale term involving
√
2∇ϕt(X

t,x
τ ) · dWτ . If we let T →∞,

by ergodicty the first term at the left hand side converges towards a constant independent of (t, x) which we can neglect – this
fixes the gauge of the solution to (79) which is unique only up to a constant. What remains in this limit is the expression (81).
Note that the integral in this expression converges since E

[
∂tUt(X

t,x
τ )
]
→ ∂tFt exponentially fast as τ →∞ by assumption

of geometric ergodicity.
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Example: moving Gaussian distribution. Let us consider the case where

Ut(x) =
1
2 (x− bt)

TAt(x− bt), (84)

where bt ∈ Rd is a time-dependent vector field and At = AT
t ∈ Rd × Rd is a time-dependent positive-definite matrix: we

assume that both bt and At are C1 in time, and also that ȦtAt = AtȦt. The free energy in this example is

Ft = − logZt, Zt = (2π)d/2|detAt|−1/2, (85)

so that
∂tUt(x) = −ḃTt At(x− bt) +

1
2 (x− bt)

T Ȧt(x− bt), ∂tFt =
1
2 tr(A−1

t Ȧt). (86)

In this case, the SDE (80) reads

dXt,x
τ = −At(X

t,x
τ − bt)dτ +

√
2dWτ , Xt,x

τ=0 = x, (87)

and its solution is

Xt,x
τ = e−Atτx+

(
1− e−Atτ

)
bt +

√
2

∫ τ

0

e−At(τ−τ ′)dWτ ′ . (88)

This implies that (using Ito isometry)

E
[
∂tUt(X

t,x
τ )
]
= −ḃTt Ate

−Atτ (x− bt) +
1
2 (x− bt)

T e−Atτ Ȧte
−Atτ (x− bt)

+

∫ τ

0

tr
(
e−Atτ Ȧte

−Atτ
)
dτ

= −ḃTt Ate
−Atτ (x− bt) +

1
2 (x− bt)

T e−Atτ Ȧte
−Atτ (x− bt)

+ 1
2 tr
(
A−1

t Ȧt)− 1
2 tr(A−1

t Ȧte
−2Atτ ).

(89)

Therefore, from (81), we have (using also (85))

ϕt(x) =

∫ ∞

0

(
ḃTt Ate

−Atτ (x− bt)− 1
2 (x− bt)

T e−Atτ Ȧte
−Atτ (x− bt)

+ 1
2 tr(A−1

t Ȧte
−2Atτ )

)
dτ

= ḃt · (x− bt)− 1
4 (x− bt)

T ȦtA
−1
t (x− bt) +

1
4 tr(A−1

t ȦtA
−1
t ).

(90)

This solution checks out since it implies that

−∇Ut(x) · ∇ϕt(x) + ∆ϕt(x) = −ḃTt At(x− bt) +
1
2 (x− bt)

T Ȧt(x− bt)− 1
2 tr(A−1

t Ȧt), (91)

which is ∂tUt(x)− ∂tFt as it should.

D. Extensions and Generalizations
D.1. Inertial NETS

It is straightforward to generalize Proposition D.1 so that the stochastic dynamics involves some memory/inertia:

Proposition D.1. Let (X b̂,µ
t , Rb̂,

t , A
b̂,µ
t ) solve the coupled system of SDE/ODE

dX b̂,µ
t = b̂t(X

b̂,µ
t )dt+Rb̂,µ

t dt, X b̂,µ
0 ∼ ρ0, (92)

dRb̂,µ
t = −µ∇Ut(X

b̂,µ
t )dt− µϵ−1

t Rb̂,µ
t dt+ µ

√
2ϵ−1

t dWt, Rb̂,µ
0 ∼ N(0, µId), (93)

dAb̂,µ
t = ∇ · b̂t(X b̂,µ

t )dt−∇Ut(X
b̂,µ
t ) · b̂t(X b̂,µ

t )dt− ∂tUt(X
b̂,µ
t )dt, Ab̂,µ

0 = 0, (94)

where ϵt > 0 is a time-dependent diffusion coefficient, µ ≥ 0 is a mobility coefficient, and Wt ∈ Rd is the Wiener process.
Then for all t ∈ [0, 1] and any test function h : Rd → R, we have

∫

Rd

h(x)ρt(x)dx =
E[eA

b̂,µ
t h(X b̂,µ

t )]

E[eAb̂,µ
t ]

, Zt/Z0 = e−Ft+F0 = E[eA
b̂,µ
t ], (95)

where the expectations are taken over the law of (X b̂,µ
t , Ab̂,µ

t ).
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The proof of this proposition can be found at the end of this subsection. Note that when b̂ = b, the solution to (23), (94) is
simply

Ab,γ
t = −Ft + F0, (96)

i.e. the weights are again deterministic with zero variance. In general, b̂ will not be the optimal one, in which case using
the SDE in (92)-(94) gives us the extra parameter µ to play with post-training to improve the ESS. Below we show that
(92)-(94) reduce to (19)-(20) in the limit as µ→∞. It is also easy to see that, if we set µ = 0 in (92)-(94), we simply get
that Rb̂,µ

t = 0 and hence (97) reduces to the ODE dX b̂,µ
t = b̂t(X

b̂,µ
t )dt. Finally it is worth noting that (92)-(93) can be cast

into Langevin equations with some extra forces. Indeed, if we introduce the velocity V b̂,µ
t = b̂t(X

b̂,µ
t ) +Rb̂,µ

t , (92)-(93)
can be written as

dX b̂,µ
t = V b̂,µ

t dt X b̂,µ
0 ∼ ρ0, (97)

dV b̂,µ
t = −µ∇Ut(X

b̂,µ
t )dt+ µϵ−1

t b̂t(X
b̂,µ
t )dt− ∂tb̂t(X

b̂,µ
t )dt

+∇bt(X b̂,µ
t )V b̂,µ

t dt− µϵ−1
t V b̂,µ

t dt+ µ

√
2ϵ−1

t dWt, V b̂,µ
0 ∼ N(b̂0(X

b̂,µ
0 ), µId) (98)

In these equations, the terms µϵ−1
t b̂t − ∂tb̂t can be interpreted as non-conservative forces added to −µ∇Ut, and the term

∇btV b̂,µ
t as an extra friction term added to −µϵ−1

t V b̂,µ
t .

Proof of Proposition D.1. Denote by f b̂,µ
t (x, r, a) the joint PDF of (X b̂,µ

t , Rb̂,µ
t , Ab̂,µ

t ). This PDF satisfies the FPE

∂tf
b̂,µ
t = −∇x · ([b̂t + r]f b̂,µ

t ) + µ∇Ut · ∇rf + µϵ−1
t ∇r · (rf b̂,µ

t + µ∇rf
b̂,µ
t )

− (∇ · b̂t −∇Ut · b̂t − ∂tUt)∂af
b̂,µ
t ,

f b̂,µ
0 (x, r, a) = ρ0(x)(2πµ)

−d/2e−|r|2/(2µ)δ(a).

(99)

Let

gb̂,µt (x, r) =

∫

R
eaf b̂,µ

t (x, r, a)da. (100)

We can derive an equation for gb̂,µt (x) by multiplying both sides of the FPE (99) by ea and integrating over a ∈ R. Using
equations similar to (51), we arrive at

∂tg
b̂,µ
t = −∇x · ([b̂t + r]gb̂,µt ) + µ∇Ut · ∇rf + µϵ−1

t ∇r · (rgb̂,µt + µ∇rg
b̂,µ
t )

+ (∇ · b̂t −∇Ut · b̂t − ∂tUt)g
b̂,γ,
t

gb̂,µ0 (x, r) = ρ0(x)(2πµ)
−d/2e−|r|2/(2µ).

(101)

Since ρ0(x) = e−U0(x)+F0 , it can be checked by direct substitution that the solution to this equation is

gb̂,µt (x, r) = e−Ut(x)+F0(2πµ)−d/2e−|r|2/(2µ). (102)

Therefore ∫

R2d

gb̂,µt (x, r)dxdr =

∫

R2d+1

eaf b̂,µ
t (x, r, a)dxdrda = e−Ft+F0 , (103)

where the first equality follows from the definition of gb̂,µt and the second from its explicit expression and the definition
of the free energy that implies

∫
Rd e

−Ut(x)dx = e−Ft . Equation (103) is the second equation in (95). From (102) we also
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deduce that, given any test function h : Rd → R, we have

∫
R2d+1 e

ah(x)f b̂,µ
t (x, r, a)dxdrda

∫
R2d+1 eaf

b̂,µ
t (x, r, a)dxdrda

=

∫
R2d h(x)g

b̂,µ
t (x, r)dxdr

∫
R2d g

b̂,µ
t (x, r)dxdr

=

∫
Rd h(x)e

−Ut(x)+F0dx∫
Rd e−Ut(x)+F0

=

∫
Rd h(x)e

−Ut(x)dx∫
Rd e−Ut(x)dx

= eFt

∫

Rd

h(x)e−Ut(x)dx

=

∫

Rd

h(x)ρt(x)dx.

(104)

Since by definition of f b̂,µ
t (x, r, a) the left hand-side of this equation can be expressed as the ratio of expectations over

(X b̂,µ
t , Ab̂,µ

t ) in the first equation in (95) we are done.

To see what happens when µ→∞, let us assume that ϵt = ϵ (time-independent) and integrate (93) using Duhamel principle
as

Rb̂,µ
t = e−µϵ−1tRb̂,µ

0 − µ

∫ t

0

e−µϵ−1(t−s)∇Us(X
b̂,µ
s )ds+ µ

√
2ϵ−1

∫ t

0

e−µϵ−1(t−s)dWs, (105)

Letting µ→∞, we see that the first term at the right hand side of (105) tends to zero, whereas the second one gives

lim
µ→∞

µ

∫ t

0

e−µϵ−1(t−s)∇Us(X
b̂,µ
s )ds = ϵ∇Ut(X

b̂,µ
t ) (106)

Finally, the third term at the right hand side of (105) is a Gaussian process with covariance

Cµ
t,t′ = 2µ2ϵ−1

∫ min(t,t′)

0

e−µϵ−1(t−s)−µϵ−1(t′−s)ds = 2µ
(
e−µϵ−1|t−t′| − e−µϵ−1(t+t′)

)
(107)

As a result, given any test function ϕt, we have

lim
µ→∞

∫

[0,1]2
ϕtC

µ
t,t′ϕt′dtdt

′ = 2ϵ

∫ 1

0

ϕ2
tdt (108)

which indicates that Cµ
t,t′ converges weakly towards the Dirac distribution ϵδ(t− t′). Putting these results together shows

that in the limit as µ → ∞, Rb̂,µ
t dt converges weakly towards −ϵ∇Ut(X

b̂,µ
t )dt +

√
2ϵdWt, which, if inserted in (92),

reduces this equation to (19). The case where ϵt depends on time can be treated similarly.

D.2. Multimarginal NETS

Let U(α, x) be a potential depending on α ∈ D ⊂ RN with N ∈ N as well as x ∈ Rd, and assumed to be continuously
differentiable in both arguments. Assume that e−U(α,x) is integrable in x for all α ∈ D, and define the family of PDF

ϱ(α, x) = e−U(α,x)+F(α), F(α) = − log

∫

Rd

e−U(α,x)dx. (109)

Finally, define the family of matrix-valued B̂(α, x) : D × Rd → RN × Rd, assumed to be continuously differentiable in
both arguments. These quantities allow us to give a generalization of Proposition 2.4 in which we can sample the PDF
ϱ(α, x) along any differential path αt ∈ D:
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Proposition D.2. Let α : [0, 1]→ D be a differentiable path in D and define the vector field b : [0, 1]× Rd → Rd as

b̂αt (x) = α̇T
t B̂(αt, x) (110)

as well as
Uα
t (x) = U(αt, x), Fα

t = F(αt), ραt = ϱ(α, x) = e−Uα
t (x)+Fα

t (111)

Let (X b̂,α
t , Ab̂,α

t ) solve the coupled system of SDE/ODE

dX b̂,α
t = b̂αt (X

b̂,α
t )dt− ϵt∇Uα

t (X
b̂,α
t )dt+

√
2ϵtdWt X b̂,α

0 ∼ ρα0 , (112)

dAb̂,α
t = ∇ · b̂αt (X b̂,α

t )dt−∇Uα
t (X

b̂,α
t ) · b̂αt (X b̂,α

t )dt− ∂tU
α
t (X

b̂,α
t )dt, Ab̂,α

0 = 0, (113)

where ϵt > 0 is a time-dependent diffusion coefficient and Wt ∈ Rd is the Wiener process. Then for all t ∈ [0, 1] and any
test function h : Rd → R, we have

∫

Rd

h(x)ραt (x)dx =
E[eA

b̂,α
t h(X b̂,α

t )]

E[eAb̂,α
t ]

, e−Fα
t +Fα

0 = E[eA
b̂,α
t ], (114)

where the expectations are taken over the law of (X b̂,α
t , Ab̂,α

t ).

We will omit to give the proof of this proposition since it is a simple consequence of Proposition 2.4. The interest in
formulating the problem in this new way is that is it easy to see that the right hand side of (113) (with ∂tF

α
t added for

convenience) can be written as

∇ · b̂αt (x)−∇Uα
t (x) · b̂αt (x)− ∂tU

α
t (x) + ∂tF

α
t

= α̇T
t

(
∇x · B̂(αt, x)− B̂(αt, x)∇xU(αt, x)−∇αU(αt, x) +∇αF(αt)

)
.

(115)

Therefore if we zero this term for all (α, x) ∈ D × Rd by picking the right B̂(α, x) we will obtain that (113) reduces to
dAb̂,α

t = −Fα
t dt, i.e. Ab̂,α

t = Fα
t − Fα

0 . Finding this optimal B(α, x) can be obtained using the following result:

Proposition D.3 (Multimarginal PINN objective). Consider the objective for (B̂, F̂) given by:

Lα
PINN[B̂, F̂ ]

=

∫

D

∫

Rd

∣∣∣∇x · B̂(α, x)− B̂(α, x)∇xU(α, x)−∇αU(α, x) +∇αF̂(α)
∣∣∣
2

ϱ̂(α, x)f(α)dxdα
(116)

where ϱ̂(α, x) > 0 is a PDF in x for all α ∈ D, and f(α) is a PDF in α. Then minB,F Lα
PINN[B̂, F̂ ] = 0, and all minimizers

(B,F) are such that and B(α, x) solves

∀(α, x) ∈ D × Rd : 0 = ∇x · B̂(α, x)− B̂(α, x)∇xU(α, x)−∇αU(α, x) +∇αF(α), (117)

and F(α) is the free energy (109) for all α ∈ D.

We will omit to give the proof of this proposition since it is a simple generalization of the proof of Proposition 2.5.

E. Estimating the Drift bt(x) = ∇ϕt(x) via Action Matching (AM)
In general (13) is solved by many bt(x). One way to get a unique (up to a constant in space) solution to this equation is to
impose that the velocity be in gradient form, i.e. set bt(x) = ∇ϕt(x) for some scalar-valued potential ϕt(x). If we do so,
(13) can be written as ∇ · (∇ϕt(x)ρt) = −∂tρt, and it is easy to see that at all times t ∈ [0, 1] the solution to this equation
minimizes over ϕ̂t the objective

∫

Rd

[
1
2 |∇ϕ̂t(x)|2ρt(x)− ϕ̂t(x)∂tρt(x)

]
dx

=

∫

Rd

[
1
2 |∇ϕ̂t(x)|2 + (∂tUt(x)− ∂tFt)ϕ̂t(x)

]
ρt(x)dx.

(118)
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If we use (3) to set ∂tFt =
∫
Rd ∂tUt(x)ρt(x)dx we can use the objective at the right hand-side of (118) to learn ϕt(x)

locally in time (or globally if we integrate this objective on t ∈ [0, 1]). Alternatively, we can integrate the objective at the
left hand-side of (118) over t ∈ [0, T ] and use integration by parts for the term involving ∂tρt(x) to arrive at:

Proposition E.1 (Action Matching objective). Given any T ∈ (0, 1] consider the objective for ϕ̂t(x):

LT
AM [ϕ̂] =

∫ T

0

∫

Rd

[
1
2 |∇ϕ̂t(x)|2 + ∂tϕ̂t(x)

]
ρt(x)dxdt

+

∫

Rd

[
ϕ̂0(x)ρ0(x)− ϕ̂T (x)ρT (x)

]
dx.

(119)

Then the minimizer ϕt(x) of (25) is unique (up to a constant) and bt(x) = ∇ϕt(x) satisfies (13) for all t ∈ [0, T ].

This objective is analogous to the loss presented in Neklyudov et al. (2023), but adapted to the sampling problem. In practice,
we will use again T ∈ (0, 1] for annealing, but ultimately we are interested in the result at T = 1. Note that, unlike with the
PINN objective (25), it is crucial that we use the correct ρt(x) in the AM objective (119): that is, unlike (25), (119) cannot
be turned into an off-policy objective.

Proof. By integrating by parts in time the term involving ∂tϕt in the AM objective (120), we can express is as

LT
AM [ϕ̂] =

∫ T

0

∫

Rd

[
1
2 |∇ϕ̂t(x)|2ρt(x)− ϕt(x)∂tρt(x)

]
dxdt. (120)

This is a convex objective in ϕ̂ whose minimizers satisfy

∇ · (∇ϕ̂tρt) = −∂tρt. (121)

This is (13) written in terms of bt(x) = ∇ϕt(x). The solution of this equation is unique up to a constant by the Fredholm
alternative since its right hand-side satisfies the solvability condition

∫
Rd ∂tρt(x)dx = 0.

If we use b̂t(x) = ∇ϕ̂t(x) in the SDEs in (19) and (20), we need to compute∇ · b̂t(x) = ∆ϕ̂t(x), which is computationally
costly. Fortunately, when ϵt > 0, the calculation of this Laplacian can be avoided by using the following alternative equation
for Ab̂

t :

Ab̂
t =

1

ϵt
[ϕ̂t(X

b̂
t )− ϕ̂0(X

b̂
0)]−Bt, (122)

where
dBt = ∂tUt(X

b̂
t )dt+

1

ϵt
∂tϕ̂t(X

b̂
t ) +

1

ϵt
|∇ϕ̂t(X

b̂
t )|2dt

+

√
2

ϵt
∇ϕ̂t(X

b̂
t ) · dWt.

(123)

To derive these equations, notice f b̂t(x) = ∇ϕ̂t(x), the SDEs (19) and (20) reduce to

dX b̂
t = −ϵt∇Ut(X

b̂
t )dt+ ∇̂ϕt(X

b̂
t )dt+

√
2ϵtdWt, X̂ b̂

0 ∼ ρ0, (124)

dAb̂
t = ∆ϕ̂t(X

b̂
t )dt−∇Ut(X

b̂
t ) · ∇ϕ̂(X b̂

t )dt− ∂tUt(X
b̂
t )dt, Ab̂

0 = 0, (125)

Since by Itô formula we have

dϕ̂t(X
b̂
t ) = ∂tϕ̂t(X

b̂
t )dt− ϵt∇ϕ̂t(X

b̂
t ) · ∇Ut(X

b̂
t )dt+ |∇ϕ̂t(X

b̂
t )|2dt

+
√
2ϵt∇ϕ̂t(X

b̂
t ) · dWt + ϵt∆ϕ̂t(X

b̂
t )dt,

(126)

we can express

∆ϕ̂t(X
b̂
t )dt =

1

ϵt
dϕ̂t(X

b̂
t )dt−

1

ϵt
∂tϕ̂t(X

b̂
t )dt+∇ϕ̂t(X

b̂
t ) · ∇Ut(X

b̂
t )dt

− 1

ϵt
|∇ϕ̂t(X

b̂
t )|2dt−

√
2

ϵt
∇ϕ̂t(X

b̂
t ) · dWt.

(127)
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If we insert this expression in the SDE (125), we can write it as

dAb̂
t =

1

ϵt
dϕ̂t(X

b̂
t )dt+ dBt. (128)

where dBt is given by (123). Integrating (128) gives (122).

In terms of implementation, we can write the AM loss (119) as

LT
AM[ϕ̂] =

∫ T

0

E
[
eA

b̂
t

[
1
2 |∇ϕ̂t(X

b̂
t )|2 + ∂tϕt(X

b̂
t )
]]

E[eAb̂
t ]

dt+
E
[
eA

b̂
0ϕ0(X

b̂
0)
]

E[eAb̂
0 ]

− E
[
eA

b̂
T ϕT (X

b̂
T )
]

E[eAb̂
T ]

. (129)

These expectations can be estimated empirically over solutions to (19) and (20) with b̂t(x) = ∇ϕ̂t(x). The above
implementation is detailed in Algorithm 1.

F. Link with CMCD (Vargas et al., 2024)

Consider the process Y b̂
t solution to the SDE

dY b̂
t = ϵt∇Ut(Y

b̂
t )dt+ 2ϵt∇ log ρb̂t(Y

b̂
t )dt+ b̂t(Y

b̂
t )dt+

√
2ϵtdWt, Y b̂

0 ∼ ρ0. (130)

where ρb̂t denotes the PDF of the process X b̂
t defined by the SDE (19), i.e. the solution to the FPE

∂tρ
b̂
t = ϵt∇ · (∇Utρ

b̂
t +∇ρb̂t)−∇ · (b̂tρb̂t), ρb̂0 = ρ0 (131)

The process Y b̂
t has a simple interpretation: it is the time-reversed of the process run using the time-reversed potential

U1−t and −b̂1−t: that is, if the additional drift b̂t was the perfect one solution to (23), the law of X b̂ = (X b̂
t )t∈[0,1] and

Y b = (Y b̂
t )t∈[0,1] should coincide. This suggests to learn b using as objective a divergence of the path measure of X b̂ from

that of Y b̂. This is essentially what is suggested in (Vargas et al., 2024), and for the reader convenience let us re-derive some
of their results in our notations.

The Kullback-Leibler divergence (or relative entropy) of the path measure of X b̂ from that of Y b̂ reads

KL(X b̂∥Y b̂) =
1

4
ϵt

∫ 1

0

E
[
|∇Ut(X

b̂
t ) +∇ log ρb̂t(X

b̂
t )|2

]
dt (132)

This objective is akin to the one used in score-based diffusion modeling (SBDM) and simply says that one way to adjust b̂ is
by matching the score of ρb̂t to that of ρt. As written (132) is not explicit since we do not know∇ log ρb̂t . We can however
make it explicit after a few manipulations similar to those used in SBDM. To this end, notice first that, by Ito formula, we
have

d log ρb̂t(X
b̂
t ) = ∇ log ρb̂t(X

b̂
t ) · (−ϵt∇Ut(X

b̂
t ) + b̂t(X

b̂
t ))dt+ ϵt∆ log ρb̂t(X

b̂
t )dt

+
√
2ϵt∇ log ρb̂t(X

b̂
t ) · dWt

(133)

which implies that

ϵt∇ log ρb̂t(X
b̂
t ) · ∇Ut((X

b̂
t )dt = −d log ρb̂t(X b̂

t ) +∇ log ρb̂t(X
b̂
t ) · b̂t(X b̂

t )dt

+ ϵt∆ log ρb̂t(X
b̂
t )dt+

√
2ϵt∇ log ρb̂t(X

b̂
t ) · dWt

(134)

Inserting this expression in (132) after expanding the square, and noticing that the martingale term involving dWt disappears
by Ito isometry and that the term d log ρb̂t(X

b̂
t ) can be integrated in time we arrive at

KL(X b̂∥Y b̂) =
1

4
ϵt

∫ 1

0

E
[
|∇Ut(X

b̂
t )|2 + |∇ log ρb̂t(X

b̂
t )|2 + 2∇Ut(X

b̂
t ) · ∇ log ρb̂t(X

b̂
t )
]
dt

=
1

4

∫ 1

0

E
[
ϵt|∇Ut(X

b̂
t )|2 + ϵt|∇ log ρb̂t(X

b̂
t )|2 + ϵt∇Ut(X

b̂
t ) · ∇ log ρb̂t(X

b̂
t )
]
dt

+
1

4

∫ 1

0

E
[
∇ log ρb̂t(X

b̂
t ) · b̂t(X b̂

t ) + ϵt∆ log ρb̂t(X
b̂
t )
]
dt

+
1

4
E[log ρ0(X0)]−

1

4
E[log ρb̂1(X1)]

(135)
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where we used ρb̂0 = ρ0. We can now use the following identities, each obtained using ρb̂t∇ log ρb̂t = ∇ρb̂t and one integration
by parts:

E
[
|∇ log ρb̂t(X

b̂
t )|2

]
=

∫

Rd

|∇ log ρb̂t(x)|2ρb̂t(x)dx

=

∫

Rd

∇ log ρb̂t(x) · ∇ρb̂t(x)dx

= −
∫

Rd

∆ log ρb̂t(x)ρ
b̂
t(x)dx

= −E
[
∆ log ρb̂t(X

b̂
t )
]
,

(136)

E
[
∇Ut(X

b̂
t ) · ∇ log ρb̂t(X

b̂
t )
]
=

∫

Rd

∇Ut(x) · ∇ log ρb̂t(x)ρ
b̂
t(x)dx

=

∫

Rd

∇Ut(x) · ∇ρb̂t(x)dx

= −
∫

Rd

∆Ut(x)ρ
b̂
t(x)dx

= −E
[
∆Ut(X

b̂
t )
]

(137)

and
E
[
∇ log ρb̂t(X

b̂
t ) · b̂t(X b̂

t )
]
=

∫

Rd

∇ log ρb̂t(x) · b̂t(x)ρb̂t(x)dx

= −
∫

Rd

∇ · b̂t(x)ρb̂t(x)dx

= −E
[
∇ · b̂t(X b̂

t )
]

(138)

Inserting these expressions in (135), it reduces to

KL(X b̂∥Y b̂) =
1

4

∫ 1

0

E
[
ϵt|∇Ut(X

b̂
t )|2 − ϵt∆Ut(X

b̂
t )−∇ · bt(X b̂

t )
]
dt

+
1

4
E[log ρ0(X0)]−

1

4
E[log ρb̂1(X1)]

(139)

This objective is still not practical because it involves log ρb̂1, which is unknown. There is however a simple way to fix this,
by adding a term in the Kullback-Leibler divergence (132)

KL′(X b̂∥Y b̂) = KL(X b̂∥Y b̂) +
1

4
E[log(ρb̂1(X b̂

1)/ρ1(X
b̂
1)]) (140)

This additional term is proportional to the Kullback-Leibler divergence of ρb̂1 from the target PDF ρ1. Using (139) as well as
ρ1(x) = e−U1(x)+F1 , we can now express (140) as

KL′(X b̂∥Y b̂) =
1

4

∫ 1

0

E
[
ϵt|∇Ut(X

b̂
t )|2 − ϵt∆Ut(X

b̂
t )−∇ · bt(X b̂

t )
]
dt

+
1

4
E[log ρ0(X0)] +

1

4
E[U1(X1)]−

1

4
F1.

(141)

This is Equation (24) in (Vargas et al., 2024) in which we set ∇ϕ̂t(x) = b̂t(x) and we used that, for any ct : Rd → Rd, we
have

E
∫ 1

0

ct(X
b̂
t ) ·
←−
d Wt =

√
2ϵt

∫ 1

0

E
[
∇ · ct(X b̂

t )
]
dt. (142)

Note that we can neglect the term 1
4E[log ρ0(X0)] in (139) since it does not depend on b̂, so that the minimization of (139)

can be cast into the minimization of (after multiplication by 4)
∫ 1

0

E
[
ϵt|∇Ut(X

b̂
t )|2 − ϵt∆Ut(X

b̂
t )−∇ · bt(X b̂

t )
]
+ E[U1(X1)− F1]

=

∫ 1

0

∫

Rd

[
ϵt|∇Ut(x)|2 − ϵt∆Ut(x)−∇ · bt(x))

]
ρb̂t(x)dx+

∫

Rd

(U1(x)− F1)ρ
b̂
1(x)dx

(143)
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where ρb̂t solves (131).

Let us check that the minimizer of (143) is b̂t = bt, the solution to (23), so that we also have ρb̂t = ρbt = ρt. To this end,
notice that the minimization of (143) can be performed with the method Lagrange multiplier, using the extended objective

∫ 1

0

∫

Rd

[
ϵt|∇Ut(x)|2 − ϵt∆Ut(x)−∇ · b̂t(x)

]
ρb̂t(x)dxdt+

∫

Rd

(U1(x)− F1)ρ
b̂
1(x)dx

+

∫ 1

0

∫

Rd

λt(x)
(
∂tρ

b̂
t − ϵt∇ · (∇Utρ

b̂
t +∇ρb̂t) +∇ · (b̂tρb̂t)

)
dxdt

(144)

where λt(x) is the Lagrange multiplier to be determined. Taking the first variation of this objective over λ, ρb̂, and b̂, we
arrive at the Euler-Lagrange equations

0 = ∂tρ
b̂
t − ϵt∇ · (∇Utρ

b̂
t +∇ρb̂t) +∇ · (b̂tρb̂t), ρb̂0 = ρ0,

0 = ϵt|∇Ut|2 − ϵt∆Ut −∇ · b̂t
− ∂tλt + ϵt∇Ut · ∇λt − ϵt∆λt − b̂t · ∇λt λ1 = −U1 + F1

0 = ∇ρb̂t − ρb̂t∇λt

(145)

We can check that b̂t(x) = bt(x), ρb̂t(x) = ρt(x) = e−Ut(x)+Ft , and λt(x) = −Ut(x) + Ft is a solution: indeed this solves
the first and the last equations in (145) and reduces the second to

0 =
[
ϵt|∇Ut|2 − ϵt∆Ut −∇ · bt

]

+ ∂tUt − ∂tFt − ϵt|∇Ut|2 +∆Ut +∇bt · ∇Ut

= −∇ · bt + ∂tUt − ∂tFt +∇bt · ∇Ut

(146)

which is satisfied since bt solves (23).

G. Hutchinson’s Trace Estimator for the Evaluation of∇ · b̂t(x)
It is well-known that, if∇∇bt(x) is bounded,

∇ · b̂t(x) =
1

2δ
E
[
η ·
(
b̂t(x+ δη)− b̂t(x− δη)

)]
+O(δ2), (147)

where 0 < δ ≪ 1 is an adjustable parameter and η ∼ N(0, Id). Indeed we have

1

2δ
η ·
(
b̂t(x+ δη)− b̂t(x− δη)

)
= ηT∇bt(x)η +O(δ2), (148)

which implies (147) after taking the expectation over η.

We can use this formula to estimate the PINN loss via

LT,δ
PINN[b̂, F̂ ] =

∫ T

0

E
[
Rδ

t (xt, η)R
δ
t (xt, η

′)
]
dt (149)

where the expectation is now taken independent over xt ∼ ρ̂t, η ∼ N(0, Id), and η′ ∼ N(0, Id), and we defined

Rδ
t (x, η) =

1

2δ
η ·
(
b̂t(x+ δη)− b̂t(x− δη)

)
−∇Ut(x) · b̂t(x)− ∂tUt(x) + ∂tF̂t (150)

The expectation in (149) is unbiased since η ⊥ η′, and its accuracy can be controlled by lowering δ.

H. Details on Numerical Experiments
In the following we include details for reproducing the experiments presented in Section 3. An overview of the training
procedure is given in Algorithm 1. Note that the SDE for the weights can replaced with (122) when learning with ϕ̂t, as one
would do with the action matching loss (119).
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H.1. Performance metrics

Effective sample size. We can compute the self-normalized ESS as

ESSt =

(
N−1

∑N
i=1 exp

(
Ai

t

))2

N−1
∑N

i=1 exp
(
2Ai

t

) (151)

at time t along the SDE trajectory. We can use the ESS both as a quality metric and as a trigger for when to perform
resampling of the walkers based on the weights, using, e.g. systematic resampling (Doucet et al., 2001; Bolić et al., 2004).
Systematic resampling is one of many resampling techniques from particle filtering wherein some walkers are killed and
some are duplicated based on their importance weights.

2-Wasserstein distance. The 2-Wasserstein distance reported in Table 1 were computed with 2000 samples from the
model and the target density using the Python Optimal Transport library.

Maximum Mean Discrepancy (MMD). We use the MMD code from (Blessing et al., 2024) to benchmark the performance
of NETS on Neal’s funnel. We use the definition of the MMD as

MMD2 (ρ̂, ρ) ≈ 1

n(n− 1)

n∑

i,j

k (x̂i, x̂j) +
1

m(m− 1)

m∑

i,j

k (xi, xj)−
2

nm

n∑

i

m∑

j

k (x̂i, xj) (152)

where x̂ ∼ ρ̂ is from the model distribution and x ∼ ρ is from the target and k : Rd × Rd → R is chosen to be the radial
basis kernel with unit bandwidth.

H.2. 40-mode GMM

The 40-mode GMM is defined with the mean vectors given as:

µ1 = (−0.2995, 21.4577) , µ2 = (−32.9218, −29.4376) ,
µ3 = (−15.4062, 10.7263) , µ4 = (−0.7925, 31.7156) ,
µ5 = (−3.5498, 10.5845) , µ6 = (−12.0885, −7.8626) ,
µ7 = (−38.2139, −26.4913) , µ8 = (−16.4889, 1.4817) ,
µ9 = (15.8134, 24.0009) , µ10 = (−27.1176, −17.4185) ,
µ11 = (14.5287, 33.2155) , µ12 = (−8.2320, 29.9325) ,
µ13 = (−6.4473, 4.2326) , µ14 = (36.2190, −37.1068) ,
µ15 = (−25.1815, −10.1266) , µ16 = (−15.5920, 34.5600) ,
µ17 = (−25.9272, −18.4133) , µ18 = (−27.9456, −37.4624) ,
µ19 = (−23.3496, 34.3839) , µ20 = (17.8487, 19.3869) ,

µ21 = (2.1037, −20.5073) , µ22 = (6.7674, −37.3478) ,
µ23 = (−28.9026, −20.6212) , µ24 = (25.2375, 23.4529) ,

µ25 = (−17.7398, −1.4433) , µ26 = (25.5824, 39.7653) ,

µ27 = (15.8753, 5.4037) , µ28 = (26.8195, −23.5521) ,
µ29 = (7.4538, −31.0122) , µ30 = (−27.7234, −20.6633) ,
µ31 = (18.0989, 16.0864) , µ32 = (−23.6941, 12.0843) ,
µ33 = (21.9589, −5.0487) , µ34 = (1.5273, 9.2682) ,

µ35 = (24.8151, 38.4078) , µ36 = (−30.8249, −14.6588) ,
µ37 = (15.7204, 33.1420) , µ38 = (34.8083, 35.2943) ,

µ39 = (7.9606, −34.7833) , µ40 = (3.6797, −25.0242)
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These means follow the definition given in the FAB (Midgley et al., 2023) code base that has been subsequently used in
recent papers. The time-dependent potential Ut(x) is given by the interpolation of means. To directly compare CMCD and
NETS on this task, i.e. compare the log-variance path loss versus the PINN, we test the same mean-interpolation potential
for CMCD using their code. The results are summarized in Table 3.

GMM-40

ESS W2

Method nstep = 100 nstep = 256 nstep = 100 nstep = 256

NETS-PINN 0.979 ± 0.002 0.988 ± 0.001 3.14 ± 0.46 3.01 ± 0.49

CMCD-LV 0.162 ± 0.030 0.51 ± 0.04 9.13 ± 1.17 3.62 ± 0.55

Table 3. Comparison of NETS and CMCD with the log-variance loss on GMM-40 using Effective Sample Size (ESS) and Wasserstein-2
distance for the mean-interpolation potential Ut.

H.3. Neal’s 10-d funnel

The Neal’s Funnel distribution is a 10-d probability distribution defined as

x0 ∼ N(0, σ2), x1:9 ∼ N(0, ex0) (153)

where σ = 3 and we use subscripts here as a dimensional index and not as a time index like in the rest of the paper.
Following this, we use as a definition of the interpolating potential:

Ut(x) =
1

2
x2
0(1− t+

t

σ2
) +

1

2

d−1∑

i=1

e−tx0x2
i + (d− 1)tx0 (154)

so that at t = 0, we have U0(x) =
1
2x

2
0 +

1
2

∑d−1
i=1 x2

i and at time t = 1 we have the funnel potential given as U1(x) =
1

2σ2x0 +
1
2

∑d−1
i=1 e−x0x2

i + (d− 1)x0.

H.4. 50-d Mixture of Student-T distributions

Following (Blessing et al., 2024), we use their mixture of 10 student-T distributions in 50 dimensions. We construct Ut via
interpolation of means from a single standard student-T distribution (mean 0). We use the same neural network as used in
the GMM experiments.

To further drive home the fact that our annealed Langevin dynamics with transport can be taken post-training to the ϵ→∞
limit to approach perfect sampling, we provide the following ablation from our model learned with the action matching loss
given in Figure 4.

I. Details of the φ4 model
We consider the Euclidean scalar ϕ4 theory given by the action

SEuc[φ] =

∫ [
∂µφ(x)∂

µφ(x) +m2φ2(x) + λφ4(x)
]
dDx (155)

where we use Einstein summation to denote the dot product with respect to the Euclidean metric and D is the spacetime
dimension. We are interested in acquiring a variant of this expression that provides a fast computational realization when
put onto the lattice. Using Green’s identity (integrating by parts) we note that

∫
(∂µφ(x)∂

µφ(x)ddx =

∫
∂µφ · ∂µφddx = −

∫
φ(x)∂µ∂

µφ(x)ddx + vanishing surface term (156)

so that

SEuc[φ] =

∫
−φ(x)∂µ∂µφ(x) +m2φ2(x) + λφ4(x) ddx. (157)
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Figure 4. Reduction in W2 distance from taking the ϵ → ∞ limit in sampling with NETS. Note that the resolution of the SDE integration
must increase to accommodate the higher stochasticity. Average taken over 3 sampling runs of 2000 walkers each.

Discretizing SEuc onto the lattice

Λ = {a(n0, . . . , nd−1) | ni ∈ {0, 1, 2, . . . , L}, i = 0, 1, . . . , d, a ∈ R+},

where a is the lattice spacing used to define the physical point x = an, we use the forward difference operator to define

∂µφ(x)→ 1
a [φ(x+ µ)− φ(x)] ∂µ∂

µφ(x)→ 1
a2 [φ(x+ µ)− 2φ(x) + φ(x− µ)]. (158)

Using these expressions, we write the discretized lattice action as

SLat =
∑

x∈Λ

aD

[
D∑

µ=1

− 1
a2

[
φx+µφx − 2φ2

x + φx−µφx] +m2φ2
x + λφ4

x

]
(159)

=
∑

x

aD

[
2Da−2φ2

x − a−2
∑

µ

[
φx+µφx + φx−µφx] +m2φ2

x + λφ4
x

]
(160)

=
∑

x

ad

[
2Da−2φ2

x − 2a−2
∑

µ

[φxφx+µ] +m2φ2
x + λφ4

x

]
(161)

=
∑

x

aD

[
−2a−2

∑

µ

φxφx+µ + (2a−2D +m2)φ2
x + λφ4

x

]
(162)

where we have used the fact that on the lattice
∑

x φxφx+µ̂ =
∑

x φx−µ̂φx to get the third equality. It is useful to put the
action in a form that is independent of the lattice spacing a. To do so, we introduce the re-scaled lattice field as

φx → aD/2−1φx, m2 → a2m2, and λ→ a4−Dλ. (163)

Plugging these rescalings into (162) gives us the final expression

SLat =
∑

x

[
−2
∑

µ

φxφx+µ

]
+ (2D +m2)φ2

x + λφ4
x, (164)

which we are to use in simulation.
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I.1. Free theory λ = 0

Turning off the interaction makes it possible to analytically solve the theory. To do this, introduce the discrete Fourier
transform relations

φk =
1√
LD

∑

x

φxe
−ik·x (165)

φx =
1√
LD

∑

k

φke
ik·x (166)

for discrete wavenumbers k = 2lπ
L with l = 0, · · · , L− 1. Plugging in (166) into the first part of (162), we get the expanded

sum

∑

x

[
−2
∑

µ

φ̂xφ̂x+µ

]
→ − 2

Ld

∑

x

∑

µ

∑

k

∑

k′

φkφk′ei(k+k′)·xeik
′·µ (167)

= −2
∑

µ

∑

k

∑

k′

δk,−k′φkφk′eik
′·µ (168)

= −2
∑

µ

∑

k

φkφ−ke
−ikµ (169)

= −2
∑

µ

∑

k

φkφk∗e−ikµ (170)

= −2
∑

µ

∑

k

|φk|2[cos kµ +����i sin kµ] = −
∑

µ

∑

k

|φk|2 cos kµ (171)

where ϕ∗ indicates conjugation, and we got the first equality by the orthogonality of the Fourier modes, the second by the
Kronecker delta, and the third by the reality of the scalar field. Proceeding similarly for the terms proportional to φ2 gives
us the expression

Sk =
∑

k

[
m2 + 2D − 2

∑

µ

cos kµ

]
|φ|2 (172)

The above equation can be written in quadratic form to highlight that the field may be sampled analytically

Sk =
1

Ld

∑

k

φkMk,−kφ−k (173)

where Mk,−k =

[
m2 + 2D − 2

∑

µ

cos kµ

]
δk,−k (174)

Note that this free theory can be sampled for any m2 > 0.

I.2. φ4 numerical details

We numerically realize the above lattice theory in D=2 spacetime dimensions. We use an interpolating potential with time
dependent m2

t = (1− t)m2
0 + tm2

1, λt = (1− t)λ0 + tλ1 where λ0 is always chosen to be 0 (though we note that you could
run this sampler for any U0 that you could sample from easily, not just analytically but also with existing MCMC methods).
For the L = 20 (d = L× L = 400 dimensional) experiments, we identify the critical point of the theory (where the lattices
go from ordered to disordered) using HMC by studying the distribution of the magnetization of the field configurations as
M [φi(x)] =

∑
x φ

i(x), where summation is taken over all lattice sites on the ith lattice configuration. We identify this at
m2

1 = −1.0, λ1 = 0.9 and use these as the target theory parameters on which to perform the sampling. For the L = 16 test
(d = 256), we go past this phase transition into the ordered phase of the theory, which we identify via HMC simulations at
m2

1 = −1.0, λ1 = 0.8.
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