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Abstract
As language models become increasingly sophis-
ticated, ensuring the faithfulness of their outputs
to the input and the consistency of their reason-
ing across outputs is a critical challenge. To ad-
dress the scalability issues in overseeing these
aspects, we propose a novel approach based on
information-theoretic measures for detecting ma-
nipulated or unfaithful reasoning. We propose a
Difference of Entropies (DoE) estimator to quan-
tify the difference in mutual information between
outputs, providing a principled way to identify
low-quality or inconsistent content. We theo-
retically analyze the DoE estimator, proving its
incentive-compatibility properties and deriving
scaling laws for f-mutual information as a func-
tion of sample size. Motivated by the theory, we
implement the estimator using an LLM on a sim-
ple machine translation task and a dataset of peer
reviews from ICLR 2023, considering various
manipulation types. Across these scenarios, the
DoE estimator consistently assigns higher scores
to unmodified reviews compared to manipulated
ones and correlates with BLEU, demonstrating
its effectiveness in ensuring the reliability of lan-
guage model reasoning. These results highlight
the potential of information-theoretic approaches
for scalable oversight of advanced AI systems.

1. Introduction
As language models become increasingly sophisticated, en-
suring the faithfulness and consistency of their outputs has
emerged as a critical challenge (Lyu et al., 2023; Lanham
et al., 2023; Turpin et al., 2024). The complexity of the
inputs and outputs often exceeds the capacity of human su-
pervisors to comprehensively evaluate, necessitating the de-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

velopment of scalable oversight mechanisms. In this work,
we propose a novel approach for detecting manipulated
or unfaithful reasoning in language model outputs using
information-theoretic measures. Our key insight is that the
mutual information between unmodified outputs should be
higher than between a manipulated one and an unmodified
output. We introduce the Difference of Entropies (DoE)
estimator, which leverages the expressive power of large
language models to efficiently quantify this difference in
mutual information. Our main contributions are as follows:

• We formalize the scalable oversight problem in the
language model context and highlight the limitations
of existing approaches.

• We propose the DoE estimator, an information-
theoretic measure, for detecting unfaithful or incon-
sistent model outputs. We theoretically analyze its
incentive-compatibility properties and derive scaling
laws for f -mutual information.

• We demonstrate, in a simple model, that the imple-
mentability of M -bit information elicitation via a lan-
guage model emerges as a property of the pre-training
corpus size.

• We evaluate the DoE estimator on a machine trans-
lation task and a dataset of peer reviews from ICLR
2023, demonstrating its effectiveness in identifying
manipulated reasoning across various scenarios.

These results highlight the potential of information-theoretic
approaches for scalable oversight of advanced AI systems.
The DoE estimator’s strong performance and correlation
with established metrics like BLEU, without requiring
canonical references, suggest that leveraging the expressive
power of language models themselves could be an effective
strategy for ensuring the reliability and consistency of their
reasoning.

2. Background and Related Work
Faithfulness and Consistency in Language Models: Re-
cent studies have highlighted the issue of unfaithful or in-
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Information Elicitation Mechanisms with Language Models

consistent reasoning in language model outputs, particu-
larly in the context of chain-of-thought (CoT) prompting
(Lyu et al., 2023; Lanham et al., 2023; Turpin et al., 2024).
Models can generate explanations that are not well-aligned
with the underlying task, leading to unreliable or mislead-
ing results. Detecting and mitigating such issues is cru-
cial for ensuring the trustworthiness of language model
applications. Scalable Oversight: As language models be-
come more sophisticated, the complexity of their inputs and
outputs often exceeds the capacity of human supervisors
to comprehensively evaluate them (Bowman et al., 2022).
This has motivated research into scalable oversight tech-
niques that aim to reduce the burden on human reviewers
while maintaining the quality and consistency of model out-
puts. Approaches such as recursive reward modeling (Leike
et al., 2018), debate (Irving et al., 2018), and amplification
(Wu et al., 2021) have been proposed to address this chal-
lenge, but there remains a need for principled and efficient
oversight mechanisms. Information Elicitation Mecha-
nisms: Peer prediction (Miller et al., 2005; Shnayder et al.,
2016) and mechanism design (Lambert & Shoham, 2009;
Radanovic & Faltings, 2013) have been widely studied as
approaches for eliciting truthful1 information from agents.
These methods aim to incentivize agents to report their pri-
vate information honestly by leveraging the relationships
between their reports and those of their peers. Output agree-
ment mechanisms (Waggoner & Chen, 2014) and strictly
proper scoring rules (Gneiting & Raftery, 2007) have also
been proposed to elicit truthful responses in various settings.
Recent work has explored the application of peer prediction
to multi-task settings (Schoenebeck & Yu, 2020) and the
practical challenges of implementing such mechanisms (Ali
et al., 2022). Contribution: Our work builds upon these
foundations by introducing a first principles approach for
detecting manipulated or unfaithful reasoning in language
model outputs. By drawing insights from peer prediction
and mechanism design, we aim to develop a scalable over-
sight technique that can be applied to advanced AI systems.

3. Information Elicitation Mechanisms
3.1. Notation and Setting

Consider a setting with m agents, where each agent i ∈ [m]
works on a set of k tasks indexed by [k]. For each task
t ∈ [k], the agents receive signals Yi,t, Yj,t ∈ Y . We use
(Y

(k)
i , Y

(k)
j ) ∈ (Y×Y)k to denote the empirically observed

joint signal profile, which is generated from some prior
distribution p. Formally, the strategy of an agent i ∈ [m]
is a random function θi : Y → ∆Y , where θi(y) gives a
probability distribution over reports conditioned on their

1Throughout the paper, we follow the mechanism design lit-
erature describing ”truthfulness” and ”honesty” as properties of
agents.

private information y. We call θ = {θi}i∈[m] the strategy
profile and denote a truthful strategy profile by τ .

3.2. Mechanism Definition

The mechanism M calculates a payment ui for each agent
by f -mutual information:

ui(θ, p) := If (θi ◦ Yi; θj ◦ Yj),

where If (X;Y ) :=
∑

x,y p(x)p(y)f
(

p(x,y)
p(x)p(y)

)
. To be a

valid f -mutual information, f needs to be a convex function
f : [0,∞) → (−∞,∞], have f(1) = 0, and f(0) =
limt→0+ f(t).

3.3. Estimating from Data using DoE and LLMs

The Difference of Entropies (DoE) estimator leverages the
expressive power of language models to efficiently quantify
the difference in mutual information between outputs gener-
ated under different sets of instructions. Given a language
model p, the DoE estimator ÎDoE(X;Y |T = t) is defined as
a difference of entropies:

ÎDoE(X;Y |T = t) := Hp(Y |T = t)−Hp(Y |X,T = t),

where Hp(Y |T = t) and Hp(Y |X,T = t) are the condi-
tional entropies of the output Y given the task instructions t
and the input-output pair (X, t), respectively, estimated us-
ing the language model p. The conditional entropies can be
approximated using the language model’s log-probabilities:

Hp(Y |T = t) ≈ −Ey∼p[log p(y|T = t)]

Hp(Y |X,T = t) ≈ −E(x,y)∼p[log p(y|x, T = t)]

Intuitively, Hp(Y |T = t) captures the uncertainty in the
model’s outputs given only the task instructions, while
Hp(Y |X,T = t) captures the uncertainty given both the
input and the instructions. The difference between these en-
tropies approximates the mutual information between X and
Y under the specific set of instructions t. Given a dataset
D = (xi, yi, ti)

n
i=1 of input-output pairs along with their

corresponding task instructions, we can estimate the DoE
using the following procedure:

1. Split the dataset into subsets based on the task instruc-
tions, i.e., Dt = (x, y) : (x, y, t) ∈ D.

2. For each subset Dt, estimate the conditional entropies:

Ĥp(Y |T = t) = − 1

|Dt|
∑
y∈Dt

log p(y|T = t)

Ĥp(Y |X,T = t) = − 1

|Dt|
∑

(x,y)∈Dt

log p(y|x, T = t)

2
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Information Elicitation Mechanisms with Language Models

3. Compute the DoE estimate:

ÎDoE(X;Y |T = t) = Ĥp(Y |T = t)−Ĥp(Y |X,T = t)

The DoE estimator provides a principled way to quantify the
difference in mutual information between outputs generated
under different sets of instructions, leveraging the expressive
power of language models. By comparing the DoE estimates
for various instruction sets, we can assess how well the
model follows the given instructions and generates outputs
that are consistent with the inputs.

4. Theoretical Analysis
4.1. Basic Results

We make four assumptions:

Assumption 4.1. Each task is independently and identically
generated according to the law of the prior P.

Assumption 4.2. The prior is stochastically relevant. That
is, for any two distinct signals y, y′ ∈ Y we have,

P[Yi|Yj = y] ̸= P[Yj |Yi = y′].

This assumption means that for both agents, every signal
corresponds to a unique belief. Note that the converse is not
necessarily true, i.e., it may not be the case that every belief
can be generated from a real signal.

Assumption 4.3. Agent strategies are independent and uni-
form across tasks.

Our theoretical assumptions, such as i.i.d. task generation
and uniform agent strategies, are motivated by the fact that
LLM generations are typically i.i.d. when conditioned on
the input context. While these assumptions may not hold
in all scenarios, they provide a useful starting point for
analyzing the behavior of our approach in the context of
LLMs.

Assumption 4.4. Each task accumulates relevant data at a
linear rate in the corpus size. More specifically, for a corpus
of size N and a task t, the number of relevant data points is
Ω(N).

We now define the truthfulness guarantee for our mechanism.

Definition 4.5. We say that M is dominant strategy in-
centive compatible (DSIC) if the truth-telling profile τ is
a weakly dominant strategy, i.e., the expected payoff is at
least that of any other strategy.

Now we can show the mechanism is truthful.

Theorem 4.6. The mechanism M defined above is DSIC
under our assumptions.

There are proofs available in the literature (Schoenebeck
& Yu, 2020). We also contribute a direct proof using the
data-processing inequality in Appendix B.

4.2. Limitations of Sample-Based Estimation

Estimating mutual information from samples is challenging
due to the inherent uncertainty in the empirical distribution.
The following theorem establishes a fundamental limitation
on the sample complexity of estimating f -mutual informa-
tion from histograms.

Theorem 4.7. Let B be any distribution-free high-
confidence lower bound on If (X;Y ) computed from a his-
togram H(S) with S ∼ pNX,Y . For sufficiently large N and
k, with high probability over the draw of S, we have

B(H(S), δ) ≤ 1

2kN2
f(2kN2).

This theorem implies that achieving a small estimation error
for f -mutual information requires an exponential number
of samples in the absence of additional assumptions. The
proof is a generalization of a similar result in (McAllester &
Stratos, 2020). Since they only consider bounding entropy
and f -MI does not have a chain-rule we provide a new
proof in the appendix. This result highlights the difficulty
of designing incentive-compatible mechanisms from data
alone. This gives motivation to our approach in Section 3.3
of leveraging LLMs, which have been pre-trained on vast
data.

4.3. Scaling Law and Implementability

Under the assumption that each task accumulates relevant
data at a linear rate in the corpus size, we can derive a
scaling law for the implementability of the mechanism M.

Corollary 4.8. For a corpus of size N , the mechanism M is
not implementable for M -bit tasks if M is Ω(log(2kN2)).

This scaling law indicates that the implementability of the
mechanism emerges as a property of the pre-training corpus
size. As the corpus grows, the probability M -bits can be
elicited successfully from the mechanism increases from
strictly zero. In fact, it is possible to produce unbiased
estimators of entropy with sufficient samples (Montgomery-
Smith & Schürmann, 2014). Therefore, the scaling law
for implementability is not locally predictable or Taylor
expandable. Overall, the DSIC property (Theorem 4.6) en-
sures truth-telling is a dominant strategy, providing a strong
incentive for honest reporting. However, Theorem 4.7 high-
lights the difficulty of estimating f -mutual information from
samples alone, motivating the use of prior knowledge from
pre-trained language models. The scaling law in Corollary
4.8 provides a connection between our results and the fea-
sibility of the model to elicit information. Together, these
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Information Elicitation Mechanisms with Language Models

results offer a foundation for understanding the DoE estima-
tor’s behavior and limitations, highlighting the importance
of leveraging prior knowledge for efficient and effective
estimation in practice.

5. Experiments
5.1. Datasets and Setup

We evaluate the DoE estimator on two datasets: machine
translation and structured review ablations. We generate 100
completions for each condition with GPT-4 Turbo and im-
plement the mechanism using Mixtral-7B-v0.1. For the ma-
chine translation task, we use the WMT14 German-English
dataset, which consists of parallel sentence pairs. We gener-
ate manipulated translations using a set of prompts designed
to elicit various types of manipulations, such as low ef-
fort, sentiment manipulations, exaggeration, and misleading
translations. The prompts cover a range of manipulation
intensities and types to assess the DoE estimator’s ability
to detect different forms of manipulated outputs. For each
task, we apply a language model to produce completions
using each of the manipulation prompts. More details on
the prompt design and data generation process can be found
in Appendix A.1. For the structured review ablation task,
we use data from the International Conference on Learning
Representations (ICLR) 2023 available publicly on OpenRe-
view. We create ablated versions of original peer reviews by
including only a subset of the original sections, as specified
in the ablations list. This allows us to assess the DoE esti-
mator’s sensitivity to the amount of information present in
the reviews. We define a set of ablation settings that progres-
sively remove sections from the original reviews, creating a
range of ablated versions with varying levels of information.
More details on the ablation settings and data generation
process can be found in Appendix A.2.

Evaluation Metrics: We report the DoE estimate, which
quantifies the difference in mutual information between the
original and manipulated texts, as described in Section 3.
Since there are more than two conditions we assign a score
ui to condition i as ui :=

∑
j ̸=i I(Xi, Xj). We also report

BLEU score using the provided human data as references.
We emphasize our mechanism does not require references.

5.2. Results and Analysis

The results for the machine translation task are presented
in Table 1. The DoE estimator assigns consistently higher
scores to the original translations compared to the manipu-
lated ones across all scenarios and appears correlated with
BLEU. This demonstrates the estimator’s ability to detect
various types of manipulations, from low-effort responses
to sentiment-based alterations and misleading translations.

For the structured review ablation task, the results are

Condition BLEU Score (± CI) Average MI (± CI)

Low Effort 0.6045 ± 0.0228 2.0116 ± 0.0819
Original 0.6689 ± 0.0193 1.9873 ± 0.0791
Understate 0.6026 ± 0.0233 1.9846 ± 0.0774
All Negative 0.4330 ± 0.0201 1.5405 ± 0.0669
Sarcastic 0.4302 ± 0.0222 1.5202 ± 0.0643
Misleading 0.4219 ± 0.0192 1.4516 ± 0.0664
All Positive 0.3303 ± 0.0161 1.3943 ± 0.0640
Exaggerate 0.2780 ± 0.0186 1.3179 ± 0.0605

Table 1. German-English Results

shown in Table 2. As the number of included sections
decreases, the DoE estimate consistently decreases, indicat-
ing a smaller difference in mutual information between the
original and ablated reviews. This suggests that the DoE
estimator is sensitive to the amount of information present
in the reviews and can effectively capture the impact of
removing specific sections.

Condition BLEU Score (± CI) Average MI (± CI)

full review 0.7262 ± 0.0461 0.5669 ± 0.0494
ablation1 0.1871 ± 0.0411 0.2861 ± 0.0360
ablation2 0.0000 ± 0.0000 0.3264 ± 0.0268
ablation3 0.1138 ± 0.0253 0.3120 ± 0.0326
ablation4 0.0057 ± 0.0038 0.3071 ± 0.0292

Table 2. Review Ablation Results

These experiments validate the DoE estimator’s ability to
detect manipulated outputs in both machine translation and
structured review settings. The estimator’s sensitivity to
various manipulation types and its consistent performance
across different ablation scenarios highlight its potential as
a scalable oversight mechanism for language models.

6. Conclusions and Limitations
In this work, we proposed and theoretically analyzed an
LLM based information elicitation mechanism and derived
scaling laws for the implementability of information elici-
tation mechanisms from samples. Empirically, we demon-
strated the mechanism’s effectiveness in identifying manip-
ulated outputs on machine translation and structured review
ablation tasks. However, our study was limited. While our
mechanism doesn’t require references, offering an advan-
tage over BLEU, computing the estimator over samples is
orders of magnitude slower than computing BLEU score.
Future research directions include exploring the application
of the DoE estimator to other domains, reducing reliance
on references, investigating more efficient estimation tech-
niques, and studying correlation with human judgments.
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Heiner, S., Lukošiūtė, K., Askell, A., Jones, A., Chen,
A., et al. Measuring progress on scalable oversight for
large language models. arXiv preprint arXiv:2211.03540,
2022.

Gneiting, T. and Raftery, A. E. Strictly proper scoring
rules, prediction, and estimation. Journal of the American
statistical Association, 102(477):359–378, 2007.

Irving, G., Christiano, P., and Amodei, D. Ai safety via
debate. arXiv preprint arXiv:1805.00899, 2018.

Lambert, N. and Shoham, Y. Eliciting truthful answers to
multiple-choice questions. In Proceedings of the 10th
ACM conference on Electronic commerce, pp. 109–118,
2009.

Lanham, T., Chen, A., Radhakrishnan, A., Steiner, B., Deni-
son, C., Hernandez, D., Li, D., Durmus, E., Hubinger,
E., Kernion, J., et al. Measuring faithfulness in chain-
of-thought reasoning. arXiv preprint arXiv:2307.13702,
2023.

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and
Legg, S. Scalable agent alignment via reward modeling:
a research direction. arXiv preprint arXiv:1811.07871,
2018.

Lyu, Q., Havaldar, S., Stein, A., Zhang, L., Rao, D., Wong,
E., Apidianaki, M., and Callison-Burch, C. Faithful chain-
of-thought reasoning. arXiv preprint arXiv:2301.13379,
2023.

McAllester, D. and Stratos, K. Formal limitations on the
measurement of mutual information. In International
Conference on Artificial Intelligence and Statistics, pp.
875–884. PMLR, 2020.

Miller, N., Resnick, P., and Zeckhauser, R. Eliciting informa-
tive feedback: The peer-prediction method. Management
Science, 51(9):1359–1373, 2005.

Montgomery-Smith, S. and Schürmann, T. Unbiased es-
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A. Experiment Setup Details
To run our experiment we prompt the language model two times for log-probabilities. First, we prompt with the task
description and a completion. Second, we prompt with the task description and two completions. We then calculate the log
probability of the first completion conditioned with the task description and the task description plus a completion. The two
completions are separated by newlines with the delimiter ”Reference 1:” or ”Reference 2:”.

A.1. Machine Translation Experiment Setup

In the machine translation experiment, we use the WMT14 German-English dataset and generate manipulated translations
using a set of prompts. The task description is ”You are evaluating pairs of german to english translations.”. The prompts are
designed to cover a range of manipulation types and intensities, as shown in Table 3. For each task in the dataset, we apply

Scenario Caption Prompt

1 Original Translate the following German sentence to English.
2 Low Effort Give an English translation that is a bit lazy and bad.
3 All Positive Translate the following German sentence into English adding positive

sentiment to spread joy and beauty.
4 All Negative Translate the following German sentence into English adding negative

sentiment to express anger and frustration.
5 Exaggerate Give an English translation that is highly exaggerated and over-the-top.
6 Understate Give an English translation that is understated and minimalistic.
7 Sarcastic Give an English translation that is dripping with sarcasm.
8 Misleading Translate the following German sentence into English, but intentionally

provide a misleading translation.

Table 3. Prompts used in the machine translation experiment

GPT4-Turbo to generate completions using each of the manipulation prompts. The generated completions are then used to
compute the DoE estimate and assess the estimator’s ability to detect the manipulations.

A.2. Structured Review Ablation Experiment Setup

In the structured review ablation experiment, we use data from the International Conference on Learning Representations
(ICLR) 2023. The task description is given by the ICLR 2023 step-by-step reviewer guidelines. The original peer reviews
are structured into several sections. We create ablated versions of the reviews by including only a subset of the original
sections, as specified in the ablations list. The ablation settings used in the experiment are listed in Table 4. We use the
short-hand CQNR for Clarity, Quality, Novelty And Reproducibility. Each ablation setting represents a different combination
of sections included in the ablated reviews. The ”Full” setting includes all the sections of the original reviews, while the
subsequent ablation settings progressively remove sections from the reviews. These ablation settings allow us to assess
the DoE estimator’s sensitivity to the amount of information present in the reviews. We generate the ablated reviews by
applying the specified ablation settings to the original human reviews. The ablated reviews are then used to compute the
DoE estimate and evaluate the estimator’s ability to capture the differences in mutual information between the original and
ablated reviews.

6
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Ablation Setting Included Sections

Full Paper Summary, Strength And Weaknesses, CQNR, Review Summary, Correctness, Technical
Novelty And Significance, Empirical Novelty And Significance, Ethics Flag, Recommendation,
Confidence

Ablation 1 Paper Summary, Strength And Weaknesses, CQNR, Review Summary, Correctness, Technical
Novelty And Significance, Empirical Novelty And Significance, Ethics Flag

Ablation 1 Strength And Weaknesses

Ablation 2 Review Summary

Ablation 3 CQNR, Correctness, Technical, Empirical, Ethics, Recommendation

Ablation 4 Paper Summary

Table 4. Ablation settings used in the structured review ablation experiment

B. Omitted Proofs
B.1. Proof of Theorem 4.6

Theorem 4.6. The mechanism M defined above is DSIC under our assumptions.

Proof. Without loss of generality we will analyze the marginal utility of a deviation of the agent i ∈ [m]. Also it is sufficient
to show Bayesian incentive compatibility first and then transform Yj → θj ◦ Yj . If they are truth-telling the strategy-profile
remains as τ and they achieve utility:

ui(τ,P) := I(Yi;Yj).

If they deviate to some other strategy θi then the strategy profile changes to τ ′ and they achieve utility:

ui(τ
′,P) := I(θi ◦ Yi;Yj).

We can show this deviation has no marginal utility using basic properties of mutual information. First, observe that saying
the truth plus some additional distortion doesn’t change the payment:

I(Yj ;Yi, θi ◦ Yi) = I(Yj ;Yi) + I(Yj ; θi ◦ Yi|Yi) = I(Yj ;Yi) + 0 ⇒ I(Yj ;Yi, θi ◦ Yi) = I(Yj ;Yi).

The first equality follows from the chain rule. The second equality follows from conditional indpendence between Yj and
θi ◦ Yi given Yi. Applying the chain rule again we see:

I(Yj ;Yi, θi ◦ Yi) = I(Yj ; θi ◦ Yi) + I(Yj ;Yi|θi ◦ Yi) ≥ I(Yj ; θi ◦ Yi).

This follows from the non-negativity of mutual information. Comparing the two implications we conclude that:

I(Yj ;Yi) ≥ I(Yj ; θi ◦ Yi).

Therefore, the marginal utility of a deviation for the agent is non-positive. This means M is Bayesian incentive compatible.
To show DSIC apply the transform Yj → θj ◦ Yj and we obtain:

I(θj ◦ Yj ;Yi) ≥ I(θj ◦ Yj ; θi ◦ Yi).

Therefore, the result is not dependent on the other agent’s strategy so we obtainhave the desired result.

B.2. Proof of Theorem 4.7

Before we prove our result we first prove the following lemma.

Lemma B.1. Let f be a convex function satisfying the conditions for a valid f -divergence. Let pX,Y be any joint distribution
with support of size M . Then, the f -mutual information If (X;Y ) attains it’s maximum value 1

M f(M) for the uniform
distribution.
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Proof. Consider the f -mutual information If (X;Y ) for the joint distribution pX,Y constrained by X = Y that is uniformly
distributed on a support of size M . We have

If (X;Y ) =

M∑
i=1

p2i · f(1/pi)

where pi = P (X = i, Y = i) and
∑

i pi = 1. Using Lagrange multipliers we have the equation:

L =

{
k∑
i

p2i f(1/pi)− λ

(
k∑
i

pi − 1

)}
We want to maximizeMaximizing with respect to the probability,

∂L
∂pi

= 0

⇒ 0 = 2pif(1/pi)− f ′(1/pi)− λ.

It will be useful to Let’s define:

g(t) := 2tf(1/t)− f ′(1/t)

⇒ pi ∈ g−1(λ). (1)

Now, either there is a maximizer of g at zero that is unique and global or maximizers are bounded away from zero. In the
first case we can connect argue formally for the need λ = −∞ to ensure we have the uniform distribution. In the second
case, we know the smallest stationary point inf{g−1(λ)} must be less than or equal to 1/M where M = kN2 is short-hand
for the support size. For M ≫ 1 this implies we must have λ(M) ≫ 1.

For sufficiently large M ≥ m0 we will have a large λ(M) and so the smallest stationary point of p2f(1/p) will be chosen.
Therefore, for some M ≥ m0 we will have that {g−1(λ(M))} consists of a singleton.

Maximizing with respect to λ yeilds:
∂L
∂λ

= 0 = −
k∑
i

pi + 1

⇒
k∑
i

pi = 1 (2)

Substituting equation (1) into equation (2):

M∑
i=1

g(λ) = 1

M · g(λ) = 1

Since pi = g(λ) we have pi =
1
M . For the uniform distribution this simplifies:

If (X;Y ) =

M∑
i=1

(1/M)2 · f(M)

=
1

M
f(M).

This was the desired result so we are done.
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Theorem 4.7. Let B be any distribution-free high-confidence lower bound on If (X;Y ) computed from a histogram H(S)
with S ∼ pNX,Y . For sufficiently large N and k, with high probability over the draw of S, we have

B(H(S), δ) ≤ 1

2kN2
f(2kN2).

Proof. Consider a distribution pX,Y and N ≥ 50. If the support of pX,Y has fewer than 2kN2 elements then If (X;Y ) <
1

2kN2 f(2kN
2) and by the premise of the theorem we have that, with probability at least 1 − δ over the draw of S,

B(H(S), δ) ≤ If (X;Y ) and the theorem follows.

If the support of pX,Y has at least 2kN2 elements then we sort the support of pX,Y into a (possibly infinite) sequence
z1, z2, . . . so that pX,Y (zi) ≥ pX,Y (zi+1). We then define a distribution p̃X,Y on the elements z1 . . . z2kN2 by

p̃X,Y (zi) =

{
pX,Y (zi) for i ≤ kN2

µ/kN2 for kN2 < i ≤ 2kN2

where µ :=
∑

j>kN2 pX,Y (zj).

We will let Small(S) denote the event that B(H(S), δ) ≤ ln 2kN2 and let Pure(S) abbreviate the event that no element
zi for i > kN2 occurs twice in the sample. Since p̃X,Y has a support of size 2kN2 we have If (X;Y ) ≤ 1

2kN2 f(2kN
2).

Applying our hypothesis to p̃X,Y gives
Pr

S∼p̃N
X,Y

(Small(S)) ≥ 1− δ

For a histogram H(S) let PrS ∼ PN (H) denote the probability over drawing S ∼ PN that H(S) = H . We now have

Pr
S∼pN

X,Y

(H|Pure(S)) = Pr
S∼p̃N

X,Y

(H|Pure(S))

This gives the following
Pr

S∼pN
X,Y

(Small(S)) ≥ Pr
S∼pN

X,Y

(Pure(S) ∧ Small(S))

= Pr
S∼pN

X,Y

(Pure(S)) Pr
S∼pN

X,Y

(Small(S)|Pure(S))

= Pr
S∼pN

X,Y

(Pure(S)) Pr
S∼p̃N

X,Y

(Small(S)|Pure(S))

≥ Pr
S∼pN

X,Y

(Pure(S)) Pr
S∼p̃N

X,Y

(Pure(S) ∧ Small(S))

For i > kN2 we have p̃X,Y (zi) ≤ 1/(kN2) which gives

Pr
S∼p̃N

X,Y

(Pure(S)) ≥
N−1∏
j=1

(
1− j

kN2

)

Using 1− z ≥ e−1.01z for z ≤ 1/100 we have the following birthday paradox calculation.

ln Pr
S∼p̃N

X,Y

(Pure(S)) ≥ − 1.01

kN2

N−1∑
j=1

j = − 1.01

kN2

(N − 1)N

2
≥ − .505

k

Therefore,

Pr
S∼p̃N

X,Y

(Pure(S)) ≥ e−.505/k ≥ 1− .505

k

Applying the union bound to the previous two inequalities gives

Pr
S∼p̃N

X,Y

(Pure(S) ∧ Small(S)) ≥ 1− δ − .505

k
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We also know pX,Y (zkN2+i) ≤ 1
kN2 or else

∑
i≤kN2 pX,Y (zi) ≥ 1. So by a derivation similar to that above we get

Pr
S∼pN

X,Y

(Pure(S)) ≥ 1− .505

k
.

.

Combining the last four inequalities gives

Pr
S∼pN

X,Y

(Small(S)) ≥ 1− δ − 1.01

k

which is the desired result.
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