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Abstract

Behavioral time series from wearable devices offer rich health insights but are
often characterized by noise, missing values, and irregular sampling. While prior
research on learning from physiological time series has focused on dense, regular,
and low-level sensor data, self-supervised pre-training on high-level, behavioral
data remains a key challenge. We propose JETS (Joint Embedding for Time
Series), a masked pre-training framework designed to address these challenges
in behavioral time series. JETS was pre-trained on a long-term dataset collected
from real-world wearables, demonstrating robustness to noisy and incomplete
measurements by distilling the data into a learned latent space. When fine-tuned
and evaluated on downstream, individual-level diagnostic prediction tasks, JETS
outperforms established baselines, validating the effectiveness of joint-embedding
architectures for ubiquitous behavioral data and paving the way for new applications
in personalized digital health.

1 Introduction

1.1 Background

The popularization of wearable devices has led to an abundance of long-term behavioral time
series data (e.g., heart rate, sleep, activity), offering rich insights into individual health trajectories
[12]. Modeling their temporal dynamics has crucial implications for applications such as early
disease detection [16] and biological marker prediction [13], enabling health monitoring and possible
prevention outside of traditional clinical settings. However, these data typically exist as Irregular
Multivariate Time Series (IMTS) [11], characterized by high dimensionality, sparsity, and irregular
sampling, due to real-world factors like intermittent device usage, sensor failures, variable recording
frequencies, and different participation timelines [18, 4]. These properties challenge traditional time
series models that often require dense, regularly sampled, fixed-length inputs. Furthermore, the
scarcity and high cost of clinical labels [8] render fully supervised learning infeasible on a large scale,
requiring semi- or self-supervised approaches to be adapted.

To address these challenges, we propose JETS (Joint Embedding for Time Series), a self-supervised
learning framework to learn robust representations from physiological IMTS. Inspired by the Joint
Embedding Predictive Architecture (JEPA) [2], JETS learns to predict the latent representations of
time series segments from the visible context. We show that the resulting embeddings are versatile
and can be effectively fine-tuned for downstream tasks such as disease prediction, highlighting the
potential new applications of behavioral time series data in health.



1.2 Related Work

Self-Supervised Learning for Time Series: Self-supervised learning (SSL) is a dominant paradigm
for learning from unlabeled time series [20]. Approaches include contrastive methods like TS2Vec
[19], predictive methods that forecast future values [17, 22], and generative methods based on masked
signal modeling [21]. While many generative models reconstruct raw signals, more recent joint-
embedding predictive architectures (JEPAs) [2, 14], such as TS-JEPA [6], perform prediction in a
learned representation space to capture more abstract, semantic features, but only for continuous,
uni-variate data. JETS builds upon this JEPA framework, adapting it for the unique challenges of
behavioral IMTS.

Wearable Foundation Models: Recent work has trained foundation models directly on short time-
windows of low-level physiological signals from wearables. LSM-2 was trained on 40 M hours of
multimodal wearable data (heart rate, accelerometry, electrodermal activity, temperature, altitude)
with reconstructive and contrastive losses; [18]]; the Apple Heart and Movement Study trained a
contrastive model on 20 million PPG and 3.75 million ECG recordings [[1]]; and DeepHeart used
57,675 person-weeks of heart-rate data with reconstructive losses [[3]].

Foundation Models for Behavioral Timeseries: Many clinically relevant physiological patterns
(e.g., circadian rhythms) only emerge over longer timespans. The Wearable Behavior Model (WBM)
[7] demonstrated that incorporating higher-level behavioral metrics, such as VO2Max and resting
heart rate, improved accuracy on downstream diagnostic tasks. Like WBM, JETS builds on behavioral
timeseries, but is designed for more constrained, lower-resolution, and mixed-source data (e.g., self-
reports and sensor readings).

2 Joint Embedding for Behavioral Time Series

To our knowledge, our Joint Embedding for Time Series (JETS) framework represents the first
application of a joint embedding architecture to long-horizon, irregularly-sampled multivariate time
series (IMTS) from behavioral data.

2.1 Training Data

The study utilizes a longitudinal dataset comprising wearable device data collected from a cohort
of 16,522 individuals, with a total of ~3 million person-days. For each individual, 63 distinct time
series metrics were recorded at a daily or lower resolution. These metrics are categorized into five
physiological and behavioral domains: cardiovascular health, respiratory health, sleep, physical
activity, and general statistics. A more comprehensive statistical summary of the dataset is provided
in the Appendix.

2.2 Model Architecture

The JETS framework consists of four primary components: a learnable tokenizer, a patch-based
masking strategy, a dual-encoder system, and a predictor network. Each input instance is presented
as a set of L observations {(ti, vi,mi)}, corresponding to day, value, and metric type.

1. Tokenization: To handle irregular sampling, time difference is used instead of absolute time
for the Mamba architecture (i.e. ∆ti = ti − ti−1) due to its state-space nature. Each of the three
dimension of the triplets is passed through an embedding layer that maps it to the hidden dimension
D. The resulting embeddings are combined to form a sequence of tokens T ∈ RL,D.

2. Masking: Tokenized sequence T is divided into a fixed number of patches, and a high percent
(i.e. 70%) of the patches are randomly removed from T to form Tctx. This approach has shown to be
effective in the MAE framework [11].

3. Encoders: JETS uses a bidirectional Mamba context encoder (Eθ) that encodes unmasked
tokens Tctx, and a target encoder (Eϕ), with an identical structure, that encodes the full sequence T.
The target encoder’s weights are trained as an exponential moving average of the context encoder’s,
as in the JEPA [2] and BYOL [9] frameworks, i.e. ϕ ← τϕ+ (1− τ)θ. The asymmetry has been
shown to effectively prevent representation collapse.
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4. Predictor: A small neural network P that takes the output from the context encoder Eθ(Tctx),
along with the positional embeddings (time and variable) of the masked patches, predicts the target
representations for the masked positions. We use transformer decoder layers in JETS.

JETS is then trained with the MSE objective: L = 1
|M|

∑
j∈M ||P (Eθ(Tctx), posj)− Eϕ(T)||22

Figure 1: a) An overview of the model architecture using a joint embedding framework b) A summary
of data missingness (NaN %), y: individuals binned by active duration, x: time series variable c)
Distribution of example time series variables, y (top to bottom): average HR, VO2max and wristTemp,
x: z-score

3 Experiments

To evaluate the quality of the learned representations, we conduct linear probing experiments on
two downstream tasks: disease diagnosis (self-reported) and biomarker prediction. For these tasks,
the pretrained JETS encoder is frozen, and a single linear layer is trained on the available annotated
labels. Implementation details are provided in the Appendix.

3.1 Baselines

Several baseline methods were selected to assess different aspects of our approach. To keep the
comparison fair, an identical representation dimension of D = 256 is chosen for all models, and their
parameter counts are kept as similar as possible.

1. Mean-pooling: As a simple sanity check, we employ a mean-pooling baseline. This method
aggregates each of the 63 time series into a single 63-dimensional vector, providing a global summary
of each user’s data while discarding all temporal information.

2. Masked Autoencoder (MAE): To ablate the effect of our joint embedding pre-training, we
implement an MAE baseline [11]. MAE is trained without the joint embedding objective using a
transformer encoder and decoder architecture.

3. JETS-Former: A variant where the Mamba blocks in the encoder are replaced with bi-
directional transformer blocks of a comparable size. This attention-based architecture is compared
against our recurrent model, with other modules (besides the tokenizer, see Appendix) unchanged.

4. PrimeNet: A self-supervised algorithm that uses time-sensitive contrastive learning, specifically
adapted to IMTS. We include PrimeNet to compare the effect of our reconstructive regime against its
contrastive approach, as its been shown to out-perform a family of other contrastive algorithms (i.e.
TS2Vec).

3



3.2 Results

15% of participants with self-reported medical history were chosen for evaluation.

Diagnosis Prediction: the task consists of predicting the presence or absence of specific medical
conditions. Each condition constitutes a binary classification problem where the self-reported
diagnosis serves as the ground truth label. We report the area under ROC (AUROC) and PRC
(AUPRC) for the binary diagnosis classification task.

Biomarker Prediction: the model is trained to predict the value of continuous physiological markers
(e.g., cholesterol), as a regression task. We report Mean Relative Error (MRE).

JETS, with a Mamba-based backbone, shows robust performance when compared to baseline models
on the classification task (Table 1).

Table 1: Downstream Diagnosis Prediction. Left: AUROC (↑). Right: AUPRC (↑)

Target Mean-Pooling JETS MAE JETS-Former PrimeNet

ADHD or ADD 0.643 0.245 0.668 0.260 0.612 0.214 0.623 0.204 0.611 0.209
Asthma 0.673 0.158 0.679 0.149 0.598 0.105 0.616 0.120 0.619 0.149
Atrial flutter 0.495 0.003 0.705 0.026 0.428 0.004 0.576 0.006 0.604 0.006
Autism spectrum 0.658 0.099 0.650 0.080 0.610 0.072 0.588 0.058 0.719 0.101
Circadian rhythm 0.582 0.013 0.654 0.019 0.470 0.010 0.472 0.011 0.479 0.016
Depression 0.630 0.230 0.648 0.239 0.573 0.216 0.619 0.206 0.656 0.272
ME/CFS 0.607 0.012 0.810 0.026 0.385 0.004 0.458 0.004 0.580 0.005
Osteoporosis 0.749 0.055 0.758 0.050 0.648 0.028 0.585 0.038 0.865 0.042
POTS 0.678 0.233 0.731 0.307 0.630 0.028 0.680 0.276 0.754 0.347
Sick Sinus Syndrome 0.748 0.012 0.868 0.125 0.670 0.005 0.396 0.005 0.673 0.046
Substance abuse 0.589 0.076 0.915 0.047 0.613 0.064 0.700 0.026 0.757 0.053
Long Covid 0.631 0.047 0.672 0.047 0.521 0.022 0.512 0.022 0.587 0.005
Anxiety 0.643 0.301 0.675 0.345 0.592 0.260 0.641 0.271 0.697 0.345
Hypertension1 0.661 0.062 0.868 0.164 0.562 0.136 0.649 0.043 0.731 0.272

Within prediction of biomarkers, JETS had the highest performance across models, but overall
accuracies were lower likely due to limitations in the number of sample used in training and evaluation
(see Appendix).

Table 2: Biomarker prediction, MRE (↓)

Target Meaning-Pooling JETS MAE JETS-Former PrimeNet

A1C 3.184 3.167 3.262 3.218 5.721
Glucose 0.083 0.081 0.082 0.081 0.335

HDL 1.576 1.493 1.568 1.618 1.645
LDL 3.561 3.363 3.692 3.554 2.102

hsCRP 2.809 2.353 1.959 1.477 1.585
Cholesterol 1.828 1.790 1.864 1.881 0.619

4 Discussion

In this study, we purposed an adaption of the Joint Embedding framework to pretraining on behavioral
IMTS data. Through two benchmarks relevant to real-world applications, we showed that JETS was
able to capture temporal relations robustly, highlighting its potential in facilitating personal health
management outside of the traditional healthcare framework.

While JETS shows promise for behavioral time series, several limitations remain: we used only an
MSE objective and one tokenization strategy, leaving contrastive losses (as in C-JEPA [15]) and
alternative discretizations for future study; although results improved predictive metrics, fairness
across subgroups and clinical utility should be assessed before real-world deployment.

1all blood pressure metrics were removed from inference data for this task to prevent data leakage
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A Technical Appendices and Supplementary Material

A.1 Code and Data Availability

The dataset was originated from a mobile app, and de-identified before its use in this study. Individual
participants agreed to a privacy policy, terms of service, and HIPAA notice (if receiving medical
care). Due to HIPAA compliance, the authors are unable to release the training data. All code used in
the study is available at: https://anonymous.4open.science/r/JETS-1027

A.2 Pre-training Details

JETS was pre-trained for 50 epochs using the following configuration. All experiments were
implemented in PyTorch and ran on an Nvidia L4 GPU.

Implementation: Bi-directional Mamba2 layers were used in the encoder. For the encoder, we
used 8 layers and 4 heads, with d_state = 64, d_conv = 4, expand = 2. For the predictor, we used
2 transformer decoder layers with the context embedding as context, and the learned positional
embedding as queries. The predictor used n_head = 2, and a hidden_dim of 2 · D. Empirically,
we found this predictor architecture led to more stable training than an MLP (with or without
normalization).

Objective: We employed a masked modeling objective where mask ratio = 0.7, the masked tokens are
subsequently removed from the input into the context encoder. The training loss was the Mean Squared
Error (MSE) between the representations predicted by the predictor and the frozen representations
(normalized) generated by the target encoder. Experiments replacing the MSE objective with cosine
similarity showed no notable performance differences.

Optimizer: We used the AdamW optimizer with a learning rate of 1e-4 and a weight decay of 1e-5.
All experiments were implemented in PyTorch and ran on an Nvidia L4 GPU.

Learning Rate Schedule: We applied linear warmup for 8 epochs. A Cosine Annealing scheduler
was used to adjust the learning rate, started at 1e-5 and gradually decayed to a minimum of 1e-8 over
the 50 epochs. In addition, we employed a linear schedule of the EMA momentum, from 0.996 to 1,
as used in I-JEPA [2].

Batching and Regularization: The model was trained with a batch size of 16. To ensure training
stability, we applied gradient clipping with a maximum L2-norm of 1.0.

Evaluation: At the end of each epoch, the model’s performance was evaluated on the validation set.
The model checkpoint with the lowest validation loss was saved for all downstream fine-tuning and
evaluation tasks.
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A.3 Linear Probing Details

All linear probes were trained and tested with a random 85-15 split, with 50 and 100 epochs of
training, for diagnoses and biomarkers, respectively. The embeddings were mean-pooled along the
time axis for all models.

Implementation: Each probe is a linear layer mapping from the embedding dimension to 1.

Objective: For diagnosis classification, we used binary cross-entropy with positive weighting
computed by the ratio Nneg : Npos. For biomarker prediction, we used mean absolute error to
minimize the effect of potential self-reported outliers. All biomarker values were normalized to mean
= 0 and std = 1 prior to training.

Optimizer: We used the Adam optimizer with a constant learning rate of 1e-4 and weight decay of
1e-2 for all biomarker and diagnosis probes.

A.4 Baseline Details

Masked Autoencoder: The core principle of Masked Autoencoders (MAE) involves a self-supervised
reconstruction task where the model learns representations by directly predicting randomly masked
portions of the input time series. For a fair comparison with our model, we aligned the MAE’s
architecture with JETS. Specifically, the MAE’s encoder is identical to the JETS encoder, utilizing
the same number of layers and attention heads. The decoder was intentionally designed to have a
comparable complexity and parameter count to the predictor module in JETS, ensuring that the total
number of trainable parameters across both models is nearly identical. This architectural parity allows
us to isolate the performance differences attributable to the joint embedding objective. To maintain
experimental consistency, we employed the same masking strategies, batch size (e.g., B=16), and
evaluation metrics used for JETS.

JETS-Former: To investigate alternatives to state-space models like Mamba [5], we developed
JETS-Former. This model explores whether the attention mechanism can provide a more effective
representation for capturing long-range dependencies in behavioral time series. The core modification
involves replacing the Mamba layers in both the encoder of the original JETS architecture with
bi-directional transformer blocks. For each layer, we used n_head = 4, a feedforward dim of 4 ×
embedding_dim, GeLU activation, and 0.1 dropout. The number of layers was kept unchanged. In
addition, transformers are permutation invariant and require positional encoding. For each triplet, we
replaced ∆t with t in the input and used a standard sinusoidal embedding to encode timestamps.

A.5 Data Details

Table 2 presents the details about our raw training data, and the portion of days each variable was
available. Several pre-processing steps were taken prior to tokenization into triplets.

Filtering: We kept users with at least 300 total readings across all variables.

Normalization: The range of days was normalized to [0, 1], and each time series variable was
normalized to a mean of 0 and a standard deviation of 1. Only training data was used to compute
normalization statistics to prevent data leakage.

Chunking: A maximum observation length for each user was set to 5000, and for individuals with
more than 5000 observations across all variable, they were chunked into new individuals.

Outliers: We removed outliers with z-scores greater than 8.0 for each individual variable. Several
variables were heavily skewed by these outliers due to self-reported data or sensor errors, as shown in
Table 2, which the removal step mitigated. Several baselines (MAE, TS2Vec) were unable to train
without outlier removal. Specifically, we trained JETS without the outlier removal and observed
comparable performance, which highlights the joint embedding strategies.
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Table 3: Behavioral Time Series Pre-training Data

Variable
(HR = heart rate)

Category Sample rate Collection
Method

Avg.
Avail.
(%)

Mean

HR_avg Cardiovascular Continuous Wearable 55.7 78.87 bpm
HR_stdDev Cardiovascular Continuous Wearable 55.7 14.96 bpm
HR_max Cardiovascular Continuous Wearable 35.2 127.57 bpm
HR_min Cardiovascular Continuous Wearable 35.2 55.36 bpm
restingHR_avg Cardiovascular Daily Wearable 50.4 65.18 bpm
restingHR_max Cardiovascular Daily Wearable 32.2 65.29 bpm
restingHR_min Cardiovascular Daily Wearable 32.3 64.57 bpm
oxygen_avg Respiratory Continuous Wearable 30.5 96.0%
oxygen_stdDev Respiratory Continuous Wearable 30.5 2.0%
oxygen_max Respiratory Continuous Wearable 18.8 99.0%
oxygen_min Respiratory Continuous Wearable 18.8 93.0%
vo2Max_avg Cardiovascular Sporadic Wearable 8.2 33.94 mL/kg/min
vo2Max_stdDev Cardiovascular Sporadic Wearable 8.2 0.10 mL/kg/min
vo2Max_max Cardiovascular Sporadic Wearable 5.0 34.42 mL/kg/min
vo2Max_min Cardiovascular Sporadic Wearable 5.0 34.28 mL
systolic_avg Cardiovascular Sporadic Self-report 1.0 122.05 mmHg
systolic_stdDev Cardiovascular Sporadic Self-report 1.0 3.79 mmHg
systolic_max Cardiovascular Sporadic Self-report 0.5 128.68 mmHg
systolic_min Cardiovascular Sporadic Self-report 0.5 117.09 mmHg
diastolic_avg Cardiovascular Sporadic Self-report 1.0 76.85 mmHg
diastolic_stdDev Cardiovascular Sporadic Self-report 1.0 2.54 mmHg
diastolic_max Cardiovascular Sporadic Self-report 0.5 80.86 mmHg
diastolic_min Cardiovascular Sporadic Self-report 0.5 73.08 mmHg
breathsMin_avg Respiratory During Sleep Wearable 33.6 16.40 br/min
breathsMin_stdDev Respiratory During Sleep Wearable 33.6 1.64 br/min
breathsMin_max Respiratory During Sleep Wearable 20.8 20.70 br/min
breathsMin_min Respiratory During Sleep Wearable 20.8 13.38 br/min
temp_avg General Sporadic Self-report 0.4 40.19 ◦F
temp_max General Sporadic Self-report 0.4 41.13 ◦F
temp_min General Sporadic Self-report 35 38.71 ◦F
wristTemp_avg General During Sleep Wearable 5.9 96.77 ◦F
wristTemp_stdDev General During Sleep Wearable 5.9 0.03 ◦F
wristTemp_max General During Sleep Wearable 5.9 96.80 ◦F
wristTemp_min General During Sleep Wearable 5.9 96.73 ◦C
HRRecovery_avg Cardiovascular Per Workout Wearable 4.6 29.15 bpm
HRRecovery_stdDev Cardiovascular Per Workout Wearable 4.6 0.30 bpm
HRRecovery_max Cardiovascular Per Workout Wearable 2.7 29.41 bpm
HRRecovery_min Cardiovascular Per Workout Wearable 2.7 28.93 bpm
sleepOxygen Respiratory Daily Wearable 15.7 95.0%
sleepDuration Sleep Daily Wearable 38.4 397.28 min
sleepOnset Sleep Daily Wearable 22.8 34.09 min
remSleepPercent Sleep Daily Wearable 20.3 20.97%
deepSleepPercent Sleep Daily Wearable 20.7 12.85%
remSleepDuration Sleep Daily Wearable 3.0 83.77 min
deepSleepDuration Sleep Daily Wearable 3.0 42.86 min
sleepQuality Sleep Daily Wearable 17.6 0.80
sleepHR Cardiovascular Daily Wearable 17.6 66.16 bpm
sleepHrv Cardiovascular Daily Wearable 15.7 0.05 ms
breathingDisturb Respiratory Daily Wearable 2.5 4.27 events/hr
steps Activity Daily Wearable 28.6 120k
cardioMins Activity Daily Wearable 98.8 30.14 min
strengthMins Activity Daily Wearable 98.8 3.13 min
workoutTimeMins Activity Daily Wearable 99.5 33.23 min
activityCals Activity Daily Wearable 35.2 530.49 kcal
highIntensity Activity Daily Wearable 98.8 0.32 min
mostRecentHRV Cardiovascular On-demand Wearable 51.8 0.04 ms
mostRecentOxygen Respiratory On-demand Wearable 30.3 96%
mostRecentHR Cardiovascular On-demand Wearable 55.5 77.59 bpm
numHoursData General Daily System Log 99.3 15.35 hours
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Figure 2: Participation timeline for a random subset of 1000 individuals in the JETS dataset, 2023-
2025

Table 4: Finetuning Diagnosis Variables and Positive Rates

Target Variable Description % Positive (All) % Positive (Test)

ADHD or ADD Attention-Deficit/Hyperactivity Disorder 14.54% 14.61%
Asthma Chronic Respiratory Disease 7.97% 7.57%
Atrial flutter Rapid, Regular Heart Rhythm 0.27% 0.58%
Autism spectrum Autism Spectrum Disorder (ASD) 4.52% 4.51%
Circadian rhythm Circadian Rhythm Sleep-Wake Disorders 1.00% 0.93%
Depression Major Depressive Disorder (MDD) 15.80% 17.46%
ME/CFS Myalgic Encephalomyelitis/Chronic Fa-

tigue Syndrome
0.46% 0.60%

Myocarditis Inflammation of the Heart Muscle 0.27% 0.07%
Osteoporosis Bone Density Loss Disease 1.33% 1.33%
POTS Postural Orthostatic Tachycardia Syn-

drome
13.94% 16.33%

Sick Sinus Syndrome Sinoatrial Node Dysfunction 0.27% 0.40%
Substance abuse Substance Use Disorder (SUD) 0.73% 1.00%
Long Covid Post-COVID conditions 2.12% 2.66%
Anxiety Anxiety Disorders 20.25% 20.58%
Hypertension High Blood Pressure 2.32% 3.12%

Table 5: Finetuning Biomarker Variable Distributions

Target Variable Description Mean (Train) Num. Avail. (Total)

A1C Glycated Hemoglobin Level 5.073 210
Glucose Blood Glucose Level 92.594 301
HDL High-Density Lipoprotein Level 54.105 272
LDL Low-Density Lipoprotein level 104.675 238
hsCRP High-sensitivity C-reactive Protein 3.947 168
Cholesterol Total Cholesterol Level 189.251 278

A.6 Additional Metrics

Supplemental to the main section, we report 95% AUROC confidence intervals for JETS computed
using the formula given by Hanley and McNeil [10]. We note that some of the targets were ultra-rare,
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with very few users reported positive. This possibly contributed to the large variation in AUROC of
the model.

Table 6: Diagnosis AUROC 95% Confidence Intervals. Left: Lower. Right: Upper

Target Lower Upper

ADHD or ADD 0.631 0.705
Asthma 0.629 0.729

Atrial flutter 0.531 0.879
Autism spectrum 0.585 0.715
Circadian rhythm 0.513 0.794

Depression 0.613 0.682
ME/CFS 0.657 0.963

Myocarditis 0.087 1.00
Osteoporosis 0.648 0.868

POTS 0.697 0.764
Sick Sinus Syndrome 0.703 1.00

Substance abuse 0.827 1.00
Long Covid 0.589 0.755

Anxiety 0.643 0.707
Hypertension 0.809 0.927
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the introduction are supported by experiments in section
3.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the study are discussed in section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All aspects of model architecture and training setup are included in the
Appendix, sections A.2, A.3, and A.4. Code is provided in section A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is available in Appendix section A.1 and includes both the model and
the experiment setup. Data is unfortunately constrained by HIPAA policies and unable to be
made public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details relevant to the results are included in the Appendix, sections A.2
through A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The AUROC confidence intervals were included for JETS in the appendix
under a normal distribution assumption.

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware specifications were included in the Appendix subsections A.2
and A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and ensured the study
conforms to the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The introduction and discussion sections the paper discuss the implication and
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The JETS pre-training framework is a method of extracting general repre-
sentations from behavioral time series. The study doesn’t pose any risk if the downstream
applications are responsibly chosen, as in the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The only existing code used in this study was from TS2Vec [19], which
the original author open-sourced under the MIT license. Other models involved were
implemented independently.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Anonymized code is released and properly documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM use did not contribute to any core components of this study.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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