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Abstract

Al Planning techniques generate sequences of actions for complex tasks. However,
they lack the ability to understand planning tasks when provided using natural
language. Now, Large Language Models (LLMs) provide novel capabilities in
human-computer interaction. In the context of planning tasks, LLMs have shown
to be particularly good in interpreting human intents among other uses. This
paper introduces GENPLANX that integrates LLMs for natural language-based
description of planning tasks, with a classical Al planning engine, alongside an
execution and monitoring framework. We demonstrate the efficacy of GENPLANX
in assisting users with office-related tasks, highlighting its potential to streamline
workflows and enhance productivity through seamless human-AlI collaboration.

1 Introduction

The rapid advancement of Al has led to the development of techniques capable of understanding
and executing complex tasks. Among these, Large Language Models (LLMs) have emerged as a
powerful tool for interpreting natural language, enabling machines to comprehend and respond to
human requests with remarkable accuracy [|]. However, the challenge remains in translating these
requests into valid (and ideally optimal) plans that can be executed in real-world environments.

In particular, we are interested in planning problems that involve the integration of standard office-
related tasks, such as handling emails/calendars, managing presentations or databases, connecting to
company APIs, or even running machine learning tasks. One of the pioneering efforts in this domain
is the development of softbots, as introduced by Etizioni et al. [2]. These Softbots are software agents
that perform tasks by interacting with software environments. The recent development of OpenAl
Agent? shows that this is the future of office assistants.

The current preferred strategy for tackling these tasks involves using LLMs to create office co-
pilots that generate plans in various formats [3]. While these tools are powerful, they require a
carefully designed LLM pipeline due to the lack of guarantees regarding the accuracy or optimality
of the solutions. On the other hand, classical Al planning offers reliable methods for creating
action sequences to achieve goals from initial states within a specified domain model [4]. Although
effective in real-world scenarios like logistics [5], satellite/rover control [6], elevator management [7],
and tourist planning [8], they are unable to process natural language task descriptions, which is
a requirement for current users. In this paper, we present the GENPLANX system, GENeration
of PLANs and eXecution, which is designed to receive requests in natural language about office-
related tasks, generate plans to achieve the users intents, execute the actions in the generated plans,
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continuously monitor for successful execution, and replan in case of failed execution. Given a specific
application in planning, the domain model is fixed and defined by humans. So, the users specify a
planning task by providing the problem description. The problem is composed of a set of objects, an
initial state and a set of goals (also called intents). Furthermore, GENPLANX is designed to allow
seamless integration of new tools, making it adaptable to new applications. This is done by adding
new actions to the PDDL domain description as well as their python code counterpart as explained
later. By integrating LL.Ms with classical planning techniques, we can create techniques that not only
understand natural language requests, but also generate and execute plans that utilize various tools
and databases to address these requests effectively. This paper will review the related work, describe
GENPLANX components, and report our experimental evaluation where GENPLANX exhibit good
results compared to pure LLM-based approaches.

2 Related Work

The integration of planning algorithms with LLMs has attracted considerable interest as researchers
aim to improve Al systems’ ability to understand and execute complex tasks. This section reviews key
contributions in this area, focusing on advancements and challenges in merging these technologies.
The first subsection discusses works that rely entirely on LLMs for planning. The second subsection
explores hybrid approaches that combine LLMs with planning. The third subsection examines
planning approaches within the software domain.

2.1 Planning using LLMs

Recent advancements in prompting strategies have enabled LLMs to orchestrate multi-step reasoning
internally. Chain-of-Thought (CoT) prompting [9] instructs models to generate intermediate reasoning
steps, decomposing complex tasks into simpler sub-problems. Building upon CoT, Tree-of-Thought
(ToT) [10] explores multiple reasoning paths concurrently before selecting the most promising
sequence of actions. More complex approaches include ReAct [ 1], which interleaves reasoning
with concrete actions in an interactive feedback loop and ADaPT [12], which focuses on adaptive
decomposition by dynamically breaking down tasks based on context. These methods represent a
trend toward LLM-based planning using internal guiding mechanisms rather than external planners.
While these techniques can handle open-ended planning tasks without explicit domain models, they
lack guarantees regarding soundness or optimality that classical Al planning approaches provide. In
contrast, GENPLANX does not use LLMs for plan generation but relies on a classical Al planner,
ensuring these formal guarantees.

2.2 LLM and Automated Planning

Initial attempts to use LLMs for planning tasks through direct prompting highlighted significant
limitations [ 13, 14], demonstrating that LLMs alone struggle to generate valid plans when evaluated
against standard planning benchmarks.This has led to hybrid approaches combining LLMs with
external planners or validators [15, 16], which aligns with our work in developing GENPLANX,
where we leverage the strengths of both LLMs and classical planning techniques.

In these hybrid frameworks, LLMs typically parse input requests and generate structured representa-
tion of the intent, while dedicated planners handle the actual problem-solving. Several approaches
use LLMs to generate PDDL (Planning Domain Description Language [17]) problems and do-
mains [18, 19, 20, 21]. GENPLANX differs by having LLMs generate JSON outputs rather than
PDDL, as this format is easier for LLMs to produce and can represent objects beyond symbols, such
as file paths or email addresses.

Other work has focused on integrating structured domain knowledge with neural architectures [22, 23],
showing that embedding explicit domain rules within transformer models improves mapping accuracy
from natural language to formal planning constructs. Similarly, GENPLANX aligns user language
and intents to formal planning representations, enhancing plan robustness and providing guarantees.

Several frameworks facilitate this integration of LLMs and planning algorithms. Huang et al. [24]
presented a framework where LLMs generate high-level plans refined by classical planning algorithms.
Liu et al. [19] introduced LLM+P, in which an LLM translates a natural-language task into PDDL
specifications before invoking a classical planner. Finally, the plan is translated back to a readable
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form. These approaches underscore the complementary strengths of LLMs in understanding language
and planning algorithms in optimizing task execution. Mottaghi et al. [25] created a framework for
integrating LLMs with planning in interactive environments. Singh et al. [26] proposed TwoStep
for multi-agent planning, where LLMs decompose goals into independent sub-goals while symbolic
planners handle sub-problems optimally. Benyamin ez al. [27] use LLMs to orchestrate the different
planning steps. These approaches and GENPLANX, leverage the complementary strengths of LLMs
in language understanding and planning algorithms in optimizing task execution.

2.3 Softbots and Planning

Most real-world applications of Al planning technology are related to control of physical systems,
such as robots [60] or satellites [28, 29]. Significantly less work has focused on software actions.
Early work [2] introduced the concept of softbots (software bots), which utilized planning to in-
teract with software environments. Among other works that have used Al planning for software
tasks —where actions are functions/commands to be executed in a computer— we can mention web
service composition [30, 3 1], business workflows generation [32], networks [33] or machine learning
workflows[34].

3 Architecture

The GENPLANX architecture is designed to integrate natural language processing with classical
planning for automating complex tasks. It comprises several components that process requests and
execute plans, as shown in Figure 1. A user request includes (1) Entities: relevant objects such as file
names, slide titles, or calendar appointments); (2) Initial state: The task’s starting configuration, like
a database in a CSV file or text provided for translation; and (3) Goals: The desired outcomes, such
as generating a PowerPoint or creating a decision tree from CSV data. Since users describe tasks in
natural language without needing to understand Al planning elements, an LLM-based component
can map English task descriptions into formal planning tasks, which then can be solved with an
automated planner. The following sections will detail each component in the pipeline.

GenPlanX
Enter your request
Read the file genplanx/Aviva.pdf, summarize its
contents, translate into Spanish, and add the results to
aslide with the title “Descripcion de Aviva” and save it
into a powerpoint file genplanx/test.ppt

request

PDDL response
Domain
problem problem
Entity request Generate | Prompt (json) ) (PDDL) plan
Extraction | Entity Prompt LM Compiler Planner Execution
7 :

types Failures
New Goals

Figure 1: Architecture of GENPLANX. Green boxes are the unique implementations for our approach
and contributions of this paper. White boxes are components integrated from existing Al tools.

4 Entity Extraction

The entity extraction module in GENPLANX builds on the capabilities described in [35], which
focused on an email handling solution. We integrated this to improve prompts with domain-specific
entities not covered in LLM training. This is especially important in the finance sector, where
extracted entities include unique identifiers (for firms, clients), security IDs (CUSIP, SEDOL, ISIN),
trade details (amount, currency, dates), portfolio IDs, and account numbers, among others. Utilizing
an ensemble approach that combines deep learning, pattern-based techniques, and domain expertise,
the module effectively extracts entities from text. For instance, in case the input request contains
references to entities such as F34GP5, US1234567892, 16-07-24, A12345, and P6763 the mod-
ule categorizes them correctly as firm identifier, ISIN, trade date, account number, and
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portfolio id, respectively. The extractor returns a structured output detailing the types and lists of
entities found.

5 Domain Model

A PDDL domain model defines the knowledge of a planning environment by specifying key elements
such as types, predicates, and actions. Types categorize objects within the domain, while predicates
describe properties and relationships among these objects. Actions are defined by their preconditions
and effects, detailing the operations that can be performed and how they change the state of the world.
In our work, we have named the domain as assistant, and it is designed to handle a variety of tasks
within a professional office environment such as data manipulation, presentation, and communication.

The assistant domain includes a diverse set of types, such as file, dataframe, email, contents
or object. The domain also defines predicates such as (in ?c - contents 7cl - contents)
and (available 7o - object), that indicate which contents are associated with each other and
to determine the availability of objects, respectively. Among the actions in this domain, let us take
the read-data action (shown in Listing 1) as an example. This action reads data from a data-file
(a parameter for the action), which can be an excel-file or csv-file, and makes it available
as a dataframe 7d. The property or fluent available ?7d would be added to the state to indicate that
after the action completes. The sole precondition is that the file contains the dataframe contents. The
action is assigned a cost of 1.

Listing 1: read-data action.
(: action read—data
:parameters (?a — ai—agent ?d — dataframe ?f — data—file )
: precondition (and (in ?d ?f))
: effect (and ( available ?d)
(increase ( total —cost) 1)))

6 Prompting and LLMs

In this section, we explore the structure of the input prompt, detailing all the components necessary
for GENPLANX to effectively fulfill user requests. This includes the required intents, as well as the
structure of the output, supplemented with examples.

6.1 Prompt Description

GENPLANX must interpret a given request, and identify a set of intents within the request. The
prompt used by GENPLANX is a carefully crafted set of instructions designed to assist in generating
responses to office-related queries which can utilize structured data from multiple systems of records
(SORs), understand user intents, and provide the necessary initial and goals for the planner. The
prompt encompasses several key components, each serving a distinct purpose to ensure the response
process is both efficient and accurate. We leverage the robust few-shot learning capabilities of LLMs
to adapt GENPLANX to several user requests. Below is an overview of the prompt-components,
along with the rationale for their inclusion. A complete description of the prompt can be found at F.

Generic Task Definition The prompt starts by defining the generic task: addressing office operation
queries. This sets the context and scope, aiding the LLM in understanding its main goal. By clearly
stating the task, the prompt offers a focused framework for generating relevant responses. While the
current prompt configuration is static, the Model Context Protocol (MCP)? can be used to dynamically
augment this and other sections of the prompt. This approach allows for automatic tool and action
integration based on current information, enhancing the system’s flexibility in handling diverse user
queries.

3https://modelcontextprotocol.io/
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Database Schemas The prompt provides schemas for relevant SORs in case the request refers
to the available datasets. Databases relate to several office processes such as sales, operations,
communications, etc. Each schema lists the relevant columns, such as trade-id, client-id, date,
etc. The prompt instructs the LLM to pay attention to the case sensitivity of these fields when creating
database queries. These schemas outline the available data fields, guiding the LLM in selecting
the appropriate data sources for each query. This ensures that responses are based on accurate and
relevant data.

Domain Types, Actions and Predicates The prompt includes a complete list of domain types,
predicates and actions by including all these elements from the input domain model in PDDL. This
ensures that the LLM can accurately model the data and actions required to fulfill the query.

Set of Intents A set of predefined intents is included to guide the identification of user requests; this
is to facilitate few-shot learning to the LLM. By categorizing requests into specific intents, the prompt
helps streamline the response generation process, ensuring that each query is addressed appropriately.

Response Format and Dictionary Structure The response to a query is expected to be a Python
dictionary that encapsulates the identified intents. The dictionary must include keys for init_state
and goals, both of which are mandatory. The rest of the keys represent the objects that should be con-
sidered when solving the planning task. The values of all keys are definition dictionaries that include
specific elements such as type, value, and other context-specific keys (e.g., to, body, or subject
for emails). These structural constraints in the response ensure consistency and standardization in the
output, making them easier to interpret and process.

State Representation The prompt also includes definitions related to both init_state and goals.
They should be strings formatted as a sequence of literals. Each literal is a tuple with elements
separated by spaces, where the first element is a predicate from the predefined list of predicates. The
prompt also specifies that literals from the goals should not be included in the initial state.

Other instructions If multiple intents are identified in a request, the prompt instructs to merge the
dictionaries into a single comprehensive dictionary. This involves combining all entities found and
merging the init_state and goals from all intents. The prompt also imposes constraints, such as
not defining functions or using external tools, and ensuring that the output is formatted correctly in a
single response.

6.2 Intents

The intents refer to the set of goals that GENPLANX should achieve to fulfill the user request. Each
intent is a tuple composed of the name of the intent, its description and the expected json output from
the LLM. These intents enable GENPLANX to efficiently handle file and data management tasks,
such as reading and saving files in various formats, including PDFs and Word documents, and per-
forming database operations like adding, deleting, or modifying records. GENPLANX also supports
data visualization and presentations creation, enabling users to generate charts and comprehensive
PowerPoint presentations with ease. Additionally, it facilitates effective communication by allowing
users to send emails and notifications, ensuring that important information is shared promptly.

Beyond basic data handling, GENPLANX offers advanced information processing and organizational
tools. Users can explain, translate, or summarize text, find information within files, and conduct deep
research on specific topics. GENPLANX also aids in scheduling by identifying free slots in calendars
and provides web search capabilities for additional information. For more complex interactions, it
can query a large language model for intelligent responses and match files based on specific criteria,
showcasing its versatility and adaptability in addressing a wide range of tasks. The following is a list
of current intents:

* File manipulation: Read file, Save file, Read PDF file, Read Word file, Save PDF file.

» Database primitive operations: Add, delete or modify records. Count or add value.

* Office-related operations: Send email, Notify by email, Generate Chart, Create PowerPoint,
Create chart slide, Create text slide, Create table slide.
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* LLM-related operations: Explain, Translate, Summarize, Deep research, Ask LLM.

¢ Other: API access, Data access, Find information in file, Find free slots, Search web, Match
files.

6.3 Output of the LLM

The output of the LLM is a Python dictionary/json that should contain the required information to
fulfill the user request. This dictionary is composed of the joint information from the different set
of intents selected by the LLM. It contains information on objects to be considered in the planning
episode, the initial state representing the state at the beginning of the planning task, and the goals
representing the desired partial state. This dictionary must adhere to the following structure:

* The keys of the dictionary are the elements of the task (objects), init_state, and goals.
All keys must be in lowercase.

» Each object is defined as a dictionary with at least the two keys type and value. type
represents the PDDL type of the object. value is the value that the object will take at
execution time. Initially, it can have any arbitrary value for most cases. When actions operate
with an object, the value of the object during execution will be saved there. Additionally, it
can have other specific keys such as to, body, or subject for emails.

* The types of the different objects must adhere to a pre-defined set of types, the ones provided
as input in the prompt that appear in the domain file.

* init_state and goals are mandatory keys and are composed of a sequence of literals.

A complete dictionary output example is available in Appendix A.

7 Planning and Execution

Given the dictionary returned by the LLM, the compiler module translates its information into a
PDDL problem definition (see Appendix B). The domain and problem files serve as input to the
architecture described in Figure 1. The Planner then returns a Plan, i.e., a sequence of actions
described in PDDL that achieve the goal stated in the problem. GENPLANX uses Fast-Downward
[36] through the Unified Planning library [37], but any other planning engine can be used, since the
domain and problem definitions are specified in the PDDL standard language. Thus, GENPLANX is
planner-independent. In Listing 2, we show an example of a plan in PDDL, which is the solution
to the problem stated in B. Every action is represented as a tuple composed of the name and the
parameters of the action.

Listing 2: Plan Example.
(read-data ai dataframel data-filel)
(query-data ai queryl dataframel filtered-dataframe)
(create-response ai chat-response)
(add-to-response ai filtered-dataframe chat-response)
(send-response ai chat-response)

8 Execution and Monitoring

The resulting plan is sent to the Monitoring and Execution module, which translates it into the actual
code that will be executed into the real-world. This translation is accomplished through a mapping
linking PDDL actions to the corresponding python executable functions. Each PDDL action has a
corresponding python function with the same name that implements it. These python functions share
the signature (parameters, state), which allows the execution module to update the execution
state at each step. See the implementation of read-data in Appendix C

This module will also periodically sense the real-world to check whether the plan is going as expected
or the real-world has deviated from the planned states. As opposed to other planning-execution
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architectures [38], currently GENPLANX only monitors the low-level state without translating it back
to the high-level PDDL state. More specifically, monitoring is done through boolean functions that
check whether the execution of the action into the real-world yielded the expected effects. See an
example in Appendix C. For an end-to-end example, showing from intents to executed actions see
Appendix D.

9 Experimental Evaluation

In this section, we present the results of a set of preliminary experiments designed to compare the
planning abilities of GENPLANX, which generates a PDDL problem using an LLM, and solves it
using a classical planner, with two LLM-based planning approaches:

1. LLM-DIRECT-PLAN, which generates a plan given the user request and a natural language
description of the assistant domain. LLM-DIRECT-PLAN runs an LLM client with a prompt
designed to generate a plan from the request by considering the same actions in the domain,
and carefully guiding the LLM towards a valid, and syntactically correct output (i.e., a
PDDL plan compliant with the given domain).

2. LLM-TRANSLATE-AND-PLAN, which first translates the user request into a PDDL problem,
and generates a plan for it; both steps use an LLM. The translation part works in the same
way as GENPLANX produces the planning task. In the second step the prompt consists of
a list of actions with the corresponding parameters and a detailed instruction to produce a
syntactically correct PDDL plan.

We evaluated all three approaches with two LLM clients, GPT-40 and 03-mini. We manually designed
50 user requests* that covered several intents each and handled prototypical examples within the
assistant domain. We then ran each planning configuration five times (due to the stochasticity of the
call to the LLM) and report metrics (mean and standard deviation) for success ratio, and time taken
(for the full process, LLM steps, and planning time). We used GPT-40 with temperature 0, and max
output of 4096 tokens, and 03-mini with temperature 0, and max tokens 32768. Success is measured
by checking whether the generated plan is valid using a formal plan validation tool and if the plan
is equivalent to the expected plan set as ground truth. The expected plan is the sequence of actions
manually created for each of the 50 user request in the test set. See Appendix E.2 for details on plan
validation. Table 1 summarizes the main results.

Approach Success ratio  Total time  Translation time Planning time
GENPLANX (with GPT-40) 0.50 (0.50) 9.0 (2.1) 5.5(1.8) 35014
LLM-DP (with 03-mini) 0.27 (0.44) 16.6(5.7) NA 16.6 (5.7)
LLM-TP (with GPT-40) 0.29 (0.45) 9.3 (2.7) 5.6 (2.8) 3.7(0.9)

Table 1: Results of comparing GENPLANX against LLM-based approaches. We report the mean
(and standard deviation) for the best performing LLM Client (in parentheses) within each approach.
Results for all configurations are shown in Appendix E. LLM-DP = LLM-DIRECT-PLAN; LLM-TP
= LLM-TRANSLATE-AND-PLAN.

We observe that GENPLANX demonstrates a significantly higher success ratio of 0.50 (0.50), indicat-
ing its robustness in generating valid plans compared to LLM-DIRECT-PLAN and LLM-TRANSLATE-
AND-PLAN, which have success ratios of 0.27 (0.44), 0.29 (0.45) respectively. The high success ratio
of GENPLANX suggests that it is more reliable in performing planning-related tasks, and in particular
within the office assistant domain, even compared with a "reasoning" LLM as 03-mini.

In terms of time metrics, GENPLANX demonstrates better efficiency with a total time of 9.0 (2.1)
seconds, which is lower than the best-performing LLM approaches: LLM-DIRECT-PLAN’s 16.6 (5.7)
seconds and LLM-TRANSLATE-AND-PLAN’s 9.3 (0.45) seconds. This indicates that GENPLANX is
also very efficient in the planning phase.

*We repeated the experiments with randomly generated instances by GPT4o and results were equivalent.
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9.1 Role of LLM Clients

We evaluated GENPLANX, LLM-DIRECT-PLAN and LLM-TRANSLATE-AND-PLAN with GPT-40
and o3-mini LLM clients. For both GENPLANX and LLM-TRANSLATE-AND-PLAN, which use the
LLM for translating the user request in natural language to PDDL, GPT-40 is outperforming 03-mini
as observed in Figure 2 (left). This indicates that gpt-4o is better at translating natural language
to PDDL than 03-mini. In terms of planning, LLM-DIRECT-PLAN and LLM-TRANSLATE-AND-
PLAN use the LLM Client, whereas, GENPLANX uses a classical planner. The classical planner is
outperforming both GPT-40 and 03-mini. In all cases, 03-mini takes longer to respond to the queries
as seen in Figure 2 (right). LLM-TRANSLATE-AND-PLAN is the most time consuming planner
because it uses the LLM Client twice. For detailed breakdown of translating vs planning time, please
see Appendix E, Figure 7.

Impact of LLM Client on Success Rate Impact of LLM Client on Total Time

36.63x10.13

0.8

LLM Client
GPT-40
03-mini

LLM Client
GPT-40
03-mini

25 4 23.60+6.27

e
=

0.50£0.50
0.41+0.49

Total Time
N
=]

16.59+5.66

Success Rate

o
i

026+0.440.2720.44  0-29%0.450.28+0.45

104{ 8.95+2.12 9.33+2.73

51 3.67x0.60

LLM-DP LLM-TP

Approach

LLM-DP LLM-TP GENPLANX

Approach

GENPLANX

Figure 2: We experimented with two LLM clients, GPT-40 and 03-mini for each of our planning
approaches, GENPLANX, LLM-DIRECT-PLAN (LLM-DP) and LLM-TRANSLATE-AND-PLAN
(LLM-TP). Left: The impact of LLM Client on success ratio. Right: The total time taken (in seconds
per run) by the LLM Clients for the respective planning approaches shown in X-axis.

9.2 Failure Analysis

In this section, we examine the cases where the planners fail, and discuss the potential reasons for
failure. The cases where GENPLANX fail (as well as the LLM-TRANSLATE-AND-PLAN, since they
share the same initial step) are primarily due to the LLM’s inability to generate a valid PDDL problem
description (dictionary). This issue often arises when an action requires a parameter of a specific
type, but the problem description supplies an object of a subtype. Refining the prompt engineering
might boost GENPLANXs performance even further.

In Figure 3 (left), we examine the incorrect plans and categorize them. LLM-DIRECT-PLAN and
LLM-TRANSLATE-AND-PLAN return invalid plans for a singificant number of cases. This is due to
incorrect positioning of actions within a plan, incorrect action parameters and not including relevant
actions. GENPLANX and LLM-TRANSLATE-AND-PLAN fail in the PDDL problem formulation
step, and end up solving a different task compared to the user request. We categorize these failures as
‘Different Task’. Finally, if the problem is formed incorrectly such that no solution exists, GENPLANX
doesn’t return a plan (‘No plan’ category).

In Figure 3 (right), we calculate the overlap of the incorrect plans with the ground truth. If all the
actions in the result are part of the ground truth, overlap is 1. If no actions in the generated plan are
a part of the ground truth, the overlap is 0. We observe that even though LLM-TRANSLATE-AND-
PLAN is the worst performing planner in our experiments, its incorrect plans have a highest overlap
with ground truth.

9.3 Role of Action Semantics

For LLM-DIRECT-PLAN and LLM-TRANSLATE-AND-PLAN, we conducted tests without and with
providing the action semantics of the planning domain in natural language as a part of the prompt.
This includes the list of objects and a description of how the action changes the environment. We
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Figure 3: Analysis of failures for our three planning approaches, GENPLANX, LLM-DIRECT-PLAN
(LLM-DP), and LLM-TRANSLATE-AND-PLAN (LLM-TP). Left: We observe the different categories
of failures. Right: We study the overlap of the incorrect plans with the ground truth.

expected that providing the description of action semantics will improve the reasoning of the LLMs
and guide them to come up with better plans. However, it led to a degradation in performance for
both approaches, resulting in lower success ratios compared to the base prompt without the action
semantics. For the LLM-DIRECT-PLAN model, the success ratio dropped from 25.6% to 21.2%
with gpt-4o0 and from 26.8% to 19.2% with the 03-mini (see Table 2 for all metrics). Similarly,
the LLM-TRANSLATE-AND-PLAN model experienced a decrease in success ratio from 28.8% to
17.2% with the gpt-4o and from 27.6% to 10.8% with 03-mini. Given the information value of action
semantics in natural language for the tasks, we expected the performance to improve. However, this
drop in performance is not entirely unexpected as prior work [39, 40, 41] has shown that reasoning
performance can drop with the length of the context, and generating plans requires complex reasoning
over dependencies and costs.

10 Conclusions and Future work

In this paper we have introduced GENPLANX. It can understand user requests in natural language,
generate plans to address those requests, execute the plans in a real office environment, and monitor the
execution. Our contributions include a new domain that implements common office-related actions,
the implementation of those actions, as well as an architecture that integrates LLMs and Al classical
planning. Additionally, we reported an experimental evaluation in which GENPLANX demonstrated
a success ratio that was 20 percentage points higher compared to LLM-based alternatives. This also
includes the benefit of reduced response time due to the simpler nature of translating user requests
into a formal task representation.

In future work we would like to improve GENPLANX in two main fronts. First, we would like to
expand the set of actions considered in order to cover a wider ranger of office tasks. This process
could be either manual as we are currently doing; or automated, by learning action models from
observations [42, 43, 44]. Second, we would like to provide GENPLANX with goal reasoning [45]
capabilities. In particular, we would like to let GENPLANX automatically generate new goals upon
replanning [46], when monitoring detects opportunities upon changes in the environment [47], by
analyzing the structure of the goals [48], or by predicting the appearance of new goals [49, 50].

11 Limitations

Our current evaluation, while demonstrating a 20 percentage point improvement over LLM-based
alternatives, is limited in scope and lacks extensive testing across diverse office environments, task
complexities, and user expertise levels. The performance of GENPLANX is partially dependent on the
specific LLM used, yet we have not systematically evaluated how different language models affect
overall system performance, robustness, and generalization capabilities. Additionally, the current
implementation relies on a fixed manually designed domain model with predefined actions, creating
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scalability challenges as the number of supported office tasks increases, potentially affecting planning
efficiency and maintenance as the domain model grows in complexity.
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A Output Example of Task description

As an example, given the request What is the status of the trade TR123?, the LLM could return the dictionary
in Figure 4. This dictionary represents the output of the LLM tasked with extracting the status of a particular
trade when provided with the trade ID, which is present in a downstream file. The file is identified by the type of
the entity returned by the Entity extraction module. Going into more detail, what the LLM is describing at the

output is:

{"data-filel": {"type": "data-file", "value": "./genplanx/file_1.csv"}
"dataframel": {"type": "dataframe", "value": []}
"filtered-dataframe": {"type": "dataframe", "value": []}

"chat-response": {"type": "response", "value": []}
"queryl": {"type": "query", "value": "df [(df["trade-id"] == "TR123")]"}
"init_state": {"type": "state",

"value": "(in dataframel data-filel) (available queryl)

(query-result dataframel queryl filtered-dataframe)"}
"goals": {"type": "state",
"value": "(and (done-query queryl)
(in filtered-dataframe chat-response)
(sent chat-response))"}}

Figure 4: Example of a structured output dictionary for getting the status of a trade.

* Objects: The dictionary includes the elements (as key-value pairs) that are required during execution,
like the file where the information is stored, the dataframe that will be extracted from the file, the
filtered-dataframe after filtering it regarding the user query and the chat response that would be

generated and returned to the user

« Initial State: Represents the initial state of the task, where the dataframe is inside the file, the system
has the query defined and there is a query result after applying the query to the dataframe inside the

file.

* Goals: Represents the desired state where the query has been done, the filtered dataframe is present in

the response to the user and the response is sent to the user with the information requested.

B PDDL Problem

The task dictionary is translated into a PDDL problem as shown in Listing 3.

Listing 3: Problem Example.

(define (problem test-11lm)
(:domain assistant)
(:objects ai - agent
data-filel - data-file
dataframel filtered-dataframe - dataframe
chat-response - response
queryl - query)
(:init (in dataframel data-filel)
(available queryl)
(query-result dataframel queryl filtered-dataframe))
(:goal (and (done-query queryl)
(in filtered-dataframe chat-response)
(sent chat-response))))
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Each action in the plan has a corresponding python implementation that executes the task in the real-world.
Action shown in Listing 4 shows an example where the action reads the content of a data file and loads it into
a dataframe. Listing 5 shows the python function that monitors the execution of the read-data action. This
function checks whether the data read from the file is a dataframe instance or not. In case the execution of any
action fails, GENPLANX replans. Another reason for replanning can be an action execution adding a new goal
to the execution state. As an example, a read-email action can read the contents of an email, and generate a new

Execution and Monitoring Functions

set of goals related to the intents expressed in the email.

def

def

Listing 4: read-data Python implementation.

read_data (parameters, state):
# obtains the object names from the parameters of the action
data_var, file_var = parameters[1], parameters[2]
# gets the file path from the file entry in the execution state
path = state[file_var]["value"]
df = pd.read_csv(path)
columns = df.columns.tolist()
state[data_var] = {"type": "dataframe",
"value": df,
"columns": columns}
# adds columns of dataframe as new objects to the state
for col in columns:
if col not in state:

name = col.replace(",", "-") + "_column"
name = name.lower ()
state[name] = {"type": "column", "value": col}

return state

Listing 5: Function that monitors the success of the read-data action execution.
read_data_success (action, state):
data_var = action[2]
success = (isinstance(state[data_var]["value"], pd.DataFrame))
return success
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s« D Example showing the utility of GENPLANX

535 In this section, we present an example that shows the utility of GENPLANX. For an office task related to annual
536 report presentation, we present Example 1 and demonstrate how GENPLANX successfully optimally solves the
537  task.

538 User Prompt for Example 1: Read data and generate a barchart from ‘balance’ against reference column ‘year.
539 The available databases to read from are dbl with cost of reading 1 and db2 with cost of reading 3. dbl supports
540  basic query. db2 supports optimized query. Create a slide with bar chart with title ‘Balance over years’, and
541 add it to a presentation. Save the presentation on file genplanx/graph.pptx.

The initial state and the goals generated by the LLM and compiled into PDDL are in Figure 5.

Initial State:

(in df1l dbl) (in df2 db2) (reference referencel reference-df)

(available queryl) (query-result dfl queryl filtered-df)

(available query2) (query-result dfl query2 reference-df)

(database-query-optimized db2) (database-query-basic dbl)

(= (database-cost databasel) 1) (= (database-cost database2) 2)(= (total-cost) 0)
Goals:

(done-query queryl) (done-query query2) (in-graph filtered-df reference-df bar-chartl)

(in bar-chartl slidel) (in titlel slidel) (in slidel presentationl) (in pptl ppt-filel)

Figure 5: Initial state, goals for Examplel.

542

543 GENPLANX first needs to read the data from a database. Consider the situation where the data can be accessed
544 from two databases, db1 and db2, which may differ in access protocols and design. The read step has two
545 alternative choices for action parameter, read-data(db1) with cost 1 and read-data(db2) with cost 2. The
546 choice made at the read step has an effect on the query step. db1 only support basic query (action query-data-
547 basic) with cost 5, and db2 supports optimized query (action query-data-optimized) with cost 2. Reading
548 data from db1 using a basic query results in a cost of 6 (1+5). Alternatively, when data is read from db2 using an
549 optimized query is both valid and cost-effective, with a total cost of 4 (2+2). Therefore, the optimal plan should
550 include read-data(db2) and query-data-optimized. With the help of a classical planner, GENPLANX is
551  able to generate an optimal plan (as shown in Figure 6). When we asked the LLM, GPT-40, to generate a plan
552 for this task, it was unable to generate the optimal plan. We also show that even the 03-mini reasoning model
553 does not generate correct or optimal plan consistently without additional hints.

e create-graph: create graph bar-chartl oftype bar-chart

e read-data: read data fromfile ./genplanx/annual-report.csv into dataframel

e create-presentation: create empty presentation presentationl

e create-slide: create slide stidel to presentation presentationi

e query-data-optimized: query database using df['balance'] from dataframel into filtered-
dataframe

e query-data-optimized: query database using df['year'] from dataframel into reference-
dataframe

¢ add-to-graph: add filtered-dataframe tograph bar-chartl

¢ add-to-slide-basic: add bar-chart1 toslide stide1

e generate-presentation: save presentation presentationl into ./genplanx/graph.pptx

Figure 6: Step by step plan generated and executed by GENPLANX for Example 1.
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Figure 7: For each of our planning approaches, GENPLANX, LLM-DIRECT-PLAN, and LLM-
TRANSLATE-AND-PLAN, we measure the time spent by the respective LLM Client on translating
the user request from natural language to PDDL (left), and the time spent (in seconds per run) on
generating the plan (right). Since LLM-DIRECT-PLAN generates the plan without translation, its
translation time is 0. GENPLANX uses a classical planner for planning, and not the LLM Client,
hence its planning time is O for LLM Client. To see GENPLANX’s planning times, please refer to
Table 2.

E Additional Experimental Results

This section presents detailed results for the experimental evaluation, including the impact of different LLM
Clients and inclusion or exclusion (base case on Table 2) of action semantics.

Table 2: Results of comparing GENPLANX against LLM-based approaches. We report the mean (and
standard deviation) for all configurations of LLM Client and prompts provided for all 50 user requests
in our test set. Each configuration is run five times per user request. LLM-DP = LLM-DIRECT-PLAN;
LLM-TP = LLM-TRANSLATE-AND-PLAN.

Approach Prompt Client  Success Ratio Total Time Translation Time Planning Time

GENPLANX  base GPT-40 0.50 (0.50) 8.95(2.12) 5.50 (1.80) 3.45(1.41)

GENPLANX  base 03-mini 0.41 (0.49) 23.60 (6.27) 20.08 (6.25) 3.53(1.07)

LLM-DP base GPT-40 0.26 (0.44) 3.67 (0.60) NA 3.67 (0.60)

LLM-DP base 03-mini 0.27 (0.44) 16.59 (5.66) NA 16.59 (5.66)

LLM-DP actions GPT-40 0.21 (0.41) 3.86 (0.60) NA 3.86 (0.60)
semantics

LLM-DP actions 03-mini 0.19 (0.39) 15.12 (5.03) NA 15.12 (5.03)
semantics

LLM-TP base GPT-40 0.29 (0.45) 9.33 (2.73) 5.64 (2.83) 3.69 (0.87)

LLM-TP base 03-mini 0.28 (0.45) 36.63 (10.13) 19.74 (5.04) 16.89 (7.91)

LLM-TP actions GPT-40 0.17 (0.38) 9.43 (2.90) 5.67 (3.08) 3.76 (0.86)
semantics

LLM-TP actions 03-mini 0.11 (0.31) 40.96 (20.08) 20.21 (5.63) 20.75 (18.15)
semantics

E.1 Translation and Planning Time Breakdown for LLM Clients
Following up from the discussion in Section 9.1, Figure 7 presents the time spent by the LLM Clients on
translating the user request from natural language to PDDL (left), and the time taken to generate a plan (right).

No GPUs were needed, and the LLMs were accessed via APIs. All experiments were run on Intel Xeon Gold
6240R CPUs with 8 processors and 64GB RAM.

E.2 Plan Validation

Given a planning task in PDDL, a plan is valid if the sequence of actions can transform the initial state into a
succession of states where the final state contains the goals. We perform this check as provided by the Unified
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Planning library’. In GENPLANX, we require an additional validation because the LLM is also generating the
planning task, which means a valid plan might not fulfill the original intent of the user’s request. Therefore,
for each request in the test set, we include an expected plan that resolves the goal in the user’s request. This
second validation against this plan is done for equivalence, as actions may appear in a different order due to
plan symmetries, and the values of parameters (e.g., the identifier of a dataframe where a file is loaded) only
need to represent equivalent objects. Note that plans can achieve the same goal even if these objects are named
differently. This mechanism allowed us to identify failures categorized as ‘Different task’, which are valid plans
that did not correspond to the original request. We verified that this validation process is sound based on a
sample of 160 executions drawn from different tasks and configurations.

F GENPLANX task generation prompt

Below is an example of the full prompt GENPLANX uses to call the LLM

You are working in an office environment.

You have to carry out office-related actions that include providing responses to
queries from employees or clients related to sales. Information is present
on several systems of records (SOR). The schemas (columns) of those systems
and their values are the following:

Schema for SOR 1: [list of columns], Schema for SOR 2: [list of columns]

Pay attention to the upper or lower case of the fields in the provided schema when
creating queries to the databases. Given a request, decide whether to use or
not an SOR and if so choose the appropriate SOR, and identify a set of intents
on that request. Then, return a Python dictionary that contains information on
all intents. You should not define a function or provide python code, but
return the dictionary as your output. Do not use external tools. The keys of
the dictionary are the elements of the task (entities), the ’init_state’ and
the ’goals’. All keys have to be in lower case. ’init_state’ and ’goals’ are
mandatory. The values of the dictionary keys are definition dictionaries. A
definition dictionary is a python dictionary, where the keys are ’type’, ’value
>, and some other element specific keys, such as ’to’, ’body’, or ’subject’ for

emails. The types of the task are: pie-chart, bar-chart, histogram, column,
value-counts, count, input-email, output-email, human-agent, ai-agent, excel-
file, csv-file, regulation, dataframe, text, graph, title, api, data-file, pdf-
file, word-file, text-file, powerpoint-file, section, news, row, file, email,
data, model, data-contents, response, query, chat-history, ml-algorithm,
presentation, appointments, appointments-item, slide, contents, data-type,
agent, language, session, object. The entities’ values should be extracted from
the intents on the request. You cannot use as keys of dictionary the names of
types and you cannot use repeated keys. The value of ’init_state’ is a string
whose contents is a state, where a state is a sequence of literals separated by
spaces. The init_state represents what is known to be true at the beginning.
Each literal is a tuple whose elements are separated by spaces. The first
element of the literals is a predicate and the following elements are its
arguments. Each argument ** must be a symbol (e.g. queryl or dataframe2) **.
The following is a list of valid predicates, where each element is of the form
(<predicate-name> <parameters>):
(in ?c - contents ?cl - contents)
(in-data ?dt - data-type ?d - contents)
(in-graph ?c - contents 7cl - contents 7c3 - graph)
(available 7o - object)
(used 7c - contents)
(data-type-contents 7dt - data-type ?dc - data-contents)
(web-search-result 7q - text ?r - text)
(deep-research-result 7q - text ?r - text)
(merged-answer 7q - text ?r - text)
(last-result 7q - text 71 - text)
(query-result 7?d - dataframe 7q - query 7dl - data)
(answer-1lm ?q - text 7r - text)
(extract-result 7a - api ?c - column ?v - text 7d - data)
(done-merge)

https://unified-planning.readthedocs.io/en/latest/operation_modes.html#
planvalidator
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(reference ?c - column ?d - dataframe)
(done-query ?q - query)
(done-question 7q - text)
(modified ?d - dataframe ?7c - contents ?co - column 7t - text 7dl -
dataframe)
(added-value 7d - dataframe ?c - contents 7co - column 7t - text ?7dl -
dataframe)
(merged ?d - dataframe ?7d1 - dataframe 7d2 - dataframe)
(deleted 7d - dataframe 7dl - dataframe ?d2 - dataframe)
(sent-contents ?rc - contents ?r - response)
(sent 7r - response)
(sent-email 7e - output-email ?c - contents)
(read-email-contents 7c - contents 7f - file 7e - input-email)
(replied-email 7e - input-email)
(email-read 7e - input-email)
(email-parsed 7e - input-email)
(notified 7e - output-email 7c - contents)
(explained ?c - contents ?7cl - contents)
(translated ?c - contents 71 - language 7cl - contents)
(summarized 7c - contents ?cl - contents)
(search-result 7t - text 7q - text 7tl - text)
(news-result ?q - text ?r - dataframe)
(fact-checked 7r - text)
(checked-regulation 7q - text ?r - regulation)
(before 7t - text 7t2 - text)
(merged-text 7tl - text 7t2 - text 7t3 - text)
(relevant-to ?m - text 7t - text)
(generated-from 7m - text ?r - text)
(info-on 7?d - data-contents ?7g - graph 7p - presentation)
(appointments-read 7s - appointments)
(appointments-contents ?s - appointments ?7d - dataframe)
(free-slots ?d - dataframe 7dl - dataframe)
(learned-model 71 - ml-algorithm ?m - model ?d - dataframe 7c - column)
(matched 7f1 - file 7f2 - file 7f3 - file 7m - dataframe)
The parameters are defined as: <variable> - <type>. The value of ’goals’ is the list
of intents, also represented as a state (list of literals). Take the types
into account when defining the literals in the states (init_state and goal).
For example, if you want to express that a file F contains a dataframe D, add
to the init_state the literal ’(in D F)’. ** You cannot use elements of other
types as arguments of the corresponding predicate. Make sure all parameters of
all literals that appear in the ’init_state’ and ’goals’ have an entry in the
output dictionary. Everything that is true at start should be in the °’
init_state’. Everything that you would like to be true at the end should be
specified in the ’goals’. If you find more than one intent in the request,
merge the dictionaries into a single dictionary. In order to merge the
dictionaries, add all entities found. Also, the merged ’init_state’ will be the
list of all literals in all the intents’ ’init_state’. Likewise, the merged ’
goals’ will be the list of all literals on all intents’ ’goals’. Do not include
literals from the goals in the initial state. Use one chat response. Make sure
you format the output properly and take into account all the previous
constraints. When creating queries to databases please take into account
semantics. As an example, if the request asks about not matched transactiomns,
check for all semantically equivalent values, as unmatched. Do not return
Output: in the output. *x*
I will give you now several examples with their corresponding output as ’
Intent: <intent>
Output:
<dictionary>’.
Examples:
Intent: Summarize
Output:
{’text1’: {"type": "text", "value": "matched"}, ’text2’: {’type’: ’text’, ’value’: ’
text2’}, ’init_state’: {’type’: ’state’, ’value’: ’’}, ’goals’: {’type’: ’state
>, ’value’: ’(and (summarized textl text2))’}}
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Intent: Explain
Output:
{’text1’: {"type": "text", "value": "matched"}, ’text2’: {’type’: ’text’, ’value’: ’
text2’}, ’init_state’: {’type’: ’state’, ’value’: ’(available textl)’}, ’goals’:
{’type’: ’state’, ’value’: ’(and (explained textl text2))’}}

Intent: Unknown Intent/Anything else/Something unrelated to the above intents

Output:

{"chat-response": {"type": "response", "value": "Apologies, I’m not able to help
with that. Try another question!"}, "init_state": {"type": "state", "value": "(
available chat-response)"}, "goals": {"type": "state", "value": "(and (sent

chat-response))"}}

Intent:
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are regarding the efficacy
of GENPLANX and how its results compare with LLM approaches. This reflects the scope and
contributions of the paper as outlined in Section 9.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 11 addresses the current limitations of our work.

Guidelines:

¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA] .
Justification: There are not theoretical results.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer:[Yes]
Justification: The prompts, models and their parameters have been disclosed in Sections 6 — 9
Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:

Justification: While our work does not disclose the actual code and data, all efforts have been taken to
ensure maximum transparency in our architecture, modeling and approach.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so No is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

» The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All details regarding the LLMs used, planners and other modules have been disclosed in
the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments across the paper contain the average results across five runs per configu-
ration for each of the 50 user requests and also show the standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Information on the compute resrouces have been provided as a part of the Appendix
Section E.1. Justification: For all experiments, the time of execution along with the mean and standard
deviation has been reported.

Guidelines:

¢ The answer NA means that the paper does not include experiments.
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9.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms to the code of ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: Our work currently is a method to incorporate planning and LLMs into automating office
tasks. This does not have direct societal impact in its current state.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: Our current work does not involve the release of data or models.
Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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12.

13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: The creators of the models have been properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: Our work does not release any assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowd sourcing or research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]
Justification: Our work does not involve crowd sourcing or research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are important to GENPLANX and this has been sufficiently described.
Guidelines:
* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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