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Abstract

Chain-of-Thought (CoT) prompting has significantly advanced the reasoning capa-
bilities of large language models (LLMs). While prior work focuses on improving
model performance through internal reasoning strategies, little is known about the
interchangeability of reasoning across different models. In this work, we explore
whether a partially completed reasoning chain from one model can be reliably
continued by another model, either within the same model family or across families.
We achieve this by assessing the sufficiency of intermediate reasoning traces as
transferable scaffolds for logical coherence and final answer accuracy. We interpret
this interchangeability as a means of examining inference-time trustworthiness,
probing whether reasoning remains both coherent and reliable under model sub-
stitution. Using token-level log-probability thresholds to truncate reasoning at
early, mid, and late stages from our baseline models, Gemma-3-4B-IT and LLaMA-
3.1-70B-Instruct, we conduct continuation experiments with Gemma-3-1B-IT and
LLaMA-3.1-8B-Instruct to test intra-family and cross-family behaviors. Our evalu-
ation pipeline leverages truncation thresholds with a Process Reward Model (PRM),
providing a reproducible framework for assessing reasoning stability via model
interchange. Evaluations with a PRM reveal that hybrid reasoning chains often
preserve, and in some cases even improve, final accuracy and logical structure.
Our findings point towards interchangeability as an emerging behavioral property
of reasoning models, offering insights into new paradigms for reliable modular
reasoning in collaborative Al systems.

1 Introduction

Chain of Thought (CoT) prompting emerged as powerful mechanism to improve the reasoning
capabilities of large language models (LLMs) by encouraging intermediate structured reasoning
steps before arriving at a final answer [Wei et al., 2023]]. Previous work has explored how CoTs
improve individual model performance even in zero-shot settings [Kojima et al.| 2023} Zhang et al.|
2022, Jin et al., 2024]]. More recently, [Hebenstreit et al.|[2024]] examined the transferability of entire
CoT sequences by evaluating whether rationale prompts discovered on one model could generalize
reasoning strategies across a range of models and tasks. However, it remains unclear to what extent
reasoning trajectories are interchangeable when only partially reused. In light of this, our aim is
to answer the central research question: To what extent can the modular decomposition of complex
mathematical reasoning tasks enhance the zero-shot performance and interpretability of Large
Language Models, when utilizing a collaborative framework that includes both intra-family and
cross-family LLMs?

In this work, we investigate the process-level interchangeability in language model reasoning by
evaluating how well different models can continue the CoT of another’s midstream. We begin with
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full CoT traces generated by a strong base model (e.g., Gemma-3-4B-IT and LLaMA-3.1-70B-
Instruct), recording token-level log-probabilities to guide strategic truncation at 25%, 50%, and
75% of the cumulative log-probability, capturing early, mid, and late stages of reasoning based on
informativeness. From these truncated points, alternative models (including those from different
families or architectures) are tasked with continuing the reasoning process using only truncated
intermediate steps as input We then assess not only accuracy, but also the coherence, semantic
alignment, and logical consistency of the full reasoning chain, by using a Process Reward Model
(PRM) trained to evaluate multi-step mathematical reasoning performance. Ultimately, our aim is to
characterize how steady transferability depends on truncation point, model pairing, and reasoning
domain, yielding clearer interpretations into the dynamics of CoT continuation success that goes
beyond final answer accuracy.

Whereas prior work has explored how CoT prompting improves reasoning within individual models
[Wei et al.| |2023]], whether reasoning can be interchanged across models mid-process remains largely
unexamined.

We provide compelling early evidence that such a handoff is often successful within the same model
family. We show that a partially completed CoT from a strong model, such as Gemma-3-4B-IT,
can often be continued by another model of similar or lesser capacity within the same family. By
leveraging log-probability-based truncation and PRM-based scoring, we found that these hybrid
trajectories maintain high coherence and correctness with minimal loss in reasoning quality.

We found that this practice may not be suitable for all cross-family continuation pairings, as some
unreliably preserve quality and coherence of the reasoning chain in our experimentation. Our findings
expose distinctions across different model architectures and introduce a promising new paradigm for
collaborative reasoning, where high-capacity models can be reserved for the most uncertain portions
of a problem, allowing lighter models to reliably finish the remainder of the task.

2 Related Works

LLMs generate responses by autoregressively predicting outputs based on the preceding context,
which is learned during pre-training [OpenAl et al., 2024]]. As a result, their output can fluctuate even
when prompted with identical inputs, introducing variability in reasoning trajectories [[Amatriain
2024]. This, coupled with the absence of structured reasoning mechanisms, often leads to inconsis-
tencies in multistep logical inference. Consequently, assessing the reliability and soundness of their
reasoning becomes increasingly complex and therefore requires a more thorough examination [Wang
et al.,[2024].

To address these limitations, the concept of CoT prompting was introduced in [Wei et al.| [2023]],
demonstrating that instructing LLMs to reason step-by-step significantly improves performance
on complex tasks. In this approach, LLMs are prompted to generate a series of short statements
that mimic the logical process a person might use to solve a problem. Experiments revealed that
CoT prompting enables models to achieve strong results in tasks of arithmetic, commonsense, and
symbolic reasoning [Wei et al.,|2023]].

In an effort to enhance LLM reasoning abilities with CoT prompting, Wang et al.| [2023b] introduces
self-consistency to replace the single greedy decoding path in traditional CoT prompting [Wei et al.,
2023||. Their method samples a variety of reasoning paths and identifies the most consistent answer by
marginalizing across all possibilities [Wang et al.,[2023b]]. Beyond improving accuracy, this approach
highlights the inherent diversity of reasoning paths within a single model, suggesting that multiple
valid chains of reasoning can coexist.

Initiatives have also been put forward to extend and refine CoT prompting. Unlike traditional CoT
where each step is independent, Least to Most prompting breaks difficult problems into sequential sub-
problems where the outputs of previous steps are the inputs for the next [Zhou et al.|[2023]]. Moreover,
recent efforts have examined the effects of partial or truncated CoT on model outputs. Lanham et al.
[2023]] measure faithfulness by truncating generated CoT at various points and re-prompting the
model with only the partial reasoning.

Past research has indirectly measured the reasoning ability of LLMs by evaluating them on down-
stream reasoning tasks such as question answering or multi-hop inference [Huang and Chang] 2023].
Though, relying on the accuracy of the end task or the success rates is not indicative of step-by-step
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reasoning capability. [Huang and Chang| [2023]] also explain that current performance measures mix
reasoning ability with task knowledge, resulting in reasoning that cannot be evaluated in isolation.
To resolve this, subsequent work [Nguyen et al.,2024] aims at reasoning process analysis directly,
testing for logical coherence of individual steps, which provides more straightforward methods of
reasoning quality evaluation.

LLM:s frequently make errors when solving mathematical problems step-by-step, making it essential
to identify where the errors occurred during the reasoning process [Zheng et al., 2025]]. As a result,
PRMs have been developed as a direct solution to the shortcomings of traditional indirect evaluation
methods, which only assess final answers. PRMs are specifically designed to evaluate the correctness
of each individual reasoning step, providing feedback that helps guide policy models toward more
accurate and reliable mathematical reasoning [Zheng et al., 2025, [Zhang et al.,2025[]. PRMs output a
score or probability that represents the model’s confidence that the reasoning step is logically sound
and contributes productively to problem resolution.

3 Methodology

We introduce a novel chain-splitting approach grounded in cumulative log-probability, whereby
complete solutions are truncated at points of varying model confidence from an initial baseline
model and then continued by a second continuation model. The methodology proceeds in three
components: (Section 3.1) reasoning chain generation, (Section 3.2)) chain truncation via cumulative
log-probability, and (Section 3.3)) model interchange protocols.

3.1 Reasoning Chain Generation

We use an initial model to generate complete reasoning chains for each problem in the test set. Each
generation is performed with temperature set at 0.7, allowing a moderate degree of stochasticity in
token sampling while still favoring high-probability continuations. Let the complete output chain be
a sequence of tokens r = {t1,ta, ...,y }, with corresponding log-probabilities {¢1, ¢a, ..., ¢, }. We

compute the cumulative log-probability up to position ¢ as L; = 22:1 ;.

This sequence {L1, Lo, . .., L, } defines the internal flow of confidence of the model throughout the
reasoning process.

3.2 Chain Truncation via Log-Probability Thresholding
To identify semantically meaningful split points in the chain, we define three thresholds based on the
total log-probability L,,:

¢ 25% truncation: first index ¢ such that L; > 0.25L,,

* 50% truncation: first index ¢ such that L; > 0.50L,,

* 75% truncation: first index ¢ such that L; > 0.75L,,

For each threshold « € {0.25,0.50,0.75}, we extract the prefix ry.;, where
k=min{i: L; > aL,}.

This results in three partially completed reasoning traces per problem, each grounded in the model’s
own internal confidence progression.

3.3 Model Interchange Protocol

Each truncated prefix is combined with a consistent CoT template meant for interchange that includes
the original question, and the resulting prompt is provided to a secondary continuation model (further
details in|Section 8.1). We consider both intra-family and cross-family model pairings more precisely
defined in[Section 4.2] Each continuation model generates a single completion for each prefix using a
temperature of 0.7, introducing controlled randomness to reflect typical sampling conditions while
preserving coherence. These continuations are concatenated with the original prefix to form hybrid
reasoning chains, which are then run through post-processing to extract the final answer using simple
rule-based extraction.
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All in all, for each problem instance, we obtain: one complete chain from the baseline generator, and
multiple hybrid chains resulting from different continuation models and truncation depths (details in

section 4.2)).

4 Experimental Setup

We now outline the experimental conditions under which our chain-splitting framework was evaluated.
This includes: (Section 4.T) the dataset selected to benchmark reasoning difficulty and domain

coverage, (Section 4.2)) the models used for initial generation and continuation, and (Section 4.5)) the

metrics employed to quantify the quality of reasoning, compatibility, and the impact of performance
on model interchanges.

4.1 Dataset Selection

An extensive dataset was carefully selected to capture a range of reasoning complexities and domain-
specific scenarios.

* MATH [Hendrycks et al.,[2021]]: consists of 12,500 high-school and college-level mathe-
matical problems that span diverse topics and demanding multi-step solutions, providing
rigorous testing to evaluate advanced mathematical reasoning and generalization.

For our experiments, we evaluated models exclusively on the test splits of the MATH dataset,
consisting of 5, 000 questions.

4.2 Model Selection and Configuration

We adopt Qwen2.5-PRM [Zheng et al.l 2025] as our primary Process Reward Model, due to its
fine-tuning on structured multi-step mathematical datasets such as PRM800OK [Lightman et al.|
2023]] and Math-Shepherd [Wang et al., 2023a]]. Qwen2.5-PRM is an instruction-tuned variant of
Qwen2.5-Math-7B and supports token-level log-probability outputs.

For model interchange experiments, we select two baseline models and two continuation models:

4.3 Baseline

To establish a baseline for reasoning quality, we employ Gemma-3-4B-IT and LLaMA-3.1-70B-
Instruct to generate CoT exemplars, two state-of-the-art instruction-tuned models from distinct
architectural lineages.

¢ Gemma-3-4B-IT [Team et al.| [2025]], an instruction-tuned variant from the Gemma 3 model
family developed by Google Deepmind with 4 Billion parameters is used to generate
complete Chain-of-Thought reasoning paths, tuned to Gemma’s architecture.

e LLaMA-3.1-70B-Instruct [Grattafiori et al.|[2024], a large scale variant from the LLaMA 3
model family developed by Meta Al with 70 Billion parameters is used to generate complete
Chain-of-Thought reasoning paths, tuned to LLaMA’s architecture.

4.4 Continuation

* Gemma-3-1B-IT [Team et al.| 2025]], a lightweight variant from the same Gemma 3 model
family, is used to evaluate how well reasoning chains can be completed by a structurally
similar but smaller model.

* LLaMA 3.1-8B-Instruct|Grattafiori et al.|[2024] representing a different architectural lineage
helps enable testing interchangeability across distinct LLM families. For brevity, we refer to
the aforementioned models as Gemma and LLaMA respectively for the remainder of this
paper.

On the MATH dataset, Gemma 3-1B-IT and Gemma 3-4B-IT performed with accuracies of 48.0%
and 75.6% respectively [Team et al.,2025]. Moreover, Llama-3.1-8B-Instruct and Llama-3.1-70B-
Instruct performed with accuracies 47.2% and 65.7% [Yang et al.,2024]. We observe that the two
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base models exhibit similar performance levels and, likewise, that the two continuation models
perform comparably.

All models were prompted using one consistent CoT templates, either the interchange or full-run

variant, as detailed in[Section 8.

4.5 Evaluation Metrics

The hybrid reasoning chains generated were evaluated using a multifaceted set of metrics designed to
assess accuracy, variability, and the impact of model interchanges on reasoning coherence and final
outcomes. Specifically, we consider the following four core metrics:

* Answer Accuracy: Accuracy is defined as the proportion of final answers from generation
that exactly match those from ground-truth solutions. This metric represents the model’s
ability to arrive at the correct final result through its reasoning chain.

* PRM Score: As a PRM is available for scoring, we additionally report average PRM-
assigned scores that capture the internal likelihood and coherence of a given chain regardless
of final correctness. We define the PRM score A’ as the average plausibility score assigned
to each reasoning step in a chain of n steps:

1 n
A%:EEZPRM@g
i=1

where s; denotes the i-th step in the chain. While traditional accuracy reflects outcome-level
correctness, A’ provides a step-level assessment of reasoning quality.

* Normalized Relative Gain (NRG): This metric quantifies whether incorporation of reasoning
from another model helps or hinders performance. Given the accuracies of the original
model A and B, and hybrid accuracies A’ (Model A prefix + Model B suffix) and B’ (Model
B prefix + Model A suffix), we define:

A — A B - B

Positive values indicate a performance gain from model interchange, while negative values
reflect degradation.

* Cross-Model Degradation (XMD): This metric captures the extent to which the continuation
of a model degrades the original reasoning trajectory. It is defined as:
A-B B—-A
XMD = .
A ) B—A B
XMD provides a normalized measure of reasoning incompatibility, where higher values
indicate more severe disruptions introduced by the cross-model continuation.

XMDa B =

5 Results

We present results across the MATH benchmark to evaluate model interchangeability across truncation
points. Through our proposed metrics, we look to determine whether model continuation works to
improve or disrupt the original reasoning trajectory. Experimental results were obtained using the
Runpod cloud platform, leveraging NVIDIA H100 PCIe GPUs over approximately 250 GPU hours.

5.1 Full Chain-of-Thought Results

To establish a baseline, we first evaluate each model’s performance using end-to-end CoT reasoning
applied without interruption. For every example in the benchmark, the model is prompted to reason
step by step to completion, producing a complete trajectory from question to final answer. We report
results in terms of final answer accuracy and step-level reasoning score as seen in Table[T]

This baseline allows us to quantify native reasoning strengths and weaknesses of each model without
the effects of interchange.



Model Dataset Accuracy (%) PRM

Gemma-3-4B-IT MATH 68.06% 0.8952
Gemma-3-1B-IT MATH 36.28% 0.7904
LLaMA-3.1-70B-Instruct =~ MATH 60.80% 0.8725
LLaMA-3.1-8b-Instruct MATH 47.76% 0.8522

Table 1: Performance of reasoning chains fully generated by each model (i.e., with no handoff or
interchange from another model) on the MATH dataset.

218 5.2 Interchanged Chain-of-Thought Results

219 Thereafter, to gauge the interchangeability of reasoning processes across different models, we evaluate
220 the completion of truncated CoT traces. Each reasoning chain is strategically truncated based on
221 cumulative log-probability thresholds (25%, 50%, 75%), representing early, mid, and late points
222 in the reasoning process. Subsequently, alternative models are assigned to continue the truncated
223 reasoning chains through to completion.

224 We report performance for all continuation combinations, including accuracy, step-level scores, and
225 coherence ratings as seen in Table [2] & Table[3] This analysis unveils the extent to which partial
226 reasoning from one model can be reliably extended by another, highlighting cases of both successful
227 handoff and systematic breakdowns that point to the limits of reasoning interchangeability.

Truncation Continuation Accuracy (%) PRM NRG XMD
25% Gemma-3-1B-IT 41.76% 0.7966 0.3678 0.3864
25% LLaMA-3.1-8B-Instruct  43.60% 0.8393 0.3196 0.3594
50% Gemma-3-1B-IT 49.86% 0.8002 0.3786 0.2674
50% LLaMA-3.1-8B-Instruct  53.24% 0.8585 0.264 0.2177
75% Gemma-3-1B-IT 55.26% 0.8032 0.3500 0.1881
75% LLaMA-3.1-8B-Instruct  63.80% 0.8697 0.1853 0.0626

Table 2: Performance of hybrid reasoning chains by truncation point and continuation model on
MATH dataset, using a fully generated CoT from Gemma-3-4B-IT.

Truncation Continuation Accuracy (%) PRM NRG XMD
25% Gemma-3-1B-IT 36.16% 0.7566 -0.1137 0.4053
25% LLaMA-3.1-8B-Instruct  42.18% 0.8323 -0.0150 0.3062
50% Gemma-3-1B-IT 38.50% 0.7730 -0.0968 0.3668
50% LLaMA-3.1-8B-Instruct  46.26% 0.8456 -0.0072 0.2391
75% Gemma-3-1B-IT 41.98% 0.7811 -0.0827 0.3095
75% LLaMA-3.1-8B-Instruct  50.06% 0.8543 -0.0002 0.1766

Table 3: Performance of hybrid reasoning chains by truncation point and continuation model on
MATH dataset, using a fully generated CoT from LLaMA-3.1-70B-Instruct.

28 6 Discussion

229 Our observations uncover degradation in performance when cross-family models are tasked to
230 continue reasoning midstream initiated by a partially completed CoT. There are several factors likely
231 responsible for this downgrade in performance:
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6.1 Style and Representational Compatibility

A consistent disparity between intra-family and cross-family continuation highlights representational
compatibility as a key factor in multi-model reasoning. Despite receiving high confidence chains,
cross-family continuations (e.g., Gemma-3-4B-IT—=LLaMA-3.1-8B-Instruct and LLaMA-3.1-70B-
Instruct—Gemma-3-1B-IT) often fail to maintain correct reasoning. For instance, when LLaMA-
3.1-70B-Instruct’s chain is continued by Gemma-3-1B-IT, accuracy falls to 36.16% at the 25%
mark-nearly a 40% relative decline compared to the base model’s 60.80% full-chain accuracy-
with a corresponding negative NRG (—0.1137). Similarly, continuations from Gemma-3-4B-IT
into LLaMA-3.1-8B-Instruct under perform early on (43.60% at 25%) despite access to confident
reasoning prefixes, yielding a lower NRG of 0.3196 compared to intra-family continuation at the
same depth (Gemma-3-4B-IT—Gemma-3-1B-IT, 0.3678), indicating that these prefixes do not fully
overcome differences in architecture and reasoning style. This pattern suggests a reasoning bias: each
model family tends to rely more on its own reasoning patterns, which may result from structural
differences between the families.

These results are consistent with previous work [Liu et al., 2023|], which noted that structural
differences between model families (GPT-4 in their case) can limit cross-model reasoning transfer,
particularly for complex, multi-step reasoning tasks. While LLaMA models generate coherent chains
within their own family, their internal reasoning representations differ from Gemma’s, which may
hinder smooth continuation across families. This is supported by consistently high XMD values across
truncation points (e.g., 0.4053 at 25% and 0.3095 at 75% for LLaMA-3.1-70B-Instruct—Gemma-
3-1B-IT), suggesting that reasoning coherence is not fully maintained even as longer prefixes are
available. High-confidence reasoning prefixes do not appear sufficient to completely navigate these
differences, indicating that cross-family continuation is constrained by family-specific reasoning
tendencies.

In contrast, intra-family continuations show steady improvement with longer truncation depths. For
example, when Gemma-3-1B-IT continues from Gemma-3-4B-IT, accuracy rises from 41.76% at
25% to 55.26% at 75%, accompanied by moderate NRG values (0.3678—0.3500) and decreasing
XMD (0.3864—0.1881). Similarly when LLaMA-3.1-8B-Instruct continues from LLaMA-3.1-70B-
Instruct, performance increases from 42.18% to 50.06%, with NRG improving from —0.0150 to
near-neutral (—0.0002) and XMD decreasing from 0.3062 to 0.1766. These patterns suggest that the
representational similarity between models supports a more stable continuation and better integration
of context.

6.2 Context Integration Overhead

When deployed late in the reasoning chain (e.g., at the 75% mark), smaller continuation models
such as Gemma-3-1B-IT and LLaMA-3.1-8B-Instruct must interpret and integrate extensive context
generated by larger base models (Gemma-3-4B-IT and LLaMA-3.1-70B-Instruct). As reasoning
sequences lengthen, models may face capacity limits that degrade performance. This bottleneck is
attributed to the finite “working memory” of LLMs and the compounding demands of maintaining
logical coherence across many steps [Shang et al.,[2025]]. The effect is especially pronounced when
models are required to interpret and continue reasoning from an externally provided chain rather than
generating all steps from scratch.

On the MATH dataset, truncation depth produces gradual improvements but does not eliminate the
performance gap relative to non-handoff baselines. For example, when continuing Gemma-3-4B-IT’s
reasoning, Gemma-3-1B-IT improves from 41.76% at 25% truncation to 55.26% at 75%, while
LLaMA-3.1-8B-Instruct rises from 43.60% to 63.80%. Similarly, when continuing LLaMA-3.1-
70B-Instruct, LLaMA-3.1-8B-Instruct achieves a smoother progression from 42.18% to 50.06%,
outperforming Gemma-3-1B-IT, which remains between 36.16% and 41.98%. These trends suggest
that architectural alignment facilitates smoother context integration in same-family continuations,
while representational mismatches in cross-family pairs disrupt coherent reasoning.

Despite improvements with longer prefixes, performance remains notably below that of fully self-
generated chains (Gemma-3-4B-IT: 68.06%, LLaMA-3.1-70B-Instruct: 60.80%). XMD values con-
firm this persistent overhead: even at the 75% truncation point, XMD remains non-negligible (0.0626
for Gemma-3-4b-IT—LLaMA-3.1-8B-Instruct and 0.1766 for LLaMA-3.1-70B-Instruct—LLaMA-
3.1-8B-Instruct), indicating incomplete recovery of original reasoning quality.



286
287
288

289

291
292
293
294
295

296
297
298

300
301
302
303
304

305
306
307

309
310

311
312
313
314
315
316
317
318
319
320
321
322

323

324
325

327
328
329
330
331

333

334
335
336
337

These observations highlight that truncation depth alone does not ensure effective reasoning trans-
fer. Although larger prefixes reduce uncertainty and contextual loss, architectural and stylistic
compatibility between base and continuation models remains the key factor determining success.

6.3 Error Amplification

Minor inconsistencies or ambiguities in early reasoning steps, especially when generated by a
different model, can compound as LLaMA or Gemma continue the reasoning process. With limited
steps remaining to revise earlier logic (particularly in final-answer-only completions), both models
struggle to recover from upstream errors. These results suggest that effective interoperability in multi-
step reasoning depends on both model capability and the degree of representational and contextual
alignment across reasoning steps.

On the MATH dataset, when reasoning chains generated by Gemma-3-4B-IT or LLaMA-3.1-70B-
Instruct are truncated and continued by smaller models at various points (25%, 50%, 75%), perfor-
mance declines in proportion to both truncation depth and cross-family divergence. When Gemma-
3-4B-IT serves as the base, continuation by Gemma-3-1B-IT (intra-family) improves steadily from
41.76% at 25% to 55.26% at 75%, with NRG values rising from 0.3678 to 0.3500 and XMD decreas-
ing from 0.3864 to 0.1881. Cross-family continuation by LLaMA-3.1-8B-Instruct performs com-
petitively (43.60%—63.80%) but shows slightly lower NRG (0.3196—0.1853), indicating weaker
efficiency in utilizing the provided context. Longer prefixes appear to partially reduce representational
mismatch, leading to more consistent performance over time.

When LLaMA-3.1-70B-Instruct serves as the base model, Gemma-3-1B-IT continuations per-
form substantially worse (36.16°41.98% across truncation points) with persistently high XMD
(0.4053—0.3095) and negative NRG (—0.1137——0.0827), suggesting limited transfer across fami-
lies. Intra-family continuation by LLaMA-3.1-8B-Instruct performs more stably, reaching 50.06% at
75% with NRG improving from —0.0150 to —0.0002 and XMD decreasing from 0.3062 to 0.1766,
reflecting more consistent reasoning integration within the same family.

Comparing fully generated chains with the hybrid results (Table[I), Gemma-3-4b and LLaMA-3.1-
70B-Instruct still substantially outperform their continuations (68.06% and 60.80%, respectively).
However, their smaller counterparts, especially Gemma-3-1B-IT, demonstrate partial to considerable
recovery when inheriting sufficiently long prefixes, suggesting that similar architecture and tokeniza-
tion structures enhance transfer performance. As seen over 25%/50%/75% truncations, intra-family
continuation (Gemma-3-4b—Gemma-3-1b) improves from 41.76%—55.26% (4+13.5 pp), and even
cross-family continuation (Gemma-3-4B-IT—LLaMA-3.1-8B-Instruct) exhibits a greater net gain of
43.60%—63.80% (+20.2 pp). In contrast, continuations from LLaMA-3.1-70b displayed weaker
recovery with LLaMA-3.1-8B-Instruct rising only +7.9 pp (42.18% 50.06%), and Gemma-3-1B-IT
gains just +5.8 pp (36.16%—41.98%). As truncation length increases, reasoning becomes more
coherent, but full recovery is still unattainable, lending credence to how small representational gaps
can compound through multi-step reasoning chains.

7 Conclusion

In this work, we introduced a novel framework for evaluating midstream interchangeability in
large language models, grounded in a chain-splitting paradigm based on cumulative log-probability.
By systematically truncating the reasoning chains generated by our base models and appending
completions from either intra-family or cross-family models, we directly measured the stability and
coherence of hybrid reasoning trajectories. Our experiments on MATH demonstrate that model family
alignment plays a decisive role in the success or failure of such hybrid chains. While intra-family
continuations generally preserved reasoning quality on simpler tasks, cross-family continuations
often struggled to maintain coherence with the partial chains, despite comparable model performance
as referenced in This suggests that models like Gemma and LLaMA may be better
aligned to continue reasoning within their own family than across different architectures.

These findings challenge previous assumptions about model modularity in contemporary NLP. Despite
architectural advances and increasing performance parity across model families, our results suggest
that inter-model transfer in multi-step reasoning remains fragile, constrained by differences in stylistic
alignment, latent variable encoding, and contextual integration. The observed breakdowns reveal a
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significant gap between individual task performance and interoperability in reasoning, which is an
area that has received insufficient attention in LLM evaluation.

More broadly, our work highlights the need for new approaches that preserve consistent semantic
reasoning across different language models. As research advances toward compositional and multi-
agent LLM systems, reliable interchangeability will become essential, not solely for efficiency, but
also for alignment, verification, and interpretability. Our methodology provides an initial framework
for diagnosing and quantifying this interoperability gap in a systematic, data-driven manner.

Limitations

* Single Completion Runs: All experiments were conducted using deterministic continuations.
While this reflects realistic deployment scenarios, it limits our understanding of variance
under sampling. Future work should evaluate robustness using multiple stochastic rollouts.

» Task Domain Scope: Our evaluation is confined to math reasoning (MATH). It remains
unclear whether interchangeability generalizes to commonsense, scientific, or multimodal
reasoning tasks.

* Domain-Specific PRMs: We employed a math-specific Process Reward Model (PRM).
Evaluating reasoning quality in other domains will require retraining or adapting PRMs
tailored to those reasoning distributions.

Future Work

* Cross-Domain Generalization: Evaluate model interchangeability on tasks such as
commonsense QA, multi-hop retrieval, scientific explanation, and instruction-following,
where reasoning formats may be more variable or implicit.

» Adaptive Truncation Strategies: Rather than using static log-probability thresholds
(25/50/75%), future work could explore dynamic segmentation based on reasoning
content, semantic shifts, or model uncertainty.

 Collaborative Model Architectures: Deploy multi-agent or multi-model reasoning pipelines
in production environments (e.g., tutoring systems, scientific assistants) to study tradeoffs in
latency, memory, and correctness.

8 Appendix

8.1 Prompting

Full-Run Prompt :

System message: "You are a helpful assistant that solves problems step by step.
Please provide clear reasoning with numbered steps and conclude with your final answer."
User message: "Solve this problem step by step:

Question: [’question’]"

Interchange Prompt :

System message: "You are a helpful assistant that solves problems step by step.
Please provide clear reasoning with numbered steps and conclude with your final answer."

User message: "Solve this problem step by step:
Question: [’question’] [’truncated reasoning’]"

This prompt standardization ensures comparability in reasoning styles across models; slight variations
were applied where necessary to accommodate model-specific tokenization or formatting requirements
without altering the intended instructions or task semantics.
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