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Abstract

Chain-of-Thought (CoT) prompting has significantly advanced the reasoning capa-1

bilities of large language models (LLMs). While prior work focuses on improving2

model performance through internal reasoning strategies, little is known about the3

interchangeability of reasoning across different models. In this work, we explore4

whether a partially completed reasoning chain from one model can be reliably5

continued by another model, either within the same model family or across families.6

We achieve this by assessing the sufficiency of intermediate reasoning traces as7

transferable scaffolds for logical coherence and final answer accuracy. We interpret8

this interchangeability as a means of examining inference-time trustworthiness,9

probing whether reasoning remains both coherent and reliable under model sub-10

stitution. Using token-level log-probability thresholds to truncate reasoning at11

early, mid, and late stages from our baseline models, Gemma-3-4B-IT and LLaMA-12

3.1-70B-Instruct, we conduct continuation experiments with Gemma-3-1B-IT and13

LLaMA-3.1-8B-Instruct to test intra-family and cross-family behaviors. Our evalu-14

ation pipeline leverages truncation thresholds with a Process Reward Model (PRM),15

providing a reproducible framework for assessing reasoning stability via model16

interchange. Evaluations with a PRM reveal that hybrid reasoning chains often17

preserve, and in some cases even improve, final accuracy and logical structure.18

Our findings point towards interchangeability as an emerging behavioral property19

of reasoning models, offering insights into new paradigms for reliable modular20

reasoning in collaborative AI systems.21

1 Introduction22

Chain of Thought (CoT) prompting emerged as powerful mechanism to improve the reasoning23

capabilities of large language models (LLMs) by encouraging intermediate structured reasoning24

steps before arriving at a final answer [Wei et al., 2023]. Previous work has explored how CoTs25

improve individual model performance even in zero-shot settings [Kojima et al., 2023, Zhang et al.,26

2022, Jin et al., 2024]. More recently, Hebenstreit et al. [2024] examined the transferability of entire27

CoT sequences by evaluating whether rationale prompts discovered on one model could generalize28

reasoning strategies across a range of models and tasks. However, it remains unclear to what extent29

reasoning trajectories are interchangeable when only partially reused. In light of this, our aim is30

to answer the central research question: To what extent can the modular decomposition of complex31

mathematical reasoning tasks enhance the zero-shot performance and interpretability of Large32

Language Models, when utilizing a collaborative framework that includes both intra-family and33

cross-family LLMs?34

In this work, we investigate the process-level interchangeability in language model reasoning by35

evaluating how well different models can continue the CoT of another’s midstream. We begin with36
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full CoT traces generated by a strong base model (e.g., Gemma-3-4B-IT and LLaMA-3.1-70B-37

Instruct), recording token-level log-probabilities to guide strategic truncation at 25%, 50%, and38

75% of the cumulative log-probability, capturing early, mid, and late stages of reasoning based on39

informativeness. From these truncated points, alternative models (including those from different40

families or architectures) are tasked with continuing the reasoning process using only truncated41

intermediate steps as input We then assess not only accuracy, but also the coherence, semantic42

alignment, and logical consistency of the full reasoning chain, by using a Process Reward Model43

(PRM) trained to evaluate multi-step mathematical reasoning performance. Ultimately, our aim is to44

characterize how steady transferability depends on truncation point, model pairing, and reasoning45

domain, yielding clearer interpretations into the dynamics of CoT continuation success that goes46

beyond final answer accuracy.47

Whereas prior work has explored how CoT prompting improves reasoning within individual models48

[Wei et al., 2023], whether reasoning can be interchanged across models mid-process remains largely49

unexamined.50

We provide compelling early evidence that such a handoff is often successful within the same model51

family. We show that a partially completed CoT from a strong model, such as Gemma-3-4B-IT,52

can often be continued by another model of similar or lesser capacity within the same family. By53

leveraging log-probability-based truncation and PRM-based scoring, we found that these hybrid54

trajectories maintain high coherence and correctness with minimal loss in reasoning quality.55

We found that this practice may not be suitable for all cross-family continuation pairings, as some56

unreliably preserve quality and coherence of the reasoning chain in our experimentation. Our findings57

expose distinctions across different model architectures and introduce a promising new paradigm for58

collaborative reasoning, where high-capacity models can be reserved for the most uncertain portions59

of a problem, allowing lighter models to reliably finish the remainder of the task.60

2 Related Works61

LLMs generate responses by autoregressively predicting outputs based on the preceding context,62

which is learned during pre-training [OpenAI et al., 2024]. As a result, their output can fluctuate even63

when prompted with identical inputs, introducing variability in reasoning trajectories [Amatriain,64

2024]. This, coupled with the absence of structured reasoning mechanisms, often leads to inconsis-65

tencies in multistep logical inference. Consequently, assessing the reliability and soundness of their66

reasoning becomes increasingly complex and therefore requires a more thorough examination [Wang67

et al., 2024].68

To address these limitations, the concept of CoT prompting was introduced in Wei et al. [2023],69

demonstrating that instructing LLMs to reason step-by-step significantly improves performance70

on complex tasks. In this approach, LLMs are prompted to generate a series of short statements71

that mimic the logical process a person might use to solve a problem. Experiments revealed that72

CoT prompting enables models to achieve strong results in tasks of arithmetic, commonsense, and73

symbolic reasoning [Wei et al., 2023].74

In an effort to enhance LLM reasoning abilities with CoT prompting, Wang et al. [2023b] introduces75

self-consistency to replace the single greedy decoding path in traditional CoT prompting [Wei et al.,76

2023]. Their method samples a variety of reasoning paths and identifies the most consistent answer by77

marginalizing across all possibilities [Wang et al., 2023b]. Beyond improving accuracy, this approach78

highlights the inherent diversity of reasoning paths within a single model, suggesting that multiple79

valid chains of reasoning can coexist.80

Initiatives have also been put forward to extend and refine CoT prompting. Unlike traditional CoT81

where each step is independent, Least to Most prompting breaks difficult problems into sequential sub-82

problems where the outputs of previous steps are the inputs for the next [Zhou et al., 2023]. Moreover,83

recent efforts have examined the effects of partial or truncated CoT on model outputs. Lanham et al.84

[2023] measure faithfulness by truncating generated CoT at various points and re-prompting the85

model with only the partial reasoning.86

Past research has indirectly measured the reasoning ability of LLMs by evaluating them on down-87

stream reasoning tasks such as question answering or multi-hop inference [Huang and Chang, 2023].88

Though, relying on the accuracy of the end task or the success rates is not indicative of step-by-step89
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reasoning capability. Huang and Chang [2023] also explain that current performance measures mix90

reasoning ability with task knowledge, resulting in reasoning that cannot be evaluated in isolation.91

To resolve this, subsequent work [Nguyen et al., 2024] aims at reasoning process analysis directly,92

testing for logical coherence of individual steps, which provides more straightforward methods of93

reasoning quality evaluation.94

LLMs frequently make errors when solving mathematical problems step-by-step, making it essential95

to identify where the errors occurred during the reasoning process [Zheng et al., 2025]. As a result,96

PRMs have been developed as a direct solution to the shortcomings of traditional indirect evaluation97

methods, which only assess final answers. PRMs are specifically designed to evaluate the correctness98

of each individual reasoning step, providing feedback that helps guide policy models toward more99

accurate and reliable mathematical reasoning [Zheng et al., 2025, Zhang et al., 2025]. PRMs output a100

score or probability that represents the model’s confidence that the reasoning step is logically sound101

and contributes productively to problem resolution.102

3 Methodology103

We introduce a novel chain-splitting approach grounded in cumulative log-probability, whereby104

complete solutions are truncated at points of varying model confidence from an initial baseline105

model and then continued by a second continuation model. The methodology proceeds in three106

components: (Section 3.1) reasoning chain generation, (Section 3.2) chain truncation via cumulative107

log-probability, and (Section 3.3) model interchange protocols.108

3.1 Reasoning Chain Generation109

We use an initial model to generate complete reasoning chains for each problem in the test set. Each110

generation is performed with temperature set at 0.7, allowing a moderate degree of stochasticity in111

token sampling while still favoring high-probability continuations. Let the complete output chain be112

a sequence of tokens r = {t1, t2, . . . , tn}, with corresponding log-probabilities {ℓ1, ℓ2, . . . , ℓn}. We113

compute the cumulative log-probability up to position i as Li =
∑i

j=1 ℓj .114

This sequence {L1, L2, . . . , Ln} defines the internal flow of confidence of the model throughout the115

reasoning process.116

3.2 Chain Truncation via Log-Probability Thresholding117

To identify semantically meaningful split points in the chain, we define three thresholds based on the118

total log-probability Ln:119

• 25% truncation: first index i such that Li ≥ 0.25Ln120

• 50% truncation: first index i such that Li ≥ 0.50Ln121

• 75% truncation: first index i such that Li ≥ 0.75Ln122

For each threshold α ∈ {0.25, 0.50, 0.75}, we extract the prefix r1:k, where123

k = min{i : Li ≥ αLn}.

This results in three partially completed reasoning traces per problem, each grounded in the model’s124

own internal confidence progression.125

3.3 Model Interchange Protocol126

Each truncated prefix is combined with a consistent CoT template meant for interchange that includes127

the original question, and the resulting prompt is provided to a secondary continuation model (further128

details in Section 8.1). We consider both intra-family and cross-family model pairings more precisely129

defined in Section 4.2. Each continuation model generates a single completion for each prefix using a130

temperature of 0.7, introducing controlled randomness to reflect typical sampling conditions while131

preserving coherence. These continuations are concatenated with the original prefix to form hybrid132

reasoning chains, which are then run through post-processing to extract the final answer using simple133

rule-based extraction.134
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All in all, for each problem instance, we obtain: one complete chain from the baseline generator, and135

multiple hybrid chains resulting from different continuation models and truncation depths (details in136

Section 4.2).137

4 Experimental Setup138

We now outline the experimental conditions under which our chain-splitting framework was evaluated.139

This includes: (Section 4.1) the dataset selected to benchmark reasoning difficulty and domain140

coverage, (Section 4.2) the models used for initial generation and continuation, and (Section 4.5) the141

metrics employed to quantify the quality of reasoning, compatibility, and the impact of performance142

on model interchanges.143

4.1 Dataset Selection144

An extensive dataset was carefully selected to capture a range of reasoning complexities and domain-145

specific scenarios.146

• MATH [Hendrycks et al., 2021]: consists of 12,500 high-school and college-level mathe-147

matical problems that span diverse topics and demanding multi-step solutions, providing148

rigorous testing to evaluate advanced mathematical reasoning and generalization.149

For our experiments, we evaluated models exclusively on the test splits of the MATH dataset,150

consisting of 5, 000 questions.151

4.2 Model Selection and Configuration152

We adopt Qwen2.5-PRM [Zheng et al., 2025] as our primary Process Reward Model, due to its153

fine-tuning on structured multi-step mathematical datasets such as PRM800K [Lightman et al.,154

2023] and Math-Shepherd [Wang et al., 2023a]. Qwen2.5-PRM is an instruction-tuned variant of155

Qwen2.5-Math-7B and supports token-level log-probability outputs.156

For model interchange experiments, we select two baseline models and two continuation models:157

4.3 Baseline158

To establish a baseline for reasoning quality, we employ Gemma-3-4B-IT and LLaMA-3.1-70B-159

Instruct to generate CoT exemplars, two state-of-the-art instruction-tuned models from distinct160

architectural lineages.161

• Gemma-3-4B-IT [Team et al., 2025], an instruction-tuned variant from the Gemma 3 model162

family developed by Google Deepmind with 4 Billion parameters is used to generate163

complete Chain-of-Thought reasoning paths, tuned to Gemma’s architecture.164

• LLaMA-3.1-70B-Instruct [Grattafiori et al., 2024], a large scale variant from the LLaMA 3165

model family developed by Meta AI with 70 Billion parameters is used to generate complete166

Chain-of-Thought reasoning paths, tuned to LLaMA’s architecture.167

4.4 Continuation168

• Gemma-3-1B-IT [Team et al., 2025], a lightweight variant from the same Gemma 3 model169

family, is used to evaluate how well reasoning chains can be completed by a structurally170

similar but smaller model.171

• LLaMA 3.1-8B-Instruct Grattafiori et al. [2024] representing a different architectural lineage172

helps enable testing interchangeability across distinct LLM families. For brevity, we refer to173

the aforementioned models as Gemma and LLaMA respectively for the remainder of this174

paper.175

On the MATH dataset, Gemma 3-1B-IT and Gemma 3-4B-IT performed with accuracies of 48.0%176

and 75.6% respectively [Team et al., 2025]. Moreover, Llama-3.1-8B-Instruct and Llama-3.1-70B-177

Instruct performed with accuracies 47.2% and 65.7% [Yang et al., 2024]. We observe that the two178
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base models exhibit similar performance levels and, likewise, that the two continuation models179

perform comparably.180

All models were prompted using one consistent CoT templates, either the interchange or full-run181

variant, as detailed in Section 8.1.182

4.5 Evaluation Metrics183

The hybrid reasoning chains generated were evaluated using a multifaceted set of metrics designed to184

assess accuracy, variability, and the impact of model interchanges on reasoning coherence and final185

outcomes. Specifically, we consider the following four core metrics:186

• Answer Accuracy: Accuracy is defined as the proportion of final answers from generation187

that exactly match those from ground-truth solutions. This metric represents the model’s188

ability to arrive at the correct final result through its reasoning chain.189

• PRM Score: As a PRM is available for scoring, we additionally report average PRM-190

assigned scores that capture the internal likelihood and coherence of a given chain regardless191

of final correctness. We define the PRM score A′ as the average plausibility score assigned192

to each reasoning step in a chain of n steps:193

A′ =
1

n

n∑
i=1

PRM(si)

where si denotes the i-th step in the chain. While traditional accuracy reflects outcome-level194

correctness, A′ provides a step-level assessment of reasoning quality.195

• Normalized Relative Gain (NRG): This metric quantifies whether incorporation of reasoning196

from another model helps or hinders performance. Given the accuracies of the original197

model A and B, and hybrid accuracies A′ (Model A prefix + Model B suffix) and B′ (Model198

B prefix + Model A suffix), we define:199

NRGA =
A′ −A

A
, NRGB =

B′ −B

B
.

Positive values indicate a performance gain from model interchange, while negative values200

reflect degradation.201

• Cross-Model Degradation (XMD): This metric captures the extent to which the continuation202

of a model degrades the original reasoning trajectory. It is defined as:203

XMDA→B =
A−B′

A
, XMDB→A =

B −A′

B
.

XMD provides a normalized measure of reasoning incompatibility, where higher values204

indicate more severe disruptions introduced by the cross-model continuation.205

5 Results206

We present results across the MATH benchmark to evaluate model interchangeability across truncation207

points. Through our proposed metrics, we look to determine whether model continuation works to208

improve or disrupt the original reasoning trajectory. Experimental results were obtained using the209

Runpod cloud platform, leveraging NVIDIA H100 PCIe GPUs over approximately 250 GPU hours.210

5.1 Full Chain-of-Thought Results211

To establish a baseline, we first evaluate each model’s performance using end-to-end CoT reasoning212

applied without interruption. For every example in the benchmark, the model is prompted to reason213

step by step to completion, producing a complete trajectory from question to final answer. We report214

results in terms of final answer accuracy and step-level reasoning score as seen in Table 1.215

This baseline allows us to quantify native reasoning strengths and weaknesses of each model without216

the effects of interchange.217
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Model Dataset Accuracy (%) PRM

Gemma-3-4B-IT MATH 68.06% 0.8952
Gemma-3-1B-IT MATH 36.28% 0.7904
LLaMA-3.1-70B-Instruct MATH 60.80% 0.8725
LLaMA-3.1-8b-Instruct MATH 47.76% 0.8522

Table 1: Performance of reasoning chains fully generated by each model (i.e., with no handoff or
interchange from another model) on the MATH dataset.

5.2 Interchanged Chain-of-Thought Results218

Thereafter, to gauge the interchangeability of reasoning processes across different models, we evaluate219

the completion of truncated CoT traces. Each reasoning chain is strategically truncated based on220

cumulative log-probability thresholds (25%, 50%, 75%), representing early, mid, and late points221

in the reasoning process. Subsequently, alternative models are assigned to continue the truncated222

reasoning chains through to completion.223

We report performance for all continuation combinations, including accuracy, step-level scores, and224

coherence ratings as seen in Table 2 & Table 3. This analysis unveils the extent to which partial225

reasoning from one model can be reliably extended by another, highlighting cases of both successful226

handoff and systematic breakdowns that point to the limits of reasoning interchangeability.227

Truncation Continuation Accuracy (%) PRM NRG XMD
25% Gemma-3-1B-IT 41.76% 0.7966 0.3678 0.3864
25% LLaMA-3.1-8B-Instruct 43.60% 0.8393 0.3196 0.3594
50% Gemma-3-1B-IT 49.86% 0.8002 0.3786 0.2674
50% LLaMA-3.1-8B-Instruct 53.24% 0.8585 0.264 0.2177
75% Gemma-3-1B-IT 55.26% 0.8032 0.3500 0.1881
75% LLaMA-3.1-8B–Instruct 63.80% 0.8697 0.1853 0.0626

Table 2: Performance of hybrid reasoning chains by truncation point and continuation model on
MATH dataset, using a fully generated CoT from Gemma-3-4B-IT.

Truncation Continuation Accuracy (%) PRM NRG XMD
25% Gemma-3-1B-IT 36.16% 0.7566 -0.1137 0.4053
25% LLaMA-3.1-8B-Instruct 42.18% 0.8323 -0.0150 0.3062
50% Gemma-3-1B-IT 38.50% 0.7730 -0.0968 0.3668
50% LLaMA-3.1-8B-Instruct 46.26% 0.8456 -0.0072 0.2391
75% Gemma-3-1B-IT 41.98% 0.7811 -0.0827 0.3095
75% LLaMA-3.1-8B-Instruct 50.06% 0.8543 -0.0002 0.1766

Table 3: Performance of hybrid reasoning chains by truncation point and continuation model on
MATH dataset, using a fully generated CoT from LLaMA-3.1-70B-Instruct.

6 Discussion228

Our observations uncover degradation in performance when cross-family models are tasked to229

continue reasoning midstream initiated by a partially completed CoT. There are several factors likely230

responsible for this downgrade in performance:231
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6.1 Style and Representational Compatibility232

A consistent disparity between intra-family and cross-family continuation highlights representational233

compatibility as a key factor in multi-model reasoning. Despite receiving high confidence chains,234

cross-family continuations (e.g., Gemma-3-4B-IT→LLaMA-3.1-8B-Instruct and LLaMA-3.1-70B-235

Instruct→Gemma-3-1B-IT) often fail to maintain correct reasoning. For instance, when LLaMA-236

3.1-70B-Instruct’s chain is continued by Gemma-3-1B-IT, accuracy falls to 36.16% at the 25%237

mark-nearly a 40% relative decline compared to the base model’s 60.80% full-chain accuracy-238

with a corresponding negative NRG (−0.1137). Similarly, continuations from Gemma-3-4B-IT239

into LLaMA-3.1-8B-Instruct under perform early on (43.60% at 25%) despite access to confident240

reasoning prefixes, yielding a lower NRG of 0.3196 compared to intra-family continuation at the241

same depth (Gemma-3-4B-IT→Gemma-3-1B-IT, 0.3678), indicating that these prefixes do not fully242

overcome differences in architecture and reasoning style. This pattern suggests a reasoning bias: each243

model family tends to rely more on its own reasoning patterns, which may result from structural244

differences between the families.245

These results are consistent with previous work [Liu et al., 2023], which noted that structural246

differences between model families (GPT-4 in their case) can limit cross-model reasoning transfer,247

particularly for complex, multi-step reasoning tasks. While LLaMA models generate coherent chains248

within their own family, their internal reasoning representations differ from Gemma’s, which may249

hinder smooth continuation across families. This is supported by consistently high XMD values across250

truncation points (e.g., 0.4053 at 25% and 0.3095 at 75% for LLaMA-3.1-70B-Instruct→Gemma-251

3-1B-IT), suggesting that reasoning coherence is not fully maintained even as longer prefixes are252

available. High-confidence reasoning prefixes do not appear sufficient to completely navigate these253

differences, indicating that cross-family continuation is constrained by family-specific reasoning254

tendencies.255

In contrast, intra-family continuations show steady improvement with longer truncation depths. For256

example, when Gemma-3-1B-IT continues from Gemma-3-4B-IT, accuracy rises from 41.76% at257

25% to 55.26% at 75%, accompanied by moderate NRG values (0.3678→0.3500) and decreasing258

XMD (0.3864→0.1881). Similarly when LLaMA-3.1-8B-Instruct continues from LLaMA-3.1-70B-259

Instruct, performance increases from 42.18% to 50.06%, with NRG improving from −0.0150 to260

near-neutral (−0.0002) and XMD decreasing from 0.3062 to 0.1766. These patterns suggest that the261

representational similarity between models supports a more stable continuation and better integration262

of context.263

6.2 Context Integration Overhead264

When deployed late in the reasoning chain (e.g., at the 75% mark), smaller continuation models265

such as Gemma-3-1B-IT and LLaMA-3.1-8B-Instruct must interpret and integrate extensive context266

generated by larger base models (Gemma-3-4B-IT and LLaMA-3.1-70B-Instruct). As reasoning267

sequences lengthen, models may face capacity limits that degrade performance. This bottleneck is268

attributed to the finite “working memory” of LLMs and the compounding demands of maintaining269

logical coherence across many steps [Shang et al., 2025]. The effect is especially pronounced when270

models are required to interpret and continue reasoning from an externally provided chain rather than271

generating all steps from scratch.272

On the MATH dataset, truncation depth produces gradual improvements but does not eliminate the273

performance gap relative to non-handoff baselines. For example, when continuing Gemma-3-4B-IT’s274

reasoning, Gemma-3-1B-IT improves from 41.76% at 25% truncation to 55.26% at 75%, while275

LLaMA-3.1-8B-Instruct rises from 43.60% to 63.80%. Similarly, when continuing LLaMA-3.1-276

70B-Instruct, LLaMA-3.1-8B-Instruct achieves a smoother progression from 42.18% to 50.06%,277

outperforming Gemma-3-1B-IT, which remains between 36.16% and 41.98%. These trends suggest278

that architectural alignment facilitates smoother context integration in same-family continuations,279

while representational mismatches in cross-family pairs disrupt coherent reasoning.280

Despite improvements with longer prefixes, performance remains notably below that of fully self-281

generated chains (Gemma-3-4B-IT: 68.06%, LLaMA-3.1-70B-Instruct: 60.80%). XMD values con-282

firm this persistent overhead: even at the 75% truncation point, XMD remains non-negligible (0.0626283

for Gemma-3-4b-IT→LLaMA-3.1-8B-Instruct and 0.1766 for LLaMA-3.1-70B-Instruct→LLaMA-284

3.1-8B-Instruct), indicating incomplete recovery of original reasoning quality.285
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These observations highlight that truncation depth alone does not ensure effective reasoning trans-286

fer. Although larger prefixes reduce uncertainty and contextual loss, architectural and stylistic287

compatibility between base and continuation models remains the key factor determining success.288

6.3 Error Amplification289

Minor inconsistencies or ambiguities in early reasoning steps, especially when generated by a290

different model, can compound as LLaMA or Gemma continue the reasoning process. With limited291

steps remaining to revise earlier logic (particularly in final-answer-only completions), both models292

struggle to recover from upstream errors. These results suggest that effective interoperability in multi-293

step reasoning depends on both model capability and the degree of representational and contextual294

alignment across reasoning steps.295

On the MATH dataset, when reasoning chains generated by Gemma-3-4B-IT or LLaMA-3.1-70B-296

Instruct are truncated and continued by smaller models at various points (25%, 50%, 75%), perfor-297

mance declines in proportion to both truncation depth and cross-family divergence. When Gemma-298

3-4B-IT serves as the base, continuation by Gemma-3-1B-IT (intra-family) improves steadily from299

41.76% at 25% to 55.26% at 75%, with NRG values rising from 0.3678 to 0.3500 and XMD decreas-300

ing from 0.3864 to 0.1881. Cross-family continuation by LLaMA-3.1-8B-Instruct performs com-301

petitively (43.60%→63.80%) but shows slightly lower NRG (0.3196→0.1853), indicating weaker302

efficiency in utilizing the provided context. Longer prefixes appear to partially reduce representational303

mismatch, leading to more consistent performance over time.304

When LLaMA-3.1-70B-Instruct serves as the base model, Gemma-3-1B-IT continuations per-305

form substantially worse (36.16˘41.98% across truncation points) with persistently high XMD306

(0.4053→0.3095) and negative NRG (−0.1137→−0.0827), suggesting limited transfer across fami-307

lies. Intra-family continuation by LLaMA-3.1-8B-Instruct performs more stably, reaching 50.06% at308

75% with NRG improving from −0.0150 to −0.0002 and XMD decreasing from 0.3062 to 0.1766,309

reflecting more consistent reasoning integration within the same family.310

Comparing fully generated chains with the hybrid results (Table 1), Gemma-3-4b and LLaMA-3.1-311

70B-Instruct still substantially outperform their continuations (68.06% and 60.80%, respectively).312

However, their smaller counterparts, especially Gemma-3-1B-IT, demonstrate partial to considerable313

recovery when inheriting sufficiently long prefixes, suggesting that similar architecture and tokeniza-314

tion structures enhance transfer performance. As seen over 25%/50%/75% truncations, intra-family315

continuation (Gemma-3-4b→Gemma-3-1b) improves from 41.76%→55.26% (+13.5 pp), and even316

cross-family continuation (Gemma-3-4B-IT→LLaMA-3.1-8B-Instruct) exhibits a greater net gain of317

43.60%→63.80% (+20.2 pp). In contrast, continuations from LLaMA-3.1-70b displayed weaker318

recovery with LLaMA-3.1-8B-Instruct rising only +7.9 pp (42.18% 50.06%), and Gemma-3-1B-IT319

gains just +5.8 pp (36.16%→41.98%). As truncation length increases, reasoning becomes more320

coherent, but full recovery is still unattainable, lending credence to how small representational gaps321

can compound through multi-step reasoning chains.322

7 Conclusion323

In this work, we introduced a novel framework for evaluating midstream interchangeability in324

large language models, grounded in a chain-splitting paradigm based on cumulative log-probability.325

By systematically truncating the reasoning chains generated by our base models and appending326

completions from either intra-family or cross-family models, we directly measured the stability and327

coherence of hybrid reasoning trajectories. Our experiments on MATH demonstrate that model family328

alignment plays a decisive role in the success or failure of such hybrid chains. While intra-family329

continuations generally preserved reasoning quality on simpler tasks, cross-family continuations330

often struggled to maintain coherence with the partial chains, despite comparable model performance331

as referenced in Section 4.2. This suggests that models like Gemma and LLaMA may be better332

aligned to continue reasoning within their own family than across different architectures.333

These findings challenge previous assumptions about model modularity in contemporary NLP. Despite334

architectural advances and increasing performance parity across model families, our results suggest335

that inter-model transfer in multi-step reasoning remains fragile, constrained by differences in stylistic336

alignment, latent variable encoding, and contextual integration. The observed breakdowns reveal a337
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significant gap between individual task performance and interoperability in reasoning, which is an338

area that has received insufficient attention in LLM evaluation.339

More broadly, our work highlights the need for new approaches that preserve consistent semantic340

reasoning across different language models. As research advances toward compositional and multi-341

agent LLM systems, reliable interchangeability will become essential, not solely for efficiency, but342

also for alignment, verification, and interpretability. Our methodology provides an initial framework343

for diagnosing and quantifying this interoperability gap in a systematic, data-driven manner.344

Limitations345

• Single Completion Runs: All experiments were conducted using deterministic continuations.346

While this reflects realistic deployment scenarios, it limits our understanding of variance347

under sampling. Future work should evaluate robustness using multiple stochastic rollouts.348

• Task Domain Scope: Our evaluation is confined to math reasoning (MATH). It remains349

unclear whether interchangeability generalizes to commonsense, scientific, or multimodal350

reasoning tasks.351

• Domain-Specific PRMs: We employed a math-specific Process Reward Model (PRM).352

Evaluating reasoning quality in other domains will require retraining or adapting PRMs353

tailored to those reasoning distributions.354

Future Work355

• Cross-Domain Generalization: Evaluate model interchangeability on tasks such as356

commonsense QA, multi-hop retrieval, scientific explanation, and instruction-following,357

where reasoning formats may be more variable or implicit.358

• Adaptive Truncation Strategies: Rather than using static log-probability thresholds359

(25/50/75%), future work could explore dynamic segmentation based on reasoning360

content, semantic shifts, or model uncertainty.361

• Collaborative Model Architectures: Deploy multi-agent or multi-model reasoning pipelines362

in production environments (e.g., tutoring systems, scientific assistants) to study tradeoffs in363

latency, memory, and correctness.364

8 Appendix365

8.1 Prompting366

Standardized Prompt

Full-Run Prompt :

System message: "You are a helpful assistant that solves problems step by step.
Please provide clear reasoning with numbered steps and conclude with your final answer."

User message: "Solve this problem step by step:
Question: [’question’]"

Interchange Prompt :

System message: "You are a helpful assistant that solves problems step by step.
Please provide clear reasoning with numbered steps and conclude with your final answer."

User message: "Solve this problem step by step:
Question: [’question’] [’truncated reasoning’]"

367

This prompt standardization ensures comparability in reasoning styles across models; slight variations368

were applied where necessary to accommodate model-specific tokenization or formatting requirements369

without altering the intended instructions or task semantics.370
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