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Abstract
In this paper, we consider the problem of Iterative
Machine Teaching (IMT), where the teacher pro-
vides examples to the learner iteratively such that
the learner can achieve fast convergence to a tar-
get model. However, existing IMT algorithms are
solely based on parameterized families of target
models. They mainly focus on convergence in the
parameter space, resulting in difficulty when the
target models are defined to be functions without
dependency on parameters. To address such a
limitation, we study a more general task – Non-
parametric Iterative Machine Teaching (NIMT),
which aims to teach nonparametric target models
to learners in an iterative fashion. Unlike para-
metric IMT that merely operates in the parameter
space, we cast NIMT as a functional optimization
problem in the function space. To solve it, we
propose both random and greedy functional teach-
ing algorithms. We obtain the iterative teaching
dimension (ITD) of the random teaching algo-
rithm under proper assumptions, which serves as
a uniform upper bound of ITD in NIMT. Further,
the greedy teaching algorithm has a significantly
lower ITD, which reaches a tighter upper bound
of ITD in NIMT. Finally, we verify the correct-
ness of our theoretical findings with extensive
experiments in nonparametric scenarios.

1. Introduction
Machine teaching (MT) (Zhu, 2015; Zhu et al., 2018) is the
study of how to design the optimal teaching set, typically
with minimal examples, so that learners can quickly learn
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target models based on these examples. It can be considered
an inverse problem of machine learning, where machine
learning aims to learn model parameters from a dataset,
while MT aims to find a minimal dataset from the target
model parameters. MT has proven to be useful in various
domains, including robustness (Alfeld et al., 2016; 2017; Ma
et al., 2019; Rakhsha et al., 2020), crowd sourcing (Singla
et al., 2013; 2014; Zhou et al., 2018; 2020; Collins et al.,
2023), and computer vision (Wang et al., 2021; Wang &
Vasconcelos, 2021).

Considering the interaction manner between teachers and
learners, MT can be conducted in either batch (Zhu, 2013;
2015; Liu et al., 2016; Mansouri et al., 2019) or iterative
(Liu et al., 2017; 2018) fashion. Batch MT only allows
the teacher to interact with the learner once. The teacher
constructs a teaching dataset and feeds it to the learner in
one shot. The learner will learn a target model from this
dataset. The minimal number of examples in this teaching
set is called teaching dimension (Goldman & Kearns, 1995).
In contrast, an iterative teacher would feed examples sequen-
tially based on current status of the iterative learner, which
further takes the optimization algorithm into consideration.
The number of iterations, i.e., the length of this teaching
sequence is defined as iterative teaching dimension (ITD)
(Liu et al., 2017; 2018).

The majority of current research on iterative machine teach-
ing (IMT) (Liu et al., 2017; 2018; Xu et al., 2021; Wang
et al., 2021) focuses on the convergence to target models
(i.e., functions) f which are usually parameterized by a set
of parameters w as it assumes that f can be represented by
w, e.g., f(x) = ⟨w,x⟩ with input x. However, there may
exist cases where the mapping from input to output cannot
be parameterized in terms of w, for example, f is defined in
a nonparametric fashion (Hollander et al., 2013; Corder &
Foreman, 2014; Zhu et al., 2018). Especially in general and
more realistic problems (e.g., (Genevay et al., 2016; Blei
et al., 2017; Dvurechenskii et al., 2018)), the assumption
of parametric learners may not hold. Here comes a natural
question: Can the teacher efficiently guide iterative learners
to parameter-free target models? Our answer is Yes. We
seek to guide iterative learners to achieve fast convergence

Our source code is available at https://github.com/
chen2hang/NonparametricTeaching.
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Figure 1. Comparison between parametric and nonparametric IMT
in 3D space. (a): Parameters are precisely vectors represented by
a point in 3D space, which would be updated gradually towards
w∗. (b): Nonparametric model f can be denoted by a surface in
3D, which would evolve in more complicated fashion.

to a nonparametric target function f∗. Figure 1 provides an
intuitive comparison between parametric and nonparametric
iterative teaching in a 3-dimensional space.

Shifting our focus to functions, we formulate NIMT as
an instance of functional optimization problem (Singer,
1974; Zoppoli et al., 2002; Mroueh et al., 2019; Shen et al.,
2020), and then derive two algorithms (one picks exam-
ples randomly, and the other picks examples in an greedy
fashion). Without loss of generality, we are mainly con-
cerned with the Reproducing Kernel Hilbert Space (RKHS)
in this paper. We start with a simple baseline algorithm,
called Random Functional Teaching (RFT), which essen-
tially adopts uniform sampling and serves as a functional
analogue of stochastic gradient descent (Ruder, 2016; Hardt
et al., 2016). In the context of IMT, we analyze the func-
tional gradient descent method (Mason et al., 1999a; Shen
et al., 2020) in RKHS, and then find that based on the chain
rule for functional gradients (Gelfand et al., 2000; Cole-
man, 2012), the gradient in NIMT can be expressed by the
multiplication of a scalar governing the magnitude and the
kernel function with the teaching example as its argument.
Therefore, steepening gradients is equivalent to maximizing
that scalar, which naturally leads to our greedy algorithm
– Greedy FT (GFT). GFT picks examples evaluated at the
point where the target and current models reach their maxi-
mal difference (Arbel et al., 2019; Cormen et al., 2022). Fur-
thermore, under mild assumptions, we theoretically prove
the convergence of both RFT and GFT, and then show that
the ITD of GFT is lower than that of RFT. This concludes
that GFT yields a tighter upper bound for ITD. Finally,
we validate our theoretical findings with a number of ex-
periments in both synthetic and real-world datasets under
nonparametric scenarios. To summarize, the contributions
of our work are listed as follows.

• To our knowledge, we are the first to comprehensively
study Nonparametric Iterative Machine Teaching (NIMT),
which focuses on exploring iterative algorithms for teach-

ing parameter-free target models from the optimization
perspective. Instead of operating in the finite-dimensional
space of parameters, we formulate NIMT as a functional
optimization in the space of infinite-dimensional func-
tions, a more general space of models (i.e., RKHS is
considered), in Section 4.1. NIMT is a natural generation
of IMT (Liu et al., 2017), shifting the parametric paradigm
to a nonparametric one.

• We propose two teaching algorithms (RFT and GFT). RFT
is based on random sampling with ground truth labels, and
the derivation of GFT is based on the maximization of
the informative scalar introduced in Proposition 5 in or-
der to steepen gradients. These two teaching algorithms
proposed in Section 4.2 fill the gap for teaching nonpara-
metric learners in IMT.

• We theoretically analyze the asymptotic behavior of both
RFT and GFT in Section 4.3. We prove that per-iteration
reduction of loss L for RFT and GFT has a negative upper
bound expressed by the discrepancy of iterative teaching
defined in Definition 10, and we derive that the ITD of
GFT is O(ψ( 2L(f0)

η̃ϵ )) (detailed notations are introduced
in the subsequent sections), which is shown to be lower
than the ITD of RFT, O(2L(f0)/ (η̃ϵ)).

2. Related Work
Machine teaching. There has been a recent growth of in-
terest in the research of machine teaching (Zhu, 2015; Zhu
et al., 2018; Liu et al., 2017; 2018; Wang et al., 2021). Batch
machine teaching studies behaviors of version space learn-
ers (Chen et al., 2018; Tabibian et al., 2019), linear learners
(Liu et al., 2016), reinforcement learners (Kamalaruban
et al., 2019; Zhang et al., 2020b) along with forgetful learn-
ers (Hunziker et al., 2018; Liu et al., 2018) and multiple
learners (Zhu et al., 2017). Further, taking the learner’s
optimization algorithm into consideration, iterative teaching
has been recently studied (Liu et al., 2017; 2018; Peltola
et al., 2019; Lessard et al., 2019; Liu et al., 2021; Xu et al.,
2021; Qiu et al., 2022). (Liu et al., 2021) considers a label
synthesis teacher and (Qiu et al., 2022) proposes a genera-
tive teacher. (Xu et al., 2021) improves the scalability and
efficiency of the iterative teaching algorithm with locality-
sensitive sampling. Different from existing works that focus
on parametric learners, we aim to teach a nonparametric
learner. In this regime, One of the most related work is
(Mansouri et al., 2019) which analyzes sequential teaching
from the perspective of hypothesis pruning without spec-
ifying a parameter for hypothesis. In contrast, this work
systematically investigates nonparametric teaching from the
optimization perspective. Besides, (Kumar et al., 2021;
Qian et al., 2022) are also highly related, since they study
non-gradient-based kernel learners under the batch setting.
However, they are not strictly nonparametric teaching since
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they assume the hypothesis is determined by parameters,
and they cannot produce an iterative algorithm for teaching
parameter-free mappings. In contrast, we study a more gen-
eral task – nonparametric iterative machine teaching, and
propose practical iterative functional teaching algorithms.

Functional optimization. Allowing non-parametrically
defined mapping from input to output, functional optimiza-
tion (Singer, 1974; Becke, 1988; Singer, 1974; Friedman,
2001; Zoppoli et al., 2002; Smanski et al., 2014; Zhang
et al., 2020a) over more general space of functions, includ-
ing RKHS, Sobolev space (Adams & Fournier, 2003) and
Fréchet space (Narici & Beckenstein, 2010), is a founda-
tional and meaningful task across many domains, such as
barycenter problem (Shen et al., 2020; Ye et al., 2017), vari-
ational inference (Liu & Wang, 2016; Liu, 2017) and GAN
training (Mroueh et al., 2019). (Nitanda & Suzuki, 2018;
2020) make an interesting connection between functional
gradient boosting and residual networks (He et al., 2016).
We observe that the functional gradient descent algorithm
(Mason et al., 1999a;b; Coleman, 2012) for functional opti-
mization in RKHS is well studied because of some regular
properties. The iterative interaction (Liu et al., 2017; 2018)
between teachers and learners exhibits intriguing similar-
ities to the functional gradient descent algorithm in terms
of its gradual improvement. Inspired by such similarities,
NIMT starts by analyzing functional gradient descent and
then designs algorithms for choosing optimal teaching ex-
amples under the iterative teaching framework (Liu et al.,
2017; 2018; 2021; Qiu et al., 2022).

3. Notations
Let X ⊆ Rn be a n dimensional feature space and Y ⊆
R(Regression) orY = {−1, 1} (Classification) be a label
space. A teaching example refers to a pair of data (e.g.,
image) and label (x, y) ∈ X × Y . A length-T teaching
sequence is defined as D = {(x1, y1), . . . (xT , yT )} =
{(xi, yi)}Ti=1. The collection of potential teaching se-
quences is denoted by D which includes all teaching se-
quences, i.e., D ∈ D and is also called the knowledge
domain of teachers (Liu et al., 2017; 2018).

This paper considers a specific function space – the Re-
producing Kernel Hilbert Space, and therefore models are
assumed to be mappings in RKHS f ∈ H : X 7→ Y . This
assumption is widely adopted in general functional opti-
mization, e.g., (Liu & Wang, 2016; Mroueh et al., 2019;
Arbel et al., 2019; Shen et al., 2020). Operating under
RKHS where point evaluation is a continuous linear func-
tional allows us to quantify the iteration quality, which is
crucial for convergence analysis. Given a target model1

1We assume that both f0 and f∗ are from the same RHKS such
that f∗ is realizable. Generally, f∗ can be assigned arbitrarily, but
for the convergence to the target model, we consider the projection

f∗ ∈ H, one can uniquely represent a teaching example
(x†, y†) by its feature x† for brevity since its label is pre-
cisely y† = f∗(x†).

Let K(x,x′) : X × X 7→ R be a positive definite kernel
function. Equivalently, K(x,x′) = Kx(x

′) = Kx′(x)
and Kx(·) can be abbreviated as Kx. The RKHSH deter-
mined by K(x,x′) is the closure of linear span {f : f(·) =∑r

i=1 αiK(xi, ·), αi ∈ R, r ∈ N,xi ∈ X} equipped
with inner product ⟨f, g⟩H =

∑
ij αiβjK(xi,xj) when

g =
∑

j βjKxj
. NIMT reduces to parameterized IMT if we

use a linear kernel: K(x,x′) = ⟨x,x′⟩+1 (Hofmann et al.,
2008). With the Riesz–Fréchet representation theorem (Lax,
2002; Schölkopf et al., 2002), the evaluation functional is
defined as follows:

Definition 1. For a reproducing kernel Hilbert spaceH with
a positive definite kernel Kx ∈ H, we define the evaluation
functional Ex[·] : H 7→ R as

Ex[f ] = ⟨f,Kx(·)⟩H = f(x), f ∈ H. (1)

Additionally, for a functional F : H 7→ R, the Fréchet
derivative (Coleman, 2012; Liu, 2017; Shen et al., 2020) of
F is given as follows:

Definition 2. (Fréchet derivative in RKHS) For a functional
F : H 7→ R, its Fréchet derivative ∇fF [f ] at f ∈ H is
defined implicitly as F [f + ϵg] = F [f ] + ϵ⟨∇fF [f ], g⟩H +
O(ϵ2) for any g ∈ H and ϵ ∈ R, which is a function inH.

4. Nonparametric Iterative Machine Teaching
We start by formulating NIMT as a nested functional mini-
mization (Eq. 2). Then we present a natural baseline called
random functional teaching, which samples data randomly
(Algorithm 1). After gaining an insight from functional
gradient (Proposition 5), we propose the greedy teaching al-
gorithm, called greedy functional teaching, which searches
examples with steeper gradients (Algorithm 1). Finally, we
analyze the ITD for both RFT and GFT.

4.1. Teaching settings

Different from the parametric cases (Liu et al., 2017; Zhu
et al., 2018) reviewed in Appendix A, we define NIMT as a
functional minimization over D in RKHS:

D∗ = argmin
D∈D

M(f̂ , f∗) + λ · len(D)

s.t. f̂ = A(D)
, (2)

whereM denotes a discrepancy measure, len(D), which
is regularized by a constant λ, is the length of the teaching
sequence D, and A represents the learning algorithm of

of f∗ into the RHKS constructed by X with specific kernels.
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learners. In fact, len(D) essentially is the count of iterations,
i.e., the ITD defined in (Liu et al., 2017). Specifically, we
are concerned with L2 norm defined in RKHS as the discrep-
ancy measureM(f̂ , f∗) = ∥f̂ − f∗∥H, and empirical risk
minimization as the learning algorithm A(D) as follows:

f̂∗ = argmin
f∈H

E(x,y) {L(f(x), y)} , (3)

where we have the joint sampling distribution (x, y) ∼
P(x, y) and the convex loss function L. It is optimized by
functional gradient descent:

f t+1 ← f t − ηtG(L; f t; (xt, yt)), (4)

where t = 0, 1, . . . , len(D) is the iteration index, ηt > 0 is
the learning rate at t-th iteration (a small constant) and G
denotes the gradient functional evaluated at (xt, yt).

Compared to the white-box setting where teachers know
all information about learners (Liu et al., 2017; 2021; Xu
et al., 2021), this paper considers a more practical gray-
box teaching setting, where teachers have no access to the
learning rate η, specific loss function L but are able to track
f t. For interaction, we only allow teachers to communicate
with learners via teaching examples in D. For teachers
with different knowledge domains, we start by deriving the
theoretical findings for synthesis-based teachers (Liu et al.,
2017), and then extend them to the most practical pool-
based teachers discussed in Remark 7. Finally, we study the
empirical performance of our method.

4.2. Functional teaching algorithms

Random Functional Teaching. It is straightforward for
teachers to pick examples randomly and feed them to learn-
ers, which derives a simple teaching baseline called Random
Functional Teaching. Given a nonparametric target model
f∗, RFT algorithm is to give learners D = {(xi, yi)}ITDRFT

i=1

where xi ∈ X is picked randomly, yi = f∗(xi) and ITDRFT
denotes the ITD of RFT. RFT forms a functional counter-
part of SGD (Ruder, 2016; Hardt et al., 2016), and RFT
provides ground truth yi = f∗(xi) as f∗ is known. There-
fore, it is natural to consider RFT as a very fundamental
baseline when comparing against other functional teaching
algorithms. Pseudo code is in Algorithm 1.

Greedy Functional Teaching. With Fréchet derivative in
RKHS (Definition 2), we introduce Chain Rule for func-
tional gradients (Gelfand et al., 2000) as a Lemma.

Lemma 3. (Chain rule for functional gradients) For dif-
ferentiable functions G : R 7→ R that are functions of
functionals F , G(F [f ]), the expression

∇fG(F [f ]) =
∂G(F [f ])

∂F [f ]
· ∇fF [f ] (5)

is usually referred to as the chain rule.

For derivative of evaluation functional (Coleman, 2012), we
provide Lemma 4 whose proof is deferred to Appendix B.

Lemma 4. For an evaluation functional Ex[f ] = f(x) :
H 7→ R, its gradient is∇fEx[f ] = Kx.

f can be viewed as the argument and the loss function L of
interest in NIMT is precisely a functional. Consequently,
with Lemma 3 and 4, we gain a critical insight of functional
gradients of L (Mason et al., 1999a; Coleman, 2012).

Proposition 5. Given a certain example (x, y), the gradient
G of loss function L w.r.t. the model f can be expressed as
a scalar times a unit kernel:

G(L; f ; (x, y)) = ∂L
∂f

∣∣∣∣
f(x),y

∥Kx∥H ·
Kx

∥Kx∥H
. (6)

Proposition 5 suggests that the functional gradient is fun-
damentally determined by an informative real number
∂L/∂f |f(x),y ∥Kx∥H controlling the magnitude of G and a
unit kernel Kx/∥Kx∥H governing the direction (Coleman,
2012). For ease of understanding, such a unit kernel can
be viewed as a unit vector in infinite dimensional space (a
counterpart of a unit vector in the Euclidean space) since a
model can be represented by a infinite series of functions in
RKHS, f =

∑∞
i αiKxi

(Steinwart & Christmann, 2008).

In IMT (Liu et al., 2017), the target is to achieve fast conver-
gence (maximal reduction of iteration number) by designing
the optimal iterative algorithms for example selection. It is
natural to consider the properties of the optimal example
for reducing ITD at each iteration. This is answered by
Theorem 6 proved in Appendix B.

Theorem 6. Given a nonparametric target model f∗, let
(xt, yt) be a fed example at t-th iteration and (xt∗, yt∗) be
the optimal one with the steepest gradient towards f∗:(

xt∗, yt
∗)

= argmin
xt∈X ,yt∈Y∥∥f t − ηtG(L; f t; (xt, yt))− f∗

∥∥2
H . (7)

We denote Gt := G(L; f t; (xt, yt)) and Gt∗ :=
G(L; f t; (xt∗, yt∗)), and then the following holds

⟨Gt∗ − Gt, f t − f∗⟩H ≥ 0. (8)

Eq. 8 indicates a property of Gt∗ corresponding to xt∗,
which is independent of explicit η and specific L and adapts
to gray-box learners. Besides, Theorem 6 intuitively tells
that Gt∗ − Gt and f t − f∗ share the same direction. That
means if f t ≥ f∗, the example with the largest gradient
Gt∗ ≥ Gt ≥ 0 would be selected as the optimal example
to minimize Eq. 7. For the case of f t ≤ f∗, the gradient
of the optimal example should be the smallest one, i.e.,
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Gt∗ ≤ Gt ≤ 0. In a nutshell, the gradient norm at the
optimal example should be maximal at every iteration.

Combining Proposition 5 and results in Theorem 6, maxi-
mizing gradient norm written in Eq. 6 derives our greedy
functional teaching algorithm, namely Greedy-1 Functional
Teaching (GFT-1):

Given a nonparametric target model f∗, GFT-1 is to pick
the example satisfying(
xt∗ = argmax

xt∈X

∥∥∥∥ ∂L
∂f

∣∣∣
ft(xt),yt=f∗(xt)

K (xt, ·)
∥∥∥∥
H
, yt

∗
= f∗

(
xt∗)) (9)

as the optimal one to learners at t-th iteration, and t =
0, 1, . . . , ITDGFT where ITDGFT is the ITD of GFT.

Practically, we can simplify it as(
xt∗ = argmax

xt∈X

∣∣∣∣ ∂L∂f ∣∣∣
ft(xt),yt=f∗(xt)

∣∣∣∣ , yt∗ = f∗
(
xt∗)) (10)

to save computational cost when choosing normalized ker-
nel functions ∥Kx∥H ≈ 1 or ignoring the trivial influence
from ∥Kx∥H when the values of ∥Kx∥H are the same for
all x ∈ X . Since ∂L/∂f has positive correlation with
∥f − f∗∥H: ∂L/∂f decrease as f gradually approaches
f∗ (Boyd et al., 2004; Coleman, 2012), it is computa-
tionally plausible to maximize |f(x)− f∗(x)| rather than
∂L/∂f |ft(xt),yt directly, such that GFT-1 also can be im-
plemented under the gray-box setting where L and η could
be unknown. Maximizing |f(x) − f∗(x)| is easy to com-
pute, since it avoids calculation of the partial derivative
when example selection. Compared to RFT, GFT selects
examples with a greedy strategy for fast convergence.

Allowing more examples to be fed, i.e., feeding a pack of
teaching examples instead of a single one at each iteration,
we present the Greedy-k Functional Teaching (GFT-k) as a
heuristic. Given a nonparametric target model f∗, GFT-k is
to pick k examples satisfying(

xt
j
∗
= argmax

xt
i∈X−{xt

i
∗}j−1

i=1

∥∥∥∥ ∂L
∂f

∣∣∣
ft(xt

i),y
t
i

K (xt
i, ·)
∥∥∥∥
H
, ytj

∗
= f∗

(
xt
j
∗)) (11)

as the pack of optimal examples to learners at t-th iteration,
t = 0, 1, . . . , ITDGFT and j = 1, . . . , k.

The hyper parameter k can take the form of either an inte-
ger counting the number of examples, where k ∈ N, or a
decimal representing the ratio of the pack to the whole pool,
where k ∈ [0, 1]. The pseudo code for RFT, GFT-1, and
GFT-k is given in Algorithm 1 which encapsulates these
algorithms.
Remark 7. For the pool-based teacher who can only pro-
vide teaching examples from a pool P ⊊ X , RFT and GFT
could still work by replacing X by P . However, f t might
converge to the suboptimal f∗′ when the optimal examples
xt∗ ∈ X − P and therefore the pool-based teacher cannot
provide them to learners.

Algorithm 1 Random / Greedy Functional Teaching
Input: Target f∗, initial f0, per-iteration pack size k, small
constant ϵ > 0 and maximal iteration number T .

Set f t ← f0, t = 0.

while t ≤ T and ∥f t − f∗∥H ≥ ϵ do
The teacher selects k teaching examples:
Initialize the pack of teaching examples K = ∅;
for j = 1 to k do

(RFT) 1. Pick xt
j
∗ ∈ X randomly;

(GFT) 1. Pick xt
j
∗ with the maximal difference

between f t and f∗:

xt
j
∗
= argmax

xt
i∈X−{xt

i
∗}j−1

i=1

∣∣f t(xt
i)− f∗(xt

i)
∣∣ ;

2. Add
(
xt
j
∗
, ytj

∗
= f∗

(
xt
j
∗)) into K.

end
Provide K to learners.

The learner updates f t based on received K:
f t ← f t − ηtG(L; f t;K).
Set t← t+ 1.

end

4.3. Analysis of Iterative Teaching Dimension

We begin with iterative teaching dimension analysis of RFT
under the assumptions (Shen et al., 2020) on L and the
kernel function K(x,x′) ∈ H as below.

Assumption 8. The loss function L(f) is LL-Lipschitz
smooth, i.e., ∀f, f ′ ∈ H and x ∈ X

|Ex [∇fL(f)]− Ex [∇fL(f ′)]| ≤ LL |Ex [f ]− Ex [f ′]| ,

where LL ≥ 0 is a constant.

Assumption 9. The kernel function K(x,x′) ∈ H is
bounded, i.e., ∀x,x′ ∈ X , K(x,x′) ≤ MK , where
MK ≥ 0 is a constant.

Recall the definition of the evaluation functional and Fréchet
derivative in Definition 1 and 2, respectively, we further
introduce a discrepancy (Shen et al., 2020) to quantify the
inconsistency between f t and f∗ before theoretical analysis.

Definition 10. The discrepancy of iterative teaching be-
tween f t and f∗ at xt is defined as

SL(f t;xt) :=
∣∣Ext∇fL(f t, f∗)

∣∣2 . (12)

For succinctness, we rewrite Eq. 12 as SL(f t;xt) =

|Ext∇fL(f t)|2 by omitting given f∗. One can observe
that SL(f t;xt) decreases as f t approaches f∗, thus it can
track the convergence state of functional teaching algorithms
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and measure the per-iteration improvement about f t to-
wards f∗. Interestingly, the discrepancy of iterative teaching
shares a close connection with the Fisher information (Ris-
sanen, 1996; Schervish, 2012). Note that |Ext∇fL(f t)|2
can be equivalently written as Ex (∇fL(f))2. Focus on
arithmetic mean rather than point evaluation of (∇fL(f))2,
then replacing evaluation functional operator by expectation
operator, we have Ex∼P(x){(∇fL(x; f))2}, which can be
viewed as a nonparametric Fisher information for convex
loss function. Let f degenerate into the unknown parameter
θ and L be the natural logarithm of the likelihood function
ℓ(x; θ), we have Ex∼P(x){(∇θ log ℓ(x; θ))

2}. Therefore,
nonparametric Fisher information for convex loss function
can be viewed as a kind of generalized Fisher information,
which extends the natural logarithm of likelihood function
to a convex loss function and the unknown parameter to a
general mapping. More discussion is in Appendix A.

Random Functional Teaching. Recall the teaching settings
(Eq. 3, Eq. 4), we analyze per-iteration reduction w.r.t. L.

Lemma 11. (Sufficient Descent for RFT) Under Assump-
tion 8 and 9, if ηt ≤ 1/(2LL · MK), RFT teachers can
reduce the loss L:

L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt). (13)

Proof of the Lemma 11 is in Appendix B. Before the conver-
gence of RFT algorithm, the decrease of L has a negative
upper bound expressed by SL(f t;xt), which is determined
by learning rate ηt, loss L, mastery degree f t and teaching
example xt. One can see that these four factors are inde-
pendent so they affect per-iteration reduction of L indepen-
dently. Therefore, even though teachers fail to observe all
factors under the gray-box setting, they can also assume that
unknown factors are fixed, and optimize example feeding
based on tracked f t to steepen gradients. This is consistent
with the motivation of GFT deriving from Proposition 5 and
Theorem 6.

Theorem 12. (Convergence for RFT) Suppose the model
of learners is initialized with f0 ∈ H and returns f t ∈
H after t iterations, we have the upper bound of minimal
SL(f t;xt):

min
t

SL(f t;xt) ≤ 2L(f0)/ (η̃t) , (14)

where 0 < η̃ = min
t
ηt ≤ 1

2LL·MK
.

The proof of the Theorem 12 is given in Appendix B.
It follows from Eq. 14 that the upper bound of min-
imal SL(f t;xt) converges at the rate of O(1/t) and
mint SL(f t;xt) → 0 as t → ∞, which means it needs
O(2L(f0)/ (η̃ϵ)) iterations for RFT to achieve a station-
ary point with constant ϵ > 0. Therefore, we conclude
that ITD of RFT is O(2L(f0)/ (η̃ϵ)) <∞, which suggests

feasibility of our extension from the parametric IMT to
nonparametric IMT.

Greedy Functional Teaching. Compared to RFT, GFT
provably enjoys a faster convergence rate and needs fewer
iterations to converge, i.e., lower ITD.

Lemma 13. (Sufficient Descent for GFT) Under Assump-
tion 8 and 9, if ηt ≤ 1/(2LL ·MK), GFT teachers can
reduce the loss L at a faster speed:

L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt∗)

≤ −ηt/2 · SL(f t;xt). (15)

The proof of the Lemma 13 is presented in Appendix B.
One can observe that per-round improvement of GFT has
a tighter bound than that of RFT. The reason is that with a
greedy strategy GFT elaborately selects examples by maxi-
mizing norm of difference between current and target mod-
els, such that learners improve f t with a steeper step for-
ward f∗ in per iteration. Such tighter bound approves the
efficiency of GFT theoretically.

Theorem 14. (Convergence for GFT) Suppose the model
of learners is initialized with f0 ∈ H and returns f t ∈
H after t iterations, we have the upper bound of minimal
SL(f t;xj∗):

min
j

SL(f j ;xj∗) ≤ 2

η̃ψ(t)
L(f0), (16)

where 0 < η̃ = min
t
ηt ≤ 1

2LL·MK
, ψ(t) =

∑t−1
j=0 γ

j and

γj = SL(fj ;xj)
SL(fj ;xj∗) ∈ (0, 1] named greedy ratio.

The proof of the Theorem 14 is given in Appendix B. Greedy
ratio measures the per-iteration reduction difference be-
tween RFT and GFT, and ψ(t) thereby denotes the cumu-
lative difference, i.e.superiority of GFT compared to RFT.
Intuitively, GFT is strikingly efficient than RFT at beginning
and greedy ration is close to 0. As teaching goes on, such di-
vergence vanishes gradually, then greedy ration increasingly
close to 1. For lim

t→∞
γt → 1, we must have lim

t→∞
ψ(t)→∞.

Since ψ(t) ≤ t, one can obtain

2

η̃ψ(t)
L(f0) ≥ 2

η̃t
L(f0), (17)

which means minj SL(f j ;xj∗) has a higher upper bound
than minj SL(f j ;xj). In another word, GFT holds a lower
ITD O(ψ( 2L(f0)

η̃ϵ )) for convergence.

Remark 15. Computation complexity. The major compu-
tational cost comes from gradient calculation, which could
be sped up via parallelization provided in GFT-k. Besides,
when the size of an example pool is n, Kernel Operation
(KO) and example selection for GFT cost O(n2) and O(n),
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(a) Regression: Teaching a Posterior Probability Density Function.
0th Iteration

f ∗

f 0

False +

True +

False -

True -

500th Iteration 1500th Iteration 2500th Iteration 3000th Iteration 4000th Iteration

(b) Classification: Teaching a Nonlinear Decision Boundary.

Figure 2. GFT for nonparametric regression and classification teaching problems. (a): The red dashed lines are f∗ and the solid lime lines
are f t at different iteration of GFT. Selected examples are pointed out by blue vertical lines. (b): The red dashed lines are f∗ when f0 is
represented by the edge between blue and orange regions. x1 and x2 are corresponded to x and y axis, respectively. (a)-(b) present the
nonparametric teaching ability of helping the learner converge to f∗ even from a terrible initial f0 (without overlap with f∗).

respectively. In large-scale problem, cost of GFT could
be saved by implementing it in sub-sampled support of f∗

(Politis et al., 1999) and cost of KO could be cut down by
a random feature expansion of the kernel (Rahimi & Recht,
2007; Liu, 2017).

5. Experiments and Results

We test our RFT and GFT on both synthetic and real-world
data, on which we find these two algorithms present satis-
factory capability to tackle nonparametric teaching tasks.
Without particular emphasis, experiments are implemented
under the synthesis-based teacher setting where the teacher
can provide any examples to learners and the knowledge
domain is complete. Some detailed settings and extended
experiments are given in Appendix C, D.

Synthetic 1D Gaussian Mixture. Consider a nonpara-
metric Bayesian inference problem. The target model is
specified as the posterior probability density function (PDF)
set to be f∗ = 1/3N (x;−2, 1) + 2/3N (x; 2, 1), where we
denote the PDF of a normal distribution with mean µ and
standard deviation σ as N (x;µ, σ). We assume f0 for the
learner is initialized as f0 = N (x;−10, 1). This is a chal-
lenging regression teaching problem since f0 and f∗ is far
apart (almost without overlap). (a) in Fig. 2 shows that f0

is guided by GFT to evolve towards f∗ directly. It can be
found that in spite of obvious difference between f∗ and
f0, our GFT can smooth the mode of f0 where is flatten in
f∗ and sharpen f0 towards the mode of f∗ via searching x
with maximal |f∗(x)− f t(x)| and feeding it to the learner.

t=1000 t=5000 t=10000 t=20000

(a) GFT-1
t=1000 t=5000 t=10000 t=20000

(b) Pool GFT-1
t=1000 t=5000 t=10000 t=20000

(c) GFT-1 with Alternative
Figure 3. Nonparametric teaching for correcting 8 towards 0. (a):
evolution of f t with GFT-1 algorithm. (b): f t for GFT-1 under the
pool-based teacher. (c): f t for GFT-1 when occasionally teaching
with O. GFT-1 presents satisfied nonparametric teaching capability
in these different scenarios.

Synthetic 2D Classification. For a 2D nonparametric
classification problem, out of convenience for visualiza-
tion, the target model is set to be f∗(x1, x2) = x2 −
exp

(
x1−0.5

0.5

)2
+ exp

(
x1+0.5

0.5

)2
, where xi represents fea-

ture i, i = 1, 2. Then, let f∗(x1, x2) = 0, we can rewrite
it as x2 = exp

(
x1−0.5

0.5

)2 − exp
(
x1+0.5

0.5

)2
and visualize

the decision boundary in a 2D figure. f0 is set to be
f0 = x2 + exp

(
x1−0.3

0.5

)2 − exp
(
x1+0.6

0.5

)2
, from which
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(b) The Cheetah Impartation

Figure 4. Comparison of convergence performance for RFT and
GFT. The legend of GFT-1 for pool-based teaching is Pool GFT-1
when that for alternative teaching is Alte. GFT-1. The legend,
Whole means the teacher provides all pixels to the learner.

we have x2 = exp
(
x1+0.6

0.5

)2−exp
(
x1−0.3

0.5

)2
. (b) in Fig. 2

presents how GFT corrects the inappropriate decision bound-
ary f0 towards f∗. It can be observed that for a more general
function more than PDF, our GFT is also able to amend a
bad initialization f0 towards f∗.

More experiments applying RFT and GFT to teach parame-
terized target models are given in Appendix D, which shows
parametric adaptation of RFT and GFT.

The digit Correction. Consider a digit (MNIST (LeCun,
1998)) teaching instance, one can image a digit figure as
a surface in 3D space where z axis is the gray level and
x, y axes represent the pixel location. Obviously such com-
plexity surface cannot be identified by a parameter, thus is
beyond the capabilities of parametric algorithms (Liu et al.,
2017). Initially, the teacher would ask an infant (the learner)
what is digit 0 (f∗)? He would provide a self-convinced but
wrong answer as digit 8 (f0) to the teacher. Based on such
a feedback, the teacher would correct f0 towards f∗ via
feeding examples (fundamentally is gray value with pixel
location). After many rounds of teaching and learning, the
learner would evolve its f from incorrect f0 to ambiguous
f t and final correct f∗, which shares similarity with the
process when human beings learn new items (Bengio et al.,
2009). We visualize above procedure of our GFT-1 teacher
in Fig. 3 (a).

Consider practical pool-based teacher scenario (introduced
in Remark 7). We randomly set that 80% pixels are available
to the pool-based teacher as P . Fig. 3 (b) shows that our
GFT-1 is also effective while f t cannot converge to f∗ due
to the limited knowledge domain of the pool-based teacher.

A more interesting case is alternative teaching. Specifically,
digit 0 is well-known for the teacher, but lack of Kids Picture
Dictionary of 0 at hand he cannot provide wanted teaching
examples. Alternatively, notice on similar topological struc-
ture between digit 0 and character O (EMNIST from (Cohen
et al., 2017)), it is natural to take O as teaching examples.
We set the probability of teaching with O as 0.2 in each
iteration to test GFT-1. As expected, Fig. 3 (c) shows that
GFT-1 also adapts to the alternative teaching with satisfied

t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(a) GFT-1
t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(b) Pool GFT-1
t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(c) GFT-0.05
t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(d) GFT-0.5
t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(e) RFT-0.05
t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(f) Whole

Figure 5. Nonparametric teaching for imparting the cheetah. f
of GFT become clear significantly faster than RFT. Part of f are
not updated for pool-based teaching, so several dark discontinuity
points can be found.

performance. It demonstrates generalizability of GFT-1 as
it can be applied in more practical scenarios where only
alternative with similar topological structure is accessible.
This interesting property may present an intimate connec-
tion between our work and transfer learning (Pan & Yang,
2009), domain adaptation (Daume III & Marcu, 2006).

Fig. 4 (a) presents the convergence performance for RFT and
GFT under different settings. The yellow region is marked
for GFT-k, k ∈ (0, 1). We see that the loss of GFT declines
more dramatically than that of RFT, and it converges to
sub-optimal f under the pool-based teacher or alternative
teaching scenarios. We leave comparison between RFT and
GFT of concrete images like Fig. 3 in Appendix C Fig. 6.

The cheetah impartation. Different from correction tasks
where the learner has a preliminary idea of f∗, the impar-
tation problem focus on the learner with no idea about f∗.
Concretely, when the teacher asks what is a cheetah (Shen
et al., 2020), it would be a blank in the learner’s mind. As a
response, teacher would educate the learner about the chee-
tah in pixels viewpoint as breaking the whole concept down
into smaller points brings better understanding. Fig. 5 com-
pares RFT and GFT under different settings by visualizing
f t therein. We find that GFT is vastly better than RFT that
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has roughly the same performance as teaching with whole
set (Bottou, 2010). Besides, GFT-1 tends to outperform
other GFT algorithms, but fails to teach entirely f∗ under
the pool-based setting.

We conclude from Fig. 4 (b) that compared with GFT, RFT
saves the cost of searching the optimal examples at the
expense of slow convergence, and pool-based teaching also
suffer from sub-optimization.

6. Concluding Remarks
In this paper, we study a general task, Nonparametric Itera-
tive Machine Teaching (NIMT), which generalizes model
space from a finite dimensional one to an infinite dimen-
sional one. We are mainly concerned with the reproduce ker-
nel Hilbert space in this paper. To tackle NIMT, we present a
natural baseline algorithm named random functional teach-
ing and propose a greedy one named greedy functional
teaching. We theoretically prove that iterative teaching di-
mension of random functional teaching is O(2L(f0)/ (η̃ϵ))
when greedy functional teaching has a lower iterative teach-
ing dimension O(ψ( 2L(f0)

η̃ϵ )) for convergence under mild
assumptions. We experimentally demonstrate the efficiency
of these two algorithms. Future directions could be more
theoretical understanding on NIMT and more efficient func-
tional teaching algorithms with better strategies for potential
practical application in deep learning models.
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Appendix

A. Additional Discussions
Broader Impact Machine teaching has been applied in crowd sourcing, computer vision and cyber security – domains
with significant societal impacts. This work focuses on theoretical analysis of iterative machine teaching and generalizes
parameterized iterative machine teaching to nonparametric scenarios, which is to generalize model space from a finite
dimensional one to an infinite dimensional one. This provides possibility of extending parameterized applications to
nonparametric cases. Thus, while the contributions of this work are mainly theoretical, there are potential positive impacts
in the community of machine teaching and society.

Parametric teaching settings One can rewrite formulations in Section 4.1 into parameterized version via replacing f by w
(Liu et al., 2017; 2018; Zhu et al., 2018) as parametric IMT operates in the finite dimensional parameter space. Specifically,
the bilevel optimization can be formulated as

D∗ = argmin
D∈D

M(ŵ, w∗) + λ · len(D) s.t. ŵ = A(D), (18)

where notations have same meanings as Eq. 2. Empirical risk minimization A(D) is as follows

ŵ∗ = argmin
w

E(x,y) {L(⟨w,x⟩, y)} . (19)

Besides, parameter w is updated as

wt+1 ← wt − ηtG(L;wt; (xt, yt)). (20)

Nonparametric Fisher information for convex loss function in Section 4.3 Fisher information (Lehmann & Casella,
2006) is a fundamental quantity in statistics and information theory (Vajda, 1989). It measures the information carried by
data about an unknown parameter θ. Let

I(θ) = Ex∼P(x)

{
(∇θ log ℓ(x; θ))

2
}

(21)

be Fisher information. It can be written (Vajda, 2002) as

Iϕ(θ) = Ex∼P(x) {ϕ (∇θ log ℓ(x; θ))} , (22)

where ϕ(·) = (·)2. There are many works (Noguchi, 1994; Vajda, 2002; Lutwak et al., 2012; Lv, 2017) on generalized
Fisher information in terms of explicit form of ϕ(·). For example, Kallenberg et al., 1985 considers ϕ(·) = (·)4/3 and
connects it with Pearson goodness of fit test. Besides, let ϕ(·) = − log(·), Eq. 21 is the information divergence (Vajda,
2002).

From another generalized perspective, Eq. 21 can be rewritten in another way as

I(θ)φ;ϑ = Ex∼P(x)

{
(∇ϑφ(x;ϑ))

2
}
, (23)

where φ(·) = log ℓ(·) and ϑ = θ. Meanwhile, concerned with arithmetic mean instead of point evaluation of (∇fL(f))2,
SL(f ;x) = |Ex∇fL(f)|2 introduced in Definition 10 can be written as

Ex∼P(x)

{
(∇fL(x; f))2

}
, (24)

which can be viewed as a nonparametric Fisher information for convex loss function. Therefore, extending φ(·) from
the natural logarithm of the likelihood function, log ℓ(·) to the convex loss function L(·) and extending ϑ from unknown
parameter θ to general mapping f , nonparametric Fisher information for convex loss function can be viewed as a kind of
generalized Fisher information.

12
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B. Detailed Proofs
We recommend the literature (Gelfand et al., 2000; Coleman, 2012) for further reading on functional calculus.

Proof of Lemma 4 Let define a function q by adding a small perturbation ϵg (ϵ ∈ R, g ∈ H) to f ∈ H, q = f + ϵg.
q ∈ H since RKHS is closed under addition and scalar multiplication. Therefore, for a evaluation functional Ex[f ] = f(x) :
H 7→ R, we can evaluate q at x as

Ex[q] = Ex[f + ϵg]

= Ex[f ] + ϵEx[g] + 0

= Ex[f ] + ϵ⟨K(x, ·), g⟩H + 0 (25)

Recall implicit definition of Fréchet derivative in RKHS (see Definition 2) Ex[f + ϵg] = Ex[f ]+ ϵ⟨∇fEx[f ], g⟩H+O(ϵ2),
it follows from Eq. 25 that we have the gradient of a evaluation functional∇fEx[f ] = Kx.

■

Proof of Theorem 6 Concisely, we omit superscript t for the time being and rewrite Eq. 7 as

(x∗, y∗) = argmin
x∈X ,y∈Y

∥f − η · G − f∗∥2H . (26)

Obviously, it is trivial to derive that ∀(x, y),x ∈ X , y ∈ Y,

∥f − ηG(L; f ; (x∗, y∗))− f∗∥2H ≤
∥f − ηG(L; f ; (x, y))− f∗∥2H . (27)

Out of succinctness, we denote Gt∗ := G(L; f t; (xt∗, yt∗)) and Gt := G(L; f t; (xt, yt)). For l.h.s. of expression 27, we
can expand it as

∥f − ηG(L; f ; (x∗, y∗))− f∗∥2H
= ∥f − f∗∥2H + η2 ∥G∗∥2H − η ⟨G∗, f − f∗⟩H . (28)

Similarly, we can also expand r.h.s. of expression 27 as

∥f − ηG(L; f ; (x, y))− f∗∥2H
= ∥f − f∗∥2H + η2 ∥G∥2H − η ⟨G, f − f∗⟩H . (29)

Combining expansion of expression 27 together, we have

∥f − f∗∥2H + η2 ∥G∗∥2H − η ⟨G∗, f − f∗⟩H
≤ ∥f − f∗∥2H + η2 ∥G∥2H − η ⟨G, f − f∗⟩H . (30)

After rearranging, we can obtain

⟨G∗ − G, f − f∗⟩H ≥ η/2(∥G∗∥2H − ∥G∥
2
H) ≥ 0. (31)

■

Proof of Lemma 11 Recall the definition of Fréchet derivative in Definition 2. It follows from the convexity of L that we
have

L(f t+1)− L(f t) ≤ ⟨f t+1 − f t, ∇fL(f)|f=ft+1⟩H. (32)

Based on optimization algorithm in Eq. 4, the right term of Eq. 32 can be expressed as

⟨f t+1 − f t, ∇fL(f)|f=ft+1⟩H = ⟨−ηtGt, ∇fL(f)|f=ft+1⟩H.

13
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Substituting Gt = ∂L
∂f

∣∣∣
ft(xt),yt

·K(xt, ·) in and removing constants out of inner product operation, it yields

⟨−ηtGt, ∇fL(f)|f=ft+1⟩H

= −ηt
〈
∂L
∂f

∣∣∣∣
ft(xt),yt

·K(xt, ·),∇fL(f)|f=ft+1

〉
H

= −ηt ∂L
∂f

∣∣∣∣
ft(xt),yt

〈
K(xt, ·),∇fL(f)|f=ft+1

〉
H . (33)

Recall the definition of the evaluation functional in RKHS in Definition 1

Ex[f ] = ⟨f,Kx(·)⟩H (34)

and the fact y = f∗(x) = Ex[f
∗], we can rewrite the last term in Eq. 33 as

−ηt ∂L
∂f

∣∣∣∣
ft(xt),yt

〈
K(xt, ·),∇fL(f)|f=ft+1

〉
H

= −ηt ∂L
∂f

∣∣∣∣
ft(xt),yt

× Ext

[
∇fL(f)|f=ft+1

]
= −ηtExt

[
∇fL(f)|f=ft

]
× Ext

[
∇fL(f)|f=ft+1

]
. (35)

For succinctness, denote ξt := Ext

[
∇fL(f)|f=ft

]
and ξt+1 := Ext

[
∇fL(f)|f=ft+1

]
, then Eq. 12 can be tersely

expressed SL(f t;xt) =
∣∣∣Ext

[
∇fL(f)|f=ft

]∣∣∣2 = (ξt)2, and we thus can rewrite Eq. 35 as follows:

−ηtExt

[
∇fL(f)|f=ft

]
× Ext

[
∇fL(f)|f=ft+1

]
= −ηtξt × ξt+1

= −ηtξt ×
(
ξt + ξt+1 − ξt

)
= −ηtSL(f t;xt)− ηtξt ×

(
ξt+1 − ξt

)
= −ηtSL(f t;xt) + ηt

(
ξt+1 − ξt − ξt+1

)
×
(
ξt+1 − ξt

)
= −ηtSL(f t;xt) + ηt

(
ξt+1 − ξt

)2 − ηtξt+1
(
ξt+1 − ξt

)
= −ηtSL(f t;xt) + ηt

(
ξt+1 − ξt

)2 − ηt (ξt+1 − 1/2ξt
)2

+ 1/4ηtSL(f t;xt)

= −3/4ηtSL(f t;xt) + ηt
(
ξt+1 − ξt

)2 − ηt (ξt+1 − 1/2ξt
)2

≤ −3/4ηtSL
(
f t;xt

)
+ ηt

(
ξt+1 − ξt

)2
. (36)

Substituting the concrete expression of ξt = Ext

[
∇fL(f)|f=ft

]
and ξt+1 = Ext

[
∇fL(f)|f=ft+1

]
in, it follows from

linearity of evaluation functional that

−3/4ηtSL(f t;xt) + ηt
(
ξt+1 − ξt

)2
= −3/4ηtSL(f t;xt) + ηt

(
Ext

[
∇fL(f)|f=ft+1

]
− Ext

[
∇fL(f)|f=ft

])2
= −3/4ηtSL(f t;xt) + ηt

(
Ext

[
∇fL(f)|f=ft+1 − ∇fL(f)|f=ft

])2
. (37)

14
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Under L-Lipschitz smooth Assumption 8 and bounded kernel function Assumption 9, we have

−3/4ηtSL(f t;xt) + ηt
(
Ext

[
∇fL(f)|f=ft+1 − ∇fL(f)|f=ft

])2
≤ −3/4ηtSL(f t;xt) + ηt

(
LL · Ext

[∣∣f t+1 − f t
∣∣])2

= −3/4ηtSL(f t;xt) + ηt
(
LLη

tξtExt [Kxt ]
)2

= −3/4ηtSL(f t;xt) + L2
L
(
ηt
)3 SL(f t;xt)K2

(
xt,xt

)
≤ −3/4ηtSL(f t;xt) + L2

L
(
ηt
)3 SL(f t;xt)(MK)2

= −ηt
(
3/4− L2

L(η
t)2(MK)2

)
SL(f t;xt). (38)

Consequently, we obtain

L(f t+1)− L(f t) ≤ −ηt
(
3/4− L2

L(η
t)2M2

K

)
SL(f t;xt), (39)

and hence L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt) if ηt ≤ 1
2LL·MK

■

Proof of Theorem 12 Recall Lemma 11, when ηt ≤ 1
2LL·MK

,

L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt) (40)

Rearranging above, we have:

2
(
L(f t)− L(f t+1)

)
ηt

≥ SL(f t;xt). (41)

Equivalently,
2(L(fj)−L(fj+1))

ηj ≥ SL(f j ;xj). Consequently, plugging j = 0, 1 . . . , t− 1 in it and summing them up, we
hence have

t−1∑
j=0

SL(f j ;xj) ≤ 2

t−1∑
j=0

L(f j)− L(f j+1)

ηj
≤ 2

η̃

t−1∑
j=0

(
L(f j)− L(f j+1)

)
, (42)

where η̃ = min
j
ηj > 0. Expanding the r.h.s. term in Eq. 42 yields

2

η̃

t−1∑
j=0

(
L(f j)− L(f j+1)

)
=

2

η̃

(
L(f0)− L(f t)

)
≤ 2

η̃
L(f0). (43)

In terms of the l.h.s. term in Eq. 42, we must have

t−1∑
j=0

SL(f j ;xj) ≥ t ·min
j

SL(f j ;xj). (44)

Combining expression 43 and 44, we thus have

t ·min
t

SL(f t;xt) ≤
t−1∑
j=0

SL(f j ;xj) ≤ 2

η̃
L(f0), (45)

from which, we can derive

min
t

SL(f t;xt) ≤ 2L(f0)/ (η̃t) . (46)

■

15



Nonparametric Iterative Machine Teaching

It suggests that learners could also conduct its stationary state as: In each round, check if SL(f t;xt) ≤ ϵ. If it holds, then
they have already reached the ϵ approximating and they can send a terminated signal to teachers; otherwise teachers proceed.
The termination occurs within O(2L(f0)/ (η̃ϵ)) loops.

Proof of Lemma 13 Recall practical Greedy Functional Teaching in Eq. 10(
xt∗ = argmax

xt∈X

∣∣∣Ext

[
∇fL(f)|f=ft

]∣∣∣ , y∗ = Ext∗ [f∗]

)
. (47)

Obviously, it is trivial to see that ∀xt ∈ X ,∣∣∣Ext∗

[
∇fL(f)|f=ft

]∣∣∣2 ≥ ∣∣∣Ext

[
∇fL(f)|f=ft

]∣∣∣2 . (48)

Analogous to the Proof of Lemma 11 in B, we can derive

L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt∗), (49)

if 0 < ηt ≤ 1
2LL·MK

. Consequently, we have

L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt∗) ≤ −ηt/2 · SL(f t;xt). (50)

■

Proof of Theorem 14 Recall the result of Lemma 11, when 0 < ηt ≤ 1
2LL·MK

SL(f t;xt) ≤ 2
(
L(f t)− L(f t+1)

)
ηt

. (51)

Before converging to the stationary state, SL(f t;xt∗) > 0. Therefore, we can express it as

SL(f t;xt∗) · SL(f
t;xt)

SL(f t;xt∗)
≤ 2

(
L(f t)− L(f t+1)

)
ηt

. (52)

For succinctness, denote γt := SL(ft;xt)
SL(ft;xt∗) , namely greedy ratio, we have

γt · SL(f t;xt∗) ≤ 2
(
L(f t)− L(f t+1)

)
ηt

. (53)

Different to expression 44, we have

t−1∑
j=0

γj · SL(f j ;xj∗) ≥ min
j

SL(f j ;xj∗) ·
t−1∑
j=0

γj . (54)

Since xt∗ = argmax
xt∈X

∥∥∥∥ ∂L
∂f

∣∣∣
ft(xt),y∗

K (xt, ·)
∥∥∥∥
H

, we derive |Ext∇fL(f t, f∗)|2 ≤ |Ext∗∇fL(f t, f∗)|2. Therefore,

γt = SL(ft;xt)
SL(ft;xt∗) =

|Ext∇fL(ft,f∗)|2
|Ext∗∇fL(ft,f∗)|2 ∈ (0, 1] and we have minj SL(f j ;xj∗) ·∑t−1

j=0 γ
j ≤ t ·minj SL(f j ;xj∗). Besides,

similar to expression 43, we have

2

η̃

t−1∑
j=0

(
L(f j)− L(f j+1)

)
=

2

η̃

(
L(f0)− L(f t)

)
≤ 2

η̃
L(f0), (55)

where η̃ = min
j
ηj > 0. To sum up, we have

min
j

SL(f j ;xj∗) ·
t−1∑
j=0

γj ≤ 2

η̃
L(f0), (56)
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For succinctness, denote ψ(t) :=
∑t−1

j=0 γ
j . Note that lim

t→∞
γt → 1⇒ lim

t→∞
ψ(t) = lim

t→∞
∑t−1

j=0 γ
j →∞. Rearranging, we

obtain

min
j

SL(f j ;xj∗) ≤ 2

η̃ψ(t)
L(f0). (57)

Since ψ(t) =
∑t−1

j=0 γ
j ≤ t ·maxj γ

j and γj ∈ (0, 1], we have 1/ψ(t) ≥ 1/(t ·maxj γ
j) ≥ 1/t. Therefore, we derive

2

η̃ψ(t)
L(f0) ≥ 2

η̃tmaxj γj
L(f0) ≥ 2

η̃t
L(f0), (58)

which means minj SL(f j ;xj∗) has a higher upper bound than minj SL(f j ;xj). Note that maxj γ
j is determined by the

randomness introduced by sampling and is dependent on t. To be specific, maxj γ
j would be close to 0 at the beginning and

maxj γ
j approaches 1 as t increases. It means GFT will drop L faster than RFT at first, which is also demonstrated in Fig. 4.

We see that t is to measure the iteration number of RFT and ψ(t) is to measure that of GFT. Let set ψ(t) = τ ≤ t, then we
have t = ψ−1(τ). For RFT, we can derive

t ≥ 2L(f0)/ (η̃ϵ) . (59)

Therefore, plugging t = ψ−1(τ) into it and ψ(·) is monotonically increasing, we have ψ−1(τ) ≥ 2L(f0)/ (η̃ϵ), that is

τ ≥ ψ(2L(f0)/ (η̃ϵ)). (60)

τ measures the iteration number of GFT and ψ( 2L(f0)
η̃ϵ ) ≤ 2L(f0)

η̃ϵ . It means that ITD of GFT is O(ψ( 2L(f0)
η̃ϵ )) ≤

O(2L(f0)/ (η̃ϵ)). ■

C. Detailed Experiments
t=1000 t=5000 t=10000 t=20000

(a) GFT-0.05

t=5000 t=10000 t=20000 t=40000

(b) GFT-0.5
t=10000 t=20000 t=40000 t=60000

(c) RFT-0.05

t=10000 t=20000 t=40000 t=60000

(d) Whole
Figure 6. Comparing RFT and GFT when nonparametric teaching for correcting 8 towards 0.

In computer, operations are discrete. Therefore, we use dense pairwise points {(xi, f(xi))}ni=1 to represent a function f .
For the pool-based teacher (refer to Remark 7), we use sparse pairwise point to denote P . The pool-based teacher knows f∗

but cannot provide some teaching examples out of the pool. For all experiments, we set kernel as the popular and general

RBFK(x,x′) = exp

(
−
∥∥∥x−x′

2

∥∥∥2
2

)
. We specifically take empirical (average) L2 norm defined in Hilbert space to measure

the difference between f and f∗,

M(f, f∗) = ∥f − f∗∥H =
1

n

√√√√ n∑
i=1

(f(xi)− f∗(xi))
2
. (61)

Our implementation is based on Intel(R) Core(TM) i7-8750H and NVIDIA GTX 1050 Ti with Max-Q Design.

Synthetic 1D Gaussian Mixture. For this regression problem, we assume the loss function of the learner is square loss
L = (y − f(x))2, and we set it unknown for the teacher. We call the dense pairwise points as pixels which are generated by
arange(-14, 14, 0.1). The learning rate ηt is fixed as 0.01. Besides, the teacher will stop ifM(f t, f∗) < 0.0001.
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(a) Teaching a Parametrized Target Model y = x+ 1.
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(b) Teaching a Parametrized Target Model y = −x+ 1.
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(c) Teaching a Parametrized Target Model z = x+ y − 8.
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(d) Teaching a Parametrized Target Model z = x+ y − 8.

Figure 7. GFT for 2D and 3D parameterized target models. (a)-(b): The red dashed lines are f∗ and the solid lime lines are f t at different
iteration of GFT. Selected examples are pointed out by blue vertical lines. (c)-(d): The red planes are f∗ when f t is represented by curved
lime surfaces. Both 2D and 3D cases show that functional teaching ability of helping the learner converge to f∗ even from a bad initial f0

(without overlap with f∗), which means that the functional teaching algorithm GFT is well-adapted for parameterized target models.

Synthetic 2D Classification. For such classification problem, we assume the loss function of the learner is hinge loss
L = max (0, 1− y · f(x)) unknown for the teacher. Pixels are generated by arange(-1, 1, 0.01). The learning
rate ηt is fixed as 0.001. Besides, the teacher will stop ifM(f t, f∗) < 0.001.

The digit Correction. We tend to recover how an infant (the learner) update its opinion about digit 0 when taught. The
learning rate ηt is fixed as 0.01. L = (y − f(x))2 is unknown for the teacher. We derive the target f∗, optimal 0 via
averaging all images of digit 0 in MNIST (LeCun, 1998) (both training and testing sets). We casually pick one digit 8 image
as f∗. In Figure 4, the loss isM(f t, f∗) rather than that of learners L.

In pool-based teaching, the ratio between the pool and the whole sapce can be adjusted, and we set it as 0.8.

In alternative teaching, the alternative of digit 0, character O is selected from EMNIST (Cohen et al., 2017) via minimizing
M(fO, f∗), where fO denotes the character O image. We also scale fO to match the magnitude of f∗ for eliminating
influence introduced by the magnitude. the probability of teaching with character O instead of digit 0 can be modified, and
we let it as 0.2.

The comparison between RFT and GFT of is presented in Fig. 6. It shows that for GFT, large k (proportion) would delay
the convergence by comparing (a) and (b). Besides, GFT is better than RFT when the hyper parameter k is the same via
contrasting (a) and (c). Further, (c)-(d) show that RFT has roughly similar performance as teaching with whole set.
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The cheetah impartation. The learning rate ηt is fixed as 0.01. L = (y − f(x))2 is unknown for the teacher. We derive
this cheetah figure from Shen et al., 2020 who use pickles to sketch. Differently, we regard a figure as a smooth function and
impart it to learners via functional teaching algorithms RFT and GFT. Fig. 8 is the contour version of Fig. 5.

t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(a) GFT-1

t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(b) Pool GFT-1
t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(c) GFT-0.05

t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(d) GFT-0.5
t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(e) RFT-0.05

t=100 t=5000 t=10000 t=20000 t=30000 t=60000

(f) Whole
Figure 8. Nonparametric teaching for imparting the cheetah. f of GFT become clear significantly faster than RFT. Part of f are not
updated for pool-based teaching, so several dark discontinuity points can be found. Moreover, (d)-(f) presents a smooth performance,
which indicates that pack teaching can effectively smooth the gradient for the convergence to the target model.

D. Experiment Extensions
Teaching parametric target models from nonparametric initialization with GFT. We further test parametric adaptation
of GFT. Specifically, we let the target model is identified by the parameter but remain teaching function directly instead of its
parameter to see the performance of GFT. Here, we assume the loss function of the learner is square loss L = (y − f(x))2.
In two 2D cases, we set f∗(x) = x + 1 and f∗(x) = −x + 1, respectively when both f0(x) = exp(−

(
x−0.5
0.5

)2
) +

exp(−
(
x+0.5
0.5

)2
). The learning rate η = 0.01 and pixels are generated by arange(-1, 1, 0.1). Besides, the teacher

will stop ifM(f t, f∗) < 0.0001. We see that in Fig. 7 (a)-(b) even the target model is a straight line while the initial one is
a curve, GFT also can straighten f t and cover f∗ approximately. In two 3D cases, we let both f∗(x1, x2) = x1 + x2 − 8,
and let f0 = − (x1 − 5)

2 − (x2 − 5)
2 and f0 = (x1 − 5)

2
+ (x2 − 5)

2, respectively. The learning rate η = 0.01 and
x1, x2 pixels are generated by arange(0, 10, 1). We observe that in Fig. 7 (c)-(d) when the target model is identified
by the vector (1, 1,−8)T , GFT is also able to teach curved surfaces towards this plane. To summarize, the functional
teaching algorithm GFT is well-adapted for parameterized target models and GFT could teach the target function beyond its
parameter.

The comparison between nonparametric and parametric teaching under parameterized initialization. We set ηt =
0.01, L = (y − f(x))2 and f∗ = ⟨w∗,x⟩ = ⟨(1, 1)T , (x, 1)T ⟩ = x + 1 and f0 = ⟨w0,x⟩ = ⟨(−0.5, 0.5)T , (x, 1)T ⟩ =
−0.5x+ 0.5. For nonparametric teaching, except for RBF kernel defined before, we introduce a Linear kernel K(x,x′) =
⟨x,x′⟩ + 1. In each iteration, we let GFT-1 select a teaching example and learners evolve f t based on RBF and Linear
kernels respectively. For parametric teaching, we let learners use parameter gradient descent:

wt+1 ← wt − ηtG(L;wt; (xt, yt)). (62)

For fairness, the provided teaching examples are the same as that of nonparametric teaching derived by GFT-1. We observe
that f t in both nonparametric and parametric teaching converge fast. Interestingly shown in Fig. 9, we find that nonparametric
teaching with Linear kernel has same results as parametric teaching in every iteration. This is under expectation since
the influence of functional gradient under the Linear kernel in each iteration is just modifying wt from the parameterized
viewpoint. This means parametric teaching could be viewed as a particular case of nonparametric teaching when kernel is
a Linear one K(x,x′) = ⟨x,x′⟩+ c, where c is a constant.

The sketch for missing person report. Consider a practical and interesting scenario that associates wish to file a missing
person report at a police station without a photograph. The police considered as the learner would randomly provide a initial
photograph, then associates (the teacher) can update the initial photograph based on their impressions in mind, which is
precisely a teaching process.
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Figure 9. Contrast nonparametric teaching with the RBF and Linar kernels against parametric teaching. For fairness, the fed teaching
examples are all from GFT. The red dashed lines are f∗. Nonparametric teaching: the solid lime lines are f t with RBF kernels and the
solid magenta lines are f t with Linear kernels. Parametric teaching: The dotted lines are f t = ⟨wt,x⟩. f t in all settings converge fast.
Interestingly, nonparametric teaching with Linear kernel has same performance as parametric teaching in each round. This is reasonable
because the contribution of functional gradient under the Linear kernel is just updating wt from the parameterized viewpoint. It concludes
that nonparametric teaching is more general than parametric teaching.
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Figure 10. GFT for facial teaching. The left top one is the initial photograph and the right bottom one is the target. Viewing the facial
photograph as the function, GFT works well.

GFT is also applicable in above task as a smooth solution. Smooth means f t is modified gradually instead of replacing. To
handle above nonparametric teaching problems, one can view the human face in the photograph as a general function, and
GFT would modify the initial one, i.e., random initialization from police, towards the targeted one (the image of the missing
person in associates’ minds), which is shown in Fig. 10. Specifically, we pick two facial figures form the ORL database
(http://www.cam-orl.co.uk), then we set one as initialization and the other as target. The learning rate ηt is fixed as 0.05.
L = (y − f(x))2 is unknown for the teacher. We see that even for the complicated facial figure, our GFT presents expected
performance.
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