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Abstract

Foundational vision-language models excel in various tasks but require updates as
new tasks or domains emerge. Current Continual Learning (CL) methods, which
focus on supervised training, often suffer from significant forgetting, perform-
ing worse than the original models in zero-shot scenarios. This work proposes
leveraging test-time, unsupervised data in a self-supervised manner to refresh
the model’s memory of previously learned tasks, minimizing forgetting without
additional labeling. By introducing a student-teacher framework with gradient-
based sparse parameter updates, the approach enhances performance on prior tasks
and reduces reliance on offline memory buffers, effectively improving continual
learning outcomes.

1 Introduction

Foundation models in computer vision have shown impressive performance on various down stream
tasks and domains which renders them a key building block of various solutions including generative
vision language models Chen et al. [2023], Bommasani et al. [2021]. Despite the increased attempts
to efficiently improve foundational models performance on new streams of data Wang et al. [2022c],
Smith et al. [2023], Zhou et al. [2023], Zhang et al. [2023a], Goyal et al. [2023], forgetting is still a
significant problem in applications of continual learning Wang et al. [2024], Prabhu et al. [2023]. We
argue that an important factor is to continuously learn irrespective of whether supervision is provided
or not, however most works focus solely on training in distinct supervised sessions, while the model
remain passive and frozen at test-time.

We consider a scenario where a model is continually trained on supervised datasets, while in-between
receiving the supervised datasets, unsupervised data becomes available during the model deployment
that can be used for controlling forgetting, as demonstrated in 2. In this work we constrain the
unsupervised adaptation to be online, to allow a practical computational overhead. We propose
an effective approach based on student-teacher models with sparse parameters selection based on
gradient values. Student and teacher models suggest labels for test-data and the predictions from
the most confident model is used to update the student model, where the teacher is updated in an
exponential moving average adding a stability component to the learning process. We show that
such a simple approach achieves significant improvements on all studied sequences. Our approach is
stable in class incremental learning(CIL) especially in the challenging setting where no replay buffers
are used, which in many cases can be a critical bottleneck.

To the best of our knowledge, we are the first to explore how test-time data can be leveraged in a
continual learning setting to reduce forgetting. We consider the foundation model CLIP Radford
et al. [2021] for our experiments since it has been shown to encompass an extensive knowledge base
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Figure 1: Our method, DoSAPP, uses teacher-student models (MT , ;MS) in two phases. In the supervised
continual learning phase, MS selects and trains sparse parameters, while MT is updated via weighted smoothing
with dual momentum terms. During the unsupervised test phase, MS adapts using pseudo-labels from MT -
MS logits comparison. This approach maintains generalization and adaptability across tasks.

and offer remarkable transferability Rasheed et al. [2023], Pei et al. [2023]. It undergoes through
supervised and unsupervised sessions, leveraging the unsupervised data to control forgetting.

2 Related Work

Due to the abundance of powerful pre-trained models Radford et al. [2021], Oquab et al. [2023],
Brown et al. [2020] continual learning that begins with a pre-trained model is becoming a popular
paradigm. Recent methods Koh et al. [2022], Boschini et al. [2022] have utilised a Teacher-Student
framework for knowledge distillation on previous seen tasks. But, these methods utilise an additional
buffer to mitigate catastrophic forgetting. This often entails significant memory Zhou et al. [2022],
Prabhu et al. [2023]. Additionally, such methods often face an outdated logit problem, as the memory-
stored logits are not updated to preserve information on previous tasks. Boschini et al. [2022]
addresses this issue by updating logits stored in the past using task boundary information (e.g., input’s
task identity) during training, but it may not always be available, especially in task-free CL setups.
However, foundation models Radford et al. [2021], Oquab et al. [2023] often have a reasonable initial
performance on novel tasks, indicating some pre-existing knowledge relevant to these tasks. Zhang
et al. [2023b] utilises this property and preservers generic knowledge by modifying only a small
set of parameters based on gradient scoring mechanism. But this method also suffers from recency
bias since the gradient scores are computed for current task and only those sparse parameters are
updated based on current task scores. Moreover, none of the methods utilise test data in continual
learning scenario, and leave a strong potential for self supervised techniques to capture robust feature
representations.

3 Methodology

3.1 Setting

We consider a class incremental scenario(CIL) where a sequence of supervised datasets
[Ds

1,Ds
2, .....Ds

T ] drawn from different distributions are observed at incremental training sessions t
ranging from 0 to T , whereDs

t = (xt
i, y

t
i)

Nt

i=1 is the t incremental session with Nt instances as further
described in Appendix A.1. We further note that although supervised phases may permit multiple
passes through the data until convergence, it would be impractical to collect unsupervised data in
production and then perform adaptation on it, we thus restrict the unsupervised phase to be in the
online setting Sun et al. [2020], Jang et al. [2022], Cai et al. [2021]. This is especially important in
cases were data privacy is important e.g., assistant robot in a private smart home environment.
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3.2 DoSAPP: Double Smoothing via Affine Projected Parameters

We propose a simple yet effective method for continual test-time learning, Double Smoothing via
Affine Projected Parameters aka DoSAPP. Our approach combines two key components: 1) sparse
and local updates: to reduce forgetting, maintain generalization, and ensure efficient updates, and
2) teacher-student framework to promote stability in online updates and minimizes forgetting. In
the continual test time learning we can identify two distinct phases of learning as outlined in the
following.

Phase 1: Continual Learning Supervised Training with Sparse Selected Parameters

Our goal is to quickly acquire new knowledge without forgetting previously learned information
during both training and testing. To achieve this, we update only a small subset of selected parameters.
Based on findings from Zhang et al. [2023b], updating relevant parameters in pre-trained models like
CLIP minimizes forgetting. Additionally, Geva et al. [2020] suggest that MLP blocks in transformers
function as key-value neural memories, with the first layer acting as pattern detectors. Therefore, we
update only the top-K parameters from the first MLP layer in each transformer block, keeping the
rest frozen to ensure efficient training and retention of prior knowledge. The complete algorithm can
be found in A.2, and is clearly depicted in Figure 1.

Weighted exponential smoothing with dual momentum

After each gradient update step(i) forMS , parameters ofMT are updated by EMA of the student
model parameters. Typically, EMA is governed by

θT
i+1 = δθT

i + (1− δ)θS
i+1 (1)

where δ is the smoothing parameter. Further it has been shown in ( Tarvainen and Valpola [2017],
Oquab et al. [2023], Koh et al. [2022]) that setting δ to a high value(eg 0.998), maintains a stable
teacher model that can be considered as a strong reference for past tasks {0, . . . , t− 1}. But updating
the teacher model with single smoothing parameter in case where parameters are masked creates a
dissonance and increases forgetting because all the parameters are updated with equal importance,
disregarding those parameters which are selected by the gradient scoring function(where [mij = 1]).
To account for masking, we modify Eq 1 as

θT
i+1 = pθT

i + qθS
i+1 (2)

where p and q denote the smoothing parameters for the teacher and student model respectively, and
can be computed as

p = (γ − δ)m + δ

q = (δ − γ)m + 1− δ
(3)

where γ < δ. This means that the selected parameters of the teacher model ([mij = 1]), move little
bit faster towards the student model as compared to the frozen parameters(where [mij = 0]). As
such, parameters where [mij = 0] will move at a slow rate of δ and unmasked parameters would be
updated with γ. When γ = δ, the weighted scheme becomes EMA with single smoothing parameter.
A detailed proof is given in appendix A.3.

Phase 2: Unsupervised Test Time Learning(TTL)

After supervised training is completed, bothMT andMS are deployed for Test Time Learning(TTL).
We consider teacher(MT ) and student(MS) models as two experts on different data distributions,
theMS on the most recent and theMT on previous sessions distributions.

Following Hendrycks et al. [2019], we accept the pseudo label of the selected expert. Formally the
pseudo label can be calculated as follows:

ŷ =

{
ŷT if lT ⩾ lS
ŷS otherwise.

(4)

where ŷ is the accepted pseudo label and lT = max(MT (x)) and lS = max(MS(x)) are the maxi-
mum logit score for teacher and student model respectively, and similarly ŷT = argmax(MT (x))

3



and ŷS = argmax(MS(x)) are the pseudo labels by teacher and student models respectively. During
test-time training the student modelMS is updated by minimising CLIP contrastive loss given pseudo
label ŷ. In realistic settings, often multiple iterations on test data is not always possible, for eg, a
streaming data pipeline. We too mimic this setting, where the entire data is processed only once
during TTL phase.

Momentum(γ, λ) Aircraft
Acc. (↑) F.(↓) FTA. (↑)

0.9999, 0.9999 23.99 18.36 12.15
0.5, 0.9 38.41 3.27 37.64
0.7, 0.9 37.22 3.05 37.72

0.8, 0.9* 39.40 2.61 38.13
0.8, 0.6 37.06 5.12 29.63
0.8, 0.5 32.95 3.40 26.33

Table 1: Effect of Momentum(γ, λ) on Average Accu-
racy(Acc in % ), Average Forgetting(F.) and First Task
Accuracy(FTA.) *0.9999, 0.8, 0.9 have been used in the
main results.

Similar to the above mentioned supervised
phase, we also here apply sparse local updates
to MS . However, estimation of masks based
on the online data might be noisy, and largely
reduce the efficiency as gradients of all param-
eters must be estimated for each mini batch of
test samples. To overcome this, and following
the assumption that test data are drawn from
the distributions of all previous tasks, we lever-
age the masks estimated for previous tasks. We
accumulate a union of the binary masks (mu)
over all the previously seen tasks t such that
mu = m1∪m2∪ ......mt. To maintain the same
sparsity level (c = 0.1) of performed updates,
we further select the same top-K (K=c) most rel-
evant parameters, from these new masked mu

parameters based on their previously computed gradient scores.

FinallyMT (θ
T ) is updated using the same dual momentum scheme, but with different smoothing

vectors p′, q′ as:
θT
i+1 = p′θT

i + q′θS
i+1 (5)

where p′ = (λ− δ)m + δ and q′ = (δ − λ)m + 1− δ. In TTL phase, the momentum parameter λ is
kept such that γ < λ < δ. This means that θT moves more slowly in direction of θS during TTL
phase as compared to the supervised phase. As we encounter frequent, and possibly noisy, online
updates, stability is better insured by a slower pace of movements towards student parameters. We
show the sensitivity of our method on choice of momentum values λ, δ in Table 1. A high δ has
been chosen to keep the Teacher model stable as shown in Tarvainen and Valpola [2017], Oquab
et al. [2023], Koh et al. [2022]. It can be clearly seen that when γ = λ(single momentum EMA), the
performance significantly drops. DoSAPP is less sensitive to on chocie of γ, but it highly depends
on λ. We can also see that as λ < γ, the performance again drops. The algorithm can be fully
understood as given in 1

4 Experiments

4.1 Setup

Architecture: We apply DoSAPP to vision-language classification tasks, given their relatively robust
knowledge measurement in such tasks. CLIP-ViT/B-16 Radford et al. [2021], is used as backbone.
We report the accuracies recorded by the Teacher model. We refer to Zhang et al. [2023b] for
hyperparameters selection other than dual momentums, which are given in Appendix A.6. Detailed
information on datasets, and evaluation metrics can be referred to A.4

4.2 Results

We compare various baselines with our proposed method in Table 2 for class incremental learning
(CIL). In addition to these methods, we also compare against self-labeling (SL), where the pseudo
labels come from the model itself without a teacher-student framework. Without ER, DoSAPP
achieves state-of-the-art results across all five datasets, demonstrating the effectiveness of test-time
data for improving transferability and retaining prior knowledge. Even without ER, DoSAPP performs
comparably to methods using ER. While SPU+ER uses a large buffer (1000), we show that DoSAPP
with a smaller buffer (ER=200) still outperforms most baselines, except on GTSRB. We also consider
the case where we have a long sequence of tasks each to be trained in a class incremental fashion. For
these experiments, we combined the 10 tasks of Aircraft data Maji et al. [2013] and 10 tasks of Cars
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Method Aircraft Cars CIFAR100 CUB GTSRB
Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓)

CLIP-Zeroshot Radford et al. [2021] 24.45 - 64.63 - 68.25 - 55.13 - 43.38 -
Finetune Goyal et al. [2023] 18.63 39.93 51.64 25.65 46.26 37.78 45.74 26.62 21.76 55.48
SL 10.81 50.81 23.49 30.42 38.03 42.67 28.60 33.82 5.14 62.31
MAS Aljundi et al. [2018] 33.69 27.50 69.43 9.18 63.88 21.16 61.72 12.05 42.04 25.38
L2P Wang et al. [2022c] 32.20 21.73 67.04 11.22 67.71 18.81 64.04 6.82 75.45 2.68
DualPrompt Wang et al. [2022b] 26.61 17.20 63.30 18.67 61.72 19.87 64.38 12.94 69.65 8.43
SLCA Zhang et al. [2023a] 29.40 11.45 62.65 4.42 70.03 0.19 53.87 7.75 46.01 0.83
ZSCL Zheng et al. [2023] 30.96 15.65 67.79 8.27 80.50 1.05 61.09 7.69 62.92 13.54
SparseCL Wang et al. [2022a] 31.95 19.77 71.57 5.38 69.35 15.23 62.50 9.66 48.99 24.91
SPU Zhang et al. [2023b] 30.94 28.36 69.41 16.91 58.80 26.37 62.31 7.2 43.06 19.16

DoSAPP 39.14 12.55 74.87 -0.74 79.16 7.73 68.17 2.15 72.33 1.02

ER methods

ER French [1999] 41.42 31.38 69.08 16.42 82.86 3.41 64.07 17.72 96.28 -7.48
ER + LWF Li and Hoiem [2017] 36.08 18.12 72.56 4.04 74.32 8.16 65.11 5.90 53.56 11.86
ER + PRD Asadi et al. [2023] 37.11 17.35 74.08 3.75 79.66 3.10 65.92 6.55 63.00 12.44
SPU + ER=1000 44.43 14.42 77.51 3.26 83.99 -0.39 71.51 4.84 94.25 -7.87

DoSAPP + ER=200 47.32 8.10 79.17 3.92 88.41 -1.96 74.39 2.77 83.67 1.92

Table 2: Acc(Average Accuracy) % (↑) and F. (Forgetting)↓ of different methods using CLIP with trainable
vision and text encoders, without any Replay Buffer in CIL scenario. DoSAPP can achieve positive backward
transfer - forgetting is negative on Cars data. All experiments are mean of 5 experiments with random seeds. std.
is not shown for ease of reading and space constraint.

Components of DoSAPP Aircraft Cars CIFAR100 CUB GTSRB
Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓)

Only Teacher-Student 30.12 3.50 67.72 3.66 77.82 5.17 62.67 4.11 53.57 5.38
+ sparse params 34.16 8.61 69.42 3.41 71.93 8.24 66.32 3.98 55.32 5.81
dual momentum+mask union* 39.14 2.55 74.87 -0.74 79.16 7.73 68.17 2.15 72.33 1.02
+ imbalanced TTL 35.99 5.22 72.68 6.38 75.70 9.81 64.84 3.73 68.17 5.63

Table 3: Acc(Average Accuracy) % (↑) and F. (Forgetting)↓ of different components of DoSAPP. All the
experiments are averaged over 5 randomised trials with different seeds.

data Krause et al. [2013]. This firstly creates a long sequence of tasks in a class incremental scenario,
and secondly causes a domain shift after 10 tasks of aircraft. From Table 4, it can be clearly seen
that our proposed method DoSAPP outperforms SPU without ER and Finetune(without any TTL
phase). Further it can be inferred that in other baselines, there is a recency bias towards the current
task, whereas in DoSAPP, with a marginal decrease of 3.8% on current task accuracy(CTA), there is
an overall increase in the average accuracy and the first task accuracy. This shows that our approach
retains the knowledge on first task as well adapts well on the current task, with strong generalisation
performance.

5 Ablation

In this section we quantitatively analyse the effect of different components of our proposed method
DoSAPP. We evaluate the effects of each component in an incremental fashion as seen in Table 3. We
further perform ablation studies on each component of DoSAPP as mentioned in A.5

6 Discussion and Conclusion

In this work, we discuss how to leverage test-time data to improve models’ representation of previous
tasks, mimicking human learning and striving for real intelligent agents. In summary, to the best of our
knowledge we are the first to explore test-time learning to control forgetting. We show that test-time
data can provide a great source of information when leveraged correctly. Our method, DoSAPP, was
able to significantly improve over the zero-shot performance of CLIP when continually learning a
dataset without any replay and with no specific CL method applied at the supervised training session.
DoSAPP is stable due to sparse parameter updates and the weighted EMA teacher-student framework.
Further during TTL, the max-logit in distribution scores makes it more robust to class imbalance than
other strategies.
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Figure 2: An illustration of our proposed Continual Learning with Interleaved Test Time Learning. Following
each session of supervised learning, the model is deployed to adapt in an unsupervised setting. It can encounter
data distributions encompassing all previously encountered tasks or sessions. The model adapts on the classes of
the current task, while trying to minimize the forgetting on all the classes of previously seen tasks.

A Appendix / supplemental material

A.1 CIL Setting

The CIL setting as described in section 3 is where a sequence of supervised datasets [Ds
1,Ds

2, .....Ds
T ]

drawn from different distributions are observed at incremental training sessions t ranging from 0

to T , where Ds
t = (xt

i, y
t
i)

Nt

i=1 is the t incremental session with Nt instances. Here the training
instance xt

i ∈ RD belongs to class yi ∈ Yt, where Yt is the label space of task/dataset at t step.
Yt ∩ Yt′ = ϕ for t ̸= t′, where t

′
is any other training session. During a given training session t data

samples only from Ds
t can be accessed. The aim of CIL is to progressively build a unified model

encompassing all previously encountered classes. This involves gaining insights from new classes
while retaining knowledge from previous ones. Model’s performance is evaluated over all the seen
classes Yt = Y1 ∪ · · ·Yt after each incremental task/dataset. Formally, the target is to fit a model
M(x;θ) : X → Yt that achieves a minimal loss L across all testing datasets De

t :∑
(xj ,yj)∈De

1∪···De
T

L (M (xj ;θ) , yj) (6)

where L(., .) measures the difference between prediction and groundtruth label. De
t denotes a testing

set of task t. Finally θ denotes the model parameters.

After training is complete on each Ds
t the model is put into production until Ds

t+1 becomes available
for supervised training. Between supervised phases an unsupervised dataset, Du

t , is observed
corresponding to test-time data encountered in production. Note that this unsupervised data can
be drawn from a different distribution than the supervised data, including the distributions of old
supervised datasets/tasks. Our goal is to leverage this data to control forgetting of the model by
allowing online unsupervised adaptation. Figure 2 depicts our setting. Note that we evaluate our
models on test datasets {De} that are distinct in terms of instances from those used during the
self-supervised online adaptation phase to adequately measure models generalization.

A.2 DoSAPP algorithm

Following Zhang et al. [2023b] we use the gradient magnitude of the loss w.r.t. the incoming data
as a score of how relevant a parameter is, the larger the gradient magnitude the larger the expected
decrease in loss after small changes to that parameter. We refer to the model being optimized as
MS . Upon recieving supervised data, we first estimate the most relevant parameters, θm such that

9



Algorithm 1 DoSAPP algorithm for continual and test time learning

Require: MS(θ
S), CLIP loss: L(., ., .), sparsity threshold c

1: θT = θS ▷ InitializeMT (θ
T ) withMS(θ

S)
2: for t in tasks do
3: θm ← top-K(K=c) params from MLP layers of θS based on F ▷ Sparse Selection, Eq. 7
4: for (xi, yi) in Ds

t do
5: θm = θm − η∇L(MS(xi), yi) ▷ Take one SGD step
6: θTi+1 = pθTi + qθSi+1 ▷ Dual momentum for teacher EMA update, Eq 2
7: end for
8: Compute union of masks for all tasks seen so far mu ▷ Start of Unsupervised Phase
9: Select mu params inMS

10: for xi in Du
t do

11: lT = max(MT (xi), dim = 1)
12: lS = max(MS(xi), dim = 1)
13: if lT > lS then
14: ŷ = argmax(MT (xi))
15: else
16: ŷ = argmax(MS(xi))
17: end if
18: θmu = θmu − η∇L(MS(xi), ŷ) ▷ Take one SGD step
19: θTi+1 = p′θTi + q′θSi+1 ▷ Dual momentum for teacher EMA update, Eq 5
20: end for
21: end for

(θm ∈ θS).

F
(
θS
ij ,Ds

t

)
=

∥∥∥∥∥∥ 1

N ′
t

N ′
t∑

k=1

gij (xk)

∥∥∥∥∥∥ , (7)

where gij (xk) is the gradient of the loss function(L(MS , xk, yk)) regarding the parameter θS
ij

evaluated at the data point and its label xk, yk ∈ Ds
t . The loss function L(MS , xk, yk) is the

same CLIP loss, and the entire data is iterated once to compute the gradient score as given in Eq 7.
Specifying the sparsity threshold(c), top-K(K=c) most relevant parameters are selected. We set
c = 0.1 as shown in Zhang et al. [2023b]. This results in a binary mask m where only selected
parameters are updated and others are masked out and kept frozen.

Teacher Student Framework

To insure stability later during online updates and reduce forgetting, we utilise a Student-Teacher
framework Tarvainen and Valpola [2017], Koh et al. [2022], Boschini et al. [2022] where the student
model is denoted byMS(θ

S) and the teacher model is denoted byMT (θ
T ).

During both train and test time, teacher modelMT parameters θT move with exponentially moving
average (EMA) of student model parameters θS . Normally in a teacher student framework, all teacher
model parameters move similarly towards the student parameters with a single smoothing parameter
(momentum). However, in Tables 1 and 3 we show that a single smoothing parameter is insufficient
and yields poor performance. Indeed, in our case most of student model parameters remain frozen
and only a small portion is updated, we propose that teacher model’s parameters corresponding to the
student frozen parameters should move at a different pace than those selected for updates. Therefore
we use dual smoothing parameters (referred as momentum parameters) based on affine transformation
of the binary mask m to adapt the teacher parameters θT .

We take inspiration from Out Of Distribution (ODD) literature Hendrycks and Gimpel [2016], where
a sample has to be identified as In Distribution (ID) for a given predictor with a score function
predicting high values for ID samples as opposed to OOD samples. Recently it has been shown that
using the un-normalized maximum logit output of a given predictor as an ID score is significantly
more robust than softmax probability Hendrycks et al. [2019]. Indeed the softmax probability is
shown to provide high probability predictions even for unknown samples Yang et al. [2021], which
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we want to avoid in our case. Note that for CLIP the logit corresponds to the cosine similarity of
image batch with given text features.

A.3 Derivation for dual momentum

In section 3, the teacher model parameters θT
i undergo exponential moving average as

θT
i+1 = pθT

i + qθS
i+1 (8)

where p and q denote the smoothing parameters for the teacher and student model respectively, and
can be computed as

p = α1m + β1

p = α2m + β2
(9)

where αi and βi for i ∈ {1, 2} are the coefficients for affine transformation of the boolean mask
vector m.

To account for masked parameters, two momentum values δ, γ are introduced for teacher and student
models respectively, such that for the teacher model, affine coefficients α1, β1 are computed by
solving the equations:

α1[mij = 1] + β1 = γ , α1[mij = 0] + β1 = δ (10)

and α2, β2 are computed by solving the equations

α2[mij = 1] + β2 = 1− γ , α2[mij = 0] + β2 = 1− δ (11)

This gives
α1 = γ − δ, β1 = δ

α2 = δ − γ, β2 = 1− δ
(12)

This gives
p = (γ − δ)m + δ

q = (δ − γ)m + 1− δ
(13)

A.4 Datasets and Evaluation Metrics

Datasets: We consider five different vision datasets, three fine-grained(Aircraft Maji et al. [2013],
CUB Wah et al. [2011], Stanford CarsKrause et al. [2013], Oxford Pets Parkhi et al. [2012], one
coarse dataset( CIFAR100 Krizhevsky [2012]) and one out-of-distribution dataset(GSTRB Stallkamp
et al. [2012]). These datasets are chosen primarily based on their initially low zero-shot performance
with CLIP pre-trained models. To form the continual learning sequences, we split each dataset into
10 subsets with disjoint classes composing 10 tasks. For all the datasets, the training data is used in
supervised learning phase. The test data is divided into 2 splits, namely Du,De where Du is utilised
for test-time unsupervised learning and De is used for evaluation.

Evaluation Metrics: After each supervised session ti and the following test-time adaptation session,
we evaluate the model test performance on holdout datasets from all T tasks. In order to do this,
we construct the matrix R ∈ RTxT , where Ri,j is the test classification accuracy of the model on
task tj after observing the last sample from task ti. Thus, we compute Average Accuracy(Acc. =
1
T

∑T
i=1 RT,i. ) and Average Forgetting(F. = = − 1

T−1

∑T−1
i=1 RT,i −Ri,i.) Lopez-Paz and Ranzato

[2017]. Taken together, these two metrics allow us to assess how well a continual learner solves a
classification problem while overcoming forgetting. All experiments have been done on NVIDIA
A100 GPU and each one takes approximately 1 hour for completion.

A.5 More Ablation Study
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Method(CLIP) Avg Acc(↑) FTA(↑) CTA(↑) F.(↓)
Finetune(no TTL) 35.24 ±0.87 5.90 ±1.20 75.44 ±0.52 16.87 ±1.04
SPU 39.62 ±1.62 24.31 ±0.30 74.94 ±2.43 7.32 ±0.38
DoSAPP 45.01 ±0.31 30.63 ±0.76 71.13±1.17 2.34 ±0.75

Table 4: Averge Accuracy(Avg Acc.), First Task Accuracy(FTA), Cur-
rent Task Accuracy(CTA), Average Forgetting(F.) measured for long
sequnce of tasks from concatenation of aircraft Maji et al. [2013] and
cars Krause et al. [2013] dataset. All experiments are mean of 5 ran-
domised experiments with different seeds.

parameters are updated with a sin-
gle momentum. Finally we add
our dual momentum approach
which gives best performance.
We also subject our approach
to a more challenging scenario
where the tasks in TTL phases are
class-imbalanced. Here we sam-
ple each task from a symmetric
Dirichlet distribution whose con-
centration parameter is the length
of each task. This causes a high imbalance of classes within each task, and sometimes, even absence
of certain classes. This imbalanced case is of particular importance since in real settings, test suites
are often skewed.This is done by randomly sampling classes from a Dirichlet’s distribution. Although
the performance is inferior to the balanced case, it should not be interpreted as a drawback. This is
because, the model should adapt more to the classes that are seen often in TTL phases and loss of
performance on rarely seen classes is but natural.

We highlight the innovative aspect of our approach, which leverages unsupervised test data—readily
available in production environments, to enhance continual learning. Unlike our method, existing
continual learning (CL) techniques are not inherently designed to incorporate unsupervised test data,
making them less adaptable to this scenario. Indeed, naive approaches to using the unsupervised
data alongside existing methods proved unfruitful in our preliminary analysis. To illustrate this, we
combined the best performing CL method (compared to ours), SPU, with a simple pseudo-labeling
baseline, namely SPU + test-time data (Du). The model is updated with SPU-learned masks using a
standard self-labeling approach on test-time data, using the max logit of the model as the label. We
can clearly observe that the performance of SPU + test-time data (Du) has significantly lowered as
compared to our method as shown in Table 5. This highlights the importance and effectiveness of our
design choices in robustly leveraging test-time data. In Appendx A.7, we further show the superiority
of our method in adapting to noise present in the unsupervised test data.

Method Aircraft Cars CIFAR100 CUB GTSRB
Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓) Acc. (↑) F.(↓)

SPU 30.94 28.36 69.41 16.91 58.80 26.37 62.31 7.2 43.06 19.16
SPU+Test Time Data (Du) 27.72 24.86 68.91 7.34 74.09 10.43 61.21 4.01 60.17 6.94
DoSAPP 39.14 12.55 74.87 -0.74 79.16 7.73 68.17 2.15 72.33 1.02

Table 5: Acc(Average Accuracy) % (↑) and F. (Forgetting)↓ for comparing SPU and DoSAPP when provided
with Test time data Du

A.6 Hyperparameters

tablele 6 shows different hyperparameters that have been used for all the experiments using CLIP
backbones. The hyperparameters were selected based on the performance of the first task of Stanford
Cars dataset. All the results have been gathered over experiments averaged over 5 random seeds.

Hparams CLIP model

Batch Size 64
Optimizer AdamW

Learning Rate 7.5e− 6
CL Epochs 10

Buffer 0
TTL batch size 64

Momentum-EMA(δ, γ, λ) 0.9999, 0.8, 0.9
sparsity(c) 0.1

Table 6: Hyper Parameters for all the experiments using CLIP ViT-B/16 model.
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A.7 Dependence on quality of test data used for unsupervised learning

We want to highlight that the trained model is expected to generalize to the distribution of the test
data. We also assume that any quality degradation will be consistent across time steps. For instance, if
the data is corrupted with noise, our method would generalize and adapt the model to this corruption
as well. To illustrate this, we conducted a small experiment by adding random Gaussian noise (mean
= 0, std = 0.1) to different combinations of the test and evaluation suite (referred to as GN in the
Table 7). The results are shown below, with average accuracy(Acc) followed by forgetting(F). We
observe that when corruption is present in the test-time data, the model is still able to leverage these
data and improve on clean evaluation data compared to no test-time baseline by a significant margin
of 17% (SPU alone). Interestingly, the model adapted to test-time data with Gausian noise performs
better on evaluation data with Gausian noise than the case when the test-time data is clean. This is
the evidence on our method’s ability to adapt and generalize to the present test-time conditions.

Test Time Data (Du) Evaluation Data(De) Acc. (↑) F.(↓)
Clean Clean 79.16 7.73
GN Clean 75.67 9.93

Clean GN 69.50 12.86
GN GN 73.42 6.86

Table 7: Performance of DoSAPP with noise added to Du and De for Cifar100 Data
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