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ABSTRACT

We propose SEAL-RAG, a training-free, inference-time controller (no fine-tuning
of retriever, reranker, or generator) for retrieval-augmented generation that targets
multi-hop precision. SEAL executes a fixed retrieval depth k (k = number of
passages retrieved per search/micro-query) in a Search→ Extract→ Assess→
Loop cycle. A scope-aware sufficiency check aggregates coverage, typed bridging,
corroboration/contradiction, and answerability signals to decide stop vs. targeted
repair. At each loop, SEAL performs on-the-fly, entity-anchored (head, relation,
tail) extraction, maintains a live entity ledger, and builds a gap specification (miss-
ing entities/relations) that triggers one micro-query per repair under the same top-k;
new candidates are merged via entity-first ranking (prefers passages anchoring
those entities) before a single final generation step. On a 1,000-example HotpotQA
validation subset in a shared setup, SEAL improves LLM-judged answer correct-
ness by +10–22 pp (k=1) and +3–13 pp (k=3) vs. SELF-RAG across backbones,
and increases evidence precision@k (gold-title precision) by +12–18 pp at k=3.
These gains are statistically significant (chi-square for correctness; paired two-sided
t-tests for precision/recall/F1; p<0.05). By keeping k fixed and bounding repairs
by T (maximum repair iterations), SEAL yields a predictable, bounded cost profile
while replacing distractors rather than broadening context.

1 INTRODUCTION

Large language models (LLMs) excel across many tasks, yet their reliance on parametric memory
makes them prone to hallucination on knowledge-intensive queries (Ji et al., 2023). Retrieval-
Augmented Generation (RAG) grounds answers in external evidence (Lewis et al., 2020), but
conventional pipelines remain brittle: when the initial fetch misses a crucial bridge, the model rarely
repairs it. Simply raising the number of retrieved passages (k) or accumulating more context typically
increases distractors and cost without closing the missing link (Karpukhin et al., 2020; Khattab &
Zaharia, 2020).

Prior extensions aim to mitigate insufficiency. SELF-RAG steers retrieval with reflective critique
during decoding. Query-expansion and multi-hop strategies broaden coverage through reformulation
and chained retrieval (Mao et al., 2021; Trivedi et al., 2020). These approaches can improve recall, but
they often rely on multiple retrieve–critique rounds, broaden context, and lack an explicit mechanism
to target and repair the specific gap that blocks answering.

We propose SEAL-RAG, a training-free, inference-time controller that directly targets evidence
insufficiency under a predictable budget. SEAL holds a fixed retrieval depth k (k passages per
search/micro-query) and executes a bounded repair loop with maximum T iterations: SEARCH
→ EXTRACT → ASSESS → LOOP. A scope-aware sufficiency check (coverage, typed bridging,
corroboration/contradiction, answerability) decides stop vs. targeted repair. Each repair issues exactly
one micro-query under the same top-k; new candidates replace distractors via entity-first ranking, and
the system performs a single final generation once sufficiency holds. Figure 1 provides an end-to-end
overview of the SEAL-RAG pipeline.

Contributions. (i) Entity-anchored gap repair at fixed k: on-the-fly extraction of (head, relation,
tail) facts and a live entity ledger yield an explicit gap specification that drives one micro-query per
loop. (ii) Scope-aware sufficiency: a lightweight gate aggregates coverage/bridging/corroboration-
contradiction/answerability signals to decide stop vs. repair. (iii) Replace, don’t expand: candidates
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are merged by entity-first ranking to replace distractors rather than broaden context, keeping budget
predictable with k fixed and loops bounded by T .

On a 1,000-example HotpotQA validation slice in a shared environment, SEAL delivers consistent
gains vs. SELF-RAG across backbones: LLM-judged Exact Match (Judge-EM) improves by +10–22
pp at k=1 and +3–13 pp at k=3, and evidence precision@k (gold-title precision) rises by +12–18
pp at k=3. Prompts, configs, scripts, and artifacts are provided in the supplementary material.

Figure 1: SEAL-RAG pipeline (Search→ Extract→ Assess→ Loop). From a user query, initial
retrieval (fixed top-k) pulls candidates from the vector store. Each loop: Extract performs loop-
adaptive, entity-first extraction to form a gap specification; Assess applies scope-aware sufficiency to
decide stop vs. repair. On repair, the Micro-Query policy explores targeted queries under the same k
(blocklist, stuck detection, pivots). New evidence is integrated via entity-first ranking; once sufficient,
the system emits the answer under the SEAL rule (2–4 words + citations, or “I don’t know”).

Paper organization. Section 2 reviews related work. Section 3 details SEAL-RAG (loop controller,
scope-aware sufficiency, loop-adaptive extraction, entity-first ranking, and the micro-query policy).
Section 4 specifies datasets, models, retrieval/indexing, baseline, metrics/judging, and protocol.
Section 5 presents main results at k=1 and k=3 with per-backbone tables and discussion. Section 6
reports loop-budget ablations and analysis. Section 7 states limitations and threats to validity. Sec-
tion 8 concludes; anonymized implementation and reproducibility details appear in the Supplementary
Material.

2 RELATED WORK

2.1 STANDARD RAG AND LIMITATIONS

Retrieval-Augmented Generation (RAG) grounds LLM outputs in external documents (Lewis et al.,
2020), typically via dense retrieval pipelines such as DPR (Karpukhin et al., 2020). However, the
standard retrieve-then-generate pattern is brittle when the initial top-k misses a bridge fact: increasing
k or accumulating more context often inflates distractors and cost without repairing the missing link.
SEAL-RAG targets this failure mode by holding k fixed and iteratively repairing insufficiency rather
than broadly expanding context.

2.2 COVERAGE EXPANSION VIA QUERY REFORMULATION AND MULTI-HOP RETRIEVAL

Coverage-oriented methods broaden the candidate pool through reformulation or hierarchical/iterative
retrieval, e.g., hypothetical-document embeddings (HYDE) for zero-shot guidance (Gao et al., 2022;
Sarthi et al., 2024) and multi-hop strategies that chain retrieval steps. These approaches can lift
recall but risk query drift, redundancy, and path explosion; they also lack a mechanism to specify
which factual gap to repair. In contrast, SEAL-RAG derives gap specifications from on-the-fly entity
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extraction and issues exactly one micro-query per loop under the same top-k, replacing distractors
rather than enlarging the context.

2.3 CORRECTIVE AND REFLECTIVE CONTROL IN RAG

SELF-RAG integrates retrieval, generation, and critique via reflection tokens, allowing the model
to interleave answer drafting with self-assessment and additional retrieval when needed (Asai et al.,
2024). This reflective loop improves robustness over single-pass pipelines by encouraging the model
to revisit uncertain spans and to re-fetch evidence during decoding.

Contrast with SEAL-RAG. While both approaches attempt to correct insufficiency at inference
time, their control policies and objectives differ in ways that matter under tight retrieval budgets:

• Control policy (when/how to retrieve). SELF-RAG makes retrieval decisions during
generation, guided by critique tokens that may trigger further fetches. SEAL-RAG instead
keeps a fixed retrieval depth k and runs an explicit SEARCH→EXTRACT→ASSESS→LOOP
controller. Repairs are scheduled between generation and only after a sufficiency decision,
not interleaved with token emission.

• What to repair (target). SELF-RAG’s critiques are content- and fluency-aware but do
not explicitly localize a missing entity/relation. SEAL-RAG performs entity-anchored
extraction to build a gap specification (head/relation/tail, typed bridges), which drives one
focused micro-query per loop.

• Stop/continue criterion. SELF-RAG uses reflection signals as soft guidance during de-
coding. SEAL-RAG applies a scope-aware sufficiency gate that aggregates coverage,
typed-bridge, corroboration/contradiction, and answerability signals to decide stop vs. repair
with thresholds held constant across runs.

• Evidence management. SELF-RAG can broaden context as additional passages are pulled
during critique. SEAL-RAG replaces distractors rather than broadening context via
entity-first ranking, preserving a fixed-k budget while increasing the fraction of gold titles.

• Cost profile. SELF-RAG’s critique-triggered retrieval can vary with decoding dynamics.
SEAL-RAG bounds inference by design: fixed k and at most T repairs (architecturally
O(k ·T )), yielding predictable cost/latency.

Other corrective controllers. CRAG filters/revises candidates but remains within the current pool
(Yan et al., 2024); Adaptive-/MAIN-RAG trigger extra retrieval or coordinate roles without localizing
a missing fact or enforcing fixed-k replacement (Jeong et al., 2024; Chang et al., 2025). Orthogonal
agentic patterns (ReAct, Reflexion) target reasoning/self-improvement rather than gap-targeted repair
(Yao et al., 2023; Shinn et al., 2023).

Empirical context. Under a shared environment and identical retriever/index/decoding settings,
SEAL-RAG yields higher Judge-EM and notably higher Gold-title Precision@k than SELF-RAG at
both k=1 and k=3 (see Sections 5.1 and 5.2). These gains are consistent with SEAL-RAG’s design
choice to target and replace insufficiency at fixed k rather than broaden context.

2.4 CONTRASTIVE AND RATIONALE-DRIVEN RETRIEVAL

Contrastive re-ranking improves relevance by re-scoring candidates but cannot recover evidence
never retrieved, and it adds latency relative to single-stage pipelines. Rationale-driven retrieval uses
intermediate reasoning to steer what to fetch next, yet synthesized rationales may drift and broaden
context without targeting the specific gap. SEAL-RAG instead performs scope-aware sufficiency
checks and entity-anchored extraction to identify the missing link, then repairs it with one focused
micro-query while keeping top-k fixed.
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3 SEAL-RAG (METHOD)

3.1 LOOP CONTROLLER

SEAL-RAG holds a fixed retrieval depth k (k passages per search or micro-query) and executes
a bounded repair loop with maximum T iterations: SEARCH → EXTRACT → ASSESS → LOOP.
Given a query q, a first-stage retrieverR (top-k) (Karpukhin et al., 2020), a reader/generator G, and a
sufficiency assessor S , the controller maintains an evolving evidence set Et, an entity ledger Ut, and a
blocklist Bt. At each iteration, a sufficiency gate decides stop vs. targeted repair; generation occurs
once, after sufficiency holds. Figure 2 shows the execution graph and loopbacks (repair triggers) for
the controller nodes.

Initialization. Retrieve E0 ← R(q, k), extract initial entities U0 from E0, and seed B0 with salient
terms already covered to discourage redundancy.

3.2 SCOPE-AWARE SUFFICIENCY

The gate aggregates four lightweight signals: (i) coverage of question attributes, (ii) typed bridging
for multi-hop links, (iii) corroboration/contradiction across passages, and (iv) answerability given
the current set. Concretely, S scores attribute coverage and typed links over Ut, tracks corroboration
counts while flagging contradictions, and estimates answerability with calibrated confidence. We
declare sufficient when all criteria exceed fixed thresholds; otherwise we repair. All thresholds,
prompts, and calibration details are held constant across backbones and k∈{1, 3}; full values and
templates appear in the supplementary material.

3.3 LOOP-ADAPTIVE EXTRACTION (ENTITY-ANCHORED)

From retrieved passages, SEAL-RAG performs on-the-fly extraction of (head, relation, tail) facts
with supporting spans and updates the entity ledger. Rather than summarizing documents, extraction
focuses on windows around entity mentions and candidate relations implicated by the question. Only
verbatim triples are stored (Angeli et al., 2015; Bhardwaj et al., 2019) to stabilize grounding and
enable direct citation; this ledger supplies candidates to the sufficiency check and subsequent ranking.

3.4 GAP SPECIFICATION & ONE MICRO-QUERY

If S deems Et insufficient, extraction compiles a gap specification: the missing attributes/links and
the entities they concern, plus blocked/seen terms to avoid redundancy. Each repair loop then issues
exactly one micro-query under the same top-k targeting the gap; novelty heuristics (blocklists), stuck
detection, and safe pivots (Carpineto & Romano, 2012; Lavrenko & Croft, 2001) diversify queries
without increasing k (Carbonell & Goldstein, 1998). Operational thresholds and the full micro-query
policy are provided in the supplementary material.

3.5 ENTITY-FIRST RANKING & HANDOFF

Newly retrieved candidates ∆Et+1 are merged with Et via entity-first ranking, which prefers passages
that anchor ledger entities and resolve missing attributes/links with verbatim support. This step
replaces distractors rather than broadening context; we then re-run sufficiency on the updated set and,
once sufficient, execute a single final generation step.

3.6 COST PROFILE

Because k is fixed and each repair issues one micro-query (with at most T loops), SEAL-RAG’s
retrieval/read budget is predictable and bounded (architecturally O(k ·T )). Per-stage token/latency
accounting and any measurements appear in the supplementary material.
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Figure 2: Execution graph for SEAL-RAG. Nodes map to stages: retrieve docs (initial
retrieval, fixed top-k); cached entities update (entity-anchored extraction); to repair
(sufficiency gate); micro query agent (one micro-query under fixed k); rank evidence
(entity-first ranking); generate answer (final emission). Solid arrows show the primary path.
Dashed arrows denote loopbacks triggered by repair and indicate steps that may be executed in
parallel where infrastructure permits (e.g., extraction and ranking over candidate sets), while the
controller still enforces fixed-k and a loop budget T .

4 EXPERIMENTAL SETUP

4.1 DATASET

We evaluate on the HotpotQA validation split in the fullwiki setting, using a seeded sample of
N=1,000 questions for all runs (Yang et al., 2018). HotpotQA mixes bridge and comparison
questions and provides sentence-level supporting facts, enabling evaluation of both answer correctness
and evidence quality.

4.2 SHARED ENVIRONMENT & MODELS

All methods run in the same environment: identical LLM backbones (two capacity tiers), the
same dense retriever over Wikipedia, the same fixed retrieval depth k∈{1, 3}, identical decoding
parameters, and the same evaluation judge and metrics. No model, retriever, or reranker is fine-tuned;
SEAL is a training-free, inference-time controller. Exact model IDs, seeds, package versions, and
index metadata are listed in the supplementary material.
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4.3 RETRIEVAL, INDEX, AND ANSWER PROFILE

We use a cosine-similarity vector index with a fixed 1536-d embedding; the retriever returns the top-k
passages per query. SEAL’s micro-queries respect this same k. Documents are chunked with a fixed
window and normalized uniformly across systems. All methods emit answers under a shared profile:
2–4 words with citations when supported, otherwise “I don’t know”.

4.4 BASELINE

We compare to SELF-RAG, a leading reflective controller for retrieval-augmented generation that
reports strong results among training-free, inference-time controllers within standard retrieve–read
pipelines (Asai et al., 2024). We use it as our primary comparator due to its prominence in this setting.
For fairness, both methods use the same backbones, retriever, Wikipedia index, decoding parameters,
judge, and metrics; we match the retrieval depth k and bound SELF-RAG’s critique-triggered retrieval
rounds by the same loop budget as SEAL-RAG’s repairs.

4.5 METRICS AND JUDGING

Primary metrics (reported in all tables): Final Answer Correctness (Judge-EM) from a fixed LLM
judge, and Gold-title Precision/Recall/F1@k computed over deduplicated retrieved titles versus
gold supporting-fact titles. Abstentions (“I don’t know”) are counted as incorrect for Judge-EM.
Metric definitions, title normalization, and the judge rubric are fixed across systems; prompts/configs
appear in the supplementary material.

Significance. We report 95% bootstrap CIs and test SEAL vs. SELF-RAG on the same examples:
χ2 for Judge-EM; paired two-sided t-tests for Precision/Recall/F1; Holm–Bonferroni at α=0.05.
Full statistics, per-seed results, and exact p-values are provided in the Supplementary Material.

4.6 SLICE AND PROTOCOL

Unless stated otherwise, all results share the seeded 1k subset and evaluate at k∈{1, 3} while varying
the repair-loop budget L (bounded by T ). This isolates the effect of loop-based repairs under constant
k and a shared infrastructure (retriever, index, judge).

5 RESULTS

5.1 MAIN RESULTS @ k=1

Summary. Table 1 reports all four metrics at fixed k=1 on the seeded 1k HotpotQA slice; methods
share identical environments (models, retriever, judge, metrics).

Key observations @ k=1. Across all backbones, SEAL-RAG improves Judge-EM by +10–22 pp
over SELF-RAG and lifts both Precision@1 and Recall@1, consistent with fixed-k loop repairs that
replace distractors with the needed gold page. F1 gains follow the same pattern.

5.2 MAIN RESULTS @ k=3

Summary. Table 2 reports all four metrics at fixed k=3 on the same slice.

Key observations @ k=3. With three slots, recall rises for both systems, but SEAL-RAG main-
tains a clear precision@k advantage of +12–18 pp across backbones, yielding +3–13 pp higher
Judge-EM. Where recall dips on the two “mini” backbones, precision gains still translate into equal
or higher F1/EM overall.

5.3 DISCUSSION

What fixed-k buys you. Under small k, each retrieved slot is scarce; a distractor directly crowds
out a necessary bridge/corroboration page. SEAL’s loop keeps k constant and allocates effort to

6
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Table 1: Main results at k=1 on HotpotQA (N=1,000). Metrics are percentages; all settings
identical except control logic. ∆ columns show SEAL−SELF (same backbone).

Metrics (%) ∆ (pp)

Backbone Method Judge-EM Prec@k Rec@k F1@k ∆EM ∆Prec ∆Rec ∆ F1

gpt-4o-mini SELF-RAG 48 61 31 41
gpt-4o-mini SEAL-RAG 62 86 44 58 +14 +25 +13 +17

gpt-4o SELF-RAG 59 75 37 50
gpt-4o SEAL-RAG 73 91 62 72 +14 +16 +25 +22

gpt-4.1-mini SELF-RAG 49 72 36 48
gpt-4.1-mini SEAL-RAG 71 87 48 61 +22 +15 +12 +13

gpt-4.1 SELF-RAG 63 79 40 53
gpt-4.1 SEAL-RAG 73 90 66 74 +10 +11 +26 +21

Table 2: Main results at k=3 on HotpotQA (N=1,000). ∆ columns show SEAL−SELF (same
backbone).

Metrics (%) ∆ (pp)

Backbone Method Judge-EM Prec@k Rec@k F1@k ∆EM ∆Prec ∆Rec ∆ F1

gpt-4o-mini SELF-RAG 60 66 47 53
gpt-4o-mini SEAL-RAG 69 84 44 57 +9 +18 –3 +4

gpt-4o SELF-RAG 71 76 55 61
gpt-4o SEAL-RAG 77 89 68 75 +6 +13 +13 +14

gpt-4.1-mini SELF-RAG 64 73 56 61
gpt-4.1-mini SEAL-RAG 77 86 49 61 +13 +13 –7 0

gpt-4.1 SELF-RAG 73 79 61 66
gpt-4.1 SEAL-RAG 76 91 73 79 +3 +12 +12 +13

targeted replacements, not breadth-first growth. Empirically, precision@k lifts are substantial at both
depths—maximizing at k=1 (e.g., +25 pp; Table 1) and remaining consistently high at k=3 (+12–18
pp across backbones; Table 2)—with corresponding Judge-EM gains in both settings.

Effect of backbone strength and k. In our shared setup, SEAL’s margin over SELF narrows as
base model capacity increases and as k grows. Average Judge-EM gains decrease from ∼ +15.0 pp
at k=1 to ∼ +7.8 pp at k=3 (per-backbone: 14→9 for 4o-mini; 14→6 for 4o; 22→13 for 4.1-mini;
10→3 for 4.1; Tables 1 and 2). This trend is expected: stronger backbones and larger k reduce initial
distractors, leaving less headroom for SEAL’s fixed-k replacement to improve precision—yet gains
remain consistently positive.

Why precision matters even when recall dips. Gold-title@k recall is capped by k when a question
needs multiple pages. SEAL’s controller explicitly aims to replace weaker candidates with gold
pages; when it prioritizes the most critical missing page (bridge or second entity), Judge-EM can
rise even if the auxiliary gold page remains uncovered. This matches HotpotQA’s bridge/comparison
structure and is visible on the “mini” models at k=3.

Qualitative cases (abridged). Bridge (k=3, gpt-4o). Q: “What is the capital of the U.S. state
where the University of Michigan is located?” SELF-RAG retains Ann Arbor context and misses
the state-capital page; SEAL blocks redundancies, micro-queries “Michigan state capital,” swaps in
Lansing⇒ Judge-EM=1. Comparison (k=3, gpt-4.1-mini). Q: “Who has played for more NBA

7
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teams, Michael Jordan or Kobe Bryant?” SELF-RAG retrieves Jordan twice and lacks Kobe’s teams
list; SEAL pivots to Kobe’s career page and answers correctly.

Observed failure modes. Common errors include (i) bridge entities mentioned only via rare aliases
that the index fails to surface, (ii) implicit or temporal attributes (harder for verbatim, entity-anchored
extraction), and (iii) borderline paraphrases where the judge may flip the label. These concentrate in
long-tail aliases and time-varying facts; representative cases appear in the supplementary.

Practical guidance. Under tight budgets, k=1 with a small loop budget (L ∈ {1, 3}) captures
most of SEAL’s gains by swapping a single distractor for the needed bridge page. When latency
permits, k=3 with the same L yields larger precision margins (more opportunities to replace non-gold
titles) and consistently higher Judge-EM. Larger L targets long-tail items with diminishing returns
(Section 6.1).

Statistical confidence. All SEAL–SELF differences reported in Tables 1 and 2 are statistically
significant under the protocol in Section 4.5 (Holm–Bonferroni, α=0.05); detailed p-values and 95%
CIs appear in the Supplementary Material.

Takeaway. Across k∈{1, 3} and four backbones, SEAL-RAG consistently outperforms SELF-
RAG on Judge-EM while improving precision under a fixed retrieval budget. The gains align with
SEAL’s design: entity-anchored extraction, scope-aware sufficiency checks, and micro-query repairs
that replace distractors instead of broadening context.

Reproducibility. We release predictions, scripts, and configuration to regenerate all tables/figures
from the 1k slice; anonymized artifacts are included in the supplementary for reviewer access.

6 ABLATIONS & ANALYSIS

6.1 EFFECT OF LOOP BUDGET L AT FIXED k=1 (JUDGE-EM)

Summary. Table 3 reports Final Answer Correctness (Judge-EM) as a function of the repair-loop
budget L with retrieval depth fixed at k=1.

Table 3: Judge-EM (%) vs. repair-loop budget (L) at fixed k=1. ∆@5 is the improvement from no
repairs (L=0) to the maximum budget (L=5). Complementary precision/recall curves are provided
in the Supplementary Material.

Judge-EM (%) at Loop Budget L

Backbone L = 0 L = 1 L = 3 L = 5 ∆ vs. L = 0

gpt-4o-mini 30 58 61 62 +32
gpt-4.1-mini 28 66 70 71 +43
gpt-4o 32 67 71 73 +41
gpt-4.1 25 63 69 73 +48

Average 29 64 68 70 +41

Motivation. This isolates the causal contribution of SEAL-RAG’s repair loop under a fixed
retrieval budget. With k=1 held constant, changes across L reflect loop policy (gap detection→
micro-queries→ replacements), not larger context windows or more retrieved passages.

Design & controls. We vary only L ∈ {0, 1, 3, 5} and keep the full environment identical to
Section 4.2: same backbones, index snapshot, seeded 1k slice, judge, and metrics. L=0 is single-pass
(no repairs). For L>0, each repair issues one micro-query and may replace a distractor at constant k.

8
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Findings & reading. Increasing L yields a large first-step jump (+35 pp avg. from L=0→1), then
diminishing returns (+4 pp to L=3, +2 pp to L=5); overall +41 pp at L=5 vs. L=0. Because k is
fixed, gains indicate targeted replacement rather than context expansion.

Implications. Under tight latency/cost (small k), most of SEAL’s improvement is captured by
L ∈ {1, 3}; L=5 targets long-tail cases. Full precision/recall/F1@k trends for this ablation are
included in the Supplementary Material.

7 LIMITATIONS & THREATS TO VALIDITY

LLM-judge variance. Our primary accuracy metric (Final Answer Correctness / Judge-EM) relies
on a fixed LLM judge and rubric. Prior work shows LLM judges can exhibit position/verbosity biases
and variability (Zheng et al., 2023). We mitigate this by pinning the judge model and decoding, using
a deterministic rubric, and reporting paired significance and bootstrap CIs; per-item judgments and
prompts are provided in the supplementary material. Small effects should be interpreted with caution
(Yeh, 2000; Koehn, 2004; Dror et al., 2018).

Task-coupled answer profile. For HotpotQA we constrain outputs to short spans with citations (or
abstain) to keep judging unambiguous; this favors factoid QA and may under-represent tasks that
require long rationales. SEAL is not restricted to short outputs, but transferring to other tasks should
pair SEAL with task-appropriate metrics and rubrics.

Fixed-k by design. Experiments purposefully use small, fixed retrieval depths (k∈{1, 3}) to stress
per-slot utility and isolate loop-driven replacement effects. Larger or dynamic k policies are feasible
but outside our scope; we leave dynamic-k controllers to future work.

Domain shift. All results are on HotpotQA fullwiki (Yang et al., 2018). Performance may differ on
other corpora (news, biomedical, legal) or retrieval tasks (fact-checking, argument retrieval). To aid
replication beyond Wikipedia and broadened IR settings such as BEIR (Thakur et al., 2021; Petroni
et al., 2021), we release predictions, prompts, and scripts in the supplementary material.

Prompt brittleness & component sensitivity. SEAL’s behavior depends on prompts for sufficiency
checks, extraction, micro-queries, ranking, and answer emission. Changing judge/backbone or editing
prompts can shift outcomes. We therefore pin model IDs/decoding, version prompts/configs, and
recommend paired tests/bootstraps when adapting to new domains.

Seeded slice. We report results on a seeded 1k HotpotQA validation slice to hold variance constant.
Although this facilitates controlled comparisons, it may miss distributional edges. Our released
artifacts allow re-running on new 1k samples and regenerating tables with the same evaluation
pipeline.

8 CONCLUSION

Conclusion. We presented SEAL-RAG (Search→ Extract→ Assess→ Loop), a training-free,
inference-time controller for RAG that performs targeted repairs under a fixed retrieval depth k.
SEAL keeps k constant, diagnoses evidence gaps via on-the-fly, entity-anchored extraction, and issues
one micro-query per repair until a scope-aware sufficiency check is met. On a seeded 1k HotpotQA
slice, across four backbones and k∈{1, 3}, SEAL consistently outperforms SELF-RAG: at k=1
we observe +10–22 pp Judge-EM gains and sizable Gold-title F1 lifts; at k=3 SEAL maintains a
+3–13 pp Judge-EM advantage while improving Precision@k by +12–18 pp on average. A loop-
budget ablation at k=1 shows large first-step benefits (from L=0 to L=1), with diminishing returns
thereafter, indicating that replacement—not breadth—drives the gains. Overall, entity-anchored gap
repair with a fixed k yields more precise, grounded multi-hop answers without additional training.
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A APPENDIX

A.1 LLM USAGE DISCLOSURE

In accordance with ICLR guidance, we disclose all uses of large language models (LLMs) in preparing
this submission. No LLM was used to generate scientific ideas, methods, results, or conclusions.
LLM assistance was used only for writing-aid and polishing tasks, such as: (i) grammar and style
edits on author-written text; (ii) rephrasing sentences for clarity and concision; and (iii) converting
author-provided bullet points into prose without adding technical content. All technical sections
(problem setup, method, experiments, metrics, analyses, and conclusions) were written and verified
by the authors. All tables, figures, numbers, and claims are based on code and logs produced by our
implementation and were independently checked by the authors.

A.2 SUPPLEMENTARY MATERIAL

We provide an anonymized .zip archive containing all artifacts required to reproduce the results.
Contents:

• Code: scripts to run SEAL-RAG and SELF-RAG baselines on the seeded HotpotQA
slice; evaluation scripts to recompute all tables/figures; prompt templates for retrieval,
micro-queries, sufficiency checks, ranking, judging, and answer emission.

• Prediction files: per-example outputs for every backbone × k ∈ {1, 3} × method
(JSONL/CSV), enabling exact regeneration of reported metrics.

• Metrics notebooks: one-click notebooks to recompute Judge-EM and Gold-title Preci-
sion/Recall/F1@k, plus plots.

• Statistical tests: scripts for χ2 on paired Judge-EM outcomes and paired two-sided t-tests
for Precision/Recall/F1, with Holm–Bonferroni correction; bootstrap CI utilities.

• Index manifest: Wikipedia dump date, doc IDs/titles, embedding model/dimension, dis-
tance metric, and index build parameters; deterministic seed and chunking settings.

• Seeded slice: the list of 1,000 HotpotQA validation QIDs and the RNG seed used for
sampling.
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