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Abstract

Event extraction is typically modeled as a001
multi-class classification problem where both002
event types and argument roles are treated as003
atomic symbols. These approaches are usu-004
ally limited to a set of pre-defined types. We005
propose a novel event extraction framework006
that takes both event types and argument roles007
as natural language queries to extract candi-008
date triggers and arguments from the input text.009
With the rich semantics in the queries, our010
framework benefits from the attention mech-011
anisms to better capture the semantic corre-012
lation between the event types or argument013
roles and the input text. Furthermore, the014
query-and-extract formulation allows our ap-015
proach to leverage all available event anno-016
tations from various ontologies as a unified017
model. Experiments on two public benchmark018
datasets, ACE and ERE, demonstrate that our019
approach achieves the state-of-the-art perfor-020
mance on each dataset and significantly out-021
performs existing methods on zero-shot event022
extraction. We will make all the programs pub-023
licly available once the paper is accepted.024

1 Introduction025

Event extraction (Grishman, 1997; Chinchor and026

Marsh, 1998; Ahn, 2006) is a task to identify and027

type event triggers and participants from natural028

language text. As shown in Figure 1, married and029

left are triggers of two event mentions of the Marry030

and Transport event types respectively. Two argu-031

ments are involved in the left event mention: she is032

an Artifact, and Irap is the Destination.033

Traditional studies usually model event extrac-034

tion as a multi-class classification problem (Mc-035

Closky et al., 2011; Li et al., 2013; Chen et al.,036

2015; Yang and Mitchell, 2016; Nguyen et al.,037

2016; Lin et al., 2020), where a set of event types038

are firstly defined and then supervised machine039

learning approaches will detect and classify each040

candidate event mention or argument into one of041
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Figure 1: An example of event annotation.

the target types. However, in these approaches, 042

each event type or argument role is treated as an 043

atomic symbol, ignoring their rich semantics. Sev- 044

eral studies explore the semantics of event types by 045

leveraging the event type structures (Huang et al., 046

2018), seed event mentions (Bronstein et al., 2015; 047

Lai and Nguyen, 2019), or question answering 048

(QA) (Du and Cardie, 2020; Liu et al., 2020). How- 049

ever, these approaches are still designed for, thus 050

limited to a single target event ontology, such as 051

ACE or ERE (Song et al., 2015). 052

With the existence of multiple ontologies and the 053

challenge of handling new emerging event types, it 054

is necessary to study event extraction approaches 055

that are generalizable and can use all available 056

training data from distinct event ontologies.1 To 057

this end, we propose a new event extraction frame- 058

work following a query-and-extract paradigm. Our 059

framework represents both event types and argu- 060

ment roles as natural language queries with rich 061

semantics. The queries are then used to extract 062

the corresponding event triggers and arguments by 063

leveraging our proposed attention mechanism to 064

capture their interactions with input texts. Specifi- 065

cally, (1) for trigger detection, we formulate each 066

event type as a query based on its type name and 067

a shortlist of prototype triggers, and make binary 068

decoding of each token based on its query-aware 069

embedding; (2) for argument extraction, we put to- 070

gether all argument roles defined under each event 071

type as a query, followed by a multiway attention 072

1For argument extraction, the QA-based approaches have
certain potential to generalize to new ontologies, but require
high-quality template questions. As shown in our experiments,
their generalizability is limited compared to ours.
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destinationagent place originartifact

h3

[SEP]
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Figure 2: Architecture overview. Each cell in Argument Role Score Matrix indicates the probabilities of an entity
being labeled with an argument role. The arrows in Multiway Attention module show four attention mechanisms:
(a) entity to argument roles, (b) argument role to entities, (c) entity to entities, (d) argument role to argument roles.

mechanism to extract all arguments of each event073

mention with one-time encoding, with each argu-074

ment predicted as binary decoding.075

Our proposed approach can naturally handle var-076

ious ontologies as a unified model – compared077

to previous studies (Nguyen and Grishman, 2016;078

Wadden et al., 2019; Lin et al., 2020), our binary079

decoding mechanism directly works with any event080

type or argument role represented as natural lan-081

guage queries, thus effectively leveraging cross-082

ontology event annotations and making zero-shot083

predictions. Moreover, compared with the QA-084

based methods (Du and Cardie, 2020; Liu et al.,085

2020; Li et al., 2020) that can also conduct zero-086

shot argument extraction, our approach does not re-087

quire creating high-quality questions for argument088

roles or multi-time encoding for different argument089

roles separately, thus is more accurate and efficient.090

We evaluate our approach on two public bench-091

mark datasets, ACE and ERE. We demonstrate092

state-of-the-art performance in both the standard su-093

pervised event extraction and the challenging trans-094

fer learning settings that generalize to new event095

types and new ontologies. Specifically, equipped096

with the cross-ontology transferability, our ap-097

proach can make use of both datasets and achieve098

1.1% and 3.6% F-score gain on trigger detection099

compared with the previous state of the arts on100

ACE and ERE, respectively. On zero-shot transfer101

to new event types, our approach outperforms a 102

strong baseline by 16% on trigger detection and 103

26% on argument detection. 104

The overall contributions of our work are: 105

• We refine event extraction as a query-and- 106

extract paradigm, which is more generalizable and 107

efficient than previous top-down classification or 108

QA-based approaches. 109

• We design a new event extraction model that 110

leverages rich semantics of event types and argu- 111

ment roles, leading to both improved accuracy and 112

generalizability. 113

• We establish new state-of-the-art performance 114

on ACE and ERE in supervised and zero-shot event 115

extraction and demonstrate our framework as an 116

effective unified model for cross ontology transfer. 117

2 Our Approach 118

As Figure 2 shows, given an input sentence, we 119

first identify the candidate triggers for each event 120

type by taking it as a query to the sentence. Each 121

event type, such as Attack, is represented with a 122

natural language text, including its type name and 123

a short list of prototype triggers, such as invaded 124

and airstrikes, which are selected from the training 125

examples. Then, we concatenate the input sen- 126

tence with the event type query, encode them with 127

a pre-trained BERT encoder (Devlin et al., 2019), 128

compute the attention distribution over the sequen- 129
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tial representation of the event type query for each130

input token, and finally classify each token into a131

binary label, indicating it as a trigger candidate of132

the specific event type or not.133

To extract the arguments for each candidate trig-134

ger, we follow a similar strategy and take the set135

of pre-defined argument roles for its corresponding136

event type as a query to the input sentence. We137

use another BERT encoder to learn the contextual138

representations for the input sentence as well as the139

query of the argument roles. Then, we take each140

entity of the input sentence as a candidate argument141

and compute the semantic correlation between en-142

tities and argument roles with multiway attention,143

and finally classify each entity into a binary label144

in terms of each argument role.145

2.1 Trigger Detection146

Event Type Representation A simple and intu-147

itive way of representing an event type is to use the148

type name. However, the type name itself cannot149

accurately represent the semantics of the event type150

due to the ambiguity of the type name as well as151

the variety of the event mentions of each type. For152

example, Meet can refer to an organized event or153

an action of getting together or matching. Inspired154

by previous studies (Bronstein et al., 2015; Lai and155

Nguyen, 2019), we use a short list of prototype156

triggers to enrich the semantics of each event type.157

Specifically, for each event type t, we collect a158

set of annotated triggers from the training exam-159

ples. For each unique trigger word, we compute its160

frequency from the whole training dataset as fo and161

its frequency of being tagged as an event trigger162

of type t as ft, and then obtain a probability ft/fo,163

which will be used to sort all the annotated trig-164

gers for event type t. We select the top-K2 ranked165

words as prototype triggers {τ1, τ2, . . . , τK}.166

Finally, each event type will be represented with167

a natural language sequence of words, consisting168

of its type name and the list of prototype triggers169

T = {t, τ t1, τ t2, . . . , τ tK}. Taking the event type170

Attack as an example, we finally represent it as171

Attack invaded airstrikes overthrew ambushed.172

Context Encoding Given an input sentence173

W = {w1, w2, . . . , wN}, we take each event type174

T = {t, τ t1, τ t2, . . . , τ tK} as a query to extract the175

corresponding event triggers. Specifically, we first176

2In our experiments, we set K = 4.

concatenate them into a sequence as follows: 177

[CLS][EVENT][SEP] w1 ... wN [SEP] t τ t1 ... τ
t
K [SEP] 178

where [SEP] is a separator from the BERT en- 179

coder (Devlin et al., 2019). Following (Liu et al., 180

2020), we use a special symbol [EVENT] to em- 181

phasis the trigger detection task. 182

Then we use a pre-trained BERT encoder to 183

encode the whole sequence and get contextual 184

representations for the input sentence W = 185

{w0,w2, ...,wN} as well as the event type T = 186

{t, τ t
0, τ

t
1, ..., τ

t
K}.3 187

Enriched Contextual Representation Given a 188

query of each event type, we aim to extract cor- 189

responding event triggers from the input sentence 190

automatically. To achieve this goal, we need to 191

capture the semantic correlation of each input to- 192

ken to the event type. Thus we apply attention 193

mechanism to learn a weight distribution over the 194

sequence of contextual representations of the event 195

type query and get an event type aware contextual 196

representation for each token: 197

AT
i =

|T |∑
j=1

αij · Tj , where αij = cos(wi, Tj), 198

where Tj is the contextual representation of the 199

j-th token in the sequence T = {t, τ t1, τ t2, . . . , τ tK}. 200

cos(·) is the cosine similarity function between 201

two vectors. AT
i denotes the event type t aware 202

contextual representation of token wi. 203

In addition, the prediction of event triggers also 204

depends on the occurrence of a certain context. For 205

example, according to ACE event annotation guide- 206

lines (Linguistic Data Consortium, 2005), to qual- 207

ify as a Meet event, the meeting must be known 208

to be “face-to-face and physically located some- 209

where”. To capture such context information, we 210

further apply in-context attention to capture the 211

meaningful contextual words for each input token: 212

AW
i =

N∑
j=1

α̃ij ·wj , where α̃ij = ρ(wi, wj) , 213

where ρ(.) is the attention function and is computed 214

as the average of the self-attention weights from 215

the last m layers of BERT.4 216

3We use bold symbols to denote vectors.
4We set m as 3 as it achieved the best performance.
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Event Trigger Detection With the aforemen-217

tioned event type oriented attention and in-context218

attention mechanisms, each token wi from the in-219

put sentence will obtain two enriched contextual220

representationsAW
i andAT

i . We concatenate them221

with the original contextual representationwi from222

the BERT encoder, and classify it into a binary223

label, indicating it as a candidate trigger of event224

type t or not:225

ỹti = Uo · ([wi; A
W
i ; AT

i ;Pi]) ,226

where [; ] denotes concatenation operation, Uo is227

a learnable parameter matrix for event trigger de-228

tection, and Pi is the one-hot part-of-speech (POS)229

encoding of word wi. We optimize the following230

objective for event trigger detection231

L1 = −
1

|T ||N |
∑
t∈T

|N |∑
i=1

yti · log ỹti ,232

where T is the set of target event types andN is the233

set of tokens from the training dataset. yti denotes234

the groundtruth label vector.235

2.2 Event Argument Extraction236

After detecting event triggers for each event type,237

we further extract their arguments based on the238

pre-defined argument roles of each event type.239

Context Encoding Given a candidate trigger r240

from the sentence W = {w1, w2, . . . , wN} and241

its event type t, we first obtain the set of pre-242

defined argument roles for event type t as Gt =243

{gt1, gt2, ..., gtD}. To extract the corresponding argu-244

ments for r, similar as event trigger detection, we245

take all argument roles Gt as a query and concate-246

nate them with the original input sentence247

[CLS] w1 w2 ... wN [SEP] gt1 g
t
2 ... g

t
D [SEP]248

where we use the last [SEP] separator to denote249

Other category, indicating the entity is not an argu-250

ment. Then, we encode the whole sequence with251

another pre-trained BERT encoder (Devlin et al.,252

2019) to get the contextual representations of the253

sentence W̃ = {w̃0, w̃2, ..., w̃N}, and the argu-254

ment rolesGt = {gt0, gt1, ..., gtD, gt[Other]}.255

As the candidate trigger r may span multiple256

tokens within the sentence, we obtain its contex-257

tual representation r as the average of the con-258

textual representations of all tokens within r. In259

addition, as the arguments are usually detected260

from the entities of sentence W , we apply a BERT- 261

CRF model, which is optimized on the same train- 262

ing set as event extraction to identify the entities 263

E = {e1, e2, ..., eM}. As each entity may also 264

span multiple tokens, following the same strategy, 265

we average the contextual representations of all 266

tokens within each entity and obtain the entity con- 267

textual representations as E = {e1, e2, ..., eM}. 268

Multiway Attention Given a candidate trigger r 269

of type t and an entity ei, for each argument role 270

gtj , we need to determine whether the underlying 271

relation between r and ei corresponds to gtj or not, 272

namely, whether ei plays the argument role of gtj 273

in event mention r. To do this, for each ei, we first 274

obtain a trigger-aware entity representation as 275

hi = Uh · ([ei; r; ei ◦ r]) , 276

where ◦ denotes element-wise multiplication oper- 277

ation. Uh is a learnable parameter matrix. 278

In order to determine the semantic correlation be- 279

tween each argument role and each entity, we first 280

compute a similarity matrix S between the trigger- 281

aware entity representations {h1,h2, ...,hM} and 282

the argument role representations {gt0, gt1, ..., gtD} 283

Sij =
1√
d
σ(hi, g

t
j) , 284

where σ denotes dot product operator, d denotes 285

embedding dimension of gt, and Sij indicates the 286

semantic correlation of entity ei to a particular ar- 287

gument role gtj given the candidate trigger r. 288

Based on the correlation matrix S, we further 289

apply a bidirectional attention mechanism to get an 290

argument role aware contextual representation for 291

each entity and an entity-aware contextual repre- 292

sentation for each argument role as follows: 293

Ae2g
i =

D∑
j=1

Sij · gtj , Ag2e
j =

M∑
i=1

Sij · hi , 294

In addition, previous studies (Hong et al., 2011; 295

Li et al., 2013; Lin et al., 2020) have revealed that 296

the underlying relations among entities or argument 297

roles are also important to extract the arguments. 298

For example, if entity e1 is predicted as Attacker 299

of an Attack event and e1 is located in another 300

entity e2, it’s very likely that e2 plays an argument 301

role of Place for the Attack event. To capture the 302

underlying relations among the entities, we further 303
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compute the self-attention among them304

µij = ρ(hi, hj) , µ̃i = Softmax(µi) ,305

Ae2e
i =

M∑
j=1

µ̃ij · hj ,306

where ρ denotes the averaged self-attention weights307

obtained from the last m layers of BERT encoder.308

Similarly, to capture the underlying relations309

among argument roles, we also compute the self-310

attention among them311

vjk =
1√
d
σ(gtj , g

t
k) , ṽj = Softmax(vj) ,312

Ag2g
j =

D∑
k=1

ṽjk · gtk ,313

where σ denotes the dot product operator, and d314

denotes embedding dimension of gt.315

Event Argument Predication Finally, for each316

candidate event trigger r, we determine whether an317

entity ei plays an argument role of gtj in the event318

mention by classifying it into a binary class:319

z̃tij = Ua · ([hi; g
t
j ; A

e2g
i ; Ag2e

j ; Ae2e
i ; Ag2g

j ]),320

where Ua is a learnable parameter matrix for ar-321

gument extraction. The training objective is to322

minimize the following loss function:323

L2 = −
1

|A||E|

|A|∑
j=1

|E|∑
i=1

zij log z̃ij ,324

where A denotes the collection of possible argu-325

ment roles, and E is the set of entities we need to326

consider for argument extraction. zij denotes the327

ground truth label vector. During test, an entity will328

be labeled as a non-argument if the prediction for329

Other category is 1. Otherwise, it can be labeled330

with multiple argument roles.331

3 Experiments332

3.1 Experimental Setup333

We perform experiments on two public bench-334

marks, Automatic Content Extraction 2005335

(ACE05-E+)5 and Entity Relation Event (ERE-336

EN) (Song et al., 2015)6. ACE defines 33 event337

5https://catalog.ldc.upenn.edu/
LDC2006T06

6Following Lin et al. (2020), we merge LDC2015E29,
LDC2015E68, and LDC2015E78 as the ERE dataset.

types while ERE includes 38 types, among which 338

there are 31 overlapped event types. Following pre- 339

vious studies (Wadden et al., 2019; Du and Cardie, 340

2020; Lin et al., 2020), we only consider the argu- 341

ments from the 7 entity types, including Facility, 342

Geo-Political Entity, Location, Organization, Per- 343

son, Vehicle, Weapon, and ignore Time and Value 344

related arguments. We use the same data split of 345

ACE and ERE as (Li et al., 2013; Wadden et al., 346

2019; Lin et al., 2020; Du and Cardie, 2020; Lin 347

et al., 2020; Nguyen et al., 2021) for supervised 348

event extraction. For zero-shot event extraction, we 349

use the top-10 most popular event types in ACE as 350

seen types for training and treat the remaining 23 351

event types as unseen for testing, following Huang 352

et al. (2018). More details regarding the data statis- 353

tics and evaluation are shown in Appendix A. 354

We further design two more challenging and 355

practical settings to evaluate how well the approach 356

could leverage resources from different ontologies: 357

(1) cross-ontology direct transfer, where we only 358

use the annotations from ACE or ERE for train- 359

ing and directly test the model on another event 360

ontology. This corresponds to the domain adapta- 361

tion setting in transfer learning literature; (2) joint- 362

ontology enhancement, where we take the annota- 363

tions from both ACE and ERE as training set, and 364

test the approaches on ACE or ERE ontology sepa- 365

rately. This corresponds to the multi-domain learn- 366

ing setting in transfer learning literature. Intuitively, 367

an approach with good transferability should bene- 368

fit more from the enhanced training data from other 369

ontologies. We follow the same train/dev/test splits 370

of ACE and ERE as supervised event extraction. 371

3.2 Supervised Event Extraction 372

Table 1 shows the supervised event extraction re- 373

sults of various approaches on ACE and ERE 374

datasets. Though many other event extraction stud- 375

ies (Li et al., 2013; Yang and Mitchell, 2016; Liu 376

et al., 2020, 2018; Sha et al., 2018; Lai et al., 2020; 377

Veyseh et al., 2020; Zhang and Ji, 2021) have been 378

conducted on the ACE dataset, they follow different 379

settings7, especially regarding whether the Time 380

and Value arguments are considered and whether 381

all Time-related argument roles are viewed as a 382

single role. Following several recent state-of-the- 383

art studies (Wadden et al., 2019; Lin et al., 2020; 384

Du and Cardie, 2020), we do not consider Time 385

7Many studies did not describe their argument extraction
setting in detail.
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Model ACE05-E+ ERE-EN

Trigger Ext. Argument Ext. Trigger Ext. Argument Ext.

DYGIE++ (Wadden et al., 2019) 67.3∗ 42.7∗ - -
BERT_QA_Arg (Du and Cardie, 2020) 70.6∗ 48.3∗ 57.0 39.2
OneIE (Lin et al., 2020) 72.8 54.8 57.0 46.5
Text2Event (Lu et al., 2021) 71.8 54.4 59.4 48.3
FourIE (Nguyen et al., 2021) 73.3 57.5 57.9 48.6

Our Approach 73.7 55.1 60.4 50.2

Table 1: Event extraction results on ACE05-E+ and ERE-EN datasets (F-score, %). ∗ indicates scores obtained
from their released codes. The performance of BERT_QA_Arg is lower than that reported in (Du and Cardie,
2020) as they only consider single-token event triggers.

and Value arguments. Our approach significantly386

outperforms most of the previous comparable base-387

line methods, especially on the ERE dataset8. Next388

we take BERT_QA_Arg, a QA_based method as389

the main baseline as it shares similar ideas to our390

approach, to compare their performance.391

Specifically, for trigger detection, all the base-392

line methods treat the event types as symbols and393

classify each input token into one of the target types394

or Other. So they heavily rely on human annota-395

tions and do not perform well when the annota-396

tions are not enough. For example, there are only397

31 annotated event mentions for End_Org in the398

ACE05 training dataset, so BERT_QA_Arg only399

achieves 35.3% F-score. In comparison, our ap-400

proach leverages the semantic interaction between401

the input tokens and the event types. Therefore it402

still performs well when the annotations are lim-403

ited, e.g., it achieves 66.7% F-score for End_Org.404

In addition, by leveraging the rich semantics of405

event types, our approach also successfully detects406

event triggers that are rarely seen in the training407

dataset, e.g., ousting and purge of End-Position,408

while BERT_QA_Arg misses all these triggers.409

For argument extraction, our approach shows410

more consistent results than baseline methods. For411

example, in the sentence “Shalom was to fly on412

to London for talks with British Prime Minister413

Tony Blair and Foreign Secretary Jack Straw”, the414

BERT_QA_Arg method correctly predicts Tony415

Blair and Jack Straw as Entity arguments of the416

Meet event triggered by talks, but misses Shalom.417

However, by employing multiway attention, espe-418

cially the self-attention among all the entities, our419

approach can capture their underlying semantic420

relations, e.g., Shalom and Tony Blair are two per-421

sons to talk, so that it successfully predicts all the422

three Entity arguments for the Meet event.423

8Appendix B describes several remaining challenges iden-
tified from the prediction errors on ACE05 dataset.

Model Trigger Ext. Arg Ext. (GT)

BERT_QA_Arg† 31.6 17.0

Our Approach 47.8 43.0

Table 2: Zero-shot F-scores on 23 unseen event types.
†: adapted implementation from (Du and Cardie, 2020).
GT indicates using gold-standard triggers as input.

3.3 Zero-Shot Event Extraction 424

As there are no fully comparable baseline methods 425

for zero-shot event extraction, we adapt one of the 426

most recent states of the arts, BERT_QA_Arg (Du 427

and Cardie, 2020), which is expected to have 428

specific transferability due to its QA formulation. 429

However, the original BERT_QA_Arg utilizes a 430

generic query, e.g., “trigger” or “verb”, to classify 431

each input token into one of the target event types 432

or Other, thus is not capable of detecting event 433

mentions for any new event types during the test. 434

We adapt the BERT_QA_Arg framework by taking 435

each event type instead of the generic words as a 436

query for event detection. Note that our approach 437

utilizes the event types as queries without any pro- 438

totype triggers for zero-shot event extraction. 439

As Table 2 shows, our approach significantly 440

outperforms BERT_QA_Arg under zero-shot event 441

extraction, with over 16% F-score gain on trigger 442

detection and 26% F-score gain on argument ex- 443

traction. Comparing with BERT_QA_Arg, which 444

only relies on the self-attention from the BERT 445

encoder to learn the correlation between the in- 446

put tokens and the event types or argument roles, 447

our approach further applies multiple carefully de- 448

signed attention mechanisms over BERT contex- 449

tual representations to better capture the semantic 450

interaction between event types or argument roles 451

and input tokens, yielding much better accuracy 452

and generalizability. 453

We further pick 13 unseen event types and an- 454

alyze our approach’s zero-shot event extraction 455
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Source Target BERT_QA_Argmulti BERT_QA_Argbinary† Our Approach

Trigger Ext. Argument Ext. Trigger Ext. Argument Ext. Trigger Ext. Argument Ext.

ERE ACE 48.9 (48.9) 18.5 (18.5) 50.8 (50.8) 20.9 (20.9) 53.9 (52.6) 30.2 (29.6)
ACE ACE 70.6 48.3 72.2 50.4 73.7 55.1
ACE+ERE ACE 70.1 47.0 71.3 49.8 74.4 56.2

ACE ERE 47.2 (47.2) 18.0 (18.0) 47.2 (45.0) 17.9 (17.1) 55.9 (46.3) 31.9 (26.0)
ERE ERE 57.0 39.2 56.7 42.9 60.4 50.2
ACE+ERE ERE 57.0 38.6 54.6 37.1 63.0 52.3

Table 3: Cross ontology transfer between ACE and ERE datasets (F-score %). The scores in parenthesis indicate
the performance on the ACE and ERE shared event types.

Figure 3: Zero-shot event extraction on each unseen
event type. The number in parenthesis indicates # gold
event mentions of each unseen type in the test set.

performance on each of them. As shown in Fig-456

ure 3, our approach performs exceptionally well on457

Marry, Divorce, Trial-Hearing, and Fine, but worse458

on Sue, Release-Parole, Charge-Indict, Demon-459

strate, and Declare-Bankruptcy, with two possible460

reasons: first, the semantics of event types, such461

as Marry, Divorce, is more straightforward and462

explicit than other types, such as Charge-Indict,463

Declare-Bankruptcy. Thus our approach can bet-464

ter interpret these types. Second, the diversity of465

the event triggers for some types, e.g., Divorce, is466

much lower than other types, e.g., Demonstrate.467

For example, among the 9 Divorce event trig-468

gers, there are only 2 unique strings, i.e., divorce469

and breakdowns, while there are 6 unique strings470

among the 7 event mentions of Demonstrate.471

3.4 Cross Ontology Transfer472

For cross-ontology transfer, we develop two varia-473

tions of BERT_QA_Arg as baseline methods: (1)474

BERT_QA_Argmulti, which is the same as the orig-475

inal implementation and use multi-classification to476

detect event triggers. (2) BERT_QA_Argbinary, for477

which we apply the same query adaptation as Sec-478

tion 3.3 and use multiple binary-classification for479

event detection. For joint-ontology enhancement,480

we combine the training datasets of ACE and ERE481

and optimize the models from scratch.9 482

Table 3 shows the cross-ontology transfer results 483

in both direct transfer and enhancement settings. 484

Our approach significantly outperforms the base- 485

line methods under all the settings. Notably, for 486

direct transfer, e.g., from ERE to ACE, by compar- 487

ing the F-scores on the whole test set with the per- 488

formance on the ACE and ERE shared event types 489

(F-scores shown in parenthesis), our approach not 490

only achieves better performance on the shared 491

event types but also extracts event triggers and argu- 492

ments for the new event types in ACE. In contrast, 493

the baseline methods hardly extract any events or 494

arguments for the new event types. Moreover, by 495

combining the training datasets of ACE and ERE 496

for joint-ontology enhancement, our approach’s 497

performance can be further boosted compared with 498

using the annotations of the target event ontology 499

only, demonstrating the superior transfer capability 500

across different ontologies. For example, ACE in- 501

cludes a Transport event type while ERE defines 502

two more fine-grained types Transport-Person and 503

Transport-Artifact. By adding the annotations of 504

Transport-Person and Transport-Artifact from ERE 505

into ACE, our approach can capture the underly- 506

ing semantic interaction between Transport-related 507

event type queries and the corresponding input to- 508

kens and thus yield 1.5% F-score gain on the Trans- 509

port event type of ACE test set. In contrast, both 510

baseline methods fail to be enhanced with addi- 511

tional annotations from a slightly different event 512

ontology without explicitly capturing semantic in- 513

teraction between event types and input tokens. 514

3.5 Ablation Study 515

We further evaluate the impact of each attention 516

mechanism to event trigger detection and argument 517

extraction. As Table 4 shows, all the attention 518

9Another intuitive training strategy is to sequentially train
the model on the source and target ontologies. Our pilot study
shows that this strategy performs slightly worse.
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mechanisms show significant benefit to trigger or519

argument extraction, especially on ERE dataset.520

Among them, the Event Type Attention and Mul-521

tiway Attention show the most effects to trigger522

and argument extraction, which is understandable523

as they are designed to capture the correlation be-524

tween the input texts and the event type or argument525

role based queries. We also notice that, without tak-526

ing entities detected by the BERT-CRF name tag-527

ging model as input, but instead considering all the528

tokens as candidate arguments10, our approach still529

shows competitive performance for argument ex-530

traction comparing with the strong baselines. More531

ablation studies are discussed in Appendix C.532

Model ACE ERE

Trigger
Our Approach 73.7 60.4
w/o In-Context Attention 71.9 58.2
w/o Event Type Attention 70.7 56.9

Arg.

Our Approach 55.1 50.2
w/o Entity Detection 53.0 47.9
w/o Multiway Attention 54.0 42.2
w/o Entity Self-attention 53.6 48.3
w/o Arg Role Self-attention 54.1 47.7

Table 4: Results of various ablation studies.

3.6 Computational and Time Cost533

Despite the performance improvement via extend-534

ing from multi-class classification to multiple bi-535

nary classifications, these approaches usually in-536

crease the time cost. We thus design two strategies537

to mitigate this issue: (1) More than 69% of the538

sentences in the training dataset do not contain any539

event triggers, so we randomly sample 20% of them540

for training. (2) Our one-time argument encoding541

and decoding strategies extract all arguments of542

each event trigger at once. It is more efficient than543

the previous QA-based approaches, which only ex-544

tract arguments for one argument role at once. With545

these strategies, for trigger detection, our approach546

takes 80% more time for training and 19% less for547

inference comparing with BERT_QA_Arg (Du and548

Cardie, 2020) which relies on multi-class classifi-549

cation for trigger extraction, while for argument550

extraction, our approach takes 36% less time for551

training and inference than BERT_QA_Arg.552

4 Related Work553

Traditional event extraction studies (Ji and Grish-554

man, 2008; Liao and Grishman, 2010; McClosky555

10We take consecutive tokens predicted with the same argu-
ment role as a single argument span.

et al., 2011; Li et al., 2013; Chen et al., 2015; Cao 556

et al., 2015; Feng et al., 2016; Yang and Mitchell, 557

2016; Nguyen et al., 2016; Wadden et al., 2019; Lin 558

et al., 2020; Wang et al., 2021) usually detect event 559

triggers and arguments with multi-class classifiers. 560

Unlike all these methods that treat event types and 561

argument roles as symbols, our approach considers 562

them queries with rich semantics and leverages the 563

semantic interaction between input tokens and each 564

event type or argument role. 565

Several studies have explored the semantics of 566

event types based on seed event triggers (Bron- 567

stein et al., 2015; Lai and Nguyen, 2019; Zhang 568

et al., 2021) or event type structures (Huang et al., 569

2018). However, they can hardly be generalized 570

to argument extraction. Recent studies that model 571

event extraction as question answering (Du and 572

Cardie, 2020; Liu et al., 2020; Li et al., 2020; Lyu 573

et al., 2021) can take advantage of the semantics of 574

event types and the large-scale question answering 575

datasets. Compared with these methods, there are 576

two different vital designs, making our approach 577

perform and be generalized better than these QA- 578

based approaches: (1) our approach directly takes 579

event types and argument roles as queries. In con- 580

trast, previous QA-based approaches rely on tem- 581

plates or generative modules to create natural lan- 582

guage questions. (2) QA-based approaches can 583

only detect arguments for one argument role at 584

once, while our approach extracts all arguments 585

of an event trigger with one-time encoding and de- 586

coding, which is more efficient and leverages the 587

implicit relations among the candidate arguments 588

or argument roles. 589

5 Conclusion and Future Work 590

We refine event extraction with a query-and-extract 591

paradigm and design a new framework that lever- 592

ages rich semantics of event types and argument 593

roles and captures their interactions with input texts 594

using attention mechanisms to extract event trig- 595

gers and arguments. Experimental results demon- 596

strate that our approach achieves state-of-the-art 597

performance on supervised event extraction and 598

shows prominent accuracy and generalizability to 599

new event types and across ontologies. In the 600

future, we will explore better representations of 601

event types and argument roles, and combine them 602

prompt tuning approach to further improve the the 603

accuracy and generalizability of event extraction. 604
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A Data Statistics and Implementation828

Details829

Table 5 shows the detailed data statics of the train-830

ing, development and test sets of the ACE05-E+831

and ERE datasets. The statistics for the ERE832

dataset is slightly different from previous work (Lin833

et al., 2020; Lu et al., 2021) as we consider the834

event triggers that are annotated with multiple types835

as different instances while the previous studies836

just keep one annotated type for each trigger span.837

For example, in the ERE-EN dataset, a token “suc-838

ceeded” in the sentence “Chun ruled until 1988839

, when he was succeeded by Roh Tae - woo , his840

partner in the 1979 coup .” triggers a End-Position841

event of Chun and a Start-Position of Roh. Previ-842

ous classification based approaches did not predict843

multiple types for each candidate trigger.844

Dataset Split # Events # Arguments

ACE05-E+
Train 4419 7932
Dev 468 892
Test 424 898

ERE-EN
Train 7232 12832
Dev 619 1100
Test 652 1228

Table 5: Data statistics for ACE2005 and ERE datasets.

Zero-Shot Event Extraction To evaluate the845

transfer capability of our approach, we use the top-846

10 most popular event types in ACE05 as seen847

types for training and treat the remaining 23 event848

types as unseen for testing, following Huang et al.849

(2018). The top-10 training event types include850

Attack, Transport, Die, Meet, Sentence, Arrest-Jail,851

Transfer-Money, Elect, Transfer-Ownership, End-852

Position. We use the same data split as supervised853

event extraction but only keep the event annotations854

of the 10 seen types for training and development855

sets and sample 150 sentences with 120 annotated856

event mentions for the 23 unseen types from the857

test set for evaluation.858

Implementation For fair comparison with pre-859

vious baseline approaches, we use the same pre-860

trained bert-large-uncased model for fine-861

tuning and optimize our model with BertAdam.862

We optimize the parameters with grid search: train-863

ing epoch 10, learning rate ∈ [3e-6, 1e-4], train-864

ing batch size ∈ {8, 12, 16, 24, 32}, dropout rate865

∈ {0.4, 0.5, 0.6}. Our experiments run on one866

Quadro RTX 8000. For trigger detection, the aver-867

age runtime is 3.0 hours. For argument detection, 868

the average runtime is 1.3 hours. 869

Evaluation Criteria For evaluation of super- 870

vised event extraction, we use the same criteria 871

as (Li et al., 2013; Chen et al., 2015; Nguyen et al., 872

2016; Lin et al., 2020) as follows: 873

• Trigger: A trigger mention is correct if its 874

span and event type matches a reference trig- 875

ger. Each candidate may act as triggers for 876

multiple event occurrences. 877

• Argument: An argument prediction is correct 878

only if the event trigger is correctly detected. 879

Meanwhile, its span and argument role need 880

to match a reference argument. An argument 881

candidate can be involved in multiple events 882

as different roles. Furthermore, within a single 883

event extent, an argument candidate may play 884

multiple roles. 885

B Remaining Challenges for Supervised 886

Event Extraction 887

We sample 200 supervised trigger detection and ar- 888

gument extraction errors from the ACE test dataset 889

and identify the remaining challenges. 890

Lack of Background Knowledge Background 891

knowledge, as well as human commonsense knowl- 892

edge, sometimes is essential to event extraction. 893

For example, from the sentence “since the intifada 894

exploded in September 2000, the source said”, with- 895

out knowing that intifada refers to a resistance 896

movement, our approach failed to detect it as an 897

Attack event mention. 898

Pronoun Resolution Extracting arguments by 899

resolving coreference between entities and pro- 900

nouns is still challenging. For example, in the fol- 901

lowing sentence “Attempts by Laleh and Ladan to 902

have their operation elsewhere in the world were 903

rejected, with doctors in Germany saying one or 904

both of them could die”, without pronoun resolu- 905

tion, our approach mistakenly extracted one, both 906

and them as Victims of the Die event triggered by 907

die, while the actual Victims are Ladan and Laleh. 908

Ambiguous Context The ACE annotation guide- 909

lines (Linguistic Data Consortium, 2005) provide 910

detailed rules and constraints for annotating events 911

of all event types. For example, a Meet event must 912

11



be specified by the context as face-to-face and phys-913

ically located somewhere. Though we carefully de-914

signed several attention mechanisms, it is difficult915

for the machines to capture such context features916

accurately. For example, from the sentence “The917

admission came during three-day talks in Beijing918

which concluded Friday, the first meeting between919

US and North Korean officials since the nuclear920

crisis erupted six months ago.”, our approach failed921

to capture the context features that the talks is not922

an explicit face-to-face meet event, and thus mis-923

takenly identified it as a Meet event mention.924

C More Ablation Studies of Supervised925

Event Extraction926

The entity recognition model is based on a pre-927

trained BERT (Devlin et al., 2019) encoder with928

a CRF (Lafferty et al., 2001; Passos et al., 2014)929

based prediction network. It’s trained on the same930

training dataset from ACE05 before event extrac-931

tion, and the predictions are taken as input to argu-932

ment extraction to indicate the candidate argument933

spans. Table 6 shows the comparison of the entity934

extraction performance between our BERT-CRF935

approach and the baselines.936

Model F1

OneIE 89.6
FourIE 91.1

BERT+CRF 89.3

Table 6: Performance of Entity Extraction (F-score, %)

To understand the factors that affect argument937

extraction and decompose the errors propagated938

along the learning process (from predicted triggers939

or predicted entities), we conduct experiments that940

condition on given ground truth labels for those941

factors. Specifically, we investigate three settings:942

1) given gold entity, 2) given gold event trigger,943

and 3) given both gold entity and event trigger. The944

experimental results is shown in Table 7.945

Given Information ACE ERE

None 55.1 50.2
GE 59.7 (+4.6) 59.5 (+9.3)
GT 68.7 (+13.6) 67.2 (+17.0)
GT & GE 74.2 (+19.1) 72.2 (+22.0)

Table 7: Performance of argument extraction condition-
ing on various input information: gold trigger (GT),
and gold entities (GE). (F-score, %)
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