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Abstract
Due to the irregular nature of flight operations, airlines need
to take a range of actions to recover their aircraft and crew
schedules. The limited time frames prevent airlines from us-
ing a full-scale optimization approach. Consequently, airlines
typically apply recovery solutions that can be far from opti-
mal. This study proposes a practical method that combines
machine learning and optimization to find improved recovery
solutions. Our procedure is based on the idea that the most
effective constraints to add to the recovery models without
sacrificing the solution quality, can be determined in advance
by leveraging the similarities between disruptions. Our ex-
periments show that, this approach can reduce solution time
significantly while still achieving high-quality solutions.

Introduction
Airline scheduling is one of the areas to which operations
research methods have been applied successfully. Airlines
optimize their aircraft and crew resources but the optimized
schedules are rarely operated exactly as planned due to irreg-
ularities on the day of operations, such as inclement weather
conditions. Airlines monitor their operations and take ac-
tions to recover their schedules and minimize the effects of
irregularities. This process is generally called airline recov-
ery or disruption management. While the recovery problems
are smaller in size than their planning counterparts, the lim-
ited time availability makes it more challenging to use opti-
mization approaches. Hence, airlines usually rely on heuris-
tic solutions or expert judgments (Hassan, Santos, and Vink
2021). One of the primary concerns for researchers studying
recovery problems, is keeping the solution run times within
practical time limits. A common approach, in both research
and practice, is to reduce the problem size by only including
a limited number of flights, aircraft and crew to the solution
space but this strategy affects the solution quality signifi-
cantly. An important underutilized opportunity is in leverag-
ing the previous or offline solutions. By detecting the sim-
ilarities between different disruptions with the help of ma-
chine learning (ML) tools and guiding the optimization ac-
cordingly, it is possible to outperform the existing strategies
to accelerate the optimization without sacrificing the solu-
tion quality.
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The research presented in this study is one of the first in-
vestigations into how ML methods and optimization tools
can be combined for airline recovery problems. The contri-
butions can be divided into four main categories. First, we
develop a general framework and propose fast and practical
solution methods to find better solutions for the crew recov-
ery problem within the limited time frames of the flight op-
erations than other practical approaches by combining ML
techniques with optimization tools. Second, the proposed
methods have the ability to adapt to the available solution
time limit. Third, the proposed methods can yield solutions
that are robust to uncertainties. And lastly, the trained clas-
sifiers provide practical insights about the flight operations.

Problem Statement
The crew recovery process, attempts to repair the disrupted
crew schedules. The recovery decisions may include delay-
ing or canceling flights, re-scheduling crew and calling in
reserves (Barnhart 2009). The objective is to minimize the
total disruption cost. It is assumed that the total delay of a
flight has two components (Lan, Clarke, and Barnhart 2006):
1) Propagated delay which is the delay caused by the late ar-
rival of the previous flight operated by the same aircraft or
crew, and 2) Non-propagated delay (NP) which is the de-
lay caused by other exogenous factors, such as the air traffic
conditions. This latter delay depends on the disruption char-
acteristics of the current scenario. Hence, we define the fea-
ture set of a disruption scenario as the NP delay estimates
of each flight. This feature set is sufficiently detailed to re-
flect the characteristics of different kinds of disruptions in
the network and relatively concise to enable efficient imple-
mentation of ML methods.

Solution Methodology
A frequently used modeling approach for airline schedul-
ing and recovery problems is called string-based modeling
(Barnhart et al. 1998). A string is a sequence of flight legs
operated by a single crew member. The recovery solutions
can be characterized as the set of selected strings. Since a
string is a sequence of flights, we can also characterize a
recovery solution as the set of consecutive flights — called
follow-on (F/O) pairs. The general framework in this study
is based on the idea that, under similar circumstances se-



Figure 1: General Flowchart of the Solution Methodology

lected set of F/O pairs may also be similar. So, we can lever-
age the similarities between the current and the previous
disruption instances to find high quality solutions in limited
timeframes.

Figure 1 summarizes the general flowchart of the solution
methodology. The preparation phase starts with the genera-
tion of a set of disruption scenarios based on historical data.
Then, all scenarios are solved with a pre-specified optimality
gap target. Using the generated database of solutions, binary
classification models are trained for a subset of F/O pairs to
predict whether they should be in the solution of the given
disruption or not. During the day of operations, we fix some
of the F/O pairs based on the classifier predictions by adding
the corresponding constraints to the model. The remaining
reduced problem is sent to the optimizer.

Computational Study
Problem instances and the generated disruption scenarios are
based on the actual operational data of the domestic flight
network of a major US carrier. Since airlines usually prefer
to find a recovery solution within 1 or 2 minutes (Hassan,
Santos, and Vink 2021), we focused on shorter timeframes.
Figure 2 depicts the performance of the ML-based approach
under different available time limits. ML ## corresponds to
ML-based method with ## seconds of available time. Y axis
is the cost difference with respect to the baseline, which is
a 30-minute solution found by the default optimization ap-
proach with 0.1% optimality gap target for the full problem.
Threshold value is used to evaluate the F/O pairs based on
the classifier predictions. Lower threshold values imply that
higher number of F/O pairs would be fixed. When the avail-
able time is longer, there is no need to use lower thresh-
old values and fix too many F/O pairs in advance while for
shorter solution time limits, it is better to fix relatively higher
proportion of the F/O pairs. The solution quality curves con-
verge into one when the threshold values are set to 0.93 or
lower. That is because when a significant portion of the so-
lution is fixed in advance, 30 seconds becomes sufficient
to solve all disruption instances even if the available solu-
tion time limit is longer. Full scale optimization approach,
which keeps the entire feasible solution space, does not gen-
erate acceptable or even feasible recovery solutions within
the available time limits. The experimental results show that
for a given problem and time availability there is a corre-
sponding threshold value that helps to find the best solution.

The results presented above correspond to the cases where
the recovery solution is created once for the recovery period
and not modified again. It also assumes that the delay pre-
dictions are accurate and the airlines take their actions ac-
cordingly. But in reality, the recovery solutions are modified

Figure 2: Solution quality curves for different time limits

several times a day and the predictions are never 100% ac-
curate. In order to evaluate the performance of the proposed
approach in a more realistic manner, we developed a simu-
lation procedure which allows the recovery decisions to be
altered several times during the day of operations while also
relaxing the accurate delay predictions assumption. The day
of operations is divided into 6 stages (4 hour intervals). An
initial recovery solution is created based on the predictions
available at the start of the day. Then at the end of each stage,
airlines update their delay predictions for upcoming flights
and modify the recovery solutions accordingly. It is assumed
that airlines have more accurate delay predictions for the
flights departing within a short time period and the accu-
racy of the predictions decreases for the flights beyond. The
results after 5 recovery updates, show that ML-based ap-
proach has a slightly better overall performance when com-
pared to the initial baseline recovery solution. This is despite
the fact that the baseline solutions need significantly longer
run times whereas the ML-based solutions are found within
1 minute.

It is important to note that, while the preparation phase
is a time consuming task, there are many strategies, like us-
ing lower quality solutions for database generation, that can
accelerate the preparation without affecting the overall per-
formance of the approach significantly (results omitted due
to space constraints).

Conclusion
In this study, we developed a practical approach which com-
bines ML tools and optimization methods to solve crew re-
covery problems in limited time frames. The results demon-
strate that for each problem instance and available solu-
tion time limit, there exists a set of size reduction strategies
which provides the best solution quality and it is possible to
find such effective strategies by incorporating ML methods
into the recovery process. Our experiments also showed that
the ML-based solutions are at least as robust to inaccurate
flight delay predictions as traditional optimization-based so-
lutions while requiring significantly less solution time. The
next step in our research is to tackle the integrated aircraft
and crew recovery problem where a straightforward appli-
cation of the presented ideas is not possible due to the size
of the integrated problem.
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