
Slice-Specific Few-Shot Recalibration of Language Models

Anonymous ACL submission

Abstract
Recent work has uncovered promising ways to001
extract well-calibrated confidence estimates002
from language models (LMs), in which003
the model’s confidence score reflects its004
prediction accuracy. However, while an LM005
may be well-calibrated on multiple domains006
combined, it can be significantly miscalibrated007
within each domain (e.g., overconfidence in008
math balances out underconfidence in history).009
In order to attain well-calibrated confidence010
estimates for each slice of the distribution,011
we propose a new framework for few-shot012
slice-specific recalibration. Specifically, we013
train a recalibration model that takes in a few014
unlabeled examples from a given slice and015
predicts the slice-specific precision scores at016
various confidence thresholds. Our trained017
model can recalibrate for new slices, without018
using any labeled data from that slice. This019
helps us identify domain-specific confidence020
thresholds above which the LM’s predictions021
can be trusted, and below which it should022
abstain. Experiments show that our few-shot023
recalibrator consistently outperforms existing024
calibration methods, for instance improving025
calibration error for PaLM2-Large on MMLU026
by 16%, as compared to temperature scaling.027

1 Introduction028

Knowing when to trust a model’s predictions is typ-029

ically mapped to the concept of calibration where030

the model’s confidence estimate for a prediction031

reflects how likely it is to be correct. Language032

models (LMs) have recently been shown to be well-033

calibrated in a number of settings (Kadavath et al.,034

2022; Xiao et al., 2022; Kuhn et al., 2023; Ope-035

nAI, 2023). However, while models can be well-036

calibrated for aggregate distributions (e.g. mixtures037

of a number of domains), they can be significantly038

miscalibrated for each domain in that distribution039

(Yu et al., 2022; Hebert-Johnson et al., 2018).040

For instance, Figure 1 shows an LM that is well-041

calibrated on the combined distribution of five do-042

mains, achieving near perfect calibration curve 043

with low expected calibration error (ECE). How- 044

ever, curves for the individual domains appear sig- 045

nificantly miscalibrated in comparison, with the 046

least calibrated domain virology having a 250% 047

higher calibration error. This miscalibration prob- 048

lem is hidden for the combined distribution because 049

overconfidence in some domains cancels out under- 050

confidence in others. This illustrates a key problem: 051

LMs are not well-calibrated for meaningful slices 052

of broader distributions. This is particularly rele- 053

vant in practice where users querying an LM rarely 054

sample from a broad combination of distributions at 055

any given time, and are more likely to sample from 056

slices like abstract algebra or virology. Our goal 057

is to recalibrate LMs for each of these fine-grained 058

slices of a distribution, thereby allowing users to 059

reliably determine when predictions can be trusted. 060

To recalibrate a model in these finer-grained 061

settings, we propose slice-specific few-shot 062

recalibration—a new framework that uses only a 063

small number of unlabeled examples from a given 064

slice to recalibrate the LM for that slice. More 065

specifically, for a given LM, we train a separate re- 066

calibration model that takes few-shot unlabeled ex- 067

amples as input and predicts the LM’s slice-specific 068

precision scores at various confidence thresholds. 069

These scores, which form a precision curve, can 070

be used to achieve many downstream goals. For 071

instance, we can identify the confidence threshold 072

that achieves a minimum level of precision to con- 073

trol the LM’s error rate for this slice. We can also 074

transform the precision curve into the correspond- 075

ing calibration curve and reduce calibration error 076

on this slice (§3.1). 077

In order to train our few-shot recalibration 078

model for a given LM, we simulate a diverse set 079

of slices as training data by constructing weighted 080

1Although a smaller sample size in MMLU can cause some
jaggedness, our experiments on XNLI confirm this finding for
larger sample sizes as well.
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Figure 1: An example of the illusion of LM calibration. For a combination of five domains, the model is well-
calibrated with a calibration error of 0.02 (the first plot). However, the same model is miscalibrated on the the five
individual domains, each with a higher calibration error. 1

mixtures of a smaller number of domains, such081

as 80% abstract algebra and 20% virology from082

MMLU (§3.2). For each slice, we use the LM to083

compute the ground-truth precision curves. Then,084

we train the recalibration model to predict a slice’s085

precision curve, given only a randomly sampled086

few-shot set of unlabeled queries from that slice087

(§3.3). At inference time, our trained recalibrator088

can predict the precision curve of unseen slices,089

and perform slice-specific recalibration, without090

using any labeled data from this slice.091

We train our slice-specific calibrator to recal-092

ibrate LLaMA-65B (Touvron et al., 2023) and093

PaLM2-Large (Anil et al., 2023) on the MMLU094

(Hendrycks et al., 2021) and XNLI (Conneau et al.,095

2018) datasets, which already categorize examples096

into domains allowing us to easily create slices.097

We evaluate our few-shot recalibrator against a va-098

riety of baselines in two settings: (1) achieving a099

desired level of target precision by identifying slice-100

specific confidence thresholds and (2) reducing cal-101

ibration error per slice. Overall, we find that our102

slice-specific recalibrator consistently outperforms103

existing methods for calibration in all settings, and104

it extrapolates well to domains that are unseen at105

training time. For PaLM2-Large on MMLU, our106

calibrator achieves a 21% higher success rate for107

achieving a target precision of 90 and a 16% lower108

calibration error on the test set slices, compared to109

directly using the precision and calibration curves110

for the combined distribution over all domains.111

2 The Illusion of LM Calibration112

Calibration is a key tool for knowing when lan-113

guage model predictions can be trusted and when114

they should abstain or defer to experts. However,115

calibration on an individual domain can be much116

worse than the aggregate data distribution (Yu et al.,117

2022; Hebert-Johnson et al., 2018). In this paper,118

we show that large language models suffer from the119

same calibration failure. While LMs appear to be120

well-calibrated on average, they are significantly121

miscalibrated in finer-grained settings. 122

We study LM calibration for multiclass classifi- 123

cation: let x ∼ p be the input drawn from the query 124

distribution and y ∈ {1, · · · ,K} be the output 125

class. Let pLM(y | x) denote the model proba- 126

bility, which is also the model’s confidence. Let 127

ŷ = argmaxy pLM(y | x) be the model’s predic- 128

tion, and y∗ be the ground truth label. 129

2.1 Measuring Calibration 130

Calibration expresses how closely a model’s 131

confidence estimate for a prediction is aligned 132

with the true probability that the prediction is 133

correct, as measured by accuracy. We use 134

acc(B) = E(x,y∗,ŷ)∈B1(ŷ = y∗) to denote the 135

model’s accuracy for the set B, and conf(B) = 136

E(x,y∗,ŷ)∈BpLM(ŷ | x) denotes the model’s confi- 137

dence on this set. 138

Expected Calibration Error (ECE) This is the 139

canonical metric which measures L1 distance be- 140

tween the confidence and accuracy (Naeini et al., 141

2015). To measure ECE, we first group all the 142

N predictions into M equally sized bins based on 143

their confidence estimates, denoted as B1 · · ·BM . 144

We then calculate the average confidence and accu- 145

racy of each bin, and compute the ECE of the LM 146

under this query distribution p(x): 147

ECE(pLM, p) =
M∑
i=1

|Bi|
N
|conf(Bi)− acc(Bi)| 148

149Perfectly calibrated models have ECE = 0 i.e. 150

model confidence matches expected accuracy at all 151

confidence levels. For example, suppose there are 152

100 examples, each with confidence 0.8, we expect 153

that 80 of the examples are correctly classified. 154

Calibration Curves Also known as reliability di- 155

agrams, these curves are a visual representation of 156

model calibration, plotting the expected model ac- 157

curacy as a function of model confidence (DeGroot 158

and Fienberg, 1983; Niculescu-Mizil and Caruana, 159
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Figure 2: A histogram of ECE scores for LLaMA-65B
on 57 MMLU domains. The red line shows ECE for
all the domains combined. We can see the aggregate
ECE is lower than most domains, hiding the underlying
miscalibration problem.

2005). Well-calibrated models lie close to the diag-160

onal (y = x). Figure 1 shows example curves with161

respect to different query distributions p(x).162

2.2 Miscalibration on Slices of Distributions163

Researchers often study LM calibration for aggre-164

gate query distributions (p), which are often com-165

posed of mixtures of meaningful finer-grained dis-166

tributions: p(x) =
∑

d∈D αdpd(x), where D de-167

notes a set of domains, and each pd denotes the168

input distribution of domain d, with relative fre-169

quency αd. For instance, OpenAI (2023) and Ka-170

davath et al. (2022) have reported LM calibration171

on MMLU, which consists of 57 individual do-172

mains like abstract algebra, high school chemistry173

etc. However, in practice, users querying an LM174

at a given point rarely sample from a broad aggre-175

gate distribution. They are more likely to sample176

from meaningful slices, like queries from abstract177

algebra alone. Yu et al. (2022); Hebert-Johnson178

et al. (2018) have shown that individual domains179

often suffer from miscalibration problem even if180

the aggregate distribution appears well-calibrated.181

To demonstrate the same phenomenon for lan-182

guage models, we measure calibration of LLaMA-183

65B on combined MMLU (p), and also on each184

domain separately. As expected, the model is well-185

calibrated on p. However, the LM is significantly186

miscalibrated for most domains. This is shown in187

(Figure 2) where the aggregate ECE is lower than188

that of most domains. It appears that the miscalibra-189

tion problem is hidden for the broader distribution190

because overconfidence in some domains cancels191

out underconfidence in others. Figure 1 shows a192

qualitative example to illustrate the same miscal-193

ibration issue. These results show that LMs are194

not well-calibrated for meaningful slices of a broad195

distribution, leading us to address the problem via196

few-shot, domain-specific recalibration. 197

3 Slice-Specific Few-Shot Recalibration 198

Since individual fine-grained slices may be 199

miscalibrated, we propose to recalibrate each slice. 200

Intuitively, given a few samples from a slice, we 201

can infer the rough identity of that slice, and then 202

appropriately adjust the LM confidences based on 203

the LM’s familiarity with the slice. For example, in 204

practice, the first few queries in a user’s session can 205

provide a sketch of the user’s query distribution 206

(e.g., questions about abstract algebra). 207

We formalize the task of slice-specific recalibra- 208

tion as learning a few-shot recalibrator fθ : x1:k −→ 209

h, which takes as input few-shot unlabeled samples 210

x1 · · ·xk drawn from a slice pi(x) and outputs a 211

function h that maps from raw confidence to ad- 212

justed confidence for this query distribution pi(x). 213

The goal is for the recalibrator fθ to minimize the 214

expected calibration error under different slices 215

pi(x) after recalibration with h. Note that h does 216

not change the prediction of the underlying model 217

pLM, only its confidences. 218

Next, we will discuss our algorithm for learning 219

fθ. We discuss our parametrization for output h 220

(§3.1), how to construct training data to simulate di- 221

verse slices (§3.2), and how to train our recalibrator 222

fθ on this data (§3.3). 223

3.1 Parametrizing h: Predicting Precision 224

Curves v.s. Calibration Curves 225

Recall that h = fθ(x1 · · ·xk) is the prediction tar- 226

get of our recalibrator, which will guide the adjust- 227

ment of model’s raw confidence. The most direct 228

choice for h would be the calibration curve (also 229

known as the reliability diagram), i.e. a function 230

that adjusts model confidence to predicted accuracy. 231

However, as described in §2.1, calibration curves 232

rely on binning predictions based on confidence 233

estimates. This binning step introduces two hyper- 234

parameters: (1) the binning design where scores 235

can be grouped into equally-spaced bins with equal 236

interval ranges, or equally-sized bins with an equal 237

number of examples per bin. And, (2) the num- 238

ber of bins such that scores can be grouped into a 239

large number of bins each containing a small num- 240

ber of examples, or a small number of bins each 241

containing many examples. Both hyperparameters 242

affect the shape of the calibration curve, and certain 243

choices can hide miscalibration issues, making this 244

an unreliable prediction target for the recalibrator. 245

Instead, we follow the practice of Gupta et al. 246
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(2021) and reparametrize hwith the precision curve247

(PC; prec(·)), denoted as g, which maps confidence248

thresholds to precision scores. So, prec(0.5) = 0.8249

means that for all the examples with confidence250

greater than 0.5, the model pLM achieves a preci-251

sion of 0.8. In contrast to the calibration curve, the252

precision curve has no hyperparameters. It is also253

extremely flexible. For instance, it can be converted254

to the corresponding calibration curve h with any255

hyperparameter setting, given additional informa-256

tion about the distribution over confidence scores257

(see details in §3.4). Conversely, it is hard to con-258

vert a calibration curve to a precision curve since259

the binning step is lossy. This flexibility allows260

us to accomplish a variety of downstream goals261

such as reducing calibration error, finding optimal262

confidence thresholds for desired precision etc. as263

described in §3.4. For this reason, we choose pre-264

cision curves as our calibrator’s prediction target g.265

3.2 Synthetic Data Construction266

We now detail how we construct (x1 · · ·xk, g) pairs267

to train our recalibrator. Each training example268

corresponds to a slice that must be recalibrated,269

and we must construct diverse slices to generalize270

to new slices at test time. We construct such slices271

with mixtures of a few domains (e.g. 80% biology272

+ 20% history). This training data construction273

strategy scales beyond the number of domains by274

introducing more degrees of freedom: the number275

of mixture components, the choice of mixture, and276

the mixture weights.277

Algorithm 1 shows how to construct one278

training example. To construct one slice, we279

first sample the number of domains m from a280

geometric distribution, then we randomly select m281

domains from the full set, and sample their mixture282

weights from a Dirichlet distribution. Once we283

have constructed the slice, we sample k unlabeled284

examples from it to serve as the few-shot examples285

that provide a sketch of the corresponding slice.286

Then, we compute the groundtruth precision curve287

g for this slice by taking model prediction and288

groundtruth label §3.1.289

3.3 Training the Few-Shot Recalibrator290

Recall that we train our few-shot recalibrator291

fθ that takes k unlabeled examples (x1 · · ·xk)292

and predicts the precision curve g of the con-293

structed slice. Concretely, we approximate the294

precision curve g by predicting the precision295

score at 10 evenly spaced confidence thresholds:296

Algorithm 1 Synthetic Data Construction

Sample m ∼ Geo(0.2) domains: p1 · · · pm
Sample mixure weights α ∼ Dir(1)
Sample examples
{(xn, yn)}Nn=1 ∼ SLICE =

∑m
i=1 αipi

Predict ŷn = pLM(xn) for each n = 1 · · ·N
Compute precision curve g from {xn, yn, ŷn}Nn=1

Set x1 · · ·xk as few-shot unlabeled samples
return (x1 · · ·xk), g

[g(0.1), g(0.2), · · · g(1.0)], and then linearly inter- 297

polate between these predicted values. The training 298

loss minimizes L2 distance between the ground- 299

truth and predicted precision at these 10 thresholds. 300

While the training loss penalizes all errors 301

equally, over-estimating precision at some confi- 302

dence threshold can be seen as a more costly error 303

than under-estimating it. This is because predict- 304

ing a higher precision score than the ground-truth 305

means the recalibrator believes the model correctly 306

answers more questions than it actually can, and 307

the confidence threshold does not trigger abstention 308

when it should. Conversely, when under-estimating 309

precision, the confidence threshold is more conser- 310

vative and sacrifices recall in favor of more reliable 311

answers. In this work, we prioritize correctness 312

over recall, as is likely in most practical scenarios, 313

by adapting the L2 objective to be asymmetric: 314

L(θ, c) =

{
β||ĝ(c)− g(c)||2 if ĝ(c) > g(c),

||ĝ(c)− g(c)||2 otherwise.
315

L(θ) = Ec∈{0.1,0.2··· ,1.0} L(θ, c) 316

where ĝ = fθ(x1:k) is the predicted PC by the few- 317

shot recalibrator, and g(c) is the groundtruth PC. 318

This penalizes over-estimation more than under- 319

estimation by setting the coefficient β > 1.0. 320

3.4 Evaluation 321

Our few-shot recalibrator outputs a precision curve 322

which is flexible and can be used to accomplish 323

various downstream goals. We describe two of 324

them here, along with the corresponding metrics 325

that define success. We include another utility- 326

based metric and its results in Appendix D. 327

Achieving Target Precision For a given system, 328

we may want to guarantee a minimum level of 329

precision. The goal, then, is to identify distribution- 330

specific confidence thresholds that achieve that 331

level of precision without sacrificing much recall. 332
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Figure 3: An illustration of the few-shot recalibrator. This model learns to predict the precision curve for slices
(e.g. psychology only, or 20% psychology-80% biology) of a broader distribution (mix of psychology, biology,
botany etc.), using few-shot unlabeled examples. At test time, it can predict the precision curve for an unseen slice
(e.g. 66% botany-34% biology) given only an unlabeled few-shot set drawn from it. This precision curve can then
be used to accomplish various downstream goals.

In this setting, we can directly use the predicted333

precision curve ĝ as a lookup table and find the334

threshold that attains the target precision. We eval-335

uate performance by measuring the success rate of336

whether the selected threshold achieves the target337

precision on the ground-truth precision curve.338

Reducing Calibration Error Alternatively, the339

goal can be to reduce the system’s calibration er-340

ror. For this setting, first we map the predicted341

precision curve ĝ to the corresponding calibration342

curve h, given the confidence scores of the pre-343

dictions. We do this as follows: let count(a) de-344

note the number of examples whose confidence345

exceeds a. For bin Bi, we have the upper Bi.r346

and lower Bi.l bounds on the confidence scores.347

We compute the accuracy for Bi: acc(Bi) =348
ĝ(Bi.l)count(Bi.l)−ĝ(Bi.r)count(Bi.r)

count(Bi.l)−count(Bi.r)
, which along with349

the confidence conf(Bi), is sufficient to recover the350

calibration curve. Once we have the calibration351

curve, we can apply histogram binning (Zadrozny352

and Elkan, 2001) to map confidence scores to the353

corresponding accuracy, minimizing the calibration354

error. We report ECE for this task.355

4 Experimental Setup356

4.1 Datasets357

We evaluate our few-shot recalibrator on two358

datasets: MMLU (Hendrycks et al., 2021) consists359

of multiple choice questions categorized into 57 dif-360

ferent subjects (e.g. abstract algebra, high school361

physics, law), each of which serves as a separate362

domain. XNLI (Conneau et al., 2018) is a natural363

language inference task, where the model predicts364

if the given hypothesis entails, contradicts or is365

neutral to the corresponding premise. Examples366

are categorized into 10 genres (e.g. travel guides,367

speeches, etc.) in 15 languages each, for a total of368

150 domains.369

We follow Algorithm 1 to construct 20K slices370

for the training set and 2K unseen slices for the 371

test set, ensuring that examples which appear in the 372

test data’s few-shot sets are held out from training. 373

We also construct an UNSEEN test set for XNLI, 374

where 10 domains are entirely held out from the 375

training data and are used to construct a separate 376

set of 2K mixtures. For the main experiments we 377

set k = 20, and for ablation studies, we consider 378

k = {5, 10, 20, 30}. 379

4.2 Models 380

We train few-shot recalibrators for PaLM2-Large 381

(Anil et al., 2023) and LLaMA-65B (Touvron et al., 382

2023) on MMLU and only PaLM2-Large, the best 383

performing model, on XNLI. We also include re- 384

calibration results for LLaMA-30B in Appendix B. 385

Our recalibrator is a LLaMA-7B model, fine-tuned 386

for 4K steps for MMLU and 2K for XNLI, both 387

with a batch size of 16, a learning rate of 2e-5 and 388

a cosine learning rate schedule (see more details 389

in Appendix A). All finetuning experiments use 16 390

A100-40GB GPUs. Recall from §3.3, our training 391

objective is the asymmetric L2 loss, and we set 392

β = 5 in all experiments. 393

4.3 Baselines 394

We compare our few-shot recalibrator against the 395

following baselines which output precision curves. 396

SAMPLE AVERAGE is the precision curve of the 397

combined distribution over all the domains based 398

on the queries that appear in the training data. This 399

baseline is not distribution-specific: it uses a single 400

curve for all test set distributions. 401

DOMAIN AVERAGE involves averaging the pre- 402

cision curves for each domain. Similar to sam- 403

ple averaging, this approach is not distribution- 404

specific. 405

EMPIRICAL uses the precision curve obtained 406

from only the k few-shot labeled queries. Note that 407

this baseline has an unfair advantage over other ap- 408
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Target Precision 0.85 0.9 0.95
Success Recall Success Recall Success Recall L2

X
N

L
I

Pa
L

M
2-

L Sample Avg 0.47 0.86 0.55 0.71 0.62 0.42 0.001
Domain Avg 0.53 0.86 0.55 0.71 0.62 0.42 0.001
Empirical 0.47 0.81 0.38 0.68 0.34 0.52 0.008
FSC(Ours) 0.69 0.83 0.75 0.66 0.76 0.37 0.001
Oracle 1.00 0.85 1.00 0.7 1.00 0.45 0.000

M
M

L
U

Pa
L

M
2-

L Sample Avg 0.64 0.95 0.64 0.88 0.60 0.75 0.006
Domain Avg 0.71 0.93 0.78 0.84 0.78 0.69 0.007
Empirical 0.61 0.91 0.47 0.86 0.34 0.74 0.007
FSC(Ours) 0.87 0.87 0.85 0.80 0.77 0.67 0.002
Oracle 1.00 0.91 1.00 0.85 1.00 0.74 0.000

M
M

L
U

L
L

aM
A

-6
5B Sample Avg 0.58 0.60 0.59 0.51 0.57 0.36 0.012

Domain Avg 0.72 0.57 0.80 0.41 0.99 0.02 0.012
Empirical 0.43 0.58 0.40 0.48 0.34 0.40 0.023
FSC(Ours) 0.90 0.50 0.89 0.39 0.80 0.23 0.006
Oracle 1.00 0.60 1.00 0.51 1.00 0.39 0.000

Table 1: Our few-shot recalibrator (FSC) has a higher success rate for identifying confidence thresholds that achieve
a given target precision, as compared to the baselines, while maintaining reasonable recall.

XNLI (PaLM2-Large) MMLU (PaLM2-Large) MMLU (LLaMA-65B)
ECE Win% Lose% ECE Win% Lose% ECE Win% Lose%

Base 0.059 22 78 0.063 38 62 0.109 16 84
Sample Avg 0.049 39 61 0.082 17 83 0.103 25 75
Domain Avg 0.049 39 61 0.085 17 83 0.107 22 78
Empirical 0.094 9 91 0.078 29 71 0.122 14 86
TS (few-shot) 0.094 8 92 0.079 27 73 0.120 16 84
TS (all domains) 0.057 23 77 0.063 38 62 0.099 24 76
FSC(ours) 0.045 - - 0.053 - - 0.074 - -
Oracle 0.011 99 1 0.009 100 0 0.016 100 0

Table 2: Our approach achieves the lowest calibration error (ECE), outperforming all baselines. Pairwise compar-
isons show that it has a lower ECE for most of the test slices, indicated by each baseline’s lose percentage. Base
refers to the LM without any temperature scaling.

proaches, including ours, because it assumes access409

to the labels of the k few-shot queries.410

ORACLE is the ground-truth precision curve of411

the corresponding slice’s distribution, and serves412

as a skyline for the best achievable performance for413

curve prediction approaches.414

In the reducing calibration error setting, we com-415

pare our approach to the canonical recalibration416

method of temperature scaling (Guo et al., 2017).417

Temperature scaling (TS) uses a held out calibra-418

tion set to select a temperature, and then applies419

that temperature to the test data. We compare420

against two variants of temperature scaling, and421

they differ in the choice of the calibration set.422

TS (FEW-SHOT) uses the k few-shot exam-423

ples with ground-truth labels as the calibration set.424

We run grid search on values for the temperature425

in {0.1, 0.2, · · · , 1.9, 2.0, 3.0, 4.0, 5.0} to find one426

that minimizes ECE for the k examples.427

TS (ALL DOMAINS) uses the training data, com-428

bining all domains, as the calibration set. Similarly,429

we run grid search on values for the temperature to430

minimize ECE for the entire training set. 431

5 Main Results 432

5.1 Achieving Target Precision 433

We first experiment with measuring the success rate 434

of selecting a confidence threshold that achieves a 435

given target precision on the slice’s ground-truth 436

precision curve. As shown in Table 1, our few-shot 437

recalibrator outperforms baselines by achieving a 438

higher success rate for three different target preci- 439

sion values of 0.85, 0.9 and 0.95. 440

In spite of the fact that the Empirical baseline 441

has access to the few-shot example labels, our re- 442

calibrator consistently outperforms it by a large 443

margin. This shows that while the few-shot set it- 444

self is not sufficient for plotting a precision curve 445

and selecting a slice-specific threshold, our recal- 446

ibrator successfully learns to infer the full slice’s 447

distribution, and its corresponding precision curve, 448

from this set. This is also demonstrated in Figure 5, 449

where we show examples of precision curves gen- 450

erated by our few-shot recalibrator. As we can see, 451
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Target Precision 0.85 0.9 0.95
Success Recall Success Recall Success Recall L2

Sample Avg 0.60 0.86 0.63 0.70 0.38 0.42 0.002
Domain Avg 0.65 0.85 0.63 0.70 0.38 0.42 0.002
Empirical 0.53 0.81 0.43 0.69 0.33 0.53 0.009
FSC(Ours) 0.79 0.83 0.74 0.67 0.69 0.34 0.001
Oracle 1.00 0.87 1.00 0.72 1.00 0.43 0.000

Table 3: Precision Success Rate On Unseen Domains from XNLI. Our approach achieves the highest success rate
and lowest L2 distance on previously unseen domains, without sacrificing much recall.

the Empirical curve deviates far from the Oracle452

curve, while our recalibrator closely approximates453

it, and tends to upper bound it, as a consequence of454

our asymmetric training objective.455

Our approach also outperforms the Sample and456

Domain averaging baselines in all settings but one:457

for a target precision of 0.95 when calibrating458

LLaMA-65B on MMLU. However, in this case459

Domain averaging achieves a high success rate of460

0.99 by selecting an extremely high threshold and461

entirely sacrificing recall, down to 0.02. In contrast,462

our recalibrator strikes a better balance between463

achieving the target precision with a high success464

rate, while still maintaining reasonable recall.465

5.2 Reducing Calibration Error466

For the goal of reducing calibration error, we simi-467

larly find that our few-shot recalibrator outperforms468

baselines by achieving the lowest ECE score across469

various settings, as shown in Table 2. We also470

conduct a pairwise comparison and find that our471

recalibrator wins by achieving a lower ECE score472

most of the test slices as compared to all other473

approaches.474

We find that the labeled few-shot set is not a475

useful proxy for the whole slice, since selecting476

a temperature based on this set for temperature477

scaling fails to improve ECE over the base LM478

with a temperature of 1. We also find that selecting479

a single temperature for all slices, based on the480

broader distribution of the training set examples, is481

sub-optimal. In contrast, our few-shot recalibrator482

can provide slice-specific calibration which results483

in lower ECE.484

5.3 Extrapolation to Unseen Domains485

We also evaluate the extrapolation performance of486

our few-shot recalibrator. For this, we measure the487

success rate of achieving target precision on do-488

mains from XNLI that were unseen in the training489

set. Table 3 shows that our approach performs well490

on unseen domains as well, achieving the highest491

success rate of all curve prediction baselines, while492

maintaining a reasonable recall. 493

6 Ablation Studies 494

We run all ablation experiments on the MMLU 495

dataset, recalibrating the PaLM2-Large model. 496

Number of few-shot examples We examine the 497

impact of the number of few-shot examples by ex- 498

perimenting with k = {5, 10, 20, 30}. As shown 499

in Figure 4, the success rate of achieving target 500

precision increases as we increase the number of 501

few-shot examples for both the Empirical baseline 502

and our few-shot recalibrator. Our approach with 503

only 5 examples still achieves a high success rate 504

of 0.81, suggesting it is highly suitable for settings 505

with very small amounts of recalibration data. 506

Asymmetric vs. symmetric loss The asymmet- 507

ric objective penalizes over-estimation of precision 508

more severely than under-estimation. In this ab- 509

lation experiment, we verify the effectiveness for 510

the asymmetric objective. We find that training 511

our recalibrator with the asymmetric loss (β = 5) 512

results in a higher success rate of 0.85 whereas the 513

symmetric loss only achieves 0.68, when aiming 514

for a target precision of 90%. 515

Performance for different numbers of domains 516

per slice Our experiments involve constructing 517

slices using different numbers of domains. Here, 518

we decompose target precision success rate results 519

for mixtures containing 2, 3, 4 and 5 domains. Ta- 520

ble 4 shows that performance does not vary signifi- 521

cantly across these settings. 522

7 Related Work 523

Our few-shot recalibrator draws inspiration from 524

Lee et al. (2021) who introduced this type of meta- 525

learning on slices for the purposes of synthesizing 526

new examples. Below, we discuss relevant prior 527

work on calibration for LMs and abstention. 528

Calibration for LMs Calibration ensures the 529

model’s confidence reflects the model’s accuracy, 530

7



Figure 4: Our approach works
well even with small few-shot sets.

Figure 5: Examples of precision curves generated by the few-shot recali-
brator, compared to the Empirical and Oracle curves. Our curves approxi-
mate the Oracle curves more closely.

2 domains 3 domains 4 domains 5 domains
Success Recall Success Recall Success Recall Success Recall

Empirical 0.39 0.68 0.40 0.65 0.34 0.71 0.29 0.70
FSC(ours) 0.76 0.66 0.75 0.65 0.77 0.65 0.71 0.66
Oracle 1 0.70 1 0.69 1 0.71 1 0.70

Table 4: Model performance is robust to the number of domains included in the slice and the success rate does not
vary significantly as the number of domains changes.

which is instrumental for understanding when to531

trust LMs. Pretrained language models appear532

mostly well-calibrated on broader distributions533

(Kadavath et al., 2022; Xiao et al., 2022; Kuhn534

et al., 2023), and can express their uncertainty535

in words (Lin et al., 2022; Mielke et al., 2022;536

Tian et al., 2023; Zhou et al., 2023). However,537

the models are still miscalibrated in some settings538

(Wang et al., 2020; Stengel-Eskin and Durme,539

2023), and prior work has focused on recalibrating540

neural networks by temperature scaling (Guo541

et al., 2017), Platt scaling (Platt, 1999), isotonic542

regression (Niculescu-Mizil and Caruana, 2005;543

Zadrozny and Elkan, 2002), or histogram binning544

(Kumar et al., 2019; Zadrozny and Elkan, 2001).545

Prior work have identified the miscalibration546

problem on narrower distributions overing only a547

few domains for vision models (Yu et al., 2022)548

and from a theoretical angle (Hebert-Johnson et al.,549

2018). In this work, we show this miscalibration550

problem also holds for large language models.551

Different from prior work, which requires a552

nontrivial number of labeled examples to achieve553

domain-specific calibration, our method only554

requires few-shot, unlabeled examples.555

Abstention When the model is not confident556

about a prediction, abstention or deferral to an557

expert are desirable alternatives compared to re-558

sponding with the incorrect answer. In order to559

decide when to abstain, the line of work called560

rejection learning (or selective classification) fo-561

cuses on jointly learning a rejection function and562

a predictor (Tortorella, 2000; Santos-Pereira and563

Pires, 2005; Bartlett and Wegkamp, 2008; Cortes 564

et al., 2016; Geifman and El-Yaniv, 2017; Fisch 565

et al., 2022). The rejection function decides when 566

to abstain, and if the rejection function decides not 567

to abstain, the predictor answers the question. In 568

this paper, we freeze the base LM which functions 569

as the predictor because it is computationally ex- 570

pensive to update a large model for downstream 571

tasks. Instead, we make the abstention decision 572

using our recalibrator and the raw confidence of 573

the base LM. Specifically, we use the trained re- 574

calibrator to derive the confidence threshold above 575

which the LM’s prediction attains the target pre- 576

cision score. We also include experiments with a 577

setup that closely matches the abstention setting in 578

Appendix D. 579

8 Conclusion and Future Work 580

We have shown that while LMs appear to be well- 581

calibrated on broad distributions, they remain mis- 582

calibrated for meaningful slices of that broader dis- 583

tribution. To recalibrate them for each slice, we 584

propose few-shot recalibration which takes few- 585

shot, unlabeled queries and predicts a slice-specific 586

precision curve. We then use the predicted preci- 587

sion curve for two downstream calibration tasks, 588

finding that our approach consistently outperforms 589

existing recalibration methods under all evaluation 590

settings. Future work should study few-shot re- 591

calibration for natural language generation tasks, 592

to steer model generated text to be more or less 593

conservative, as well as apply this approach to a 594

broader set of models, including instruction-tuned 595

and RLHF models, and multimodal settings. 596
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Limitation597

The problem setup here focuses on multiple-choice598

questions, for which there exists a unique correct599

answer and calibration is well-defined. However,600

one limitation of this paper is that we cannot handle601

open-ended responses, where there are exponen-602

tial number of correct responses. We believe that603

calibrating open-ended responses remains a chal-604

lenging yet important future research direction, and605

we include this idea in the future work section.606

Ethical Impact607

Our paper focuses on adjusting the confidence of608

language models for each slice of distribution. One609

application is to define the slice based on demo-610

graphics groups, and apply our approach to reduce611

calibration error for each demographics group. In612

this setting, our approach could improve fairness of613

the uncertainty calibration across different demo-614

graphic groups. However, the proposed approach615

could also be misused by adversaries, if they ad-616

just LM confidence in the direction that worsens617

calibration error for some targeted subgroups.618
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Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto.820
2023. Navigating the grey area: Expressions of over-821
confidence and uncertainty in language models.822

A Hyperparameters 823

For inference of LLaMA-65B and LLaMA-30B 824

to obtain the target precision curves, we use the 825

deepspeed library (Rasley et al., 2020) with 4 A- 826

100 GPUs. For training the few-shot recalibrator, 827

we finetune LLaMA-7B using the AdamW opti- 828

mizer and a cosine learning rate schedule. We use 829

a warmup ratio of 0.03, learning rate of 2e − 5, 830

and batch size of 16. We train for 4K steps for the 831

MMLU experiments and 2K steps for the XNLI 832

experiments. Our fine-tuning is conducted on 16 833

A100 GPUs of 40GB memory, and we use Deep- 834

speed Stage 3 to ensure the 7B model fits on GPU. 835

Our implementation of inference and finetuning 836

are based on the Hugging Face library (Wolf et al., 837

2019). 838

B Additional Results (LLaMA-30B) 839

In addition to LLaMA-65B and PaLM2-Large, we 840

also apply our few-shot recalibrator approach to 841

LLaMA-30B to study the impact of model scales. 842

See results in Table 5, Table 6, and Table 7. Com- 843

pared to other base models (LLaMA-65B model 844

and PaLM2-Large), we observe similar trends in 845

the minimizing ECE and maximizing utility exper- 846

iment: We find that our approach outperform all 847

baselines in achieving the lowest calibration error 848

with the highest win rate (Table 6). In addition, 849

our approach outperform all baselines in select- 850

ing an abstention threshold that yields the highest 851

utility score (Table 7). The only exception hap- 852

pens for the precision success rate experiment. Un- 853

like the results of LLaMA-65B where our few-shot 854

recalibrator outperform all the baselines includ- 855

ing Domain Avg, for LLaMA-30B, Domain Avg 856

achieves higher success rate than our few-shot re- 857

calibrator. The gap is particularly large for a target 858

precision of 0.95. We hypothesis that this is be- 859

cause the LLaMA-30B suffers from lower accuracy 860

compared to larger models. Thus, in the training 861

data, the groundtruth precision curve of many cus- 862

tom distributions fail to hit the 95% precision level, 863

leading to a sparsity of training data that hits the 864

95% precision level. As a result, when we try to 865

infer about 95% precision level at inference time, 866

the model predictions are more prone to error. 867

C Additional Results (Maximizing 868

Utility) 869

Recall in Appendix D.1, we report the utility score 870

for 3 different settings (LLaMA-65B on MMLU, 871
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Target Precision 0.85 0.9 0.95
Success Recall Success Recall Success Recall L2

M
M

L
U

L
L

aM
A

-3
0B Sample Avg 0.57 0.45 0.58 0.36 0.59 0.26 0.012

Domain Avg 0.76 0.38 0.72 0.32 0.94 0.09 0.013
Empirical 0.36 0.5 0.34 0.42 0.28 0.35 0.030
FSC (ours) 0.75 0.35 0.68 0.26 0.52 0.16 0.007
Oracle 1 0.46 1 0.38 1 0.28 0

Table 5: Precision Success Rate for LLaMA-30B on MMLU. Domain Avg achieves higher success rate than our
few-shot recalibrator. The gap is particularly large for a target precision of 0.95. We hypothesizes that this is
because the LLaMA-30B suffers from lower accuracy compared to larger models (LLaMA-65B). Thus, in the
training data, the groundtruth precision curve of many custom distributions fail to hit the 95% precision level,
leading to a sparsity of training data that hits the 95% precision level. As a result, when we try to infer about 95%
precision level at inference time, the model predictions are more prone to error.

Method ECE win% lose%

Base 0.093 0.2425 0.7575
Sample Avg 0.106 0.2325 0.7675
Domain Avg 0.109 0.192 0.808
Empirical 0.131 0.091 0.909
TS (few-shot) 0.117 0.187 0.813
TS (all domains) 0.090 0.283 0.717
FSC(ours) 0.074 - -
Oracle 0.016 0.9975 0.0025

Table 6: ECE for LLaMA-30B on MMLU. Our approach outperforms all the baselines in achieving the lowest
calibration error with the highest win rate.

c = 0.4 c = 0.6
Utility Win Tie Lose Utility Win Tie Lose

X
N

L
I

Pa
L

M
2-

L

Abstain -0.352 0.3065 0.001 0.6925 -0.437 0.4595 0.002 0.5385
Sample Avg -0.326 0.231 0.212 0.557 -0.443 0.2445 0.1345 0.621
Domain Avg -0.329 0.185 0.145 0.67 -0.451 0.1985 0.0905 0.711
Empirical -0.329 0.279 0.0805 0.6405 -0.431 0.4105 0.1065 0.483
FSC(ours) -0.319 0 1 0 -0.428 0 1 0
Oracle -0.311 0.8125 0.13 0.0575 -0.416 0.8215 0.099 0.0795

Table 7: Utility Scores for LLaMA-30B on MMLU. Our approach outperforms all baselines in selecting abstention
thresholds that yield the highest utility scores.
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PaLM2-L on MMLU, and PaLM2-L on XNLI).872

Here, we provide additional pairwise comparison873

results that contains win/tie/lose rate of each base-874

line v.s. our approach in Table 8.875

D Additional Results (Extrapolation)876

Recall in §5.3, we show our few-shot recalibra-877

tor extrapolates well to unseen domains as demon-878

strated by the precision success rate experiments.879

Here, we provide more evidence, demonstrated by880

the ECE results in Table 9. Same as the trend in the881

precision experiment, our approach outperforms882

all the baselines in achieving the lowest calibration883

error and more winning percentages in pairwise884

comparison.885

Maximizing Utility Another downstream goal886

in practice can be to maximize the utility of a sys-887

tem, which consists of the abstention cost (sac-888

rifices recall) and the error cost (sacrifices preci-889

sion). Inspired by the rejection learning framework890

(Cortes et al., 2016; Bartlett and Wegkamp, 2008),891

we define a cost function that clearly specifies the892

trade-off: incorrect predictions incur a cost of 1 and893

abstaining incurs a cost c ∈ [0, 1], while correct894

predictions incur no cost. For a fixed value for c,895

the goal is to maximize utility (i.e. negative cost).896

Given the predicted precision curve precθ and897

the raw confidence scores for predictions, let898

count(t) denote the number of examples whose899

confidence exceeds t and N denote the total num-900

ber of examples. Then, we estimate the cost at each901

threshold t as Cost(t) = (1−precθ(t)) ·count(t)+902

c ·(N−count(t)), where the first term accounts for903

incorrect predictions and the second term accounts904

for abstentions. And we find the optimal threshold905

t∗ that minimizes Cost(t) via a grid search over906

t ∈ [0, 1]. To evaluate the goodness of the selected907

threshold t∗, we assume access to labeled data, and908

measure the empirical utility achieved by abstain-909

ing when the model’s confidence is lower than the910

selected threshold and making a prediction other-911

wise.912

D.1 Maximizing Utility913

For the utility maximization setting, we experiment914

with two values of the abstention costs, c = 0.4915

which favors abstaining more (i.e. precision) and916

c = 0.6 which favors answering more (i.e. recall).917

These two settings evaluate each method’s flexibil-918

ity to balance different trade-offs between precision919

and recall. As shown in Table 10, we find that our920

few-shot calibrator strikes a good trade-off between 921

precision and recall for both settings, consistently 922

achieving a higher utility as compared to baselines, 923

including the Abstain model. 924
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c = 0.4 c = 0.6
Utility Win Tie Lose Utility Win Tie Lose

X
N

L
I

Pa
L

M
2-

L
Abstain -0.224 0.4 0.0005 0.5995 -0.24 0.398 0.0035 0.5985
Curve agg -0.206 0.183 0.3795 0.4375 -0.219 0.218 0.4975 0.2845
few-shot -0.208 0.332 0.0775 0.5905 -0.225 0.299 0.246 0.455
FSC(Ours) -0.202 0 1 0 -0.218 0 1 0
Oracle -0.192 0.851 0.098 0.051 -0.213 0.709 0.22 0.071

M
M

L
U

Pa
L

M
2-

L

Abstain -0.162 0.484 0.0015 0.5145 -0.188 0.5085 0.0015 0.49
Curve_agg -0.171 0.188 0.2005 0.6115 -0.197 0.176 0.2355 0.5885
few-shot -0.164 0.3095 0.0885 0.602 -0.19 0.4205 0.0885 0.491
FSC(Ours) -0.157 0 1 0 -0.189 0 1 0
Oracle -0.15 0.862 0.096 0.042 -0.18 0.823 0.124 0.053

M
M

L
U

L
L

aM
A

-6
5B

Abstain -0.315 0.322 0.001 0.677 -0.39 0.401 0.002 0.597
Curve_agg -0.289 0.2715 0.2135 0.515 -0.388 0.225 0.1245 0.6505
few-shot -0.293 0.3105 0.091 0.5985 -0.372 0.448 0.1305 0.4215
FSC(Ours) -0.284 0 1 0 -0.372 0 1 0
Oracle -0.277 0.787 0.139 0.074 -0.358 0.817 0.088 0.095

Table 8: Additional utility results, including the pairwise comparisons win/tie/lose rate compared to our approach.
Overall, our few-shot recalibrator outperforms all baselines in achieving the highest utility scores, and more win-
ning percentages.

Method ECE Win Lose

Base 0.064 0.268 0.732
Sample Avg 0.052 0.4525 0.5475
Domain Avg 0.052 0.444 0.556
Empirical 0.093 0.115 0.885
TS (few-shot) 0.095 0.1285 0.8715
TS (all domains) 0.061 0.3155 0.6845
FSC (ours) 0.049 - -
Oracle 0.011 0.9965 0.0035

Table 9: Unseen ECE Evaluation. Our approach outperforms all the baselines in achieving the lowest calibration
error and more winning percentages in pairwise comparison.
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