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Abstract

Diffusion models like Stable Diffusion have become
prominent in visual synthesis tasks due to their powerful
customization capabilities, which also introduce significant
security risks, including deepfakes and copyright infringe-
ment. In response, a class of methods known as protective
perturbation emerged, which mitigates image misuse by in-
jecting imperceptible adversarial noise. However, purifica-
tion can remove protective perturbations, thereby exposing
images again to the risk of malicious forgery.

In this work, we formalize the anti-purification task,
highlighting challenges that hinder existing approaches,
and propose a simple diagnostic protective perturbation
named AntiPure. AntiPure exposes vulnerabilities of pu-
rification within the “purification-customization” workflow,
owing to two guidance mechanisms: 1) Patch-wise Fre-
quency Guidance, which reduces the model’s influence over
high-frequency components in the purified image, and 2)
Erroneous Timestep Guidance, which disrupts the model’s
denoising strategy across different timesteps. With addi-
tional guidance, AntiPure embeds imperceptible perturba-
tions that persist under representative purification settings,
achieving effective post-customization distortion. Experi-
ments show that, as a stress test for purification, AntiPure
achieves minimal perceptual discrepancy and maximal dis-
tortion, outperforming other protective perturbation meth-
ods within the purification-customization workflow.

1. Introduction
Since the landmark developments of Denoising Diffusion
Probabilistic Models (DDPMs) [15, 43] and Latent Diffu-
sion Models (LDMs) [35], Diffusion Models (DMs) have
virtually dominated every subtask of visual generation. This
triumph can be attributed to the readily available open-
source Stable Diffusion (SD) [48], which enables numer-
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Figure 1. Overview diagram of “Purification-Customization”
workflow. a). Protective perturbations use small noises to dis-
tort the outputs of fine-tuned diffusion models. b). However, ex-
isting methods can be removed by diffusion-based purification.
c). We propose a simple diagnostic method called AntiPure,
which achieves protective perturbations resistant to purification
and makes customization outputs more distinguishable.

ous fine-tuning and editing techniques for user-friendly cus-
tomization. However, these advances also pose risks, in-
cluding the proliferation of deepfakes and infringements of
portrait rights and intellectual property.

In response, recent studies [1, 24–26, 47, 51, 52, 57]
adapt adversarial attacks [11, 22, 27] to DMs, creating “poi-
soned” samples that impede concept comprehension dur-



ing fine-tuning Customization. Specifically, these Anti-
Customization approaches—collectively termed Protec-
tive Perturbations—employ white-box attacks to find the
most adversarial perturbation noises within the l∞-box,
thereby distorting DMs’ outputs.

Unfortunately, these adversarial protective perturbations
can be nullified by diffusion-based Purification [31, 56,
61]. Such methods diffuse adversarial samples to a fixed
timestep and then remove both adversarial and diffusion
noises during denoising. As shown in Fig. 1, prior methods
rarely consider how to preserve protective effects when pu-
rification precedes fine-tuning. This two-stage Purification-
Customization (P-C) workflow therefore renders existing
protective perturbations vulnerable and largely ineffective.

In this paper, we show the possibility of purification-
resistant protective perturbations in representative P-C set-
tings, despite the strong denoising capability of diffusion-
based purification. First, we formalize how to achieve that
within the P-C workflow. We observe that diffusion mod-
els—as a class of probabilistic models—produce outputs
that can become highly unpredictable at the fine scale re-
quired by adversarial attacks, thereby diminishing the ef-
fectiveness of adaptive attacks. Based on this, rather than
attempting to preserve the anti-customization perturbations
during purification, we propose anti-purification pertur-
bations that directly target the purification model to probe
and expose its weaknesses. Through experiments, we an-
alyze the differences between anti-customization and anti-
purification, identifying three core characteristics of purifi-
cation models that make anti-purification more challenging:
1) lack of vulnerable network components, 2) training-free
frozen parameters, and 3) fixed high-timestep denoising.

Next, even under these stringent constraints, we pro-
pose a simple diagnostic method, AntiPure, which achieves
an effective protective outcome by incorporating two ad-
ditional types of guidance: Patch-wise Frequency Guid-
ance (PFG) and Erroneous Timestep Guidance (ETG).
Since the priors on clean images embedded in frozen pa-
rameters prioritize low-frequency structures, the purifica-
tion model lacks fine control over high-frequency details.
Thus, PFG modulates the high-frequency components in
each patch of the model’s predicted “clean” image, leading
to more localized perceptual discrepancy introduced by per-
turbation injection. Moreover, while overall structures are
anchored by high-timestep denoising, ETG helps circum-
vent the timestep limitation. By minimizing the output dis-
tance across timesteps, ETG reduces the model’s sensitivity
to its timestep input and hinders its capacity to determine
the appropriate actions at each step. Together, these mech-
anisms empower AntiPure to achieve both minimal percep-
tual discrepancy and maximal output distortion.

In brief, our contributions can be summarized as follows:
• We first formalize the requirements for effective protec-

tive perturbations in the P-C workflow and propose anti-
purification to target purification directly with a thorough
analysis of the core challenges, overcoming the limita-
tions of prior anti-customization perturbations.

• We propose a simple diagnostic method named AntiPure.
AntiPure leverages Patch-wise Frequency Guidance and
Erroneous Timestep Guidance to counter the aforemen-
tioned anti-purification challenges.

• Finally, we establish a benchmark to assess the effec-
tiveness of prior anti-customization methods and our An-
tiPure within the P-C workflow. Experimental results
show that AntiPure achieves both the lowest perceptual
discrepancy and the highest output distortion as purifica-
tion converges, outperforming existing methods.

2. Related Works
Customization with Stable Diffusion. With the rapid de-
velopment of diffusion model [8, 14, 15, 43–46], a series
of Text-to-Image (T2I) models [30, 33–35, 39] show ex-
ceptional potential for customized generation, where open-
source Stable Diffusion (SD) [35] emerges as a commu-
nity favorite. By various fine-tuning and conditional control
techniques, pretrained models can further meet the needs
for specific concepts and finer control. Textual Inversion [9]
learns pseudo-words in the T2I models’ embedding space.
DreamBooth [38] incorporates class-specific prior preserva-
tion loss during full fine-tuning to mitigate forgetting. Fol-
lowing parameter-efficient fine-tuning (PEFT) [16], Custom
Diffusion [21] modifies only the weights of cross-attention
layers, while LoRA [17], adapted from large language mod-
els (LLMs), views concepts as the offset of parameters us-
ing rank decomposition matrices. For extra condition con-
trol, T2I-Adapter [29] and ControlNet [59] integrate addi-
tional guidance from other conditioning inputs.
Anti-Customization with Protective Perturbations. Ad-
vances in customization have raised significant concerns
about deepfakes, privacy, and copyright. In this context,
protective perturbation can serve as a potential solution
to help prevent misuse and ensure authenticity. This can
date back to the era of Generative Adversarial Networks
(GANs) [10], when studies [18, 37, 54, 58] explored to dis-
tort the outputs of GAN-based image translation and editing
[5, 12, 55, 62] by white-box attacks [11, 22, 23, 27].

For diffusion models, AdvDM [25] firstly employs Pro-
jected Gradient Descent (PGD) [27] to maximize the La-
tent Diffusion Model’s training loss [55] using Monte Carlo
estimation. This method is further extended in Mist [24]
with the addition of textural loss. Glaze [41] safeguards
artwork by attacking SD’s encoder, while PhotoGuard [40]
addresses unauthorized image inpainting by targeting both
the encoder and UNet. Zhu et al. [63] utilize a GAN-
based generator to create adversarial examples embedded
with traceable watermarks. Anti-DreamBooth (Anti-DB)



[51] targets the fine-tuning process in DreamBooth by in-
troducing a novel backpropagation surrogate to learn from
both clean and partially adversarial examples. Building
upon Anti-DB, SimAC [52] devises an adaptive greedy
time interval selection. Zhao et al. [61] summarize the
current challenges, providing a benchmark across fine-
tuning methods and revealing the susceptibility of current
techniques to purification. Concurrently, MetaCloak [26]
meta-learns transformation-robust, transferable protections,
while CAAT [57] perturbs cross-attention to obtain effi-
cient, training-free perturbations. More recently, FastPro-
tect [1] targets real-time deployment, and IDProtector [47]
trains a one-pass encoder to defend against generation.
Adversarial Purification with Diffusion Models. Purifi-
cation removes adversarial noises by regenerating or refin-
ing input images, with diffusion models gaining attention
for their iterative denoising abilities [31, 53, 56]. DiffPure
[31] employs an unconditional diffusion model to diffuse
the adversarial sample over a selected timestep and then de-
noises it by solving the reverse-time SDE. DensePure [56]
enhances the certified robustness of the pretrained classi-
fier. However, these classifier-focused methods may not be
sensitive to the high-resolution and perceptual consistency
required for customization. GrIDPure [61] employs shorter
timesteps diffusion with multiple iterations and overlapping
grids to improve purification for customization.

3. Preliminaries
Here, we briefly introduce the necessary preliminaries. For
more details, please refer to Appendix A.
Customization. The essence of customization is to fine-
tune a model, pretrained on large-scale data, on a smaller,
concept-specific set to capture that unseen concept, and Sta-
ble Diffusion (SD) [35] is a popular choice. Given input
image x0 and its text prompt y, the noise predictor UNet
[36] ϵθc and the text encoder τθc with SD’s parameters θc
for customization are jointly optimized through:

Lldm(x0; θc) = Eϵ∼N (0,I),t∼U(1,T ) ∥ϵ− ϵθc(zt, t, τθc(y))∥
2
2 ,

(1)
where latent zt is sampled through closed-form diffusion
under reparameterization given VAE encoded z0 = E(x0).
Anti-customization utilizes adversarial attacks against
generation, aiming to distort the concepts learned during
fine-tuning by injecting protective perturbation δadv . For
the optimal solution, this presents a saddle point problem:

δadv = argmax
∥δ∥∞≤η

min
θc

ExLldm(x0 + δ; θc), (2)

where δadv = xadv − x0 is the adversarial perturbation re-
stricted within the l∞-ball of radius η. In practice, we often
simplify Eq. (2) and maximize Lldm to approximate the op-
timal δadv by white-box methods like I-FGSM [22, 23] or
Projected Gradient Descent (PGD) [27].

Purification can remove adversarial noises while maintain-
ing the global structures, thereby rendering protective per-
turbations ineffective. Pretrained unconditional diffusion
models, such as DDPMs [15], can be inherently used for
purification since the distributions of clean and adversarial
samples converge over time during forward diffusion.

The pioneering work of diffusion-based purification,
DiffPure [31], diffuses the input adversarial image at
timestep tp and denoises it back to a purified image. In
simplified discrete DDPM form, this can be written as:

Pure(xadv) = Reverse(
√
αtp(x

adv)+
√
1− αtpϵ, t

p, 0; θp),
(3)

where αtp :=
∏tp

t=1(1− βt) with βt representing the diffu-
sion variance. Reserve(·) iteratively denoises the adversar-
ial sample diffused at timestep tp from higher timestep tp to
lower timestep 0 via learning-free sampling with frozen pu-
rification parameters θp. In the field of anti-customization,
GrIDPure [61] adapts DiffPure to meet SD’s requirements,
transforming the longer denoising timestep into multiple
shorter iterations, and achieving enhanced purified results.

4. Analysis
4.1. Anti-purification: Overall Formulation
For ideal perturbations resistant to purification, we first for-
malize our objective as follows:

δadv = argmax
∥δ∥∞≤η

min
θc

ExLldm(Pure(x0 + δ); θc), (4)

where δadv is similarly optimized by maximizing Lldm, but
with the purified input substituting the original one. How-
ever, direct backpropagation is computationally inefficient
here, as purification generates extremely deep computation
graphs over multiple iterations. Besides, unlike conven-
tional adversarial attacks, anti-customization requires sub-
stantial massive memory overhead associated with SD, to
which the size of classifiers is not comparable.

Alternatively, we decompose Eq. (4) into stages. Be-
cause the P-C workflow is serial, as long as one link in the
procedure fails, effective fine-tuning cannot be realized. In-
terestingly, two opposing objectives can accomplish this:

δadv′min = argmin
∥δ∥∞≤η

∥Pure(x0 + δ)− (x0 + δ)∥∞, or (5)

δadv′max = argmax
∥δ∥∞≤η

∥Pure(x0 + δ)− (x0 + δ)∥∞. (6)

By Eq. (5) combined with Eq. (2), we can approximate
Pure(x) ≈ x, allowing Eq. (4) to degenerate into Eq. (2)
even under purification. This follows the principle of adap-
tive attack and leads to a robust perturbation that can still
target customization after purification. However, involving



Figure 2. t-SNE [50] visualization (perplexity = 10) of 4×100 pu-
rified images obtained using DiffPure [31] with different timesteps
for clean and adversarial images.

joint optimization of two objectives (Eq. (5) and Eq. (2))
makes the optimal solution hard to find as well. Addition-
ally, probabilistic diffusion models may result in generated
images that are almost completely uncontrollable at the fine
scale required for adversarial noise. As shown in Fig. 2, the
difference between the clean and adversarial images (which
nearly overlap) is far smaller than the range of purified out-
puts, and the distributions of the purified clean and adversar-
ial images converge as tp increases. Therefore, we advocate
for the alternative approach instead of treating purification
as a special transformation and requiring the purified out-
puts to precisely reach the desired “adversarial region.”

By Eq. (6), we resort to direct attacks against purifica-
tion, i.e., anti-purification. We note that anti-purification
is not intended as a wholesale replacement for anti-
customization, but rather complements it as a preparatory
step within diverse emerging workflows. In such scenar-
ios, even if subsequent customization operates normally, the
target concepts learned are still distorted from those of the
original images during purification. This shifts the focus of
our attack from the customization’s LDMs to the DDPMs
used in (DDPM-based) purification:

Lddpm(x0; θp) = Eϵ∼N (0,I),t∼U(1,T )

∥∥ϵ− ϵθp(xt, t)
∥∥2
2
.
(7)

Unfortunately, direct attacks via maximizing this DDPM
training loss cannot achieve the same level of semantic
structural distortion seen in anti-customization methods due
to the inherent characteristics of purification itself. This
makes anti-purification a more challenging task, with the
difficulties encapsulated in the following three core reasons.

4.2. Anti-purification: Why harder?
Here, we report the conclusions of our small-scale experi-
ments. For detailed settings, please refer to Appendix B.2.

4.2.1. Reason 1: Lack of Vulnerable Components
Attacks targeting LDMs/SD are easier due to their more
vulnerable encoders. In contrast, the only component in
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Figure 3. Attacks against DreamBooth [38] on UNet are much
harder. Unlike vanilla pixel-space attacks (a. → d.), latent-space
attacks (b. → e.) cannot target the vulnerable VAE encoder. Here,
d. (decoded from e.) is shown for visualization purposes only; in
our experiments, we directly replace b. with e. during fine-tuning.

Figure 4. Mean Squared Errors of intermediate outputs between
clean and adversarial samples across different UNet blocks at
varying timesteps. See Appendix B.2 for details.

DDPMs, the UNet [36], is extremely robust.
Firstly, we modify Anti-DB’s ASPL method [51] to con-

duct PGD attacks directly on Eq. (1) but in the latent space,
thereby obtaining (e.) adversarial latents in Fig. 3 (rather
than adversarial images for further encoding). As shown
in Fig. 3, (d.) the decoded images from these latents exhibit
unexpected stylistic transformations, and (f.) images gener-
ated by SD fine-tuned on these latents show minimal differ-
ences from (d.). This indicates that if PGD cannot leverage
gradients from the vulnerable VAE encoder, the effective-
ness of attacks is significantly reduced.

Also, we directly attack Lddpm. Fig. 4 illustrates the dif-
ferences between clean and adversarial images in the out-
puts of various UNet blocks at different timesteps. Notice
that there is minimal difference in the downsampling and
intermediate blocks, while substantial deviations emerge in
the middle part of the upsampling blocks. However, the
outputs still converge at last, which may be attributed to the
unique residual connections: the effect of adversarial noise
naturally accumulates as the network’s spatial structure iter-
ates, while the shallower residual connections weaken this
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impact, forcing the perturbation to subside to lower levels,
leading to a peak effect.

4.2.2. Reason 2: Training-free Frozen Parameters
It is both evident and important to note that, unlike anti-
customization which targets fine-tuning by data poisoning,
anti-purification targets a training-free editing task. In anti-
purification, the pretrained purification model requires no
additional adjustments, so adversarial samples cannot af-
fect its benign priors embedded in frozen θp. Similar issues
also arise in attacks on other training-free editing tasks. As
shown in Fig. 5, the perturbations can reduce image quality
in some cases for MasaCtrl [3], which also relies on vul-
nerable encoders. However, it does not achieve the same
degradation level as perturbed fine-tuning.

4.2.3. Reason 3: Fixed High Timestep Denoising
During the denoising process, the low-frequency structural
information of an image is largely determined at higher
timesteps, while denoising at lower timesteps focuses on
high-frequency, textural changes. Here, we notice that the
purification process can be viewed as a generation pro-
cess where high-timestep denoising is fixed. In cases
where vulnerable components are absent and parameters
are frozen, conducting a Lddpm-based attack for timesteps
beyond tp is not directly meaningful, and attempting to
achieve semantic structural changes by adjusting the in-
put at low timesteps is also unfeasible. Essentially, at-
tacks on the purification itself are attacks restricted to high-
frequency components at low timesteps.

5. Method: AntiPure
Building on the formulation in Sec. 4.1, we aim to gen-
erate the most adversarial input specifically targeting the
purification model itself via Eq. (6). As highlighted in
Sec. 4.2, achieving semantic structural distortion like anti-
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(Sec. 4.2.3) on the attack by introducing Patch-wise Frequency
Guidance Lfre and Erroneous Timestep Guidance Lt−err .

customization is unfeasible for anti-purification. However,
we can still raise the costs of customization and achieve
protective perturbations that make the outputs from the P-C
workflow more distinguishable. The overall attack process
of our AntiPure is shown in Fig. 6.

5.1. Patch-wise Frequency Guidance

The priors on clean images embedded in the frozen net-
work parameters allow the purification model to revert to
a high-quality image distribution aligned with human in-
tuition during the reverse denoising process. The over-
all outputs can often remain structurally high-quality even
if a particular timestep is effectively attacked. However,
unlike low-frequency semantic structures, consistency in
high-frequency components is harder to guarantee, render-
ing them less controllable during purification. As shown in
Fig. 7, although simply using Lddpm-attacks does not pro-
duce noticeable effects in the spatial domain, they introduce
observable discrepancies in the frequency domain.

This phenomenon motivates shifting our focus to the
frequency domain. A feasible solution is to modulate the
high-frequency components where purification typically ex-
erts weaker control, thereby causing the purified outputs to
deviate from clean priors mainly in high-frequency bands.
Also, due to the characteristics of human perception, mod-
ulating high-frequency components affects image semantic
information less. For finer spatial modulation, we operate
on smaller-resolution patches to localize perceptual discrep-
ancy, forming our Patch-wise Frequency Guidance (PFG).

Specifically, given a clean image x0 ∈ RC×H×W , a
Gaussian noise ϵ, and an adversarial noise δadvi at the i-th
step of PGD, we diffuse the noisy adversarial sample xt at
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timestep t as follows:

xt =
√
αt(x0 + δadvi ) +

√
1− αtϵ, (8)

where αt :=
∏t

t′=1(1 − βt′) with βt representing the dif-
fusion variance. Using the UNet’s output ϵθ(xt, t), we ap-
proximate the predicted denoised image x̂0 by:

x̂0 = (xt −
√
1− αtϵθ(xt, t))/

√
αt. (9)

Next, Patch-wise Frequency Guidance operates on x̂0

to track the UNet’s gradients while emphasizing high-
frequency components, which can be formalized as:

Lfre(x0; δ
adv) = σ(EP

4

s2

s−1∑
m,n= s

2

PatchDCT(x̂0, s)m,n),

(10)
where PatchDCT(·) (illustrated in 3rd row of Fig. 7) un-
folds x̂0 into P patches of size s × s, and applies the Dis-
crete Cosine Transform (DCT) to each patch. After DCT,
the low-frequency component occupies the top-left corner
of the spectrogram, while the high-frequency component
lies in the bottom-right corner. Consequently, the bottom-
right quarters of each patch are filtered, averaged, and then
sigmoid-normalized by σ(·) to yield Lfre.

In brief, Lfre aims to enhance the high-frequency com-
ponents of the purification model’s prediction after denois-
ing across different timesteps, indirectly reinforcing the ad-
versarial perturbation’s high-frequency elements and creat-
ing a uniform grid pattern. Since the attack targets higher
frequencies, localized structural information is minimally
altered, ensuring greater perceptual consistency for humans.

5.2. Erroneous Timestep Guidance
As mentioned in Sec. 4.2.3, purification can essentially be
viewed as a generative process where the high-timestep de-

noising has been fixed, meaning that the structure of im-
ages cannot be obviously altered. However, we can encour-
age the noise predictor’s outputs at distinct timesteps to re-
main as close as possible. By injecting adversarial noise,
we identify inputs for which the UNet struggles to select
the appropriate actions across timesteps, which we realize
via Erroneous Timestep Guidance (ETG).

Specifically, we select an erroneous timestep terr as the
input to the UNet to obtain a noise prediction of xt at a
higher timestep, and we minimize the discrepancy between
the noise predicted at the erroneous time step ϵθ(xt, terr)
and the correct prediction ϵθ(xt, t):

Lerr−t(x0; δ
adv) = −∥ϵθ(xt, terr)− ϵθ(xt, t)∥22 . (11)

5.3. Overall Attack
As shown in Fig. 6, our attack incorporates Lfreand Lerr−t

guidance with vanilla Lddpm. To balance the range of val-
ues across different training objectives, the total loss used
for gradient ascent in PGD can be formalized as:

Lpgd(x0; δ
adv) = Eϵ,t

(
Lddpm + λ1e

αt−1Lfre + λ2e
Lerr−t

)
,

(12)

where the attack timestep t ∼ U(1, tp) is constrained within
the purification step range tp to avoid ineffective attacks.
Both hyperparameters λ1 and λ2 are set to 0.5, with terr
fixed for convenience. The coefficient eαt−1 scales Lfre

to increase its impact as t decreases. Given the minimal
MSE values, we apply an exponential function to Lerr−t for
slightly more aggressive optimization. Finally, PGD maxi-
mizes Lpgd to find the optimal δadv .

6. Experiments
6.1. Experimental Setup
Dataset. We utilize two facial datasets, CelebA-HQ [19]
and VGGFace2 [4] for evaluation. Following Anti-DB [51],
we select two subsets on these two datasets, each containing
50 IDs with 12 images at 512×512 resolution per ID, to
ensure training for both Anti-DB and SimAC [52].
Baseline. We apply four advanced protective perturbation
methods, including AdvDM [25], Mist [24], Anti-DB, and
SimAC, where Anti-DB and SimAC require additional in-
stances for perturbation generation. Thus, for each ID, we
generate perturbation for 4 images and use another 4 images
as instances for Anti-DB/SimAC.
Quantitative Metrics. For customization’s output, we first
employ FID [13], a general metric in generative tasks that
quantifies the distance between the feature distributions of
synthetic and real images using Inception v3 [49]. Addi-
tionally, we include metrics from Anti-DB [51]. Since our
primary goal is to generate non-realistic faces, we employ



Dataset Perturbation FID↑ ISM↓ (FDFR) BRISQUE↑

CelebA-HQ

AdvDM [25] 77.51 0.6561 (0.10) 31.33

Mist [24] 70.23 0.6688 (0.07) 37.00

Anti-DB [51] 78.84 0.6422 (0.10) 31.76

SimAC [52] 67.37 0.6734 (0.09) 33.73

AntiPure (Ours) 81.15 0.6112 (0.10) 43.60

VGGFace2

AdvDM [25] 83.90 0.5923 (0.09) 37.42

Mist [24] 78.34 0.5940 (0.07) 43.60

Anti-DB [51] 90.29 0.5938 (0.06) 38.35

SimAC [52] 75.21 0.6053 (0.09) 40.27

AntiPure (Ours) 90.77 0.5475 (0.05) 46.01

Table 1. Comparison of DreamBooth’s [38] output quality for dif-
ferent perturbation methods following the P-C workflow.

Identity Score Matching (ISM) to evaluate the cosine sim-
ilarity between the synthetic image’s facial features and the
real features of the corresponding identity using the pop-
ular ArcFace recognizer [6]. We also report Face Detec-
tion Failure Rate (FDFR) using the RetinaFace detector [7],
measuring the ratio of undetectable faces excluded in ISM
evaluation. This metric merely serves to provide ISM with
a more comprehensive reference, as producing completely
distorted faces after purification is, as previously discussed,
unfeasible. Finally, we use an extra no-reference image
quality assessment metric, BRISQUE [28], a classical and
popular method for measuring generated image quality. For
perturbation itself, a reconstruction metric, LPIPS [60] is
provided to evaluate the difference in human perception.
As we focus on disrupting the outputs of SD after purifi-
cation, higher FID, lower ISM, and higher BRISQUE mean
an increase in the adversarial effect. Besides, lower LPIPS
means more imperceptible perturbation.
Configurations. For all perturbation methods, we use the
same PGD training/purification/customization setup. In
Sec. 6.2 and Sec. 6.3, we use GrIDPure [61] for purifica-
tion, applying 2 rounds of 20 iterations with tp = 10 to ap-
proximate convergence of the purification effect (validated
in Sec. 6.4). In Sec. 6.5, we evaluate perceptual consis-
tency with pretrained AlexNet[20]/VGG[42]. To verify the
robustness of our method against common image process-
ing techniques, we save the images with protective pertur-
bations in their original input format, that is, the results on
CelebA-HQ (.jpg) are all JPEG-compressed. We will elab-
orate on our experimental configurations in Appendix C.

Furthermore, for ablation studies on different perturba-
tion configurations, black-box performance, and more visu-
alization results, please refer to Appendix D.

6.2. Comparison with Baseline Methods
Quantitative Results. We first fine-tune SD on the purified
images with different perturbations by DreamBooth, setting

Dataset Workflow FID↑ ISM↓ (FDFR) BRISQUE↑

CelebA-HQ

AdvDM [25] 95.38 0.6302 (0.09) 38.20

Mist [24] 85.09 0.6461 (0.07) 40.91

Anti-DB [51] 104.18 0.6215(0.12) 38.18

SimAC [52] 75.46 0.6487 (0.06) 38.77

AntiPure (Ours) 109.63 0.5839 (0.07) 40.01

VGGFace2

AdvDM [25] 105.43 0.5799 (0.07) 58.02

Mist [24] 90.66 0.6046 (0.07) 62.22

Anti-DB [51] 117.89 0.5723 (0.06) 58.56

SimAC [52] 94.89 0.6018 (0.07) 59.99

AntiPure (Ours) 127.67 0.5428 (0.04) 69.97

Table 2. Comparison of LoRA’s [17] output image quality for dif-
ferent perturbation methods following the P-C workflow.

both the instance and inference prompt to “a photo of sks
person.” For fairness, the same set of 200 prior class images
is shared between all perturbation methods. These quanti-
tative results are shown in Tab. 1.

In Tab. 1, AntiPure achieves the best performance across
all metrics on both datasets. After sufficient purification,
the effectiveness of the previous methods is significantly re-
duced, but the effect of AntiPure can be better preserved.
More importantly, while these methods depend on various
customization configurations, AntiPure focuses solely on
the relatively simpler purification process. On the other
hand, due to the perturbed image degradation caused by
JPEG compression, the results on CelebA-HQ are notice-
ably worse than those on VGGFace2, even when accounting
for potential domain gaps.

Interestingly, SimAC shows an even greater drop in per-
formance after purification. Compared to Anti-DB, the im-
proved SimAC generates smoother edges around the pertur-
bation patterns, rendering them more vulnerable. A similar
distinction is also noted between AdvDM and Mist.
Qualitative Results. We show more results in Fig. 8. In our
selected examples, the degree of output degradation intensi-
fies from top to bottom. As previously discussed, after pu-
rification, perturbation methods cannot realistically achieve
distortion at the level of overall semantic structure. An-
tiPure, however, does not aim to adjust the perturbations to
disrupt the customization process to the maximum extent.
Instead, it simply aims for the purification outputs to de-
grade, leveraging the characteristics of the fine-tuning pro-
cess itself to amplify these artifacts. This approach may
not achieve distortion of a person’s ID information, but it
is sufficient for humans to discern authenticity. For more
visualization results, please refer to Appendix D.

6.3. Different Customization Method
To evaluate AntiPure’s generalizability, we also ap-
ply another popular fine-tuning method, LoRA. Unlike
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Figure 8. Visualization of DreamBooth’s outputs after the P-C
workflow.

DreamBooth, LoRA significantly reduces fine-tuning costs
through low-rank decomposition. It can meanwhile in-
corporate the core class-specific prior preservation loss of
DreamBooth. As shown in Tab. 2, our method still out-
performs other perturbation methods, with a noticeable gap
in the ISM metric compared to others, indicating that our
method effectively reduces facial feature similarity.

6.4. Different Purification Configuration
Intuitively, as the purification iterations increase, protective
perturbations are removed progressively, resulting in better
fine-tuning output quality. To verify this, we select Anti-
DB, the most robust method (apart from AntiPure) from
previous experiments, and apply multiple rounds of purifi-
cation with 10 iterations, followed by DreamBooth fine-
tuning on CelebA-HQ. As shown in 3, the effectiveness of
Anti-DB is indeed gradually diminished as the number of it-
erations increases, as expected, with ISM stabilizing around
20–40 iterations, indicating near convergence.

Unexpectedly, AntiPure, which focuses on countering
the purification process, becomes increasingly robust with
more iterations. Although its effectiveness is initially lower
than that of Anti-DB with fewer iterations, AntiPure sur-
passes Anti-DB after approximately 30–40 iterations. This
also demonstrates that the purification iteration settings in
our previous experiments provide an accurate assessment
of perturbation persistence at convergence.

6.5. Perceptual Consistency
In addition to preventing infringement and forgery, protec-
tive perturbations also need to avoid affecting human per-

Perturbation Workflow FID↑ ISM↓ (FDFR) BRISQUE↑

None (Original) C (Iter=0) 37.43 0.6935 (0.11) 15.86

Anti-DB [51]

P(Iter=10)-C 124.62 0.6020 (0.10) 32.74

P(Iter=20)-C 84.83 0.6352 (0.09) 27.47

P(Iter=30)-C 81.22 0.6473 (0.08) 29.33

P(Iter=40)-C 77.30 0.6391 (0.09) 30.34

AntiPure (Ours)

P(Iter=10)-C 54.45 0.6362 (0.07) 40.27

P(Iter=20)-C 59.97 0.6271 (0.08) 44.63

P(Iter=30)-C 68.84 0.6075 (0.08) 47.68

P(Iter=40)-C 78.21 0.5994 (0.09) 47.54

Table 3. Comparison of DreamBooth’s [38] output image quality
for different purification iterations following the P-C workflow on
CelebA-HQ.

Perturbation
CelebA-HQ VGGFace2

Alex-LPIPS↓ VGG-LPIPS↓ Alex-LPIPS↓ VGG-LPIPS↓

AdvDM [25] 0.2024 0.3061 0.2343 0.3920

Mist [24] 0.1470 0.2759 0.2208 0.5222

Anti-DB [51] 0.2019 0.3319 0.2726 0.4054

SimAC [52] 0.1754 0.3046 0.2146 0.4120

AntiPure (Ours) 0.1392 0.2843 0.1758 0.3884

Table 4. Comparison of Learned Perceptual Image Patch Similar-
ity (LPIPS) [60] between adversarial images obtained by different
perturbation methods and the original images.

ception, which is guaranteed by the hard constraint η. How-
ever, even within the same l∞-ball, different perturbations
can cause different perceptual shifts from clean images. To
evaluate this, we select two commonly used backbones for
LPIPS to assess the quality of different adversarial images
under the same η constraint. As shown in Tab. 4, AntiPure
achieves the smallest perceptual difference while providing
the best attacks against the P-C workflow. This can be at-
tributed to Patch-wise Frequency Guidance, which effec-
tively avoids modifications to low-frequency information.

7. Conclusion

In this paper, we formalize anti-purification in the P–C
workflow and present AntiPure, which incorporates two
types of additional guidance. Across representative P-C
settings, AntiPure remains effective despite the strong de-
noising capability of diffusion-based purification, advanc-
ing perturbation robustness for stronger prevention against
deepfakes and infringement. However, as a simple diag-
nostic method, our current design assumes white-box ac-
cess. Thus, we position AntiPure as a complement to anti-
customization methods in diverse workflows, and leave im-
proved black-box transfer as a direction for future work.



Acknowledgements
This work is supported by Beijing Natural Science Foun-
dation (Grant No. L252145); National Natural Science
Foundation of China (Grant Nos. 62425606, 32341009,
U21B2045); the Strategic Priority Research Program of
Chinese Academy of Sciences (Grant No. XDA0480302);
and the Young Scientists Fund of the State Key Labora-
tory of Multimodal Artificial Intelligence Systems (Grant
No. ES2P100116). We also acknowledge Zhida Zhang for
his great contributions to this work. His omission from the
author list was an inadvertent oversight during submission.

References
[1] Namhyuk Ahn, KiYoon Yoo, Wonhyuk Ahn, Daesik Kim,

and Seung-Hun Nam. Nearly zero-cost protection against
mimicry by personalized diffusion models. In IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pages 28801–28810,
2025. 1, 3

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In Int. Conf. Mach. Learn.,
pages 274–283. PMLR, 2018. 2

[3] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xi-
aohu Qie, and Yinqiang Zheng. Masactrl: Tuning-free mu-
tual self-attention control for consistent image synthesis and
editing. In IEEE/CVF Int. Conf. Comput. Vis., pages 22560–
22570, 2023. 5, 2

[4] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and An-
drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In IEEE Int. Conf. Autom. Face Gesture
Recognit., pages 67–74, 2018. 6

[5] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., pages 8789–8797, 2018. 2

[6] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pages 4690–4699, 2019. 7

[7] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia,
and Stefanos Zafeiriou. Retinaface: Single-shot multi-level
face localisation in the wild. In IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., pages 5203–5212, 2020. 7

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In Adv. Neural Inform. Pro-
cess. Syst., pages 8780–8794, 2021. 2

[9] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. An
image is worth one word: Personalizing text-to-image gener-
ation using textual inversion. In Int. Conf. Learn. Represent.,
2023. 2, 1

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Adv. Neural
Inform. Process. Syst., 2014. 2

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Int.
Conf. Learn. Represent., 2015. 1, 2

[12] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,
and Xilin Chen. Attgan: Facial attribute editing by only
changing what you want. IEEE Trans. Image Process., 28
(11):5464–5478, 2019. 2

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Adv. Neural Inform. Process. Syst., 2017. 6

[14] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In Adv. Neural Inform. Process. Syst. Worksh.,
2021. 2

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Adv. Neural Inform. Process.
Syst., pages 6840–6851, 2020. 1, 2, 3

[16] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In Int. Conf. Mach. Learn., pages 2790–
2799. PMLR, 2019. 2

[17] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In Int.
Conf. Learn. Represent., 2022. 2, 7, 1, 3, 4

[18] Hao Huang, Yongtao Wang, Zhaoyu Chen, Yuze Zhang,
Yuheng Li, Zhi Tang, Wei Chu, Jingdong Chen, Weisi Lin,
and Kai-Kuang Ma. Cmua-watermark: A cross-model uni-
versal adversarial watermark for combating deepfakes. In
AAAI Conf. Artif. Intell., pages 989–997, 2022. 2

[19] Tero Karras. Progressive growing of gans for improved qual-
ity, stability, and variation. arXiv preprint arXiv:1710.10196,
2017. 6

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Adv. Neural Inform. Process. Syst., pages 1097–
1105, 2012. 7, 3

[21] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. Multi-concept customization
of text-to-image diffusion. In IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pages 1931–1941, 2023. 2

[22] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial machine learning at scale. In Int. Conf. Learn. Repre-
sent., 2017. 1, 2, 3

[23] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2017. 2, 3, 1

[24] Chumeng Liang and Xiaoyu Wu. Mist: Towards improved
adversarial examples for diffusion models. arXiv preprint
arXiv:2305.12683, 2023. 1, 2, 6, 7, 8, 5

[25] Chumeng Liang, Xiaoyu Wu, Yang Hua, Jiaru Zhang, Yim-
ing Xue, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing
Guan. Adversarial example does good: Preventing painting
imitation from diffusion models via adversarial examples. In
Int. Conf. Mach. Learn. PMLR, 2023. 2, 6, 7, 8, 5



[26] Yixin Liu, Chenrui Fan, Yutong Dai, Xun Chen, Pan Zhou,
and Lichao Sun. Metacloak: Preventing unauthorized
subject-driven text-to-image diffusion-based synthesis via
meta-learning. In IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pages 24219–24228, 2024. 1, 3

[27] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In Int. Conf. Learn.
Represent., 2018. 1, 2, 3

[28] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad
Bovik. No-reference image quality assessment in the spatial
domain. IEEE Trans. Image Process., 21(12):4695–4708,
2012. 7

[29] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian
Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. In AAAI Conf. Artif. Intell., pages 4296–
4304, 2024. 2

[30] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image genera-
tion and editing with text-guided diffusion models. In Adv.
Neural Inform. Process. Syst., 2022. 2

[31] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash
Vahdat, and Anima Anandkumar. Diffusion models for ad-
versarial purification. In Int. Conf. Mach. Learn. PMLR,
2022. 2, 3, 4, 1

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In Int. Conf. Mach. Learn., pages 8748–8763. PMLR,
2021. 2

[33] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In Int. Conf. Mach.
Learn., pages 8821–8831. PMLR, 2021. 2

[34] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022.

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., pages 10684–10695, 2022.
1, 2, 3

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Int. Conf. Med. Image Comput. Comput. Assist. Interv.,
pages 234–241. Springer, 2015. 3, 4

[37] Nataniel Ruiz, Sarah Adel Bargal, and Stan Sclaroff. Dis-
rupting deepfakes: Adversarial attacks against conditional
image translation networks and facial manipulation sys-
tems. In Eur. Conf. Comput. Vis. Worksh., pages 236–251.
Springer, 2020. 2

[38] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine

tuning text-to-image diffusion models for subject-driven
generation. In IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., pages 22500–22510, 2023. 2, 4, 7, 8, 1, 3, 5

[39] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. In Adv. Neural Inform. Process.
Syst., pages 36479–36494, 2022. 2

[40] Hadi Salman, Alaa Khaddaj, Guillaume Leclerc, Andrew
Ilyas, and Aleksander Madry. Raising the cost of malicious
ai-powered image editing. In Int. Conf. Mach. Learn. PMLR,
2023. 2, 4, 5

[41] Shawn Shan, Jenna Cryan, Emily Wenger, Haitao Zheng,
Rana Hanocka, and Ben Y Zhao. Glaze: Protecting artists
from style mimicry by {Text-to-Image} models. In USENIX
Security Symp., pages 2187–2204, 2023. 2

[42] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Int.
Conf. Learn. Represent., 2015. 7, 3

[43] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Int. Conf. Mach. Learn.,
pages 2256–2265. PMLR, 2015. 1, 2

[44] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In Int. Conf. Learn. Repre-
sent., 2021. 2

[45] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. Adv. Neural Inform.
Process. Syst., 32, 2019.

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In Int. Conf. Learn. Represent., 2021. 2

[47] Yiren Song, Pei Yang, Hai Ci, and Mike Zheng Shou. Id-
protector: An adversarial noise encoder to protect against id-
preserving image generation. In IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., pages 3019–3028, 2025. 1, 3

[48] Stability AI. Stable diffusion, 2022. Available
at: https : / / github . com / StabilityAI /
stablediffusion. 1

[49] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., pages 2818–2826, 2016. 6

[50] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. J. Mach. Learn. Res., 9(11), 2008. 4, 2

[51] Thanh Van Le, Hao Phung, Thuan Hoang Nguyen, Quan
Dao, Ngoc N Tran, and Anh Tran. Anti-dreambooth: Pro-
tecting users from personalized text-to-image synthesis. In
IEEE/CVF Int. Conf. Comput. Vis., pages 2116–2127, 2023.
1, 3, 4, 6, 7, 8, 5

[52] Feifei Wang, Zhentao Tan, Tianyi Wei, Yue Wu, and Qi-
dong Huang. Simac: A simple anti-customization method
for protecting face privacy against text-to-image synthesis of
diffusion models. In IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pages 12047–12056, 2024. 1, 3, 6, 7, 8, 5

https://github.com/StabilityAI/stablediffusion
https://github.com/StabilityAI/stablediffusion


[53] Jinyi Wang, Zhaoyang Lyu, Dahua Lin, Bo Dai, and Hongfei
Fu. Guided diffusion model for adversarial purification.
arXiv preprint arXiv:2205.14969, 2022. 3

[54] Lin Wang, Wonjune Cho, and Kuk-Jin Yoon. Deceiving
image-to-image translation networks for autonomous driving
with adversarial perturbations. IEEE Robotics and Automa-
tion Letters, 5(2):1421–1428, 2020. 2

[55] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional gans.
In IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pages
8798–8807, 2018. 2

[56] Chaowei Xiao, Zhongzhu Chen, Kun Jin, Jiongxiao Wang,
Weili Nie, Mingyan Liu, Anima Anandkumar, Bo Li, and
Dawn Song. Densepure: Understanding diffusion models
for adversarial robustness. In Int. Conf. Learn. Represent.,
2023. 2, 3

[57] Jingyao Xu, Yuetong Lu, Yandong Li, Siyang Lu, Dong-
dong Wang, and Xiang Wei. Perturbing attention gives you
more bang for the buck: Subtle imaging perturbations that
efficiently fool customized diffusion models. In IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pages 24534–24543,
2024. 1, 3, 4, 5

[58] Chin-Yuan Yeh, Hsi-Wen Chen, Shang-Lun Tsai, and Sheng-
De Wang. Disrupting image-translation-based deepfake al-
gorithms with adversarial attacks. In IEEE/CVF Winter Conf.
Appl. Comput. Vis. Worksh., pages 53–62, 2020. 2

[59] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
IEEE/CVF Int. Conf. Comput. Vis., pages 3836–3847, 2023.
2

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., pages 586–595, 2018. 7, 8

[61] Zhengyue Zhao, Jinhao Duan, Kaidi Xu, Chenan Wang, Rui
Zhang, Zidong Du, Qi Guo, and Xing Hu. Can protective
perturbation safeguard personal data from being exploited by
stable diffusion? In IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pages 24398–24407, 2024. 2, 3, 7

[62] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In IEEE/CVF Int. Conf.
Comput. Vis., pages 2223–2232, 2017. 2

[63] Peifei Zhu, Tsubasa Takahashi, and Hirokatsu Kataoka.
Watermark-embedded adversarial examples for copyright
protection against diffusion models. In IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., pages 24420–24430, 2024.
2



Towards Robust Defense against Customization via Protective Perturbation
Resistant to Diffusion-based Purification

Supplementary Material

A. Details on Preliminaries
Here, we briefly review and supplement the preliminary
knowledge from Sec. 3 to help our readers better under-
stand the various tasks involved in this paper.

Fine-tuning Customization (Personalization). Fine-
tuning methods aim to inject specific concepts into the pre-
trained SD for customization. Among them, DreamBooth
(DB) [38] is widely studied for anti-customization. This ap-
proach not only minimizes Lldm in few-shot scenarios but
also incorporates a prior-preservation term to retain benefi-
cial prior knowledge, thus mitigating forgetting. Its training
objective can be formalized as:

Ldb(x0; θc) = Lldm(x0; θc)

+ λ Eϵ′,t′∥ϵ′ − ϵθc(z
pr
t′ , t

′, τθc(y
pr))∥22︸ ︷︷ ︸

Class-Specific Prior Preservation Loss

, (14)

where the class prior image xpr is generated by the pre-
trained model with class prompt ypr, and zpr0 = E(xpr)
diffuses at timestep t′ to form zprt′ . In Ldb, the loss term
Lldm employs instance prompts y of the form “a photo of
[V][class noun],” where [V] acts as an identifier describing
the target concept.

LoRA [17] is proposed to accelerate the optimization
of large-scale pretrained models. It freezes the pretrained
weights and injects trainable rank decomposition matrices
into each layer, greatly reducing the number of trainable
parameters for downstream tasks:

W ′ = W0 +A ·B, (15)

where W ′ and W0 are fine-tuned and original weights,
respectively, while A ∈ Rm×r and B ∈ Rr×n are
low-rank matrices with rank r ≪ min(m,n). LoRA can
be used in conjunction with DB for efficient SD fine-tuning.

Adversarial Attack. In attacks against classifiers, white-
box methods like I-FGSM [22, 23] or PGD [27] are com-
monly used, which can be formalized as:

xadv
t+1 = Πx0,η

(
xadv
t + α · sgn

(
∇xadv

t
L(xadv

t , y; θ)
))

,

(16)
where Πx0,η(·) restricts inputs within the l∞-ball of radius
η around x0, sgn(·) represents the sign function, and α
is the learning rate. L(xadv

t , y; θ) is the loss used by the
classifier with parameters θ, where xadv

t is the adversarial

sample at the t-th PGD step and y is the corresponding
ground truth label. In brief, PGD iteratively finds the most
adversarial noises for the model with parameters θ by
maximizing the loss via gradient ascent.

Anti-customization. We explain the intuition behind the
simplification that transforms our original maximizing ob-
jective from min

θc
ExLldm(x0 + δ; θc) to Lldm(x0 + δ; θc)

as mentioned above. The key lies in the relationship be-
tween the model’s training data x (of Ex) and the adversar-
ial data x0 + δadv . For optimal performance, the training
set should encompass adequately trained adversarial sam-
ples. However, this creates a bootstrap paradox: fine-tuned
θc is needed for optimal δadv while δadv is needed for opti-
mal θc, which is why surrogate models fine-tuned on clean
data are frequently employed for simplification.

In the context of fine-tuning methods like Textual
Inversion [9], which make no change to the internal
parameters of SD, such an issue exists no more in practice.
For DB (full fine-tuning) and LoRA (PEFT), simply using
a model fine-tuned on clean images as a surrogate leads to
Fully-trained Surrogate Model Guidance (FSMG) formal-
ized in Anti-DB [51]. A more promising alternative, also
proposed by Anti-DB, is to iteratively introduce insufficient
adversarial samples, generated at different PGD steps, into
the surrogate model alongside clean images. This approach
is referred to as Alternating Surrogate and Perturbation
Learning (ASPL).

Purification. In its original paper, DiffPure [31] is intro-
duced via Stochastic Differential Equation (SDE). Since we
use the specialized DDPM-based purification model, and
considering that SD is commonly implemented discretely,
the introduction of diffusion-based purification in this pa-
per is also written in the DDPM form. We present the
more generalized SDE form from the original DiffPure here
for both quick reference and rigor. For a Variance Pre-
serving SDE (VP-SDE) where drift and diffusion coeffi-
cient are respectively defined as f(x, t) := −β(t)

2 x and
g(t) :=

√
β(t), we first diffuse adversarial xadv with a

fixed timestep tp ∈ [0, 1] via:

x(tp) =
√
α(tp)xadv +

√
1− α(tp)ϵ, (17)

where α(t) := e−
∫ t
0
β(s)ds, then we solve the reverse-time

SDE to get the purified sample with an SDE solver sdeint:

Pure(xadv) = sdeint(x(tp), frev, grev, w, t
p, 0; θp), (18)



where sdeint takes in six inputs: initial value x(tp), drift
coefficient frev(x, t) := −β(t)

2 [x+2sθp(x, t)], diffusion co-
efficient grev(t) :=

√
β(t), Wiener process w, initial time

tp, and end time 0. In the discrete case, this whole purifica-
tion process corresponds to the specialized DDPMs.

B. Details on Analysis
B.1. More Explanation on Overall Formulation
Due to the deepening of the computational graph during
iterative purification denoising, full-gradient adaptive at-
tacks lead to O(N) memory cost and may cause vanish-
ing/exploding gradients. For a 2GB 256×256 unconditional
DDPM purification model, fully tracking its training loss
after only 5 consecutive denoising samplings requires up
to 25GB memory overhead. For differentiability, DiffPure
proposes the adjoint method to calculate full gradients of
the reverse SDE with O(1) memory cost. However, this
method of solving the augmented SDE does not reduce the
time complexity. Backward Path Differentiable Approxi-
mation (BPDA) [2] is also a common approach, but the truly
effective surrogate is hard to find.

Is it entirely infeasible to use full-gradient adaptive at-
tacks? [61] mentions such a method for anti-customization,
where DDIM [44] sampling strategy is utilized to ensure
memory usage remains within an acceptable range. How-
ever, they report that this adaptive attack is not effective. To
demonstrate the instability of purification diffusion models
as probabilistic models, we set α = 0.005, η = 16

255 , and
perform a 100-step PGD attack on Lddpm. The resolution of
the input images is 256×256. Subsequently, both the clean
and the adversarial sample obtained from the attack are pu-
rified using DiffPure with tp = 50 and tp = 100, generating
four sets of images, each containing 100 samples. The dis-
tributions of these sets are visualized using t-SNE [50] with
perplexity set to 10, and the results are presented in Fig. 2.
The convergence of the purified clean and adversarial sam-
ples motivates us to turn to the alternative by Eq. (6).

B.2. Experimental Details on the Reason Analysis
Reason 1: Lack of Vulnerable Components. Firstly, we
modify Anti-DB’s ASPL method to conduct PGD attacks
directly in the latent space. We provide a more comprehen-
sive experimental result here in Fig. 10, with the CLIP text
encoder [32] taken into consideration. We set α = 0.005,
ηz = 16

255 , and perform a (20×5)-step PGD attack on Lldm.
Fine-tuning steps per 5 PGD steps are set to 3. In the ASPL
attack, we employ two configurations: one with a trainable
text encoder (Latent-ASPL, trainable text encoder) and one
with a frozen text encoder (Latent-ASPL, frozen text en-
coder), and the adversarial examples shown in Fig. 3 are
obtained via the former. Actually, these two different con-
figurations do not result in significant differences, whether

in the generated adversarial samples or in the outputs ob-
tained after fine-tuning SD on the adversarial samples.

To avoid introducing additional noise during VAE de-
coding and to maintain consistency in the number of chan-
nels, we directly save the adversarial latents in “.pt” format
and use them to replace the corresponding instance inputs
in the DreamBooth training process.

During customization, we fine-tune SD v2.1 via Dream-
Booth on these two kinds of adversarial samples. We also
choose to either train or freeze the text encoder during fine-
tuning. When jointly training the text encoder, we set the
learning rate to 5e− 7, and when freezing the text encoder,
we set it to 5e − 6 to ensure the capture of the target con-
cept, with 500 steps of training for both fine-tuning config-
urations. The training instance prompt is “a photo of sks
person”, the class prompt is “a photo of person”, and the
inference prompt is “a photo of sks person”. The training
batch size is 2, with a prior loss weight of 1.0. The results
are shown in Fig. 10.

Also, we directly attack Lddpm using 200 randomly
selected images in our datasets, resized to 256×256. We set
α = 0.005, η = 16

255 , and perform a 150-step PGD attack,
with Monte-Carlo sampled timesteps limited in [1, 100].
Subsequently, the adversarial images and clean images are
both fed into the UNet with time condition inputs ranging
from 1 to 100. The purification model we use consists of 18
downsampling blocks, 1 middle block, and 18 upsampling
blocks. We record MSE between the intermediate outputs
of adversarial and clean images block by block under
different time conditions. The average values across 200
images are computed, and the final results are presented
in Fig. 4. It can be observed that, due to the increasing
coefficient

√
1− αt, the differences between clean and

adversarial images grow with longer timesteps.

Reason 2: Frozen Parameters with Benign Priors.
The adversarial samples in Fig. 5 are generated using
the Lldm-attack against SD v1.5. The configuration for
generating protective perturbation is largely consistent with
the setup used in the experiments above, conducted in the
latent space. We set α = 0.005, η = 16

255 , and perform a
100-step PGD attack. During editing, we employ MasaCtrl
[3] combined with a pretrained T2I-Adapter [29], with the
condition type set to “sketch.” The significant attenuation
of artifacts demonstrates that this direct attack on training
objectives is not fully applicable to training-free tasks.

Reason 3: Fixed High Timestep Denoising. Perhaps the
statement in Sec. 4.2.3, “the purification process can be
viewed as a generation process where high-timestep denois-
ing is fixed,” is not sufficiently direct. To offer a more in-
tuitive illustration of this process, we present a simple dia-
gram. As depicted in Fig. 11, attacks on generation span the
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Figure 10. ASPL attacks [51] against SD in the latent space. In the ASPL attack, two configurations are used: trainable/frozen text encoder,
corresponding to the two rows in the figure. Similarly, in the DreamBooth fine-tuning, the trainable/frozen text encoder configurations are
also employed, corresponding to the last two columns.
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Figure 11. Why “the purification process can be viewed as a gen-
eration process where high-timestep denoising is fixed.”

entire range from T (typically set to 1000) to 0. In contrast,
attacks on purification are limited to a much smaller range,
from tp to 0, where the low-frequency structural informa-
tion fixed during the “Fixed Higher Timestep Denoising”
stage cannot be effectively altered.

C. Experimental Details
Here, we provide more configuration details used for the
quantitative experimental evaluation. In Sec. 6.2 and Sec.
6.3, we use the same setup for all perturbation methods. In
PGD attacks, we normalize images to [−1, 1]. Within this
range, the noise budget η is set to 16/255, the learning rate
α is set to 5e−3, and the total PGD steps are set to 100 (20 ×

5 steps for Anti-DB and SimAC). In Sec. 6.5, we evaluate
the perceptual consistency of different perturbation methods
with pretrained AlexNet[20]/VGG[42].

The purification and fine-tuning settings are also kept
consistent. In Sec. 6.2 and Sec. 6.3, we use GrIDPure
[61] for purification, applying 2 rounds of 20 iterations with
tp = 10, γ = 0.1 to approximate convergence of the purifi-
cation effect. In Sec. 6.4, we use a finer-grained purifi-
cation configuration to explore when the purification effect
approximately reaches convergence. Specifically, we apply
4 rounds of 20 iterations with tp = 10, γ = 0.1, on the ad-
versarial images obtained from Anti-DB and AntiPure. To-
tally, Tab. 3 uses 4 rounds × 10 iters, where P(Iter=30)-C
equals 3×10, and so on. GrIDPure mitigates image degrada-
tion caused by purification via residual connections, allow-
ing 4×10 to rely more on intermediate results while main-
taining the same computational cost as 2×20. This leads to
inconsistency between the results in Tab. 1 and the results
of P(Iter=40)-C in Tab. 3. But overall, the computational
overhead incurred by these two settings during the purifica-
tion process is the same. Here, 20-iter is the default setting
of GrIDPure.

For customization, in Sec. 6.2, we fine-tune the UNet
and the text encoder jointly by DreamBooth [38] with batch
size of 2 and learning rate of 5e−7 for 500 training steps.
The training instance prompt is “a photo of sks person”,
the class prompt is “a photo of person”, and the inference
prompt is “a photo of sks person”. We also set the prior loss
weight to 1.0. In Sec. 6.3, we apply LoRA [17] with the
same DreamBooth settings but set the learning rate to 5e−5.
The rank is set to 4. For evaluation, 30 PNG images per ID
are generated, which is also consistent with the configura-



Dataset Objective FID↑ ISM↓ (FDFR) BRISQUE↑

CelebA-HQ

Lddpm 69.06 0.6293 (0.09) 42.45

Lddpm + Lfre 65.69 0.6253 (0.08) 42.84

Lddpm + Lerr−t 74.42 0.6489 (0.10) 37.01

AntiPure (Ours) 81.15 0.6112 (0.10) 43.60

VGGFace2

Lddpm 76.32 0.5958 (0.07) 39.42

Lddpm + Lfre 74.90 0.5644 (0.07) 45.57

Lddpm + Lerr−t 76.75 0.5901 (0.06) 40.75

AntiPure (Ours) 90.77 0.5475 (0.05) 46.01

Table 6. Ablation Study on DreamBooth’s [38] output qual-
ity for different AntiPure guidance following the Purification-
Customization (P-C) workflow.

tions used in Anti-DB and SimAC.

D. More Experimental Results

D.1. Ablation Study
Our proposed AntiPure incorporates two kinds of additional
guidance to address the inherent challenges of the anti-
purification task: 1) Patch-wise Frequency Guidance and
2) Erroneous Timestep Guidance. In the ablation study, we
gradually remove this guidance to validate the effectiveness
of our method.

We use the same attack/purification/customization ex-
perimental configurations in Sec. 6.2 and Sec. 6.3 to per-
form the corresponding DreamBooth and LoRA fine-tuning
on CelebA-HQ and VGGFace2, but with different attack
targets. Specifically, our attack targets include: 1) Lddpm,
2) Lddpm + Lfre, 3) Lddpm + Lerr−t, and we compare
these results with the full AntiPure, i.e., 4) Lddpm+Lfre+
Lerr−t. The DreamBooth fine-tuning results are shown in
Tab. 6, and the LoRA results are shown in Tab. 7.

It is evident that AntiPure, which combines both types
of guidance, achieves the best overall performance across
various metrics, datasets, and fine-tuning methods, result-
ing in the most significant output distortion. This repre-
sents a clear improvement over the original Lddpm-based
attack. Additionally, it can be observed that among the sin-
gle guidance methods, Lfre is more effective than Lerr−t.
In fact, using Lerr−t for extra guidance alone shows limited
impact. However, it helps confuse the model across differ-
ent time steps, thereby disrupting the frequency characteris-
tics of the predicted noise, providing a better foundation for
Lfre guidance. This is particularly evident in FID, where
AntiPure sees an obvious improvement when both types of
guidance are combined.

In other words, the combination of these two guidance
types is not merely an additive process but achieves a syn-
ergistic “1 + 1 > 2” effect. Actually, the timestep inputs of
the diffusion model’s UNet can affect the frequency repre-

Dataset Objective FID↑ ISM↓ (FDFR) BRISQUE↑

CelebA-HQ

Lddpm 93.79 0.6176 (0.05) 42.19

Lddpm + Lfre 81.32 0.5848 (0.05) 42.24

Lddpm + Lerr−t 92.63 0.6177 (0.09) 43.22

AntiPure (Ours) 109.63 0.5839 (0.07) 40.01

VGGFace2

Lddpm 93.10 0.5859 (0.08) 61.79

Lddpm + Lfre 110.87 0.5556 (0.06) 66.01

Lddpm + Lerr−t 102.24 0.5717 (0.06) 61.10

AntiPure (Ours) 127.67 0.5428 (0.04) 69.97

Table 7. Ablation Study on LoRA’s [17] output quality for differ-
ent AntiPure guidance following the Purification-Customization
(P-C) workflow.

Dataset Transformation FID↑ ISM↓ (FDFR) BRISQUE↑

VGGFace2

Crop-Scale 152.47 0.4805 (0.34) 53.60

Rotation 92.00 0.5550 (0.05) 45.14

None (Ours) 90.77 0.5475 (0.05) 46.01

Table 8. Comparison of DreamBooth’s [38] output quality on VG-
GFace2 for different transformations on AntiPure’s outputs.

sentation of the predicted noise, allowing Lerr−t to be in-
terpreted on the frequency domain like Lfre. With both in-
volved, the high-frequency components intensified by Lfre

are primarily induced by erroneous high timesteps rather
than real ones. Thus, the introduction of Lerr−t can indi-
rectly enhance Lfre itself, and vice versa.

D.2. Transformation Robustness

As suggested by the reviewer, we apply Crop-Scale (Center-
Crop ×3/4 side length) and Rotation (randomly [0◦, 15◦])
to anti-purification samples created by AntiPure, ensuring
that the same transformations are applied to the original
ones for fair evaluation. As shown in Tab. 8, AntiPure
demonstrates robustness to rotation, while crop-scale am-
plifies the artifacts, leading to significantly improved per-
formance.

D.3. More Baselines

As suggested by the reviewer, we include PhotoGuard [40]
and CAAT [57] for additional comparison. We adopt the
img2img attack pipeline for PhotoGuard, as it resembles
purification more than the inpainting pipeline. However,
as shown in Tab. 9, PhotoGuard’s perturbations tend to be
easily purified due to their blurred boundaries. In contrast,
CAAT’s perturbation closely resembles that of Anti-DB,
leading to comparable robust performance.



Dataset Perturbation FID↑ ISM↓ (FDFR) BRISQUE↑

VGGFace2

PhotoGuard [40] 72.25 0.6061 (0.07) 43.07

CAAT [57] 89.07 0.5854 (0.07) 38.21

AntiPure (Ours) 90.77 0.5475 (0.05) 46.01

Table 9. Comparison with additional baselines on VGGFace2.

Dataset λ1 λ2 terr FID↑ ISM↓ (FDFR) BRISQUE↑

VGGFace2

0.25 0.75 999 96.33 0.5431 (0.06) 41.50

0.50 0.50 700 90.50 0.5490 (0.04) 48.34

0.75 0.25 999 87.81 0.5586 (0.05) 43.02

0.50 0.50 999 90.77 0.5475 (0.05) 46.01

Table 10. DreamBooth’s [38] output quality on VGGFace2 for
different hyperparameter configurations.

D.4. Hyperparameter Sensitivity
Originally, the selection of λ1 and λ2 was based on balanc-
ing the magnitude of loss components, while terr was cho-
sen to be as large as possible to maximize its effect. Here,
as the reviewer suggested, we conduct a simple grid search
over these three hyperparameters. As shown in Tab. 10, dif-
ferent metrics exhibit varying degrees of sensitivity to each
parameter. Notably, the impact of terr is relatively smaller
compared to those of λs, while the ISM—the primary met-
ric for identity preservation—remains largely stable across
all settings. This suggests that AntiPure exhibits a certain
degree of robustness with respect to its hyperparameter con-
figurations.

D.5. Black-Box Performance
All previous experiments are conducted on SD v2.1, as rec-
ommended by Anti-DB and SimAC. However, AdvDM and
Mist only support SD v1.x. We note that after sufficient pu-
rification, the effects of these perturbation methods almost
completely disappear, making the distinction between SD
versions insignificant.

To evaluate the performance of perturbation methods un-
der a black-box scenario with mismatched models, and to
ensure an absolutely fair SD version for all methods, we
fine-tune SD v1.5 on the purified adversarial images from
VGGFace2. The results are shown in Tab. 11. The similar
performance observed preliminarily supports our hypothe-
sis that “SD versions have negligible influence.” Also, An-
tiPure still demonstrates the best overall performance.

D.6. More visualization
We provide more visualization results in Figs. 12 to 15 for
qualitative evaluation. Please refer to the captions of each
figure for detailed explanations. We strongly recommend
zooming in on the following visualizations to better iden-

Fine-tuning Perturbation FID↑ ISM↓ (FDFR) BRISQUE↑

DreamBooth

AdvDM [25] 82.10 0.5798 (0.06) 26.99

Mist [24] 77.33 0.5797 (0.04) 32.58

Anti-DB [51] 83.95 0.5686 (0.06) 27.68

SimAC [52] 76.73 0.5762 (0.05) 26.44

AntiPure (Ours) 89.33 0.5165 (0.03) 62.88

LoRA

AdvDM [25] 106.48 0.5697 (0.05) 44.96

Mist [24] 91.33 0.5731 (0.06) 55.27

Anti-DB [51] 115.34 0.5591 (0.05) 46.11

SimAC [52] 92.57 0.5622 (0.05) 45.41

AntiPure (Ours) 112.90 0.5101 (0.05) 74.82

Table 11. Comparison of DreamBooth/LoRA’s [38] Stable Diffu-
sion v1.5 output quality on VGGFace2 for different perturbation
methods following the P-C workflow.

tify these artifacts.
It can be observed that the effects of other protective

perturbation methods almost entirely vanish after sufficient
purification. However, AntiPure ensures the presence of
detectable artifacts, which are concentrated in the human
facial regions (excluding the eyes). At lower levels of se-
mantic distortion, these artifacts appear as unnatural high-
frequency speckled regions, while more prominent artifacts
manifest as patches of abnormal textures.

Furthermore, the effects of different perturbation meth-
ods on human visual perception (iter = 0, i.e., no purifica-
tion) in Figs. 14 and 15 are also consistent with the LPIPS
comparison in Tab. 4. Even under the same noise budget,
Anti-DB and CAAT perturbations are more noticeable, of-
ten exhibiting blocky color artifacts. AntiPure, however,
relies on frequency-domain modulation and generates sam-
ples visually closer to the original image.
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Figure 12. Comparison of DreamBooth’s outputs on CelebA-HQ for different perturbation methods following the Purification-
Customization (P-C) workflow.
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Figure 13. Comparison of DreamBooth’s outputs on VGGFace2 for different perturbation methods following the Purification-
Customization (P-C) workflow.
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Figure 14. Comparison of GrIDPure’s outputs at different iterations on VGGFace2 for different perturbation methods. Here Iter=0 means
no purification is adopted after adversarial samples are generated.
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Figure 15. Comparison of GrIDPure’s outputs at different iterations on VGGFace2 for different perturbation methods. Here Iter=0 means
no purification is adopted after adversarial samples are generated.
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