
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IT’S ALL JUST VECTORIZATION: EINX, A UNIVERSAL
NOTATION FOR TENSOR OPERATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tensor operations represent a cornerstone of modern scientific computing. How-
ever, the Numpy-like notation adopted by predominant tensor frameworks is often
difficult to read and write and prone to so-called shape errors, i.a., due to follow-
ing inconsistent rules across a large, complex collection of operations. Alterna-
tives like einsum and einops have gained popularity, but are inherently restricted
to few operations and lack the generality required for a universal model of tensor
programming.
To derive a better paradigm, we revisit vectorization as a function for transforming
tensor operations, and use it to both lift lower-order operations to higher-order
operations, and conceptually decompose higher-order operations to lower-order
operations and their vectorization.
Building on the universal nature of vectorization, we introduce einx, a universal
notation for tensor operations. It uses declarative, pointful expressions that are
defined by analogy with loop notation and represent the vectorization of tensor
operations. The notation reduces the large APIs of existing frameworks to a small
set of elementary operations, applies consistent rules across all operations, and
enables a clean, readable and writable representation in code. We provide an
implementation of einx that is embedded in Python and integrates seamlessly with
existing tensor frameworks: https://github.com/REMOVED FOR REVIEW

1 INTRODUCTION

Tensor operations constitute the foundation of modern deep learning and other domains of scientific
computing. Tensors, i.e. n-dimensional arrays with a uniform element type, serve as a medium
for diverse types of data, including images, volumes, sequences of audio or text, activations in a
neural net, class probability scores, or batches thereof. Tensor programs are commonly written in
high-level Python with tensor operations that act as points of entry to low-level backend routines,
thereby abstracting from the underlying hardware, memory representation and algorithms.

The widely used Numpy-like notation for expressing tensor operations in Python is followed by most
predominant tensor frameworks such as Numpy itself (Harris et al., 2020), PyTorch (Paszke, 2019),
Tensorflow (Abadi et al., 2015), Jax (Bradbury et al., 2018), and MLX (Hannun et al., 2023). An
operation in Numpy-like notation operates on whole tensors and is expressed, e.g., as follows:
y = np.sum(x, axis=1) # Compute sum along rows of the matrix x

In contrast, the following representation of the same operation in loop notation addresses tensor
elements individually using indices, and invokes a backend routine multiple times:
for i in range(x.shape[0]):

for j in range(x.shape[1]):
y[i] += x[i, j] # For each row i, add element from column j

Loop notation enables a clearer, more general representation of tensor operations through its pointful
style, i.e. explicit use of indices. In contrast, Numpy-like notation follows a point-free style (Paszke
et al., 2021) and compensates for the lack of index expressions by introducing varying mechanisms,
including special parameters (e.g., axis), pure shape operations, as well as broadcasting, advanced
indexing, and numerous function-specific rules. This often results in tensor programs that are diffi-
cult to read and write and where so-called shape errors occur frequently.

1

https://github.com/REMOVED_FOR_REVIEW

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: It’s all just vectorization: einx reduces the large, inconsistent API of Numpy-like frame-
works to few elementary operations and a universal, declarative, pointful notation for expressing
their vectorization. The table shows examples of different Numpy-like function calls that map to the
same elementary operation in einx and differ solely in their vectorization.

Numpy-like notation einx notation (ours)
torch.take(x, y) einx.get_at("[x], ... -> ...", x, y)
torch.gather(x, 0, y)
torch.take_along_dim(x, y, dim=0)

einx.get_at("[x] b c, i b c -> i b c", x, y)

torch.index_select(x, 1, y)
tf.gather(x, y, axis=1)

einx.get_at("a [x] c, i -> a i c", x, y)

tf.gather_nd(x, y) einx.get_at("[...], b [i] -> b", x, y)
tf.gather_nd(x, y, batch_dims=1) einx.get_at("a [...], a b [i] -> a b", x, y)
x[y[:, 0], y[:, 1]] einx.get_at("[x y], a [2] -> a", x, y)
x * y[:, np.newaxis] einx.multiply("a b, a -> a b", x, y)
np.outer(x, y) einx.multiply("a, b -> a b", x, y)
np.kron(x, y) einx.multiply("a..., b... -> (a b)...", x, y)
scipy.linalg.khatri_rao(x, y) einx.multiply("a c, b c -> (a b) c", x, y)
np.matmul(x, y) einx.dot("a [b], [b] c -> a c", x, y)
np.dot(x, y) einx.dot("x [a], y [a] b -> x y b", x, y)
np.tensordot(x, y, axes=(0, 1)) einx.dot("[a] b, c [a] -> b c", x, y)
np.inner(x, y) einx.dot("x [a], y [a] -> x y", x, y)
np.transpose(x, (0, 2, 1)) einx.id("a b c -> a c b", x)
np.squeeze(x, axis=1) einx.id("a 1 c -> a c", x)
np.expand_dims(x, axis=1) einx.id("a c -> a 1 c", x)
np.broadcast_to(x, (2, 3, 4)) einx.id("c -> 2 3 c", x)
np.reshape(x, (-1,)) einx.id("... -> (...)", x)
np.concatenate([x, y], axis=-1) einx.id("s a, s b -> s (a + b)", x, y)
np.stack([x, y], axis=0) einx.id("..., ... -> (1 + 1) ...", x, y)
np.meshgrid(x, y, indexing="ij") einx.id("a, b -> a b, a b", x, y)

Several alternatives to Numpy-like notation have been proposed, including approaches inspired by
Einstein’s summation convention such as einsum (Wiebe, 2011) and its extension einops (Rogozh-
nikov, 2022a), frameworks that shift from positional to symbolic dimensions (Hoyer & Hamman,
2017; DeVito, 2023), and custom pointful languages (Vasilache et al., 2018; Paszke et al., 2021).
Of these, only einsum and einops have found widespread adoption in the deep learning community,
i.a., due to being embedded in Python and compatible with the existing Numpy-based ecosystem.

However, einsum and einops are inherently restricted to a limited set of operations (c.f . Tab. 2)
and lack the generality required for a universal model of tensor operations. Furthermore, einops is
defined in large parts ostensively, i.e. by examples such as
y = einops.reduce("a b -> a", x, op="sum") # Sum-reduction along b

rather than by a clear, explicit interpretation of how terms such as "a b -> a" are to be understood.

Our contributions are as follows:

(1) We revisit vectorization as a general function for transforming tensor operations. We use it as a
universal tool to lift lower-order operations to higher-order operations, and conceptually decompose
existing higher-order operations to few lower-order operations and their varying vectorization.

(2) We introduce a universal notation for tensor operations: einx. It represents the vectorization of
operations using declarative, pointful expressions that are defined by analogy with loop notation.
The einx notation (a) is applicable to any tensor operation, (b) provides a single set of rules across
arbitrary operations, (c) is interpretable by analogy with loop notation, (d) allows for a clean, read-
able and writable representation of operations in code, and (e) reduces the complex Application
Programming Interface (API) of Numpy-like frameworks to few elementary operations (c.f . Tab. 1).

(3) We provide an implementation of einx for widely used tensor frameworks. Operations in einx
are compiled to function calls in a given framework and thereby allow for a seamless integration.
The einx API contains functions for many commonly used operations, and the option to adapt new,
custom operations to einx notation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 2: Support for classes of operations and vectorization in different types of ein*-notation.
P: Permutation. F: Flattening. R: Repetition (i.e. output-only vectorization). C: Concatenation.
*: Always and only flattens concatenated axes. **: Coordinate axis must be first axis.

einx einsum einops: reduce, repeat, einops: pack, eindex
Operation (ours) (2011) rearrange, einsum (2022a) unpack (2022b) (2023)
Identity PFRC P PFR (FC)* -
Scalar PFR P (only mul.) P (only mul.) - -
Reduction PFR P (only sum) PF - -
Dot-product PFR P P - -
Indexing PFR - - - (P)**
Any other PFR - - - -

2 RELATED WORKS

2.1 EIN*-NOTATIONS FOR TENSOR OPERATIONS

Einstein Summation Einstein (1916) introduces what is now known as the Einstein summation
convention in the mathematical notation of tensor contractions (i.e. generalized matrix multiplica-
tions) as follows (translated from German original): ”It is therefore possible, without compromising
clarity, to omit the summation signs. To that end, we introduce the rule: If an index appears twice
in a term of an expression, it is always to be summed over”. As an example, in the following con-
traction of A and B the index j appears twice, and the summation sign over j may therefore be
omitted: ∑

j
AijBjk = AijBjk

einsum After early proposals to express Einstein summation in code (Barr, 1991; Åhlander, 2002),
the most common approach in Python follows the np.einsum function introduced in Numpy by
Wiebe (2011). In its rarely used Einstein mode, einsum represents a tensor contraction by listing the
indices from the corresponding Einstein summation expression in a comma-delimited string:
np.einsum("ij,jk", A, B) # Matrix multiplication (as above)

Since the index j appears twice, it is summed over following Einstein’s summation convention.

The function also introduces the more widely used non-Einstein mode where the expression is ex-
tended using an arrow and output indices as shown below. Instead of Einstein’s summation con-
vention, it applies the following rule: All indices that appear only on the left side of the arrow are
summed over. This allows expressing additional, commonly used operations, e.g.:
np.einsum("bij,bjk->bik", x, y) # Batched matmul: j is summed over
np.einsum("ij->i", x) # Sum-reduction: j is summed over

Lastly, the ellipsis ... is used to represent a variable number of indices in an einsum expression.

einops Rogozhnikov (2022a) introduces einops which extends the non-Einstein mode of einsum
to support additional reduction operations using the same notation (e.g. max, mean), broadcasting
along axes in the output expression, and multi-letter axis names. Its main novelty is the axis compo-
sition which allows (un)flattening axes by wrapping them in parentheses in the string expression:
einops.rearrange(x, "a b c -> (a b) c") # Reshape operation

ein* Several software packages propose variants of the above notation to support new opera-
tions, including einindex (Malmaud, 2018), einops.{pack|unpack} (Rogozhnikov, 2022b), eindex
(Rogozhnikov, 2023), eindex (McDougall, 2023), eingather (Fleuret, 2023) and einmesh (Jensen,
2025). However, these variants are incompatible with the original einsum and einops notation as
well as with each other, and do not represent a universal notation for tensor operations.

Despite their name, no operations in einops and the above packages apply Einstein’s summation con-
vention. Instead, they follow Wiebe’s orthogonal choice to use a string of axis names akin to indices
in mathematical notation. Since the ein* terminology has become associated with this notational
style, we name our approach einx, but avoid claims of it being ”Einstein-like” or ”Einstein-inspired”.

einx We introduce einx, a universal notation for tensor operations that follows a single set of
notational rules across any given operation (c.f . Tab. 2). It is defined by analogy with loop notation,
which allows for an explicit interpretation of expressions such as "i j -> i". The notation is
compatible with einops notation for the limited set of its supported operations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 OTHER NOTATIONS FOR TENSOR OPERATIONS

Named tensors Several authors (Hoyer & Hamman, 2017; Chen, 2017; Hall et al., 2022; DeVito,
2023; Johnson, 2024) propose to annotate tensors with symbolic axis names, resulting in so-called
named tensors. Named tensors address the complexity of Numpy-like notation by implicitly vector-
izing operations along matching symbolic axes of the argument tensors. However, named tensors
also do not self-document tensor shapes, require renaming of axes in tensor programs, and do not
integrate seamlessly with the scientific Python ecosystem which operates on positional tensors.

Importantly, the usage of named tensors is complementary to the usage of ein*-notation. Operations
may accept named tensors akin to positional tensors by matching the string expression against the
symbolic axis names of the tensor, rather than or in addition to the axis positions. This is done, e.g.,
by the Haliax framework (Hall et al., 2022) which implements einsum for named tensors.

Other pointful notations Several authors (Vasilache et al., 2018; Paszke et al., 2021; Bachurski
& Mycroft, 2024) propose other types of pointful notation to express tensor operations using index
expressions. They define a set of elementary operations as well as a notation to compose more com-
plex tensor operations. However, there is only limited integration with existing tensor frameworks
and support for vectorizing operations that are not defined in the notation itself.

2.3 DEFINITION OF VECTORIZATION IN LITERATURE

The term vectorization has been used in different contexts within tensor programming. Harris et al.
(2020) describe element-wise operations such as np.{add|multiply} in Numpy as vectorized oper-
ations: These operations apply a scalar function to higher-dimensional tensors in conjunction with
broadcasting rules to match axes across arguments. In contrast to our general perspective on vector-
ization, Harris et al. do not use the term w.r.t. other types of operations such as np.{sum|matmul}.

In named tensor frameworks (c.f . Sec. 2.2), lifting of operations to higher-dimensional argument
tensors emerges implicitly as a by-product of introducing symbolic axes, and is sometimes referred
to as vectorization (Chiang et al., 2023). In this context, Chiang et al. identify some elementary
operations that may be vectorized to represent complex functions in Numpy-like frameworks, in-
cluding scalar, reduction, dot-product, vector-to-vector and indexing operations. However, support
and adoption of the notation in existing frameworks remains limited (c.f . Appendix H).

Bradbury et al. (2018) introduce jax.vmap (vectorizing map) which regards vectorization as a trans-
formation of operations: Given any operation op, the result of jax.vmap(op, ...) is a new op-
eration that accepts and returns tensors with up to one more dimension than op along which the
vectorization is applied. While this allows for a general perspective on vectorization, it does not rep-
resent a concise, declarative notation for tensor operations, and is not posed as a universal alternative
to Numpy-like notation.

3 VECTORIZATION

3.1 VECTORIZING LOWER-ORDER OPERATIONS TO HIGHER-ORDER OPERATIONS

We define vectorization as the transformation of an operation that processes a single data point into
an operation that processes a collection of data points simultaneously. For instance, the sin function
accepts and returns a scalar, while a vectorized sin function accepts and returns a collection of scalars
and applies the sin function to each scalar separately. This broad definition of the term differs from
its specific use in compiler design where it describes the automatic substitution of scalar instructions
with vector instructions following the Single Instruction, Multiple Data (SIMD) model. (Cui, 2024)

In the context of tensor programming, vectorization is applied along axes of the tensor arguments:
An operation that is vectorized along a particular axis with length l of an n-dimensional argument
tensor is applied to each of the l separate (n − 1)-dimensional sub-tensors that are stacked along
this axis. For instance, a vectorized sin function that operates on 1-dimensional vectors with length
l computes the sin of l separate 0-dimensional scalars. Vectorizing an operation is also known as
lifting the operation to higher-order (i.e. higher-dimensional) tensors, or applying the operation to a
batch of data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Loop notation provides a natural representation of vectorized operations by expressing the repeated
application of the elementary operation to the individual sub-tensors stacked along a given axis. For
instance, the following code represents the vectorized sin operation that accepts and returns vectors:
for i in range(x.shape[0]):

y[i] = sin(x[i])

The terms x[i] and y[i] represent the scalar sub-tensors that are stacked along the first axis of the
vectors x and y and are forwarded to the sin operation. The representation with loop notation is only
for conceptual reasons and does not indicate how the operation is implemented on the backend.

Vectorization along multiple axes is represented using multiple for loops and analogous to multiple
consecutive one-dimensional vectorizations along each of the respective axes:
for i in range(x.shape[0]): for j in range(x.shape[1]):

y[i, j] = sin(x[i, j])

We consider vectorization only w.r.t. operations that are invariant to the order of the loops and indices
per loop, and omit loops in the following examples.

The usage of a subset of the available loop variables to address the axes of a specific tensor expresses
what is known as broadcasting in Numpy-like notation (Harris et al., 2020):
z[i, j] = x[i] * y[j] # Outer product of x and y

Lastly, we consider elementary operations that are applied to non-scalar arguments. For instance,
softmax operates on vectors and is vectorized along the second dimension of a matrix as follows:
y[:, i] = softmax(x[:, i])

The terms x[:, i] and y[:, i] represent the one-dimensional sub-tensors that are stacked along
the second dimension of the matrices x and y and are forwarded to the softmax operation. We say
that the softmax operation is applied along the first axis and vectorized along the second axis of x
and y. We denote axes that the elementary operation is applied along as argument sub-tensor axes,
and all other axes as vectorized axes.

3.2 DECOMPOSING HIGHER-ORDER OPERATIONS TO LOWER-ORDER OPERATIONS

In the previous section, we considered the vectorization of lower-order operations to higher-order
operations. We now go the opposite direction and conceptually decompose many existing higher-
order operations, e.g., from Numpy-like notation, to few lower-order operations and their varying
vectorization. In the following, we provide several examples.

A matrix multiplication is represented conceptually as a vectorized dot-product, and its inherent
vectorization is expressed in loop notation as follows:
z[i, j] = dot(x[i, :], y[:, j])

Other types of tensor contractions (e.g., np.{dot|matmul|tensordot|inner}) analogously repre-
sent vectorized dot-products, but differ in their vectorization. Their implementation typically em-
ploys optimized algorithms that do not simply loop over invocations of the elementary dot-product.

The sum-reduction operation np.sum(x, axis=1) over a matrix x is decomposable, i.a., using two
alternatives for the elementary operation:
y[i] = sum(x[i, :]) # "sum" maps a vector to a scalar -> 1 vectorized axis
y[i] += x[i, j] # "+=" adds a scalar to a scalar -> 2 vectorized axes

Different types of multiplication such as the outer, Hadamard, Kronecker, and Khatri–Rao products
are represented as vectorized scalar multiplication and differ solely w.r.t. their vectorization.

Shape operations such as np.{transpose|reshape} are represented as vectorized identity maps
y[j, i] = identity(x[i, j]) # Transpose
y[i * x.shape[1] + j] = identity(x[i, j]) # Reshape/flatten

with identity(a) = a. Implementations of these operations typically only modify a tensor’s meta-
data, rather than applying an assignment or copy operation per element.

Broadcasting tensors along new axes (e.g., np.{broadcast_to|tile|repeat}) is represented as an
identity map that is vectorized, i.a., along dimensions which appear only in the output:
y[i, j] = identity(x[i]) # Broadcast along j

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Indexing operations such as torch.{take|gather|take_along_dim|index_select} are vector-
ized versions of the following elementary operation: Retrieve a single value from an n-dimensional
value tensor at the coordinates specified by a one-dimensional coordinate vector with length n. For
instance, the following operation gathers color values from an image at the given pixel coordinates:
image: (height, width, #channels) pixels: (#pixels, 2)
y[p, c] = get_at(image[:, :, c], pixels[p, :])

As illustrated above, many tensor operations in Numpy-like frameworks reduce to few elementary
operations when factoring out their vectorization. It’s all just vectorization - and always has been!
We use this observation in the following section to define a universal notation that represents tensor
operations as vectorized elementary operations.

4 EINX

4.1 NOTATION

Overview An operation in einx is expressed using the following function call signature:
{elementary_operation}("{vectorization}", {input_tensors...})

The above code states that the operation {elementary_operation} is vectorized according to the
expression "{vectorization}" and applied to the tensors {input_tensors...}. einx provides one
entry-point per elementary operation and follows Numpy’s naming of operations where possible.
For instance, the following operation computes a vectorized scalar addition, similar to np.add:
einx.add("{vectorization}", x, y)

Vectorization The vectorization string is constructed by analogy with loop notation as follows:

(1) Express the operation in loop notation (c.f . Sec. 3). To illustrate this, we consider the following
example tensor operation that vectorizes SOME_OPERATION:
for a in range(x.shape[2]): for b in range(y.shape[0]):

z[a, :, b] = SOME_OPERATION(x[:, :, a], y[b])

The number of colons (:) per tensor indicates the dimensionality of the argument(s) and return
value(s) of the elementary operation: Here, the first input is a matrix, the second input a scalar, and
the output a vector.

(2) Take the expressions that are used to denote sub-tensors (here: x[:, :, a], y[b], z[a, :, b]),
and convert the indices to the vectorization string as follows:

(a) Use an arrow (->) to delimit inputs from outputs.
(b) Use commas to delimit multiple tensors on each side of the arrow.
(c) Use spaces to delimit indices per tensor.
(d) Replace colons (:) with new symbolic axis names and place brackets ([]) around them.

Applying these rules results in the following einx representation for the above example operation:
z = einx.SOME_OPERATION("[c d] a, b -> a [e] b", x, y)

The vectorization expression indicates the shapes of input and output tensors. Here, x, y, and z have
shapes (c, d, a), (b), and (a, e, b), respectively. Unlike in loop notation where index names
denote loop variables, in einx notation the symbolic names refer to tensor axes. The loop ranges are
determined implicitly from the given tensor dimensions.

Brackets denote axes of the argument sub-tensors that are passed to the elementary operation:
SOME_OPERATION is invoked with tensors of shapes (c, d) and (), and returns a vector with shape
(e). Brackets may appear both in input and output expressions, and must be placed around the num-
ber of axes that matches the dimensionality expected by the elementary operation. Axes not marked
with brackets are vectorized. The same axis name may be used for multiple sub-tensor argument
axes, e.g., to indicate that they must have the same length:
z = einx.dot("a [b], [b] c -> a c", x, y) # Matrix multiplication

Axis composition Some tensor operations are representable in loop notation by mapping one or
more of the loop variables to a new index value (e.g., np.reshape uses the row-major formula). We
analogously define the following axis compositions in einx notation as ways in which one or more
axes are combined to form a single, new axis in the expression.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We define a flattened axis as multiple axes of a single tensor that are flattened in row-major order to
form a single new axis, following einops. A flattened axis is represented in the einx expression by
wrapping the composed axes in parentheses. For instance, the output of the vectorized identity map
einx.id("a b c -> (a b) c", x)

is two-dimensional, and its first dimension corresponds to the original axes a and b flattened in
row-major order (i.e., a groups of b elements each).

We introduce a new type of axis composition that does not exist in einops, i.e. the concatenated axis,
as multiple axes of multiple tensors concatenated along a single new axis. This allows representing
many operations from Numpy-like notation (e.g., np.{stack|concatenate|unstack|split}) as
vectorized identity maps. A concatenated axis is represented in einx using the plus operator (+) with
parentheses. For instance, the output of
einx.id("a b, a c -> a (b + c)", x, y)

is two-dimensional, and represents the concatenation of the input tensors along the second axis.

Axis constraints Additional axis sizes may be passed as keyword arguments to einx functions,
e.g., if the input shapes of tensors do not fully constrain the lengths of all axes:
einx.id("(a b) c -> a b c", x, a=4)

Anonymous axes For convenience, numerical axes may be used to specify the value of axes inline,
and are equivalent to writing a new, unique axis name with a corresponding constraint:
einx.id("a b -> a b 3", x)
einx.id("a b -> a b c", x, c=3)

Ellipsis We introduce a novel, generalized type of ellipsis ... that is placed immediately after
an axis to indicate that it is expanded a variable number of times. The number of expansions is
determined from the dimensionality of the input tensors and additional constraints. The following
example illustrates the expansion of ellipses:
einx.add("b... i, b... j -> b... i j", x, y) # expands to ...
einx.add("b0 b1 i, b0 b1 j -> b0 b1 i j", x, y) # ... for 3D inputs

Ellipses also apply to composed axes. The following example expands a flattened axis in order to
partition an n-dimensional tensor into a list of n-dimensional tiles with side-length ds:
einx.id("(s ds)... -> (s...) ds...", x, ds=4)

einx further allows writing an anonymous ellipsis without a preceding axis. In this case, einx intro-
duces a new axis name in front of it.

Ellipses in einx are analogous to their role in languages such as Java, C++ and Swift: An ellipsis
is placed after a parameter to indicate that the function or template accepts a variable number of
arguments of that type. The actual number is determined from how many arguments are provided at
a given call site. In contrast, anonymous ellipses are analogous to their usage in einsum and einops.

Implicit output If possible, operations allow omitting the output and inferring it from the inputs
instead, resulting in a more concise expression:

einx.sum("a [b]", x) # -> a einx.add("a b c, c", x, y) # -> a b c

4.2 CHARACTERISTICS

Universal einx decouples operations from their vectorization and applies consistent rules to ex-
press the vectorization independent of the specific operation. Any tensor operation may be vectorized
with einx notation, and any vectorization representable in loop notation may also be expressed with
einx notation. This makes einx a universal notation for tensor operations.

In practice, the universality allows invoking arbitrary operations, including those not part of einx’s
API. For instance, the following code creates an einx operation that vectorizes a custom Python
function by internally using the vmap transformation from PyTorch (c.f . Sec. 2.3):
def myop(x, y): # Define a custom function

return 2 * x + torch.sum(y)
einmyop = einx.torch.adapt_with_vmap(myop) # Convert to einx operation

Invoking the einx operation with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

z = einmyop("a [c], b [c] -> a b [c]", x, y)

results in the same output as calling myop in loop notation:
for a in range(...): for b in range(...):

z[a, b, :] = myop(x[a, :], y[b, :])

Declarative Numpy-like notation follows an imperative programming model: It requires the pro-
grammer to express how to achieve the desired result, e.g. involving reshaping, broadcasting, and
transposing dimensions. In contrast, einx adopts a declarative approach similar to einsum, where the
user specifies what the input and output looks like, and allows the system to determine the required
transformations. This is illustrated by the following example:
einx.add("a d e, c b e -> a b c d e", x, y) # declarative
x[:, None, None] + np.transpose(y, (1, 0, 2))[None, :, :, None] # imperative

The former is often easier to read and write, and explicitly documents what the inputs look like
before applying the operation and the outputs look like after applying the operation; both of which
are not immediately visible in Numpy-like notation.

Interpretable The definition of einx notation by analogy with loop notation provides an explicit
interpretation of any given operation: The representation in loop notation clearly illustrates what
output the operation produces, while allowing for an underlying backend implementation that fol-
lows a different, more optimized algorithm.

4.3 PRACTICAL ADVANTAGES

In the following, we demonstrate several practical advantages of using einx with example operations.
Additional examples can be found in Appendix C.

Changing the shapes We consider a simple indexing operation in einx and Numpy-like notation
where elements in the argument x are retrieved at positions stored in the argument y:
einx.get_at("[x] a, b -> b a", x, y) torch.index_select(x, 0, y)

We now change the input and output shapes of this operation. einx allows varying the vectorization
term to reflect these changes and keeps the entry-point fixed. In contrast, changing the shapes in
Numpy-like notation necessitates switching to a different entry-point with a different signature and
vectorization rules, or is not representable using a single entry-point at all:
1. Introduce axis a in 2nd parameter y -> switch to torch.take_along_dim
einx.get_at("[x] a, b a -> b a", x, y) torch.take_along_dim(x, y, dim=0)
2. Introduce axis c -> no single entry-point in torch
einx.get_at("[x] b, c b a -> c b a", x, y)
3. Replace 1D indexing with 2D indexing -> no single entry-point in torch
einx.get_at("[x y] b, c b a [2] -> c b a", x, y)

Silent failures einsum represents multiple elementary operations in a single entry-point:
np.einsum("ab,bc->ac", x, y) einx.dot("a [b], [b] c -> a c", x, y)
np.einsum("ab->a", x) einx.sum("a [b] -> a", x)
np.einsum("a,b->ab", x, y) einx.multiply("a, b -> a b", x, y)
np.einsum("ab->ba", x) einx.id("a b -> b a", x)

This potentially results in silent failures if a typo in the expression of one operation matches the sig-
nature of another operation. einx catches such errors by checking for the signature of the respective
entry-point:
einsum("ij,jk->ik", x, y) # succeeds -> dot-product along j
Now introduce a typo:
einsum("ij,ik->ik", x, y) # fails silently -> sum-reduction along j
einx.dot("i [j], [i] k -> i k", x, y) # fails loudly -> inconsistent brackets
einx.dot("i j, i k -> i k", x, y) # fails loudly -> not a dot-product

Clarity In complex operations, the undifferentiated definition of axes in einsum obfuscates which
axes are summed along. In contrast, brackets in einx make the distinction clearly visible:
einsum("b q k h, b k h c -> b q h c", x, y) # Which axes are summed along?
einx.dot("b q [k] h, b [k] h c -> b q h c", x, y) # Only k is summed along!

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 IMPLEMENTATION

We provide an implementation of einx that compiles einx operations to function calls in a given
tensor framework, e.g., using Numpy-like or vmap notation (c.f . Sec. 2.3). The compilation creates
an isolated code snippet that is transformed to a function object using Python’s exec, cached on
the first invocation, and reused on subsequent calls with the same signature. This results in no
overhead compared to calling the framework functions directly, other than for cache lookup and
during initialization (c.f . Appendix G). If used with just-in-time compilation such as jax.jit, the
einx footprint disappears entirely.

As an example, the operation
einx.sum("a ([b] c)", x, c=4)

compiles to the following code when invoked with a Jax tensor of shape (8, 24) and requesting
Numpy-like or vmap notation:

backend="jax.classical"
import jax.numpy as jnp
def op(a):

a = jnp.reshape(a, (8, 6, 4))
a = jnp.sum(a, axis=(1,))
return a

backend="jax.vmap"
import jax.numpy as jnp
import jax
b = jax.vmap(jnp.sum, in_axes=1, out_axes=0)
b = jax.vmap(b, in_axes=0, out_axes=0)
def op(a):

a = jnp.reshape(a, (8, 6, 4))
a = b(a)
return a

The compilation to Numpy-like notation uses features such as the axis parameter to express the
vectorization, while vmap notation relies on the vmap transformation. We provide a description of
how einx expressions are compiled to Python code in Appendix D, more examples of compiled code
in Appendix E, and examples of verbose exceptions that are raised for syntax, shape and semantic
errors in Appendix F.

5 COMPARISON WITH EINSUM AND EINOPS

In the following, we compare einx notation with einsum and einops notation and illustrate the dis-
tinctions by implementing an example tensor operation. We provide comparisons with other types
of ein*-notations in Appendix A.

5.1 GENERAL COMPARISON

Both einsum and einops do not recognize the role of vectorization in tensor operations, and contain
design choices that are in contradiction with this insight:

• There is no distinction between vectorized axes and argument sub-tensor axes.
• The analogy with loop notation is not recognized or incorporated into the notation.
• einops.repeat and einops.reduce are framed as symmetrical in terms of adding or re-

moving axes1, despite the former applying vectorization to add an axis, and the latter ap-
plying an elementary operation to remove an axis.

• The naming of functions is not related to the underlying elementary operations: einsum is
not called dot, einops.rearrange and einops.repeat are not called identity.

• einops.rearrange and einops.repeat compute the same elementary operation (i.e. iden-
tity map), but follow different vectorization behavior across different entry-points.

Unlike einsum and einops which support only few operations (c.f . Tab. 2), einx allows expressing
any tensor operation and any vectorization by analogy with loop notation. It includes many nota-
tional improvements, such as generalized ellipses, axis concatenations, implicit outputs, a cleaner
API and separation of elementary operations into individual entry-points. Our implementation fur-
ther compiles expressions to isolated Python code snippets that are inspectable by the user and allow
for different types of backend notations, such as Numpy-like or vmap notation.

1”we made an explicit choice to separate scenarios of “adding dimensions” (repeat), “removing dimen-
sions” (reduce) and “keeping number of elements the same” (rearrange)” (Rogozhnikov, 2022a)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.2 CASE STUDY: MULTI-HEAD ATTENTION

We consider the multi-head attention (MHA) operation (Vaswani et al., 2017) and compare imple-
mentations using (1) einx and (2) einsum, einops and Numpy-like notation if necessary. The axes b,
q, k, h and c denote the batch, query, key, head and channel dimensions.

einxdef attn(q, k, v, heads=1):
A = einx.dot("b q (h [c]), b k (h [c]) -> b q k h", q, k, h=heads)
A = einx.softmax("b q [k] h", A / jnp.sqrt(q.shape[-1] / heads))
return einx.dot("b q [k] h, b [k] (h c) -> b q (h c)", A, v)

einsum/einops/
Numpy-like

def attn(q, k, v, heads=1):
q = einops.rearrange(q, "b q (h c) -> b q h c", h=heads)
k = einops.rearrange(k, "b k (h c) -> b k h c", h=heads)
v = einops.rearrange(v, "b k (h c) -> b k h c", h=heads)
A = jnp.einsum("bqhc,bkhc->bqkh", q, k) / jnp.sqrt(q.shape[-1])
A = jax.nn.softmax(A, axis=-2)
output = jnp.einsum("bqkh,bkhc->bqhc", A, v)
return einops.rearrange(output, "b q h c -> b q (h c)")

We make the following observations: (1) einx requires just three lines of code. einops additionally
calls einops.rearrange due to einsum not supporting axis compositions. (2) The softmax operation
in einx self-documents axis names and indicates that it is applied along the axis k. einops does not
support softmax and uses Numpy-like notation with a positional axis argument. (3) einx indicates
with brackets that the dot-products are applied along the axes c and k. einsum relies on an implicit
convention and obfuscates which of the enumerated axes are reduced. (4) einx explicitly names the
elementary operations, i.e. dot and softmax, rather than using the less clear name einsum.

In the MHA operation, a mask is optionally applied to the attention matrix:

einxqs, ks = jnp.arange(q.shape[1]), jnp.arange(k.shape[1])
mask = einx.greater_equal("q, k -> q k", qs, ks)
A = einx.where("q k, b q k h,", mask, A, -jnp.inf)

einsum/einops/
Numpy-like

qs, ks = jnp.arange(q.shape[1]), jnp.arange(k.shape[1])
mask = qs[:, np.newaxis] >= ks[np.newaxis, :]
A = jnp.where(mask[np.newaxis, :, :, np.newaxis], A, -jnp.inf)

The element-wise operations are not supported in einops and must rely on Numpy-like notation
which obfuscates both the semantics of axes and how they are aligned w.r.t. each other. In contrast,
einx self-documents axis names and follows a declarative, rather than imperative style.

Following the decomposition of complex tensor operations described in Sec. 3.2, we consider an
alternative implementation that represents the batched MHA shown above as an elementary, single-
query, single-head attention operation and its separate vectorization:

einxdef attn(q, k, v): # Define attention as an elementary operation
A = einx.dot("[c], k [c] -> k", q, k)
A = einx.softmax("[k]", A / jnp.sqrt(q.shape[-1]))
return einx.dot("[k], [k] c -> c", A, v)

einattn = einx.jax.adapt_with_vmap(attn) # Adapt to einx notation
Vectorize along batch, query, and flattened head dimensions:
output = einattn("b q (h [c]), b [k] (h [c]), b [k] (h [c]) -> b q (h [c])",

q, k, v, h=heads)

6 CONCLUSION

We introduce einx, a universal notation for tensor operations. It follows a consistent set of rules that
apply to any given operation, offers interpretability by analogy with loop notation, reduces the large
API of existing Numpy-like frameworks to a small set of elementary operations, and allows for a
clean, readable and writable expression of operations in code. The notation offers not only a useful
coding tool, but a better model for thinking tensor operations. We provide an open source software
package that implements einx in Python for commonly used tensor frameworks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

Krister Åhlander. Einstein summation for multidimensional arrays. Computers & Mathematics with
Applications, 2002.

Jakub Bachurski and Alan Mycroft. Points for free: Embedding pointful array programming in
python. In ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for
Array Programming, 2024.

Alan H Barr. The einstein summation notation. An Introduction to Physically Based Modeling
(Course Notes 19), pages E, 1991.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:

//github.com/jax-ml/jax.

Tongfei Chen. Typesafe abstractions for tensor operations (short paper). In Proceedings of the
8th ACM SIGPLAN International Symposium on Scala, SCALA 2017, pp. 45–50, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450355292. doi: 10.1145/
3136000.3136001. URL https://doi.org/10.1145/3136000.3136001.

David Chiang, Alexander M Rush, and Boaz Barak. Named tensor notation. Transactions on
Machine Learning Research, 2023.

Edward DongBo Cui. Vectorization: A Practical Guide to Efficient Implementations of Machine
Learning Algorithms. 2024.

Zachary DeVito. Named tensors using first-class dimensions in pytorch. https://github.com/

facebookresearch/torchdim, 2023.

Albert Einstein. Die grundlage der allgemeinen relativitätstheorie. Annalen der Physik, 1916.

Francois Fleuret. eingather, 2023. URL https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=pytorch.

git;a=blob plain;f=eingather.py;hb=HEAD.

David Hall, Ivan Zhou, and Percy Liang. Haliax, 2022. URL https://github.com/stanford-crfm/

haliax.

Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. MLX: Efficient and
flexible machine learning on apple silicon, 2023. URL https://github.com/ml-explore.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 2020.

Stephan Hoyer and Joe Hamman. xarray: Nd labeled arrays and datasets in python. Journal of Open
Research Software, 2017.

Niels Skovgaard Jensen. einmesh, 2025. URL https://github.com/Niels-Skovgaard-Jensen/einmesh.

Daniel D. Johnson. Penzai + Treescope: A toolkit for interpreting, visualizing, and editing models as
data. International Conference on Machine Learning - Workshop on Mechanistic Interpretability,
2024.

11

https://www.tensorflow.org/
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://doi.org/10.1145/3136000.3136001
https://github.com/facebookresearch/torchdim
https://github.com/facebookresearch/torchdim
https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=pytorch.git;a=blob_plain;f=eingather.py;hb=HEAD
https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=pytorch.git;a=blob_plain;f=eingather.py;hb=HEAD
https://github.com/stanford-crfm/haliax
https://github.com/stanford-crfm/haliax
https://github.com/ml-explore
https://github.com/Niels-Skovgaard-Jensen/einmesh

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonathan Malmaud. einindex, 2018. URL https://github.com/malmaud/einindex.

Callum McDougall. eindex, 2023. URL https://www.perfectlynormal.co.uk/blog-eindex.

Adam Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv, 2019.

Adam Paszke, Daniel D Johnson, David Duvenaud, Dimitrios Vytiniotis, Alexey Radul, Matthew J
Johnson, Jonathan Ragan-Kelley, and Dougal Maclaurin. Getting to the point: index sets and
parallelism-preserving autodiff for pointful array programming. ACM on Programming Lan-
guages, 2021.

Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation. In
International Conference on Learning Representations, 2022a.

Alex Rogozhnikov. einops.pack, einops.unpack, 2022b. URL https://github.com/arogozhnikov/

einops/commit/2da2add33d0091d5a0557cd1b8426e8e1c6bf108.

Alex Rogozhnikov. eindex, 2023. URL https://github.com/arogozhnikov/eindex.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an effi-
cient sub-pixel convolutional neural network. In Conference on Computer Vision and Pattern
Recognition, 2016.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,
William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstractions. arXiv, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Mark Wiebe. First commit to numpy introducing np.einsum. https://github.com/numpy/numpy/

commit/a41de3adf9dbbff9d9f2f50fe0ac59d6eabd43cf, 2011.

12

https://github.com/malmaud/einindex
https://www.perfectlynormal.co.uk/blog-eindex
https://github.com/arogozhnikov/einops/commit/2da2add33d0091d5a0557cd1b8426e8e1c6bf108
https://github.com/arogozhnikov/einops/commit/2da2add33d0091d5a0557cd1b8426e8e1c6bf108
https://github.com/arogozhnikov/eindex
https://github.com/numpy/numpy/commit/a41de3adf9dbbff9d9f2f50fe0ac59d6eabd43cf
https://github.com/numpy/numpy/commit/a41de3adf9dbbff9d9f2f50fe0ac59d6eabd43cf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

We provide the following additional content in the appendix.

Sec. A: Comparison with other types of ein*-notation: einops.{pack|unpack}, eindex, einmesh

Sec. B: Comparison with Numpy-like notation

Sec. C: Additional examples of einx operations

Sec. D: Description of einx compiler

Sec. E: Additional examples of code snippets compiled for einx operations

Sec. F: Examples of einx exceptions

Sec. G Benchmark of einx’s overhead

Sec. H: Usages statistics of related libraries

A COMPARISON WITH OTHER EIN*-NOTATIONS

einops.pack, einops.unpack Rogozhnikov (2022b) introduces a new ein*-notation to einops that
is implemented in einops.{pack|unpack} and allows expressing some concatenation and splitting
operations. The following call flattens all but the first two dimensions of the input tensors and
concatenates them along the third dimension:
einops.pack([x, y], "a b *")

However, the notation differs from the original einops notation, and further diverges from the declar-
ative style where all inputs and outputs are documented explicitly. Instead, different arguments are
represented using a single expression, and multiple varying sets of axes are represented using the
new * operator.

In contrast, concatenation and splitting in einx are expressed as special cases of the vector-
ized identity map using the concatenated axis composition (c.f . Sec. 4.1), retain the explicit and
self-documenting style, support more vectorization patterns than einops.{pack|unpack}, and triv-
ially allow inverting the operation by swapping input and output expressions:
einx.id("a b1, a b2 -> a (b1 + b2)", x, y) einops.pack([x, y], "a *")
einx.id("a b1, b2 a -> a (b1 + b2)", x, y) # no single entry-point in einops
einx.id("a (b1 + b2) -> a b1, b2 a", z) # no single entry-point in einops
einx.id("a, b -> a b (1 + 1)", x, y) # no single entry-point in einops

eindex Rogozhnikov (2023) proposes a notation that allows expressing gather, scatter and arg-
operations, for instance:
EX.gather(x, idx, "b h w c, [h, w] b -> b c")
einx.get_at("b [h w] c, [2] b -> b c", x, idx) # same operation in einx

The sub-expression [h, w] in eindex denotes an axis with length 2 in the tensor whose values are
used to index the axes h and w of the value tensor. It must always appear as the first axis of the
expression, diverges from the declarative style of the original notation, and does not generalize to
other tensor operations. In contrast, indexing in einx follows the same notation as other operations,
retains a more declarative style and supports more vectorization patterns:
einx.get_at("[h] c, [1] b -> b c", x, y) EX.gather(x, y, "h c, [h] b -> b c")
einx.get_at("[h] c, b [1] -> b c", x, y) # no single entry-point in eindex
einx.get_at("[h] c, b -> b c", x, y) # no single entry-point in eindex

einmesh Jensen (2025) introduces an ein*-notation for meshgrid operations:
xs, ys = einmesh.LinSpace(0, 1, 10), einmesh.LinSpace(-1, 1, 20)
x, y = einmesh.numpy.einmesh("x y", x=xs, y=ys)
xy = einmesh.numpy.einmesh("x y *", x=xs, y=ys)

Mesh-grid operations are compositions of broadcasting and concatenation with existing generator
functions such as np.linspace. As such, they are special cases of the vectorized identity map and
expressible using einx.id:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

xs, ys = np.linspace(0, 1, 10), np.linspace(-1, 1, 20)
x, y = einx.id("x, y -> x y, x y", xs, ys)
xy = einx.id("x, y -> x y (1 + 1)", xs, ys)

While einmesh requires knowledge of the concept and meaning of mesh-grids, the einx expression
clearly self-documents the behavior without requiring the introduction of new concepts and docu-
mentation.

B COMPARISON WITH NUMPY-LIKE NOTATION

We observe that much of the complexity in Numpy-like notation stems solely from the way in which
vectorization is expressed and impacts how users read and write tensor programs:

• Users have to learn many diverging rules for expressing vectorization, e.g.:
– Operations over multiple inputs often rely on implicit broadcasting rules2.
– Some operations use parameters such as axis or dim (e.g. reduction with torch.sum,

or vector-to-vector mapping with torch.softmax).
– Indexing operations use, i.a., advanced indexing rules3.
– Many operations (e.g. np.{dot|matmul}) follow function-specific rule sets.
– Complex operations often require separate shape manipulation to align inputs and

outputs with their signature (e.g. using np.{transpose|squeeze|newaxis}).
– The rules sometimes conflict across different frameworks (e.g. {tf|torch}.gather).

• Function names and arguments alone often do not reflect the vectorization behavior without
reading their documentation or writing comments, e.g.:

– Which of torch.{take|gather|index_select} do I use to perform indexing in a
given use case?

– Which of np.{matmul|dot|tensordot|inner} do I use in a given use case?
• Understanding how a given operation is vectorized often incurs mental load, e.g.:

– Which axes of x and y in the following expression are vectorized jointly or separately?
x[:, np.newaxis, :, np.newaxis] + y[:, :, np.newaxis, :]

– Which input and output axes in the following operation correspond to each other?
np.transpose(x, (2, 1, 3, 0))

Harris et al. (2020) use the term vectorization only when describing element-wise operations in
Numpy. In contrast, we follow a generalized view of vectorization that covers all mechanisms
described above and is independent of any specific operation. This allows einx notation, which
represents the vectorization of operations, to be applicable to any tensor operation and follow a
single set of rules across operations. The universal nature of einx notation simplifies the large
and complex API of Numpy-like notation, and reduces many Numpy-like operations to few einx
operations.

C ADDITIONAL EXAMPLES OF EINX OPERATIONS

Changing the operations In Numpy-like notation, some functions (e.g. np.kron) are provided
for particular vectorization cases of an elementary operation (e.g. scalar multiplication), but similar
specializations are not available for other elementary operations (e.g. scalar addition). In contrast,
einx allows using analogous vectorization patterns across different operations:
einx.multiply("a..., b... -> (a b)...", x, y) # Same as np.kron
einx.add ("a..., b... -> (a b)...", x, y) # kron-like add
einx.less ("a..., b... -> (a b)...", x, y) # kron-like less
einx.id ("a..., b... -> (a b)... (1 + 1)", x, y) # kron-like stack

Concatenation einx fully supports broadcasting and transposing shapes in concatenation opera-
tions, e.g., to append a vector along the channel dimension of a batch of images:

2https://numpy.org/doc/stable/user/basics.broadcasting.html
3https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing

14

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

einx.id("b c1 h w, c2 -> b (c1 + c2) h w", img, vec)

The same operation in Numpy-like notation requires separate manipulation of the shapes:
np.concatenate([img, np.broadcast_to(vec[None, :, None, None], \

(img.shape[0], vec.shape[0], img.shape[2], img.shape[3])], axis=1)

einx similarly supports creating mesh-grids, which rely on a specialized entry-point in Numpy-like
notation (i.e. np.meshgrid) and are not supported by a single entry-point in einops:
einx.id("x, y -> (1 + 1) x y", xs, ys) # Stacked along first axis
einx.id("x, y -> x y, x y", xs, ys) # Returned as separate tensors

The positional indices of arguments in some operations indicate how the arguments are used in the
operation. Since axis concatenations change the number of arguments and therefore their positional
indices, we only support axis concatenations in einx.id.

Expanding composed axes We show the depth-to-space transformation (Shi et al., 2016) in einx
and einops notation:
einops.rearrange(x, "b h w (c dh dw) -> b (h dh) (w dw) c", dh=4, dw=4)
einx.id("b s... (c ds...) -> b (s ds)... c", ds=4)

The axes b and c denote the batch and channel dimensions, h and w denote the spatial axes before,
and (h dh) and (w dw) after the transformation. The ellipses allow for a joint representation of
the spatial axes, resulting in a more concise expression, indicating similar treatment of spatial axes,
and generalizing the operation to n spatial dimensions. The following example shows a similar
expression of a spatial mean pooling operation:
einops.reduce(x, "(h dh) -> h",

reduction="mean", dh=4) # 1D
einops.reduce(x, "(h dh) (w dw) -> h w",

reduction="mean", dh=4, dw=4) # 2D
einops.reduce(x, "(h dh) (w dw) (d dd) -> h w d",

reduction="mean", dh=4, dw=4, dd=4) # 3D
einops.reduce(x, "(h dh) (w dw) (d dd) (z dz) -> h w d z",

reduction="mean", dh=4, dw=4, dd=4, dz=4) # 4D
einx.mean("(s [ds])...", x, ds=4) # ND

Multiple ellipses In einsum, multiple ellipses always refer to the same set of axes. In contrast,
ellipses in einx expand custom axes and thereby allow representing multiple sets of axes:
einsum("... a, ... a -> ...", x, y) # Same set of axes
einx.dot("x... [a], x... [a] -> x...", x, y) # Same set of axes
einx.dot("x... [a], y... [a] -> x... y...", x, y) # Multiple sets of axes

Flattened axis in einx.dot einsum and einops do not support using flattened axes for tensor con-
tractions. In contrast, all operations in einx support flattened axes, e.g. to express grouped linear
layers in neural nets
Regular linear layer
einx.dot("... [in], [in] out -> ... out ", x, weights)
Grouped linear layer: Same weights per group
einx.dot("... (h [in]), [in] out -> ... (h out)", x, weights, h=heads)
Grouped linear layer: Different weights per group
einx.dot("... (h [in]), [in] h out -> ... (h out)", x, weights, h=heads)

or the multi-head attention operation (c.f . Sec. 5.2).

Multiple elementary operations As described in Sec. 3.2, some operations from Numpy-like
notation are decomposable into different elementary operations. For instance, the sum-reduction
y = np.sum(x, axis=1) is represented in loop notation as follows:
y[i] = sum(x[i, :]) # "sum" maps a vector to a scalar -> 1 vectorized axis
y[i] += x[i, j] # "+=" adds a scalar to a scalar -> 2 vectorized axes

This maps to two corresponding expressions in einx notation:
y = einx.sum("i [j] -> i", x) # 1 vectorized axis
y = einx.sum("i j -> i", x) # 2 vectorized axes

Where possible, we support both types of expressions in an operation and indicate so in the doc-
umentation. The representation of einx.{dot|sum} as vectorized scalar operations (i.e., without
brackets) allows for compatibility with the corresponding operations in einsum and einops notation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D DESCRIPTION OF EINX COMPILER

Our implementation compiles einx operations to isolated code snippets in Python which invoke
framework functions based on the requested type of notation (c.f . examples in Sec. E). The compi-
lation is performed in the following three steps.

1. Abstract syntax tree In the first step, the string expression of a given einx operation is trans-
formed to one abstract syntax tree (AST) for each input and output tensor. Nodes in the AST
correspond to different sub-expressions such as axis lists, axis compositions, named or unnamed
axes and ellipses. The transformation is done in the following stages:

1. Parse the string to a simple AST and check for syntax errors such as invalid literals, axis
names, parentheses and bracket placement.

2. Expand all ellipses in the AST. The compiler first determines the number of expansions
for each ellipsis using a system of equations that represent the constraints resulting among
others from the input shapes or identical axis names across multiple ellipses. Each ellipses
is then replaced by n copies of its child node where n is its expansion number. For each
copy, an incrementing counter is appended to all included axis names. Invalid ellipsis
placement, e.g., indicated by not finding a unique solution to the system of equations,
results in a rank (i.e., dimensionality) error.

3. Determine the length of all axes in the expression and annotate the AST with the axis
lengths. To achieve this, the compiler solves a system of equations that represent the con-
straints resulting among others from the input shapes, additional parameters and relation
between nodes and their children (e.g., the length of an axis composition is equal to the
product of the lengths of its child nodes). Inconsistent axis constraints, e.g., due to input
shapes not matching a given einx expression, result in a dimension error.

The final ASTs fully specify the shapes of all input and output tensors in the operation.

2. Computational graph In the second step, a computational graph is built for the operation
using the requested framework, notation, elementary operation, and shape ASTs. Nodes in the graph
represent values (e.g., tensors or Python values), and edges with input and output nodes represent
function calls or other Python statements (e.g., tensor operations in a given tensor framework).

The graph is built by passing tracers (i.e., objects representing graph nodes) through a Python func-
tion that represents the algorithm for computing the given operation. The initial inputs are con-
structed as tracers representing the input tensors with the given shape ASTs. Each statement (e.g.,
function call) with a set of input tracers constructs a new edge in the graph, and returns a new set
of output tracers. The final graph is defined by a set of input and output tracers as well as edges
representing the function calls and statements that make up the requested algorithm.

The algorithms for different types of operations are hard-coded based on the API of the backend
framework and requested type of notation. Groups of operations often share parts of the implemen-
tation: For instance, most operations start by invoking a reshape operation to unflatten axes in the
input tensors (i.e., to remove flattened axis compositions), and end by flattening axes of the output
tensors as determined by the output AST (i.e. to reintroduce flattened axis compositions). Some
groups of operations, such as all element-wise operations, have identical implementations up to the
innermost backend function that is invoked (e.g., np.{add|subtract|multiply|logical_and}).

Finally, the graph is optimized using a set of simple heuristics, such as removing reshape operations
where the input and output shapes are identical, or transpose operations where the order of input
and output axes is identical.

3. Python code snippet In the last step, the computational graph is transformed into an isolated
Python code snippet. The operations are topologically sorted and transformed to lines of code by
traversing the graph from output to input nodes. Variables are created starting from the name a and
incrementing alphabetically, with names being reused if possible.

The entire code snippet is executed using Python’s exec, and the object corresponding the con-
structed operation is retrieved from the environment using Python’s eval.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXAMPLES OF COMPILED CODE

The code snippet that is compiled for a given einx operation can be inspected by passing graph=True
to the respective operation. In the following, we provide additional examples of compiled code for
einx operations using the Jax framework.

Example 1: Transposition.
>>> x = jnp.zeros((10, 5))
>>> einx.id("a b -> b a", x, graph=True)
import jax.numpy as jnp
def op(a):

a = jnp.transpose(a, (1, 0))
return a

Example 2: Reshape.
>>> x = jnp.zeros((10, 5))
>>> einx.id("(a b) c -> a (b c)", x, b=2, graph=True)
import jax.numpy as jnp
def op(a):

a = jnp.reshape(a, (5, 10))
return a

Example 3: No-op.
>>> x = jnp.zeros((10, 5))
>>> einx.id("a b -> a b", x, graph=True)
def op(a):

return a

Example 4a: Element-wise addition that uses Numpy-like broadcasting.
>>> x = jnp.zeros((2, 5, 6))
>>> y = jnp.zeros((4, 3, 6))
>>> einx.add("a d e, c b e -> a b c d e", x, y, graph=True)
import jax.numpy as jnp
def op(a, b):

a = jnp.reshape(a, (2, 1, 1, 5, 6))
b = jnp.transpose(b, (1, 0, 2))
b = jnp.reshape(b, (1, 3, 4, 1, 6))
c = jnp.add(a, b)
return c

Example 4b: Element-wise addition that uses jax.vmap to vectorize jnp.add.
>>> x = jnp.zeros((2, 5, 6))
>>> y = jnp.zeros((4, 3, 6))
>>> einx.add("a d e, c b e -> a b c d e", x, y, graph=True,

backend="jax.vmap")
import jax.numpy as jnp
import jax
a = jax.vmap(jnp.add, in_axes=(0, None), out_axes=0)
a = jax.vmap(a, in_axes=(1, None), out_axes=1)
a = jax.vmap(a, in_axes=(None, 0), out_axes=1)
a = jax.vmap(a, in_axes=(None, 1), out_axes=1)
a = jax.vmap(a, in_axes=(2, 2), out_axes=4)

Example 5a: Matrix multiplication that forwards to jnp.einsum.
>>> x = jnp.zeros((2, 3))
>>> y = jnp.zeros((3, 4))
>>> einx.dot("a [b], [b] c -> a c", x, y, graph=True)
import jax.numpy as jnp
def op(a, b):

c = jnp.einsum("ab,bc->ac", a, b)
return c

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Example 5b: Matrix multiplication that uses jax.vmap to vectorize jnp.dot.
>>> x = jnp.zeros((2, 3))
>>> y = jnp.zeros((3, 4))
>>> einx.dot("a [b], [b] c -> a c", x, y, graph=True,

backend="jax.vmap")
import jax.numpy as jnp
import jax
a = jax.vmap(jnp.dot, in_axes=(None, 1), out_axes=0)
a = jax.vmap(a, in_axes=(0, None), out_axes=0)

Example 6: Retrieve pixel colors from a batch of images.
>>> x = jnp.zeros((2, 128, 128, 3)) # batch of images
>>> y = jnp.zeros((50, 2)) # set of 50 pixels
>>> einx.get_at("b [h w] c, p [2] -> b p c", x, y, graph=True,

backend="jax.vmap")
import jax
def a(b, c):

return b[c[0], c[1]]
a = jax.vmap(a, in_axes=(0, None), out_axes=0)
a = jax.vmap(a, in_axes=(None, 0), out_axes=1)
a = jax.vmap(a, in_axes=(3, None), out_axes=2)

F EXAMPLES OF EINX EXCEPTIONS

Our implementation of einx raises verbose exceptions for syntax, shape and semantic errors. In the
following, we provide several examples.

Example 1: Syntax error
>>> x = np.zeros((10, 5))
>>> einx.id("a b -> (a b", x)
...
SyntaxError: Found an opening parenthesis that is not closed:
Expression: "a b -> (a b"

ˆ

Example 2: Syntax error
>>> x = np.zeros((10, 5))
>>> einx.id("(b)a -> a b", x)
...
SyntaxError: The expression ’(b)a’ is not valid. Are you maybe missing a
whitespace?
Expression: "(b)a -> a b"

ˆˆˆˆ

Example 3: Bracket error
>>> x = np.zeros((10,))
>>> einx.sum("a [b] c -> a b", x)
...
SyntaxError: There are multiple occurrences of axis b with inconsistent bracket
usage:
Expression: "a [b] c -> a b"

ˆˆˆ ˆ
An axis may only appear with brackets or without brackets, but not both.

Example 4: Axis size error
>>> x = np.zeros((10, 5))
>>> einx.id("(a b) c -> a b c", x)
...
AxisSizeError: Failed to uniquely determine the size of the axes a, b. Please

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

provide more constraints.
Expression: "(a b) c -> a b c"

ˆ ˆ ˆ ˆ
The expression, tensor shapes and contraints resulted in the following
equation(s):

(a b) c = 10 5
The operation was called with the following arguments:
- Positional argument #1: Tensor with shape (10, 5)

Example 5: Ellipsis error
>>> x = np.zeros((10, 5))
>>> einx.id("(a b)... -> a b...", x)
...
RankError: Found an invalid usage of ellipses and/or constraints for the
axis a:
Expression: "(a b)... -> a b..."

ˆ ˆ
Please check the following:
- Each axis name may be used either with or without an ellipsis, but not both.
- The rank of a constraint must be equal to or less than the number of
ellipses around the corresponding axis.

The following equation(s) were determined for the expression:
(a b)... = 10 5

The operation was called with the following arguments:
- Positional argument #1: Tensor with shape (10, 5)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: Overhead in milliseconds of using einx for three example operations with Numpy.

Operation Compilation (ms) Cache retrieval (ms)
einx.id("a h w c -> a c h w", x) 6.8± 1.3 0.058± 0.001
einx.dot("a [b], [b] c -> a c", x, y) 9.3± 2.4 0.070± 0.007
einx.add("a b (c d) e, (d e) f g h" 23.5± 3.1 0.077± 0.003

"-> a b c d e f g h", x, y, d=2)

Table 4: Usage statistics of libraries in the context of tensor notations. *: einsum is implemented
in different tensor frameworks, not a single repository. **: torchdim was upstreamed into the larger
functorch repository on Aug 1, 2024. ***: No reliable search term.

Github stars Github forks Github files Conferences usage
ein*-notation

einsum * * 431000 35.27%
einops 9200 381 164000 21.19%

Named tensors
penzai 1800 66 456 0%
torchdim **331 **10 243 0.01%
Haliax 202 19 1000 0.02%
xarray 4000 1200 184000 0.46%

Other pointful notations
Dex 1600 114 *** 0%
Tensor Comprehensions 1800 213 132 0%
Ein 17 0 *** 0%

G BENCHMARK OF OVERHEAD

einx compiles operations to function calls in a given tensor framework. The result of the compilation
is cached on the first invocation, and reused on subsequent invocations with the same signature. The
overhead of using einx compared to calling the framework functions directly thus consists of (1) the
compilation on the first function call and (2) cache retrieval on subsequent function calls. Table 3
shows the overhead that einx incurs for three example operations using the Numpy backend. In
all cases, the cache retrieval after initialization adds less than 0.1ms of overhead. When used with
just-in-time compilation such as jax.jit, the overhead disappears entirely.

H USAGES STATISTICS OF RELATED LIBRARIES

Table 4 provides an overview on the usage statistics of related libraries in the context of tensor nota-
tions. We gathered the number of stars and forks of the respective Github repositories in September
2025. We further used the Github search to find usages of the libraries, and note the number of
files returned by the search. We lastly gathered all 11898 publicly accessible Github repositories
linked by papers published in the conferences CVPR 2023, CVPR 2024, CVPR 2025, ICCV 2023,
ECCV 2024, ICLR 2023, ICLR 2024, ICLR 2025, NeurIPS 2023 and NeurIPS 2024, and note the
percentage of papers that use the respective libraries by matching a regex term to the source code.

We make the following observations:

• Of the listed libraries, only einsum and einops are used by a significant number of papers
(> 20%) in machine learning conferences. All others are used by less than 1% of papers.

• einsum, einops and xarray are used in 100× more files on Github than all other libraries.
• xarray is used in many files on Github, but less than 1% in machine learning conferences.
• Named tensor libraries and custom pointful notations have found little adoption in machine

learning conferences.

20

	Introduction
	Related works
	ein*-notations for tensor operations
	Other notations for tensor operations
	Definition of vectorization in literature

	Vectorization
	Vectorizing lower-order operations to higher-order operations
	Decomposing higher-order operations to lower-order operations

	einx
	Notation
	Characteristics
	Practical advantages
	Implementation

	Comparison with einsum and einops
	General comparison
	Case study: multi-head attention

	Conclusion
	Comparison with other ein*-notations
	Comparison with Numpy-like notation
	Additional examples of einx operations
	Description of einx compiler
	Additional examples of compiled code
	Examples of einx exceptions
	Benchmark of overhead
	Usages statistics of related libraries

