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Summary
A key approach to state abstraction is approximating behavioral metrics (notably, bisimu-

lation metrics) in the observation space, and embedding these learned distances in the represen-
tation space. While promising for robustness to task-irrelevant noise, as shown in prior work,
accurately estimating these metrics remains challenging, requiring various design choices that
create gaps between theory and practice. Prior evaluations focus mainly on final returns, leav-
ing the quality of learned metrics and the source of performance gains unclear. To systemati-
cally assess how metric learning works in deep reinforcement learning (RL), we evaluate five
recent approaches, unified conceptually as isometric embeddings with varying design choices.
We benchmark them with baselines across 20 state-based and 14 pixel-based tasks, spanning
370 task configurations with diverse noise settings. Beyond final returns, we introduce the
evaluation of a denoising factor to quantify the encoder’s ability to filter distractions. To fur-
ther isolate the effect of metric learning, we propose and evaluate an isolated metric estimation
setting, in which the encoder is influenced solely by the metric loss. Finally, we release an
open-source, modular codebase to improve reproducibility and support future research on met-
ric learning in deep RL.

Contribution(s)
1. We analyze five recent metric learning approaches under the isometric embedding frame-

work to identify key design choices.
Context: Metric learning methods often diverge significantly between theory and imple-
mentation.

2. We introduce the denoising factor to quantify an encoder’s ability to filter distractions.
Context: Metric learning is often motivated by denoising ability but is rarely evaluated
directly, with prior work relying mainly on qualitative analysis (Zhang et al., 2020).

3. We benchmark five metric learning approaches across diverse distracting domains and find
that common benchmarks add little difficulty to clean tasks, while certain noise settings
remain challenging. We adopt most hyperparameters provided in their codebases, as we
believe they are well-tuned for their benchmarks that share the same denoised states as ours.
Context: Prior work primarily uses IID Gaussian noise with varied dimensions (Ni et al.,
2024) and grayscale video backgrounds (Zhang et al., 2020).

4. Through ablation studies, we identify layer normalization and self-prediction loss as key
design choices across all methods.
Context: Prior work in metric learning does not isolate the effect of self-prediction loss
and only shows the benefits of normalization in specific methods (Zang et al., 2022).

5. We show that the benefits of metric learning diminish in both return and denoising factor
when key design choices are incorporated into the baseline.
Context: Prior work does not report this limitation of metric learning.
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Abstract
A key approach to state abstraction is approximating behavioral metrics (notably,
bisimulation metrics) in the observation space and embedding these learned distances
in the representation space. While promising for robustness to task-irrelevant noise,
as shown in prior work, accurately estimating these metrics remains challenging,
requiring various design choices that create gaps between theory and practice. Prior
evaluations focus mainly on final returns, leaving the quality of learned metrics and
the source of performance gains unclear. To systematically assess how metric learning
works in deep reinforcement learning (RL), we evaluate five recent approaches, unified
conceptually as isometric embeddings with varying design choices. We benchmark
them with baselines across 20 state-based and 14 pixel-based tasks, spanning 370 task
configurations1 with diverse noise settings. Beyond final returns, we introduce the
evaluation of a denoising factor to quantify the encoder’s ability to filter distractions.
To further isolate the effect of metric learning, we propose and evaluate an isolated
metric estimation setting, in which the encoder is influenced solely by the metric loss.
Finally, we release an open-source, modular codebase to improve reproducibility and
support future research on metric learning in deep RL.2
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Figure 1: Examples of background noise settings in pixel-based domains. In image settings, the back-
ground is fixed; in video settings, it varies slightly; IID Gaussian noise is independently sampled each timestep.

1 Introduction
Real-world environments often present high-dimensional, noisy observations, posing challenges for
RL. For instance, in image-based settings, task-irrelevant variations in background, lighting, and
viewpoint introduce distractions (e.g., Fig. 1). Yet, despite this observational complexity, system
dynamics are typically governed by a compact, task-relevant state. State abstraction (Li et al., 2006;
Konidaris, 2019) provides a framework for extracting such latent representations from raw obser-
vations, filtering out irrelevant information while preserving task-critical structure. A key principle
of state abstraction is that behaviorally similar states should have similar representations. Tradi-
tionally, this is enforced through state aggregation (Singh et al., 1994; Givan et al., 2003), grouping
states into discrete abstract classes based on equivalence relations. However, state aggregation lacks

1200 state-based IID Gaussian (20 tasks × 10 noises), 84 pixel-based ID generalization (14 tasks × 6 noises), 30 state-
based IID Gaussian with random projection (6 tasks × 5 noises), and 56 pixel-based OOD generalization (14 tasks × 4 noises).

2The artifact is available at https://github.com/Rayluo-mila/understanding-metric-learning.

https://github.com/Rayluo-mila/understanding-metric-learning
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a measure of how different states are across classes and struggles with continuous representations,
requiring infinitely many discrete classes.

To address this, bisimulation metrics (Ferns et al., 2004; 2011) and their scalable variants (Castro,
2020; Zhang et al., 2020) have been proposed to define meaningful distances between observations.
These fall into the broader class of behavioral metrics (Castro et al., 2023), which quantify state
similarity based on differences in immediate rewards and transition probabilities. By learning a met-
ric alongside deep RL, prior work (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021;
Chen & Pan, 2022; Zang et al., 2022) has shown progress in tackling high-dimensional, noisy tasks.

Nevertheless, the role of behavioral metric learning in deep RL (metric learning for short) remains
unclear due to a lack of systematic evaluation. First, metric learning’s effectiveness relies on accu-
rate estimation in theory, but it is challenging in practice due to many design choices. Moreover,
prior work primarily measures performance through returns, without directly assessing the quality
of learned metrics. Second, metric learning is often combined with multiple losses (e.g., self-
prediction (Zhang et al., 2020), inverse dynamics (Kemertas & Aumentado-Armstrong, 2021)), as
well as architectural choices (e.g., normalization, ensembles (Zang et al., 2022)), making it difficult
to isolate metric learning’s impact on performance gains. Third, most studies evaluate only OOD
generalization in environments with grayscale natural videos as distractions (Zhang et al., 2020),
conflating robustness with generalization. Lastly, prior evaluations (Tomar et al., 2021; Li et al.,
2022) report inconsistent results for the same algorithms, raising concerns about reproducibility.

Contributions. In this paper, we provide an understanding of how metric learning works in deep
RL through a systematic large-scale study. Our main contributions are as follows:

1. Conceptual insights (Sec. 3): We unify five recent metric learning approaches under an isometric
embedding framework to identify key design choices. We analyze why some exact behavioral
metrics provide a theoretical denoising guarantee, whereas others may not.

2. Evaluation designs on denoising (Sec. 4): To ensure a rigorous and comprehensive evaluation,
we introduce diverse distraction benchmarks with varying difficulty levels, across both state-
based and pixel-based domains, tested under both ID and OOD generalization. Then, we quantify
the denoising capability – the encoder’s ability to filter out distractions by introducing the de-
noising factor (DF). Finally, we propose an isolated metric estimation setting (referred to as the
isolated setting) to assess metric learning’s contribution to denoising, independent of other losses.

3. Comprehensive evaluation (Sec. 5): We conduct a comprehensive benchmark of five metric
learning methods and baselines across 20 state-based tasks with 10 IID Gaussian noise levels,
and 14 pixel-based tasks with 6 distraction types, in DeepMind Control suite (Tassa et al., 2018),
evaluating both return and DF. Beyond performance comparison, we assess the difficulty of our
distracting benchmarks, and conduct targeted case studies to identify key design choices and
examine the connection between metric learning and denoising throughout ablation study and
isolated metric estimation.

4. Open-source codebase (footnote 2): We open-source a modular and efficient codebase to
enhance the reproducibility and extensibility of metric-based methods in the RL community.

Main Findings. Based on the evaluation, we highlight the main findings as follows:

1. Benchmarking results (Sec. 5.1): SimSR, despite being designed for pixel tasks, outperforms all
methods in return and denoising on state-based domains with IID Gaussian noise. RAP performs
best in pixel-based tasks. Surprisingly, SAC and DeepMDP are strong baselines. Interestingly,
common distractions like varying noise dimensions and grayscale videos add little difficulty,
while random projection (state-based) and pixel Gaussian noise remain challenging.

2. Case study insights (Sec. 5.2): Further analysis reveals that SimSR’s success on state-based
tasks is largely driven by its use of self-prediction loss and feature normalization. Additionally,
applying layer normalization tends to improve both return and denoising across all methods.

3. Isolated setting results (Sec. 5.3): When comparing DFs in the isolated setting, we find that the
standalone benefit of learning metric by an explicit metric loss becomes marginal.
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2 Background

2.1 Problem Formulation

We consider a setting where observations contain distractions and focus on a special class of Markov
decision processes – exogenous block MDPs (EX-BMDPs) (Efroni et al., 2021; Islam et al., 2022).
This formulation (i) encompasses many distracting environments in prior work, (ii) retains the gen-
erality of standard MDPs, (iii) exactly characterizes problems solvable by bisimulation metrics, and
(iv) permits concise theoretical analysis and straightforward experiment design. Before introducing
EX-BMDPs, we first define block MDPs as a prerequisite.

Block MDPs (Du et al., 2019). A block MDP (BMDP) is a tuple ⟨X ,Z,A, q, p, R, γ⟩, where X
is the observation space, Z is the latent state space, A is the action space, p : Z × A → ∆(Z) is
latent transition function, R : Z ×A → R is (latent) reward function, and γ ∈ [0, 1) is the discount
factor. The emission function q : Z → ∆(X ) generates observation x ∼ q(· | z) from latent
state z. Crucially, BMDP assumes the block structure: ∀ z1, z2 ∈ Z, z1 ̸= z2 =⇒ supp(q(· |
z1)) ∩ supp(q(· | z2)) = ∅. This ensures that each observation uniquely determines its latent state,
enabling the existence of the oracle encoder q−1 : X → Z such that q−1(x) = z whenever
x ∼ q(· | z). The goal of RL in BMDP is to find a policy π : X → ∆(A) that maximizes the
rewards: maxπ Eπ

[∑∞
t=0 γ

tR(q−1(xt), at)
]
. The policy only receives the observation x without

access to the latent state z, the latent space Z , or the oracle encoder q−1. While the class of BMDPs
is equivalent to the class of MDPs (Du et al., 2019)3, they capture the underlying state from a high-
dimensional observation. However, BMDPs do not differentiate between task-relevant (endogenous)
state and task-irrelevant (exogenous) noise in the latent space.

Exogenous BMDPs (Efroni et al., 2021). An EX-BMDP extends BMDP by factorizing a
latent state into z = (s, ξ), where s ∈ S is the task-relevant state and ξ ∈ Ξ is the task-
irrelevant noise, representing distraction. The latent state transition p(s′, ξ′ | s, ξ, a) factorizes
as p(s′ | s, a)p(ξ′ | ξ), where the noise ξ evolves independently and does not affect the reward
function. To simplify notation, we denote the reward function asR(s, a). EX-BMDPs guarantee the
existence of a denoising map D : Z → S which extracts the task-relevant state s from latent state
z ∈ Z . Combined with the oracle encoder in BMDPs, this enables recovery of the task-relevant
state directly from observations: s = D(q−1(x)). We define this composite function ϕ∗ = D ◦ q−1

as the oracle encoder of EX-BMDP.

2.2 Representation Learning in RL

In actor-critic methods (Konda & Tsitsiklis, 1999), representation learning is commonly used to
handle complex MDPs such as EX-BMDPs. The idea is to learn an encoder that maps a raw obser-
vation to a representation, which is then shared by both actor and critic. Formally, an actor-critic
algorithm employs an encoder ϕ : X → Ψ, a (latent) actor πθ : Ψ → ∆(A), and a (latent) critic
Qω : Ψ×A → R, where Ψ is the representation space. In this work, we focus on end-to-end actor-
critic methods based on the soft actor-critic (SAC) algorithm (Haarnoja et al., 2018). These methods
jointly optimize the encoder and actor-critic using the RL loss in SAC, denoted as JSAC(ϕ, θ, ω).

Learning state representations solely from reward signals (i.e., RL loss) is challenging in complex
tasks. To address this, various state abstraction frameworks and representation objectives have
been proposed (see Ni et al. (2024) for a literature review). Among these, model-irrelevance
abstraction (Li et al., 2006) defines two conditions for an effective encoder using bisimulation rela-
tion (Givan et al., 2003). The first condition, known as reward prediction (RP)4, requires that the
representation preserves reward information. The second, self-prediction (ZP)5 (Ni et al., 2024), re-
quires that the representation preserves latent dynamics information. Model-irrelevance abstraction
thus defines compact yet informative encoders that retain essential information for optimal decision-

3From an MDP perspective, the grounded transition is P(x′ | x, a) =
∑
z′∈Z p(z′ | q−1(x), a)q(x′ | z′).

4Formally, in an EX-BMDP, RP condition is ∃Rκ : Ψ×A → R, s.t.R(ϕ∗(x), a) = Rκ(ϕ(x), a), ∀x, a.
5Formally, in an EX-BMDP, ZP condition is ∃Pν : Ψ×A → ∆(Ψ), s.t.P(ψ′ | x, a) = Pν(ψ′ | ϕ(x), a), ∀x, a, ψ′,

where P(ψ′ | x, a) =
∑
x′∈X P(x′ | x, a)1(ϕ(x′) = ψ′).
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making (Subramanian et al., 2022). By definition, the RP and ZP conditions hold when ϕ = ϕ∗ and
Ψ = S.6 This implies that the oracle encoder ϕ∗ serves as a model-irrelevance abstraction.

To learn a model-irrelevance abstraction, DeepMDP (Gelada et al., 2019) introduces RP and ZP
losses to approximate the RP and ZP conditions, respectively. Given a data tuple (x, a, r, x′), these
losses jointly optimizes the encoder ϕ, the reward model Rκ, and the latent transition model Pν :

JRP(ϕ, κ) = (Rκ(ϕ(x), a)− r)2, JZP(ϕ, ν) = − logPν(ϕ̄(x
′) | ϕ(x), a), (1)

where ϕ̄ detaches the encoder from gradient backpropagation. The overall objective JDeepMDP(ϕ)
for the encoder in DeepMDP combines SAC loss with RP and ZP losses (Eq. 1, Fig. 9).

3 Conceptual Analysis on Behavioral Metrics Learning in RL

This section establishes a conceptual framework linking behavioral metrics to representations in
deep RL (Sec. 3.1), and then summarizes how recent work instantiates it (Sec. 3.2). Please see
Appendix Sec. C for background in metrics and metric learning and Sec. A for other related work.

3.1 Isometric Embedding: Between Behavioral Metrics and Representations

We aim to find an encoder that maps noisy observations into a structured representation space,
where distances reflect differences in rewards and transition dynamics smoothly. This representa-
tion should facilitate RL by ensuring that task-relevant variations are captured. A natural way to
formalize this goal is through the concept of an isometric embedding (isometry)7:

Definition 1 (Isometric Embedding). An encoder ϕ : X → Ψ is an isometric embedding if the dis-
tances in the original space (X , dX ) are preserved in the representation space (Ψ, dΨ). Formally,

dX (x1, x2) = dΨ(ϕ(x1), ϕ(x2)), ∀x1, x2 ∈ X , (2)
where dX is the target metric (“desired” metric) and dΨ is the representational metric.

The target metric captures differences in rewards and transition dynamics following a policy π. We
omit the dependency on π for simplicity. The target metric is formulated as (Castro et al., 2023):

dX (x1, x2) := cRdR(x1, x2) + cT dT (dX )(P(x′ | x1),P(x′ | x2)) (3)

≈ cRd̂R(r1, r2) + cT d̂T (d̂X )(P̂(x′ | x1), P̂(x′ | x2)) = d̂X (x1, x2), (4)

where r1, r2 ∈ R are sampled immediate rewards based on x1, x2 following π and P(x′ | x) is a
next-state distribution following π. Here, dR represents immediate state similarity by rewards and
dT is a probabilistic measure of long-term state similarity through transition distance, and d̂R and
d̂T are approximants of dR and dT .

With isometric embedding assumption, we show the following lemma: for x1, x2 ∈ X ,
dT (dX )(P(x′ | x1),P(x′ | x2)) = dT (dΨ)(Pϕ(ψ′ | x1),Pϕ(ψ′ | x2)), (5)

where Pϕ(ψ′ | x) =
∑
x′ P(x′ | x)1(ψ′ = ϕ(x′)). The proof, provided in Appendix Sec. D.1,

holds for all considered dT . Intuitively, this result shows that isometry preserves transition distances
in X when mapped to Ψ, a property implicitly assumed in prior work.

3.2 Design Choices in Behavioral Metric Learning

Table 1: Summary of key implementation choices for the benchmarked methods.

Method d̂R d̂T dΨ
Metric
Loss

Target
Trick

Other
Losses

Transition
Model

Normali
-zation

SAC (Haarnoja et al., 2018) — — — — — — — —
DeepMDP (Gelada et al., 2019) — — — — — RP + ZP Probabilistic —
DBC (Zhang et al., 2020) Huber W2 closed-form Huber MSE — RP + ZP Probabilistic —
DBC-normed (Kemertas & Aumentado-Armstrong, 2021) Huber W2 closed-form Huber MSE — RP + ZP Deterministic MaxNorm
MICo (Castro et al., 2021) Abs. Sample-based Angular Huber ✓ — — —
RAP (Chen & Pan, 2022) RAP W2 closed-form Angular Huber — RP + ZP Probabilistic —
SimSR (Zang et al., 2022) Abs. Sample-based Cosine Huber — ZP Prob. ensemble L2Norm

6In this case, Rκ(s, a) = R(s, a) and Pν(s′ | s, a) = p(s′ | s, a).
7https://en.wikipedia.org/wiki/Isometry

https://en.wikipedia.org/wiki/Isometry
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Sec. 3.1 provides a general conceptual framework instantiated by several works through distinct
design choices. Rather than detailing theoretical differences (Appendix Sec. C.2) and design
choices defined in papers (Appendix Sec. C.3), we focus on practical implementations in their
publicly available codebases, summarized in Table 1 and illustrated in Appendix Sec. F.2.

Choices of Target Metric dX . Methods vary on the choice of dX (see Appendix Sec. C.2) and d̂X
to approximate dX – specifically, d̂R and d̂T that approximate dR and dT .
• d̂R: MICo and SimSR use absolute difference (“Abs.” in Table 1, Eq. 20), DBC and DBC-normed

use Huber distance (“Huber” in Table 1, Eq. 21), and RAP has a specific form (Appendix Sec. C.3).
• d̂T : To avoid expensive 1-Wasserstein computations in bisimulation metrics (Ferns et al., 2004),

DBC, DBC-normed, and RAP approximate dT using a Gaussian transition model with a 2-
Wasserstein metric. In contrast, MICo and SimSR rely on sample-based distance approximations.

Choices of Representational Metric dΨ. To approximate dΨ, DBC and DBC-normed employ a
Huber distance (a surrogate for L2 distance); MICo, SimSR, and RAP use an angular distance.

Metric Loss Function JM and Target Trick. To approximate an isometric embedding, metric
learning methods optimize this general objective:

JM (ϕ) = ℓ
(
dΨ(ϕ(x1), ϕ(x2))− d̂X (x1, x2)

)
, (6)

where d̂X (x1, x2) = cRd̂R(r1, r2) + cT d̂T (dΨ)(P̂(ψ′ | x1), P̂(ψ′ | x2)) derived by Eq. 3 and
Eq. 5. Here, ℓ is Huber loss (Huber, 1992) in MICo, RAP and SimSR, or mean square error (MSE)
in DBC and DBC-normed. MICo employs a target network ϕ̄ for encoding one observation in dΨ
when approximating dX to ensure learning stability. See Castro et al. (2021, Appendix C.2) for
further details.

Self-prediction (ZP) and Reward Prediction (RP) Loss. As discussed, approximating dX often
requires a transition model, and methods adopt distinct approaches: probabilistic models (DBC),
ensembles of probabilistic models (SimSR), and deterministic models (DBC-normed). MICo, in
contrast, employs a sample-based target metric that is free of ZP. Since all the listed metric learning
methods use sampled immediate rewards to approximate dR, an explicit reward model is not strictly
necessary. However, following the convention of DeepMDP, in DBC, DBC-normed, and RAP, the
RP loss is employed to further shape the representation.

Normalization in the Representation Space Ψ. DBC-normed employs max normalization to
enforce boundedness, leveraging prior knowledge of value range constraints on target metrics. While
SimSR requires L2 normalization to enforce unit-length representations, all the other methods use
LayerNorm (Ba et al., 2016) in pixel-based encoders. See Appendix Sec. C.4 for details.

3.3 Candidate Methods

We present the design choices of methods to be benchmarked in Table 1. In our experiment (Sec. 5),
we follow DBC’s implementation on DeepMDP which employs exponential moving average of ZP
target (Ni et al., 2024) and excludes observation reconstruction loss. For DBC-normed, we exclude
their additional components related to intrinsic rewards and inverse dynamics. For DBC-normed
and SimSR, we replace their original transition models with a single probabilistic transition model.
These modifications ensure that our study focuses on the effect of metric learning itself.

3.4 Why do Metrics (Not) Help with Denoising?

First, we define denoising as a form of generalization in which task-irrelevant noise is removed from
observations, allowing a model to generalize across observations with unseen noise. Formally:

An encoder ϕ is said to achieve perfect denoising in a EX-BMDP if, for any triplet
x, x+, x− ∈ X such that ϕ∗(x) = ϕ∗(x+) ̸= ϕ∗(x−), it holds that ϕ(x) = ϕ(x+) ̸= ϕ(x−).
That is, ϕ replicates the abstraction behavior of the oracle encoder ϕ∗.

We then discuss on the connection between denoising and target metric dX , which motivates further
empirical investigation into whether metric learning facilitates denoising.
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Metrics potentially help with denoising. Bisimulation metric (BSM, Def. 5) (Ferns et al., 2004;
2011) has perfect denoising in a EX-BMDP: for observations x, x+ ∈ X , dX (x, x+) = 0 (see
Appendix Sec. D.2 for a proof). Through Eq. 2, zero dΨ is ensured and the two observations are
assigned to the same representation (Appendix Sec. C.1, Metric definition, (1)). PBSM (Def. 6) has
a denoising property when the policy is exo-free (Islam et al., 2022) (see Appendix Sec. D.2 for a
proof). Generally, the MICo distance (Def. 7) does not assign a zero distance to such x, x+ (Castro
et al., 2021) unless both the policy and transition function are deterministic, but empirical evidence
indicates its potential to help with denoising (Chen & Pan, 2022; Zang et al., 2022).

Approximated metrics may not help with denoising. Although BSM has perfect denoising, it is
inherently challenging to approximate (Castro, 2020). As a result, all of our candidate methods are
based on PBSM (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021) or MICo (Castro
et al., 2021; Zang et al., 2022; Chen & Pan, 2022). However, PBSM does not guarantee denoising
observations under arbitrary policies, even when the policy is optimal (see Appendix Sec. D.2 for a
detailed discussion). Furthermore, several gaps between theory and practice (dX and d̂X ) exacerbate
their denoising properties. Firstly, both PBSM and MICo are on-policy metrics, but the sampled
rewards used in d̂R (Sec. 3.2) are from a replay buffer (Eq. 15), which are off-policy. Secondly, the
methods use approximated transition models, where an approximation error is introduced (Kemertas
& Aumentado-Armstrong (2021), Appendix Sec. D). Thirdly, in the line of work that leverages
behavioral metrics in deep RL, the metric loss is not the sole factor shaping the representation. The
interplay among the metric loss, ZP loss, and critic loss can lead to undesirable outcomes.

4 Study Design on Metric Learning: Noise and Denoising

The “denoising capability” of behavioral metric learning is often cited as a motivation in prior
work (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021; Chen & Pan, 2022; Zang
et al., 2022). However, most studies evaluate this indirectly in limited settings by (1) combining
metric learning with RL, (2) training only on grayscale natural video backgrounds, (3) testing on
unseen videos in training, and (4) evaluating solely through return performance. This leaves a gap
between motivation and actual denoising assessment.

This section bridges that gap with a systematic study design. First, we introduce a diverse range
of noise settings from IID Gaussian noise and random projections to natural video backgrounds
(Sec. 4.1), enabling an analysis of how noise difficulty impacts metric learning. Second, we separate
the noise distributions during training and testing to examine denoising under both ID and OOD
generalization settings (Sec. 4.2). Third, we introduce a direct evaluation measure, the denoising
factor (Sec. 4.3). Finally, to disentangle metric learning from RL, we propose the isolated metric
estimation setting, where metric learning affects only the encoder, not the RL agent (Sec. 4.4).

4.1 Noise Settings

We introduce four noise settings under the EX-BMDP framework (Sec. 2.1), where observations
follow x ∼ q(· | z) with z = (s, ξ), each designed to reflect distinct forms of environmental
variation. IID Gaussian noise is applied to both state-based and pixel-based domains to simulate
sensor-level randomness. In the state-based setting, we further consider a more challenging
variant with random projection, inspired by information security (Dwork, 2006; Gentry, 2009),
where data is privacy-preserving yet remains recoverable via decryption. Natural image and video
settings apply only to pixel-based domains, simulating real-world background shifts in visual
environments. The grayscale setting is widely adopted in metric learning (Zhang et al., 2020;
Kemertas & Aumentado-Armstrong, 2021; Zang et al., 2022; Chen & Pan, 2022).8 An illustration
of the pixel-based noise settings is shown in Fig. 1.

IID Gaussian Noise. The task-irrelevant noise ξt is sampled independently at each timestep from
an m-dimensional isotropic Gaussian, ξt ∼ N (µ, σ2I). For state-based domains, the observation is
exactly the latent state, i.e., xt = zt with q as the identity mapping. We adjust the noise dimension

8Some prior work present backgrounds in color but actually use grayscale in experiments, which may cause confusion.
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m or noise std σ to modulate difficulty, whereas prior work (Kemertas & Aumentado-Armstrong,
2021; Ni et al., 2024) only varies m with a small σ. For pixel-based domains, noise is applied per
pixel in the background and overlaid by the robot’s foreground pixels, with q as a rendering function.

IID Gaussian Noise with Random Projection. It applies only to state-based domains where s ∈
Rn. During initialization, a full-rank square matrix A ∈ R(n+m)×(n+m) is constructed with entries
sampled as Aij ∼ N (µA, σ

2
A). At each time step, we generate m-dimensional IID Gaussian noise

ξt ∼ N (µ, σ2I) and then apply a linear projection to obtain observation xt = Azt where zt =
(st, ξt). Since A is of full rank, st can be recovered from xt using A−1. This setting is more
challenging than IID Gaussian noise, as it linearly entangles st and ξt, with q as the linear projection.

Natural Images. This setting applies only to pixel-based domains, replacing the clean background
with a randomly selected natural image. As in the original environment, the background remains
fixed during training. Images can be grayscale or colored, introducing different levels of visual
complexity. In EX-BMDP notation, ξt is stationary, and q is a rendering function.

Natural Videos. This pixel-based noise setting replaces the clean background with grayscale or
colored natural videos. The underlying noise ξt ∈ N, representing the frame index, follows the
update rule ξt = (ξt−1 + 1) mod N , where N is the total number of frames.

4.2 Denoising Involves ID and OOD Generalization

The evaluation settings differ based on whether the noise distribution remains unchanged or shifts
between training and testing. In in-distribution (ID) generalization evaluation setting, the training
and testing environments (EX-BMDPs) are identical, meaning the same noise distribution is applied
in both phases. For example, IID Gaussian noise remains unchanged throughout training and testing.
For the out-of-distribution (OOD) generalization evaluation setting, the training and testing EX-
BMDPs share the same task-relevant parts (i.e., p(s′ | s, a), p(s0), R(s, a)) but differ in noise
distributions (i.e., p(ξ′ | ξ), p(ξ0)). For instance, natural videos from a training dataset are employed
during training, while videos from a distinct test dataset are used during evaluation. This OOD
evaluation setup is widely used in metric learning (Zhang et al., 2020; Kemertas & Aumentado-
Armstrong, 2021; Zang et al., 2022; Chen & Pan, 2022).

4.3 Quantifying Denoising via the Denoising Factor

We introduce the denoising factor (DF), a measure that quantifies an encoder ϕ’s ability to filter out
irrelevant details while retaining essential information.9 It also provides insight into how the behav-
ioral metrics are approximated, given that exact behavioral metrics are nearly inaccessible via fixed-
point iteration in high-dimensional state or action spaces. To compute DF, we define a positive score
and a negative score for an encoder ϕ. Inspired by triplet loss (Schroff et al., 2015) in contrastive
learning, we compute these scores by selecting an observation x as an anchor under a policy π, then
constructing a positive example x+ that shares the same task-relevant state, i.e., ϕ∗(x) = ϕ∗(x+)
(implying x and x+ are bisimilar), and a negative example x− for which this equality does not nec-
essarily hold. We define DF under a specific policy π because an agent may lack access to anchors
from other policies, and has no reason to denoise observations outside its training distribution.

Definition 2 (Positive score). The positive score of an encoder ϕ w.r.t. the metric dΨ measures the
average representational distance between anchors and their positive examples:

PosπdΨ(ϕ) := Ex∼ρπ(x),ξ+∼ρ(ξ+),x+∼q(·|ϕ∗(x),ξ+)[dΨ(ϕ(x), ϕ(x+))], (7)
where ρπ(x) is the stationary state distribution under the policy π and ρ(ξ+) is a stationary noise

distribution. The sampling x+ ∼ q(· | ϕ∗(x), ξ+) ensures that x+ shares the same task-relevant
state s = ϕ∗(x) but has different noise ξ+.

In the temporally-independent noise setting, ρ(ξ+) matches the noise transition; in the natural-video
setting, ρ(ξ+) is a uniform distribution over frame indices {0, 1, . . . , N − 1}.

9While the oracle encoder ϕ∗ achieves perfect denoising, direct comparison is impossible as ϕ lacks access to S.
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Definition 3 (Negative score). The negative score of an encoder ϕ w.r.t. the metric dΨ measures the
average representational distance between anchors and their negative examples (IID sampled):

NegπdΨ(ϕ) := E
x,x−

IID∼ ρπ
[dΨ(ϕ(x), ϕ(x−))]. (8)

Definition 4 (Denoising factor (DF)). The denoising factor of an encoder ϕ w.r.t. the metric dΨ is
defined as the normalized difference between the negative and positive scores:

DFπdΨ(ϕ) :=
NegπdΨ(ϕ)− PosπdΨ(ϕ)

NegπdΨ(ϕ) + PosπdΨ(ϕ)
∈ [−1, 1]. (9)

DF measures denoising, with values above 0 indicating smaller distances for positive over negative
pairs; higher values imply better denoising. The oracle encoder ϕ∗ attains the maximum of 1.

4.4 Decoupling Metric Learning from RL for Denoising Evaluation

In many behavioral metric learning methods, the encoder ϕ is optimized via a combination of losses:
the RL loss (e.g., JSAC(ϕ)), the reward-prediction loss JRP(ϕ), the self-prediction loss JZP(ϕ)
(Eq. 1), and a metric loss JM(ϕ) (Eq. 6). This coupling makes it difficult to isolate the direct impact
of metric learning on representation quality. Moreover, denoising factor (DF, Def. 4) depends on
both an encoder and a policy. Although DFs under different policies may offer initial quantitative
insights, such comparisons are not rigorous, as each reflects denoising ability on policy-specific
data. Notably, policies that frequently revisit similar task-relevant states under varying noise can
significantly inflate DF. Due to the above reasons, we propose to evaluate behavioral metric learning
algorithms in an isolated metric estimation setting.

Isolated Metric Estimation Setting. To isolate the effect of metric learning, we introduce an
isolated metric encoder ϕ̃ that is optimized solely via the metric loss JM(ϕ̃), while the agent encoder
ϕ is updated using the RL objectives (e.g., JSAC(ϕ) or JDeepMDP(ϕ)). In our experiments, regardless
of the metric learning method, a SAC agent interacts with the environment and collects data for
learning the metrics (illustration see Fig. 11). This allows for a fair comparison of DFπdΨ(ϕ̃) across
different metric learning methods. For methods that rely on self-prediction loss (Zhang et al., 2020;
Kemertas & Aumentado-Armstrong, 2021; Zang et al., 2022), we learn an isolated transition model
using ϕ̃ while preventing gradient backpropagation to ϕ̃ to ensure isolation. This setting can be
naturally extended to cases where ϕ̃ is optimized by a different combination of objectives than those
used to optimize ϕ, for example, using JRP and JZP to optimize ϕ̃ while using JSAC to optimize ϕ.

5 Experiments

Experiment Organization. We first conduct a comprehensive evaluation of all the methods (Ta-
ble 1) across 20 state-based DeepMind Control (DMC) (Tassa et al., 2018; Tunyasuvunakool et al.,
2020) tasks (listed in Table 7) and 14 pixel-based DMC tasks (listed in Table 8), under various noise
settings with ID generalization evaluation. Our results (Sec. 5.1) offer a broad assessment of agent
performance and task difficulty across a significantly larger set of tasks and noise settings than prior
work. Based on these findings, we select a subset of representative tasks for case studies (Sec. 5.2) to
identify key design choices (Sec. 3.2), and further investigate the isolated metric estimation setting
(Sec. 4.4) in Sec. 5.3. OOD generalization following prior work is assessed in Sec. 5.4.

Evaluation Protocol. For aggregated scores, we report the mean episodic reward rather than the
IQM (Agarwal et al., 2021b) to avoid ignoring tasks that are too easy or too challenging. Corre-
sponding per-task results for all aggregated scores in the main text are provided in Appendix Sec. G.
In our tables, each run’s mean episodic reward, bounded within [0, 1000], is computed as the av-
erage of 10 evaluation points collected between 1.95M and 2.05M steps, and then aggregated over
seeds. All figures and tables display 95% confidence intervals (CIs) across tasks. We use 12 seeds
for state-based and 5 seeds for pixel-based environments per task-noise combination.

Hyperparameters. We adopt the original hyperparameters from the referenced implementations
(details and exceptions see Appendix Sec. F.1). The hyperparameters are widely used and considered
well-tuned for pixel-based DMC with grayscale and clean backgrounds. Our settings retain the same
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DFFigure 2: Benchmarking results: performance of seven methods across diverse noise settings, aggregating
episodic rewards from 20 state-based (first two rows) and 14 pixel-based tasks (last row). “Noise std” denotes
the IID Gaussian noise’s standard deviation σ, while “noise dim” denotes its dimension m. Bars show 95% CI.

task-relevant state, varying only the noise type, which justifies this choice. Following DBC-normed,
we use the same key hyperparameters for both pixel- and state-based tasks.

Approximation of DF (Eq. 9). Observations collected in the evaluation stage are considered
anchors. We sample 16 positive and 16 negative examples for each anchor using the strategy in
Sec. 4.3. We report DFπ||·||2(ϕ), where π denotes the agent’s policy up to each evaluation point.

5.1 Benchmarking Methods on Various Noise Settings

Settings. For state-based DMC tasks, we apply IID Gaussian noise (µ = 0), varying either (a)
standard deviations σ ∈ {0.2, 1.0, 2.0, 4.0, 8.0} (with a fixed m = 32), or (b) noise dimensions
m ∈ {2, 16, 32, 64, 128} (with a fixed σ = 1.0). For pixel-based DMC tasks, evaluation is
conducted under 6 image background settings: (1) clean background (the original pixel-based
DMC setting), (2) grayscale natural images, (3) colored natural images, (4) grayscale natural
videos, (5) colored natural videos, and (6) IID Gaussian noise (with σ = 1.0). ID generalization
evaluation is conducted in this subsection. The aggregated reward and DF for settings (a), (b), and
(1)-(6) are shown in Fig. 2 and Fig. 12, respectively. Per-task results are listed in Appendix Sec. G.

Implementation Details. For state-based tasks, the encoder is a three-layer MLP, as used by SAC
and DBC-normed. For pixel-based tasks, the encoder is a CNN followed by LayerNorm (Ba et al.,
2016), as used by SAC-AE (Yarats et al., 2021b). All the compared methods are implemented based
on SAC. For a fair comparison, we adopt identical probabilistic latent transition models and reward
models used in DBC and DBC-normed if applicable.

Benchmarking Findings. We summarize the key findings from Fig. 2 and Table 12.

• SimSR consistently achieves the highest performance in most state-based tasks, excelling in both
return and DF. RAP performs best in most pixel-based tasks but suffers a moderate performance
drop in state-based tasks. Interestingly, both SimSR and RAP were evaluated only in pixel-based
domains in their papers, making our state-based findings novel.

• SAC and DeepMDP, although not metric learning methods, deliver decent performance on both
pixel-based and state-based tasks, but are often overlooked in prior work. Conversely, DBC, a
commonly used metric learning baseline, consistently performs the worst among all methods.

• Within the ranges we tested in state-based tasks, both increasing the number of noise dimensions
(at fixed σ = 1.0) and the noise standard deviation (at fixed m = 32) causes moderate reward
drops. Well-performing methods remain robust to noise variation in both reward and DF (Fig. 12).

• In pixel-based domains, grayscale natural video, widely used in prior work, is not significantly
harder than the clean background setting (e.g., for SAC and DeepMDP). Surprisingly, the IID
Gaussian noise setting is the most challenging, warranting further study.
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Table 2: Performance comparison without (R) and with LayerNorm (R′). The cell backgrounds in R′ rows
reflect R′ −R: red if R′ −R > 0, blue if R′ −R < 0, with darker shades for larger magnitude.

Methods

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

cartpole/balance R 967.5±12.3 928.7±32.3 814.1±86.6 973.7±12.4 966.6±9.2 950.3±71.2 999.5±0.5
R′ 979.5±20.1 994.6±3.6 943.6±24.1 975.5±19.9 936.1±29.8 981.7±19.1 980.2±19.3

finger/turn_easy R 592.9±176.6 327.3±88.5 201.9±38.5 619.0±35.1 419.0±75.9 240.6±36.4 926.8±10.9
R′ 770.6±65.8 955.0±7.1 193.7±22.2 577.5±33.7 745.3±47.6 412.8±39.3 934.6±16.0

walker/run R 635.3±19.8 347.8±84.0 23.9±2.6 628.9±25.7 455.9±41.3 649.4±11.1 760.6±19.4
R′ 534.5±53.6 776.0±5.9 342.9±54.5 759.8±19.4 611.0±22.5 661.6±88.4 761.6±20.0

quadruped/run R 233.8±59.0 381.1±64.9 219.5±63.5 433.3±47.3 417.9±44.2 441.1±93.7 847.4±21.7
R′ 483.8±6.0 891.1±17.8 291.3±55.0 509.5±35.4 467.4±21.8 687.3±59.8 832.9±63.4

finger/turn_hard R 177.6±66.1 168.3±50.4 97.9±11.8 414.7±49.5 207.2±53.8 110.8±17.0 885.4±24.5
R′ 495.7±53.1 925.8±14.7 95.9±12.4 473.4±39.9 335.1±42.6 201.1±26.3 917.1±13.9

hopper/hop R 0.1±0.0 31.3±16.7 0.3±0.3 51.1±13.4 0.4±0.3 0.8±0.5 233.9±22.6
R′ 12.4±4.9 195.4±19.9 6.2±4.8 125.8±22.3 1.8±2.0 1.0±0.3 207.4±36.4

• Different algorithms excel in different tasks (Table 7, Table 8), e.g., RAP in reacher/easy, MICo
in point_mass/easy (Fig. 26). Broad task coverage is essential to ensure generalizable insights.

• Adding objectives trades off computation efficiency. As shown in Table 12, the time cost of
optimizing a metric loss is close to optimizing a ZP loss by comparing MICo with DeepMDP.

5.2 What Matters in Metric and Representation Learning?

To identify key factors in metric learning, we conduct case studies on the design choices outlined in
Sec. 3.2. Six easy-to-hard state-based DMC tasks (see Table 2) are selected for detailed analysis.

Case studies design. First, a notable difference between our default encoder implementations for
state-based and pixel-based tasks is the inclusion of normalization, which may significantly impact
benchmarking outcomes. SimSR, the best-performing algorithm in state-based environments,
employs L2 normalization in the representation space and discusses its effectiveness (Zang et al.,
2022). This inspires us to examine whether normalization benefits other metric learning methods.
Considering the target metric misspecification issue (see Appendix Sec. C.4), we examine the effect
of incorporating LayerNorm on the representation space rather than using L2 normalization in
methods that do not inherently require it. Second, several techniques used by the best-performing
methods merit further analysis. Specifically, SimSR, RAP, and MICo (which excels in colored
natural video settings) utilize Huber metric loss instead of MSE, while MICo incorporates the target
trick (Sec. 3.2). To evaluate the effectiveness of these techniques, we apply them to DBC-normed,
which originally does not include any of these modifications. Third, we investigate the performance
of methods with LayerNorm in a challenging setting: IID Gaussian noise with random projection
(Sec. 4.1) with σ ∈ {0.2, 1.0, 2.0, 4.0, 8.0} (with a fixed noise dimension m = 32), shown in Fig. 4.
Important findings in Table 2, Fig. 28, Fig. 3, and Fig. 4 are as follows:

• Most methods benefit from LayerNorm in the representation space, improving both reward
(Table 2) and DF (Fig. 29). Notably, DeepMDP with LayerNorm performs comparably to
SimSR.10 For DBC-normed, employing Huber loss for the metric and incorporating the target
trick yield a modest performance improvement (Fig. 28).

• ZP loss is crucial for SimSR’s success in noisy state-based tasks (Fig. 3).
• A significant performance drop occurs for all agents when increasing the noise standard deviation

in IID Gaussian with random projection setting (Fig. 4, Fig. 30), even with LayerNorm applied.
Nevertheless, DeepMDP and SimSR remain relatively robust to the noise.

5.3 Isolated Metric Estimation Setting: Does Metric Learning Help with Denoising?

We further analyze the proposed isolated setting (Sec. 4.4) in the 6 selected tasks (Fig. 5). The ex-
periments include: (i) isolated metric estimation for metric learning methods, SAC, and DeepMDP
where ϕ̃ is optimized using either the Q loss, ZP loss alone (i.e., the minimalist algorithm (Ni et al.,
2024)), or both RP and ZP losses. (ii) The same as (i) but with LayerNorm applied to ϕ̃. (iii) Build-

10Our additional experiments reveal that removing LayerNorm in pixel-based environments causes a substantial perfor-
mance drop across all methods, highlighting the critical role of normalization.
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Figure 3: Ablation study on ZP loss on SimSR. “SimSR” is the agent benchmarked in Sec. 5.1, where ZP
is integral to the metric estimation. Therefore, we resort to “SimSR (Basic)” setting (Theorem 2, Zang et al.
(2022)), where ZP is independent of the metric estimation, and “SimSR (Basic, No ZP)” is the setting that ZP
is detached from SimSR (Basic). “SimSR (with RP)” adds RP loss to original SimSR. This ablation highlights
the impact of detaching ZP on the overall performance. X-axis stands for the environmental step.

150 300 450 600
SAC

DeepMDP
DBC

DBC-normed
MICo
RAP

SimSR
noise std: 0.2

150 300 450 600

noise std: 1.0

150 300 450 600

noise std: 2.0

150 300 450 600

noise std: 4.0

150 300 450 600

noise std: 8.0

DF

0.45 0.60 0.75
SAC

DeepMDP
DBC

DBC-normed
MICo
RAP

SimSR
noise std: 0.2

0.45 0.60 0.75

noise std: 1.0

0.45 0.60 0.75

noise std: 2.0

0.45 0.60 0.75

noise std: 4.0

0.45 0.60 0.75

noise std: 8.0

DFFigure 4: Aggregated reward (top row) and DF (bottom row) of seven agents on IID Gaussian with
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ing on (ii), additionally applying ZP loss to ϕ̃ for all metric learning methods. All evaluations are
conducted on ID generalization using SAC with LayerNorm as the base agent. We observe that:
• Generally, metrics learned in isolation provide some denoising but underperform relative to opti-

mizing the ZP loss on ϕ̃ (i.e., DeepMDP (w/o RP) in Fig. 5, middle row). Including an additional
RP loss to shape ϕ̃ (as in DeepMDP) yields limited DF improvement to the ZP-only setting.

• Applying LayerNorm to the isolated encoder ϕ̃ substantially improves DF for DeepMDP (with or
w/o RP), but offers only modest gains for metric learning methods (top and middle rows of Fig. 5).

• Adding metric losses to ZP loss on ϕ̃ generally does not improve DF (Fig. 5, mid and bottom rows).
• MICo’s DF remains relatively low, which aligns with its theoretical property that the metric for

positive examples is non-zero (Def. 7), as MICo does not enforce zero self-distance.

5.4 OOD Generalization Evaluation on Pixel-based Tasks
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Figure 6: Reward difference between ID and OOD evaluation in
the grayscale video setting (left) and colored video setting (right),
aggregated over 14 pixel-based tasks in Table 8.

While prior work has focused on
OOD generalization in pixel-based
settings, we extend this analysis by
evaluating all 14 pixel-based tasks.
The “grayscale video” setting (and
similarly for other settings) in Fig. 7
denotes using grayscale videos as dis-
tracting backgrounds for both train-
ing and evaluation, with distinct
video samples in each phase. Takeaways in Fig. 6 and Fig. 7 are as follows:



Reinforcement Learning Journal 2025
Noise std: 8.0, Noise dim: 32

SAC DeepMDP DBC DBC-normed MICo SimSR DeepMDP (w/o RP)

0 1 2
1e6

0.00

0.25

0.50

0.75

1.00
cartpole/balance

0 1 2
1e6

finger/turn_easy

0 1 2
1e6

walker/run

0 1 2
1e6

quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/hop

M
ea

n 
De

no
isi

ng
 Fa

ct
or

0 1 2
1e6

0.00

0.25

0.50

0.75

1.00
cartpole/balance

0 1 2
1e6

finger/turn_easy

0 1 2
1e6

walker/run

0 1 2
1e6

quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/hop

M
ea

n 
De

no
isi

ng
 Fa

ct
or

0 1 2
1e6

0.00

0.25

0.50

0.75

1.00
cartpole/balance

0 1 2
1e6

finger/turn_easy

0 1 2
1e6

walker/run

0 1 2
1e6

quadruped/run

0 1 2
1e6

finger/turn_hard

0 1 2
1e6

hopper/hop

M
ea

n 
De

no
isi

ng
 Fa

ct
or

Figure 5: DF for isolated encoder ϕ̃ – top row: without LayerNorm; middle row: with LayerNorm; bottom
row: with LayerNorm, ϕ̃ co-trained with metric and ZP losses. See Fig. 36 for reward curves and Fig. 37 for
DF for the agent encoder ϕ co-trained with metric and RL losses.
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based tasks in Table 8 with OOD generalization evaluation.

• Comparing Fig. 7 (OOD) with Fig. 2 (ID), all methods struggle to generalize in both grayscale
and colored image settings. Unlike video backgrounds, which provide changes over time that help
distinguish relevant and irrelevant features, static images lack such variation, making adaptation
to unseen backgrounds more difficult.

• Even with OOD generalization evaluation, SAC and DeepMDP remain competitive (Fig. 7).
• OOD generalization is significantly more challenging in the colored video setting than in the

grayscale video setting (Fig. 6). Surprisingly, even baselines like SAC exhibit a low reward differ-
ence, questioning the necessity of incorporating a metric loss in the widely used grayscale setting.

6 Future Work
Our empirical study focuses on continuous control, particularly locomotion, with SAC as the base
RL algorithm. As future work, we plan to extend this to discrete control domains and other embod-
iments with alternative base RL algorithms. To better disentangle algorithmic effects, future metric
learning research may benefit from evaluation in conceptually simple yet empirically challenging
environments with distracting noise, such as Gaussian noise with random projection in state-based
domains (Sec. 4.1). In addition, evaluation could include the denoising factor (Sec. 4.3) and compar-
isons between in- and out-of-distribution generalization (Sec. 4.2). Building on our findings, future
work could design new metric-based objectives that work well with self-prediction and normaliza-
tion, providing additional benefits beyond what these components already offer.
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A Related Work

State Abstraction and Behavioral Metrics. State abstraction in MDPs is traditionally achieved
by grouping equivalent states into a single abstract state. Various types of abstractions are pro-
posed using the criteria of different equivalence relations on aggregating the states, e.g., bisimula-
tion (model-irrelevance) abstraction and Q∗-irrelevance abstraction (Li et al., 2006; Jiang, 2018).
Bisimulation, as a canonical equivalence relation, originates from concurrency theory in the context
of labeled transition systems (Milner, 1980; Park, 1981) and labeled Markov process (Desharnais
et al., 2002; Panangaden, 2009). In the context of MDPs, it can be regarded as a refinement of both
action-sequence equivalence (identical future reward sequences given the same action sequence as
input) and optimal value equivalence (Givan et al., 2003). To relax the strict dichotomy inherent
in bisimulation relations, Ferns et al. (2004) propose using pseudometrics to measure the degree of
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bisimilarity between two states in a finite MDP and Ferns et al. (2011) extend it further to continu-
ous MDPs. Policy-dependent bisimulation metric (PBSM) (Castro, 2020) is a scalable variant of the
bisimulation metric (BSM) that restricts behavioral similarity to the current policy, eliminating the
need to evaluate all actions. GCB (Hansen-Estruch et al., 2022) extends PBSM to goal-conditioned
RL, proposing a similar metric that measures the distance between two state-goal pairs. Castro et al.
(2021) propose the MICo distance, which enables sample-based computation of transition distance
while also offering theoretical benefits (Castro et al., 2023). Building on MICo, improvements have
been introduced by SimSR (Zang et al., 2022) and RAP (Chen & Pan, 2022) (see Sec. C.2). Chen
et al. (2024) further propose a multi-step behavioral metric that measures the distance between two
pairs of states.

Beyond state abstraction, state-action abstraction has been extensively studied as another paradigm
of model minimization. This state-action abstraction yields an MDP homomorphism (Ravindran
& Barto, 2002; Ravindran, 2004), an abstract MDP that preserves the original model’s reward and
transition dynamics, and the relaxed counterpart, the lax bisimulation metric (Taylor, 2008). A
promising application is the exploitation of environmental symmetries, and recent work has focused
on scalable methods for discovering and approximating such homomorphisms (Biza & Platt, 2018;
Van der Pol et al., 2020b;a; Rezaei-Shoshtari et al., 2022; Liao et al., 2023; Panangaden et al., 2024).

Representation and Metric Learning in RL. As shown in Table 1, many compared methods
adopt self-prediction loss in addition to metric loss to shape the representation; see Ni et al. (2024)
for a comprehensive review. Notably, DeepMDP (Gelada et al., 2019) provides a theoretically
grounded and empirically validated framework for self-predictive representation learning in RL,
incorporating ZP and RP auxiliary losses alongside standard RL objectives to construct a latent
MDP. SPR (Schwarzer et al., 2020) adopts a similar self-supervised approach by learning a transi-
tion model and shaping the representation using signals from the k-th future observation rather than
the next observation in DeepMDP.

There are multiple ways to connect representation and metric learning in RL. For example, in Sec. 3,
we introduce isometric embedding as a unifying approach adopted by all our candidate methods. Be-
yond this, Agarwal et al. (2021a) relax the binary indicator in the contrastive loss by substituting it
with a metric-induced continuous similarity measure. Liu et al. (2023) use metrics for prototype rep-
resentation clustering, and Wang et al. (2023; 2024) utilize the learned metrics to shape the reward.

Beyond their use in online, model-free RL, behavioral metrics have also been applied to represen-
tation learning in offline RL (Dadashi et al., 2021; Hong et al., 2023; Pavse & Hanna, 2023; Zang
et al., 2023) and model-based RL (Shimizu & Tomizuka, 2024).

Evaluation on Representation Learning and Denoising. A closely related work, Tomar et al.
(2021), evaluate representation learning methods on six distracting pixel-based DMC tasks and
Atari games. They show that a simple baseline using reward prediction and self-prediction (akin to
DeepMDP in our implementation) outperforms one metric learning method (i.e., DBC). Similarly,
Li et al. (2022) study self-supervised losses like BYOL (Grill et al., 2020) on six clean pixel-based
DMC tasks and Atari games. They find that BYOL, akin to self-prediction, benefits model-free
agents but is inferior to data augmentation. For denoising evaluation, previous works (Zhang et al.,
2020; Chen & Pan, 2022; Zang et al., 2022) qualitatively assess it by visualizing representations in a
two-dimensional space using t-SNE plot. The learned encoder is evaluated by determining whether
anchor-positive pairs are closer than anchor-negative pairs in these plots, although these results may
not be statistically significant.

Unlike prior empirical studies, our work specifically evaluates metric learning (five methods) across
a broader range of state-based and pixel-based DMC tasks, considering both denoising factors and
returns. Beyond self-prediction, we identify other key design choices, such as layer normalization
and metric loss function, that impact performance. Denoising factors are computed from batches of
random samples throughout evaluation.
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Benchmarks on Denoising and Generalization. In state-based domains, IID Gaussian noises are
commonly employed in prior work (Kemertas & Aumentado-Armstrong, 2021; Nikishin et al., 2022;
Ni et al., 2024) as a challenging benchmark by varying noise dimensions. However, our findings in
DMC show that this protocol does not present sufficient difficulty for the best-performing method. In
pixel-based domains, IID Gaussian noise is less common but has been studied in Zhang et al. (2018)
on Atari games. Unlike our findings, they report that Atari with natural video backgrounds is more
challenging than with Gaussian noises, possibly due to domain differences (Atari vs. DMC). Similar
to our IID Gaussian with random projection setting, Voelcker et al. (2024) projects observations
using a random binary matrix in discrete domains.

In pixel-based domains, beyond the commonly used grayscale video distractions (Zhang et al.,
2020; Kemertas & Aumentado-Armstrong, 2021; Zang et al., 2022; Chen & Pan, 2022), several
other works have explored injecting distracting video backgrounds. In DeepMind Control Remas-
tered (Grigsby & Qi, 2020), environments are initialized with a visual seed that randomly selects
graphical elements – such as floor textures, backgrounds, body colors, and camera/lighting settings
– to drastically alter the appearance of image renderings while leaving the transition dynamics un-
changed, allowing millions of distinct visualizations of the same state sequence. The Distracting
Control Suite (Stone et al., 2021) provides a benchmark by introducing challenging visual distrac-
tions including similar graphical variations, resulting in a spectrum of difficulty levels. The DM-
Control Generalization Benchmark (DMC-GB) (Hansen & Wang, 2021) provides a framework for
evaluating agents’ generalization ability in pixel-based DMC tasks with distractions from random
colors and video backgrounds. Unlike our setting, it trains agents in a fixed, clean background and
evaluates them in a distracted environment, emphasizing the effectiveness of image-augmentation-
based methods. RL-ViGen (Yuan et al., 2023) creates a benchmark including domains across indoor
navigation, autonomous driving, and robotic manipulation, and various generalization types includ-
ing visual appearances, camera views, lighting conditions, scene structures, and cross embodiments.

Feature Normalization in RL. Recent work has demonstrated the benefits of layer normalization
(LayerNorm) (Ba et al., 2016) in deep RL, especially in state-based domains (Hiraoka et al., 2021;
Smith et al., 2022; Nauman et al., 2024). Our findings also highlight LayerNorm’s critical role in
state-based tasks but with key differences. Unlike most prior work, we apply LayerNorm only to
the encoder’s output layer, not every dense layer, as in Fujimoto et al. (2023). Additionally, we
demonstrate the combined impact of LayerNorm and self-prediction on distracting tasks, rather than
in purely model-free RL on clean tasks. In pixel-based domains, most prior metric learning methods
incorporate LayerNorm in the encoder following SAC-AE (Yarats et al., 2021b) but do not evaluate
its contribution in ablation studies.

Beyond LayerNorm, L2 normalization is also widely used in RL (Hussing et al., 2024).
SimSR (Zang et al., 2022) demonstrates its effectiveness for its own method in pixel-based domains.
SPR (Schwarzer et al., 2020) integrates L2 normalization into the self-prediction loss, effectively
transforming MSE into cosine loss. However, unlike our implementation, SPR does not normalize
representations for the actor or critic loss.

Finally, various other normalization techniques (Bhatt et al., 2019; Fujimoto et al., 2023; Li et al.,
2023; Hansen et al., 2023) have been explored in RL, focusing on sample efficiency and generaliza-
tion. Our work complements these efforts by analyzing the role of LayerNorm in representation and
metric learning on distracting tasks.

Beyond Behavioral Metrics. The idea of learning metrics that represent state discrepancy and
embedding them into the representation space (Eq. 2) can be extended to a broader context beyond
behavioral metrics that rely heavily on the reward signal. As prominent examples, Agarwal et al.
(2021a) utilize a state distance on optimal policies to shape the representation. Wang et al. (2023)
introduce an inverse dynamics bisimulation metric that incorporates the discrepancy in predicted
inverse dynamics into the PBSM formulation. Similarly, Rudolph et al. (2024) propose action-
bisimulation metric that captures the equivalence of states in terms of action controllability only,
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where a small distance indicates that the states share similar inverse dynamics on the representation
space. Myers et al. (2024) highlight the link between metrics and goal-conditioned RL by introduc-
ing a reward-free temporal distance between a state and a goal.

B Notation

Table 3 presents the abbreviations used frequently in our work and their full names.

Table 4, Table 5, and Table 6 show the glossary used in this paper.

Table 3: Abbreviations and their full names.

Abbreviation Full Name

RP Reward Prediction
ZP Self-prediction
BMDP Block Markov Decision Process (Du et al., 2019)
EX-BMDP Exogenous BMDP (Efroni et al., 2021)

BSM Bisimulation Metric (Ferns et al., 2004; 2011)
PBSM Policy-dependent Bisimulation Metric (Castro, 2020)

SAC Soft Actor-Critic (Haarnoja et al., 2018)
SAC-AE Soft Actor-Critic + Autoencoder (Yarats et al., 2021b)
DBC Deep Bisimulation Control (Zhang et al., 2020)
DBC-normed DBC with max normalization (Kemertas & Aumentado-Armstrong, 2021)
MICo Matching under Independent Couplings (Castro et al., 2021)
SimSR Simple Distance-based State Representation (Zang et al., 2022)
RAP Reducing Approximation Gap (Chen & Pan, 2022)

DF Denoising Factor
IID Independent and Identically Distributed
ID Generalization In-distribution Generalization
OOD Generalization Out-of-distribution Generalization
DMC DeepMind Control Suite (Tassa et al., 2018; Tunyasuvunakool et al., 2020)

Table 4: Glossary of notations in EX-BMDP (Sec. 2.1).
The top section lists symbols related to the latent states,
while the bottom section defines symbols related to
grounded observations.

Symbol Description

z = (s, ξ) ∈ Z Environment’s latent state
p(z′ | z, a) Latent state transition
s ∈ S Task-relevant state
ξ ∈ Ξ Task-irrelevant noise
a ∈ A Action
R(s, a) Latent reward function
r ∈ R Reward

γ ∈ [0, 1) Discount factor
p(s′ | s, a) Task-relevant state transition
p(ξ′ | ξ) Task-irrelevant noise transition

x ∈ X Observation
q(x | z) Emission function

q−1 : X → Z Oracle encoder to Z
ϕ∗ : X → S Oracle encoder (to S)
R(x, a) Grounded reward function

P(x′ | x, a) Grounded transition

Table 5: Glossary of notations in RL agents.

Symbol Description

ψ ∈ Ψ Agent’s representation
ϕ : X → Ψ Agent’s encoder
ϕ̃ : X → Ψ (Isolated) Metric encoder
πθ(a | ψ) (Latent) Actor
Qω(ψ, a) (Latent) Critic
Rκ(ψ, a) (Latent) Reward model

Pν(ψ
′ | ψ, a) (Latent) Transition model

Pϕ(ψ′ | x, a) Grounded-to-latent transition

Table 6: Glossary of notations in metrics.

Symbol Description

dX : X × X → R Target metric
dΨ : Ψ×Ψ → R Representational metric
dR : R× R → R Reward distance

dT (d)(·, ·) Transition distance
x, x+, x− ∈ X Anchor, positive, negative

DFπd (ϕ) Denoising factor
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C Background on Metrics and Metric Learning

C.1 Metric, Pseudometric, and Diffuse Metric

Metric. A function d : X × X → R≥0 is called a metric on the space X if for all x, y, z ∈ X :

(1) d(x, y) = 0 ⇐⇒ x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ d(x, y) + d(y, z).

Pseudometric11. A function d : X × X → R≥0 is a pseudometric if it satisfies (2) and (3) above,
and for (1) we only require d(x, x) = 0 for all x ∈ X (i.e., d(x, y) = 0 does not imply x = y).

Diffuse Metric (Definition 4.9 in Castro et al. (2021)). A function d : X × X → R≥0 is a diffuse
metric if it satisfies properties (2) and (3) above, and for (1) we only require d(x, y) ≥ 0. That is,
we do not demand d(x, x) = 0 or that d(x, y) = 0 ⇐⇒ x = y.

C.2 Definitions of Various Behavioral Metrics

In this section, we discuss the behavioral metrics for an EX-BMDP (Sec. 2.1) that serve as candidates
for dX in Sec. 3. From the observation space X , the grounded transition function is defined as
P(x′ | x, a) =

∑
z′∈Z q(x

′ | z′)p(z′ | q−1(x), a) and the grounded reward function as R(x, a) =
R(ϕ∗(x), a). Let x1, x2 ∈ X be two arbitrary observations.

Bisimulation metric is a relaxation of bisimulation relation (Givan et al., 2003) by allowing a smooth
variation based on differences in the reward function and transition dynamics. The bisimulation
metric thus quantifies the behavioral similarity between two states and is formally defined as follows:

Definition 5 (Bisimulation metric d∼ (Ferns et al., 2004; 2011)). There exists a unique pseudometric
d∼ : X × X → R, called the bisimulation metric (BSM)12, defined as:

d∼(x1, x2) := max
a∈A

(cR|R(x1, a)−R(x2, a)|+ cTW1(d
∼)(P(· | x1, a),P(· | x2, a))) , (10)

where 1-Wasserstein (Kantorovich) distance W1(d
∼)(P,Q) = infδ∈T (P,Q) E(x′

1,x
′
2)∼δ[d

∼(x′1, x
′
2)]

with T (P,Q) the coupling space for P and Q. Here, cR and cT are coefficients for short-term and
long-term behavioral differences, which are commonly set to cR = 1 and cT = γ, where γ is the
MDP’s discount factor.

In practice, applying the max operator over actions is intractable in continuous action spaces and
pessimistically accounts for behavioral similarity across all actions, including those leading to low
rewards. Policy-dependent bisimulation metrics (Castro, 2020) address this limitation by restricting
behavioral similarity to the current policy, eliminating the need to evaluate all actions.

Definition 6 (Policy-dependent bisimulation metric dπ (Castro, 2020)). Given a policy π : X →
∆(A), there exists a unique pseudometric dπ : X ×X → R, called a policy-dependent bisimulation
metric (PBSM), defined as:

dπ(x1, x2) := cR|Rπ(x1)−Rπ(x2)|+ cTW1(d
π)(Pπ(· | x1),Pπ(· | x2)), (11)

where Rπ(x) := Ea∼π[R(x, a)] and Pπ(· | x) := Ea∼π[Pπ(· | x, a)] are policy-dependent reward
and transition, respectively.

11Sometimes termed “semimetric” (Ferns et al., 2004).
12As noted by Ferns et al. (2004), BSM relates to the largest bisimulation relation, ∼. For brevity, we simplify the original

definition that uses the fixed-point of an operator and omit the proof for the existence of such a fixed-point.
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To approximate the 1-Wasserstein distance in PBSM, DBC (Zhang et al., 2020) assumes a Gaussian
transition kernel and uses 2-Wasserstein distance which has a closed-form solution under such as-
sumption (Sec. C.3). To further circumvent the costly computation of the 1-Wasserstein distance,
Castro et al. (2021) propose MICo distance which uses the independent coupling rather than all
coupling of the distributions in the 1-Wasserstein distance, which enables its computation using
samples.
Definition 7 (MICo distance uπ (Castro et al., 2021)). Given a policy π : X → ∆(A), there exists
a unique diffuse metric uπ : X × X → R, called MICo distance:

uπ(x1, x2) := cR|Rπ(x1)−Rπ(x2)|+ cTEx′
1∼Pπ(·|x1),x′

2∼Pπ(·|x2)[u
π(x′1, x

′
2)]. (12)

The independent coupling term (second term on the RHS) may yield a non-zero distance between
states that share identical immediate rewards and transition dynamics for all actions. Consequently,
the MICo distance can be characterized as a diffuse metric (see Sec. C.1). Based on MICo, several
improvements are made by SimSR (Zang et al., 2022) and RAP (Chen & Pan, 2022).
Definition 8 (SimSR distance (Zang et al., 2022)). Given a policy π : X → ∆(A), there exists a
unique distance uπ : X × X → R, called the Simple State Representation (SimSR) distance:

uπ(x1, x2) := cR
∣∣Rπ(x1)−Rπ(x2)

∣∣ + cT E x′
1∼P̂π(·|x1), x′

2∼P̂π(·|x2)

[
uπ(x′1, x

′
2)
]
, (13)

where P̂π is an approximated transition dynamics model. Specifically in SimSR, through isometric
embedding (Eq. 2), uπ(x1, x2) = dX (x1, x2) = dΨ(ϕ(x1), ϕ(x2)) = 1−cos

(
ϕ(x1), ϕ(x2)

)
, which

is the cosine distance (normalized dot product distance).
Definition 9 (RAP distance (Chen & Pan, 2022)). Given a policy π : X → ∆(A), there exists a
unique distance uπ : X × X → R, called the Robust Approximate (RAP) distance:

uπ(x1, x2) := cR
∣∣Rπ(x1)−Rπ(x2)

∣∣ + cT Ea1∼π, a2∼π
[
uπ

(
Ex′

1∼P̂(·|x1,a1)
[x′1 ], Ex′

2∼P̂(·|x2,a2)
[x′2 ]

)]
.

(14)

C.3 Approximating the Behavioral Metrics

Behavioral metrics are approximated and isometrically embedded into the representation space via
an auxiliary loss in recent works. In this section, we extend the explanation of design choices used
to approximate the metrics in their implementations presented in Table 1.

In DBC (Zhang et al., 2020) and DBC-normed (Kemertas & Aumentado-Armstrong, 2021), to ap-
proximate PBSM (Def. 6), the metric loss is defined in the following form:

JM (ϕ) =

(
∥ϕ(x1)− ϕ(x2)∥1︸ ︷︷ ︸
=dΨ(ϕ(x1),ϕ(x2))

−
(
|r1 − r2| + γW2(∥ · ∥1)

(
P̂
(
ψ′ ∣∣ ϕ̄(x1), a1 ), P̂(ψ′ ∣∣ ϕ̄(x2), a2 )))︸ ︷︷ ︸

≈dR(x1,x2)+dT (dΨ)(Pϕ(ψ′|x1),Pϕ(ψ′|x2))=dX (x1,x2)

)2

.

(15)

where (x1, x2, a1, a2, r1, r2) is sampled from a replay buffer, ϕ̄ denotes the encoder ϕ with gradient
detached, the transition model P̂ outputs a factorized Gaussian distribution, with mean µP̂(ϕ̄(x), a)
and covariance σP̂(ϕ̄(x), a). For brevity, we denote µ1 = µP̂(ϕ̄(x1), a1) and σ1 = σP̂(ϕ̄(x1), a1).
W2 is the 2-Wasserstein distance, which serves as a surrogate for the 1-Wasserstein distance in
Def. 6 and admits a convenient closed-form solution when comparing two Gaussian distributions:

W2(∥ · ∥2)
(
N (µ1,Σ1), N (µ2,Σ2)

)
=

√
∥µ1 − µ2∥22 +

∥∥Σ 1
2
1 − Σ

1
2
2

∥∥2
F
. (16)

where ∥ · ∥F is the Frobenius norm and Σ1,Σ2 ∈ Rk×k are the covariance matrices. In the special
case where both Gaussians are factorized (i.e., Σi = diag(σ2

i )), the Frobenius norm simplifies to
the Euclidean norm over the standard deviations, yielding:

W2(∥ · ∥2)
(
N (µ1,diag(σ

2
1)), N (µ2,diag(σ

2
2))

)
=

√
∥µ1 − µ2∥22 + ∥σ1 − σ2∥22 . (17)
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In their implementation, several major modifications are applied to Eq. 15. First of all, DBC and
DBC-normed use a scaled Huber distance instead of the L1 distance as the approximant of repre-
sentation distance. We first define the Huber distance13 for two vectors x, y ∈ Rk as:

dHuber(x, y) =

k∑
i=1


1
2 , (xi − yi)

2, if |xi − yi| < 1,

|xi − yi| − 1
2 , otherwise.

(18)

The scaled Huber distance can be formulated as:

dΨ
(
ϕ(x1), ϕ(x2)

)
=

1

k
dHuber

(
ϕ(x1), ϕ(x2)

)
. (19)

As for approximating reward distance dR, instead of using the absolute difference,

d̂R(r1, r2) = |r1 − r2|, (20)

DBC and DBC-normed apply Huber distance:

d̂R(r1, r2) = dHuber

(
(r1), (r2)

)
. (21)

When approximating the transition distance dT , DBC use the following form that slightly differs
from Eq. 16 to compare two Gaussian distributions:

d̂T
(
(µ1, σ1), (µ2, σ2)

)
=

1

k

k∑
i=1

√
(µ1,i − µ2,i)2 + (σ1,i − σ2,i)2 . (22)

DBC-normed, instead, utilize this form:

d̂T
(
(µ1, σ1), (µ2, σ2)

)
=

1

k

(
dHuber(µ1, µ2) + dHuber(σ1, σ2)

)
. (23)

MICo (Castro et al., 2021) shares a similar metric loss structure with DBC:

JM (ϕ) =
(

Uϕ(x1, x2)︸ ︷︷ ︸
=dΨ(ϕ(x1),ϕ(x2))

−
(∣∣r1 − r2

∣∣+ γ Uϕ̄(x
′
1, x

′
2)
)︸ ︷︷ ︸

≈dX (x1,x2)

)2

, (24)

where (x1, x2, r1, r2, x
′
1, x

′
2) is sampled from a replay buffer, Uϕ(x1, x2) is the representation dis-

tance, parameterized as:

dΨ(ϕ(x1), ϕ(x2)) = Uϕ(x1, x2) :=
∥ϕ(x1)∥22 + ∥ϕ(x2)∥22

2
+ β θ

(
ϕ(x1), ϕ(x2)

)
, (25)

where θ represents an angular distance function defined in Appendix Sec. C.2 in Castro et al. (2021).
In the implementation of MICo, the Huber loss (Huber, 1992) is used instead of MSE in Eq. 24.

SimSR (Zang et al., 2022) differs from MICo in its metric loss along two main dimensions. First,
the parameterization of Uϕ:

dΨ(ϕ(x1), ϕ(x2)) = Uϕ(x1, x2) := 1− cos
(
ϕ(x1), ϕ(x2)

)
. (26)

Second, the next latents ϕ(x′1), ϕ(x
′
2) are sampled from a transition model rather than encoded from

next observations in the replay buffer.

13https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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RAP (Chen & Pan, 2022) reduces the gap of dR and d̂R in the prior work by introducing a better
approximant of dR, motivated by the following derivation of dR:

dR(x1, x2) =
∣∣Rπ(x1)−Rπ(x2)

∣∣ =√Ea1∼π, a2∼π
[
|R(x1, a1)−R(x2, aj)|2

]
−Var[rx1 ]−Var[rx2 ],

(27)

where rx is a random variable defined by p(rx = R(x, a)) = π(a | x), and Var[rx] is the vari-
ance of rx. To approximate Var[rx], RAP introduces an observation-reward model14 that maps the
current observation to the mean and variance of the expected reward. The estimated d̂R is then com-
puted by substituting Var[rx] with the model-predicted variance, and approximating the expected
reward difference using sampled reward pairs from a replay buffer. For d̂T , RAP adopts the same
computation procedure as DBC.

C.4 Normalization Techniques

Several related normalization techniques and their connections are introduced in this section. We
also justify our study design by incorporating LayerNorm in candidate methods rather than the L2

normalization employed in SimSR (Zang et al., 2022).

Max Normalization. DBC-normed (Kemertas & Aumentado-Armstrong, 2021) derives an upper
bound of Lp-norm of the representation, and imposes this bound to the representation space. Specif-
ically, assuming the boundedness of the reward, the target metric dX (PBSM in DBC-normed) and
the representational metric dΨ (through isometric embedding (Eq. 2)) can be upper bounded by a
constant C:

dΨ(ϕ(x1), ϕ(x2)) = dX (x1, x2) ≤
cR

1− cT
(max
x,a

R(x, a)−min
x,a

R(x, a)) := C. (28)

For example, in our hyperparameter setting in DMC, the constant C can be 100, 200, or 400, de-
pending on the action repeat. Such a bound can also be naturally generalized to MICo, SimSR,
and RAP distance. Specifically, when dΨ is the Lp-distance, if the Lp-norm of ψ = ϕ(x) is upper
bounded as:

∥ψ∥p ≤
C

2
, (29)

then Eq. 28 can be satisfied.

A “max normalization” can then be imposed on ψ to constrain the approximated metrics within a
reasonable numerical range, thereby improving metric estimation:

MaxNorm(ψ) :=

{
ψ, if ∥ψ∥p < C

2 ,
C
2

ψ
∥ψ∥p

, otherwise.
(30)

L2 Normalization. The L2 normalization of ψ enforces ∥ψ∥2 = 1, which is defined as:

L2Norm(ψ) =
ψ

∥ψ∥2
. (31)

Remark 1 (Caveat of applying L2 normalization to metric learning). Note the boundedness of Lp
distance for L2-normalized vectors ϕ(x1), ϕ(x2) ∈ Rk are given as follows by Hölder’s inequality:

∥ϕ(x1)− ϕ(x2)∥p ≤ 2∥ϕ(x1)∥p ≤

{
2 k

1
p−

1
2 , if 1 ≤ p ≤ 2,

2, if p ≥ 2.
(32)

Note that if the Lp-distance is used as dΨ, directly applying L2 normalization on ψ can lead to the
misspecification of the metrics. In other words, the numerical range of dΨ may not be sufficiently

14Note that this model introduces additional gradients that influence the encoder’s representation learning.
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expressive to capture the ground truth metrics, i.e., the target metric space (X , dX ) cannot always
be isometrically embedded into the Euclidean unit sphere (Ψunit, ∥ · ∥p). Consider a counterexample
when p = 2. Suppose the existence of a pair of x1, x2 that cR|Rπ(x1) − Rπ(x2)| > 2, and
dX (x1, x2) > 2. But dΨ(ϕ(x1), ϕ(x2)) = ∥ϕ(x1) − ϕ(x2)∥p ≤ 2. Thus, in this case, there is no
such ϕ that ∥ϕ(x1)∥2 = ∥ϕ(x2)∥2 = 1 and dX (x1, x2) = dΨ(ϕ(x1), ϕ(x2)).

As another counterexample, in SimSR (Zang et al., 2022), L2 normalization is imposed on the rep-
resentation space, i.e., ∥ϕ(x1)∥2 = ∥ϕ(x2)∥2 = 1. Under such condition, one can show the equiva-
lence of the cosine distance (pre-normalization) and the squared L2 distance (post-normalization):

dΨ(ϕ(x1), ϕ(x2)) = 1− cos
(
ϕ(x1), ϕ(x2)

)
= 1− ⟨ϕ(x1), ϕ(x2)⟩

=
1

2

(
∥ϕ(x1)∥22 + ∥ϕ(x2)∥22 − 2⟨ϕ(x1), ϕ(x2)⟩

)
=

1

2
∥ϕ(x1)− ϕ(x2)∥22 ∈ [0, 2].

(33)

Similarly, in such a case, a ϕ that satisfies ∀x1, x2 ∈ X , ∥ϕ(x1)∥2 = ∥ϕ(x2)∥2 = 1 and
dX (x1, x2) = dΨ(ϕ(x1), ϕ(x2)) does not always exist. □

Layer Normalization. LayerNorm (Ba et al., 2016) can be formalized as follows:

LayerNorm(ψ) = α⊙ ψ − µ(ψ)√
σ2(ψ) + ϵ

+ β, (34)

where α, β ∈ Rk are learnable parameters, ϵ > 0 is a small constant for numerical stability, and ⊙
denotes element-wise multiplication. µ and σ2 are the mean and variance:

µ(ψ) =
1

k

k∑
i=1

ψi, σ2(ψ) =
1

k

k∑
i=1

(ψi − µ(ψ))2. (35)

Note that, if we assume α = α0 1k ∈ Rk where α0 is a constant and β ≈ 0 (as it is initialized to 0
in many implementations and remains small early in training), we have:

∥∥LayerNorm(ψ)
∥∥2
2
≈

k∑
i=1

α2
i ·

(ψi − µ(ψ))2

σ2(ψ) + ϵ

= α2
0 ·

∑k
i=1(ψi − µ(ψ))2

σ2(ψ)

= α2
0 ·
kσ2(ψ)

σ2(ψ)
(from variance definition)

= α2
0k.

(36)

Then the L2 norm of the representation after LayerNorm satisfies:∥∥LayerNorm(ψ)
∥∥
2
≈ α0

√
k. (37)

For layer-normalized ϕ(x1) and ϕ(x2), the upper bound of dΨ(ϕ(x1), ϕ(x2)) depends on both α
and β, providing flexibility in expressing the target metrics dX . As a result, we conduct case studies
in Sec. 5.2 on methods with LayerNorm rather than L2 normalization to ensure full expressivity of
the target metrics.
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D Proof

D.1 Proof of Transition Distance Preservation under Isometric Embedding

Lemma 1 (Transition distance preservation (Eq. 5)). Let ϕ : X → Ψ be an isometric embedding
with dX (x1, x2) = dΨ(ϕ(x1), ϕ(x2)) for any x1, x2 ∈ X (Eq. 2). Then,

dT (dX )(P(x′ | x1),P(x′ | x2)) = dT (dΨ)(Pϕ(ψ′ | x1),Pϕ(ψ′ | x2)). (38)

Proof. We prove it by considering two common forms of dT : Wasserstein distance (Ferns et al.,
2004; 2011; Zhang et al., 2020) and sampling-based distance (Castro et al., 2021; Zang et al., 2022).

Case 1: dT is Wasserstein distance. For convenience, we take 1-Wasserstein distance as example,
and the proof naturally extends to p-Wasserstein. Let T (P,Q) be the coupling space for P and Q,

W1(dX )(P(x′ | x1),P(x′ | x2)) = inf
µ∈T (P(x′|x1),P(x′|x2))

∑
x′
1∈X ,x′

2∈X

dX (x′1, x
′
2)µ(x

′
1, x

′
2)

= inf
µ∈T (P(x′|x1),P(x′|x2))

∑
x′
1∈X ,x′

2∈X

dΨ(ϕ(x
′
1), ϕ(x

′
2))µ(x

′
1, x

′
2) (isometric embedding)

= inf
µ∈T (P(x′|x1),P(x′|x2))

∑
ψ′

1∈Ψ,ψ′
2∈Ψ

dΨ(ψ
′
1, ψ

′
2)

∑
x′
1,x

′
2:ϕ(x

′
1)=ψ

′
1,ϕ(x

′
2)=ψ

′
2

µ(x′1, x
′
2)

= inf
ν∈T (Pϕ(ψ′|x1),Pϕ(ψ′|x2))

∑
ψ′

1∈Ψ,ψ′
2∈Ψ

dΨ(ψ
′
1, ψ

′
2)ν(ψ

′
1, ψ

′
2)

= W1(dΨ)(Pϕ(ψ′ | x1),Pϕ(ψ′ | x2)).

(39)

Case 2: dT as sampling-based distance.
Ex′

1∼P(·|x1),x′
2∼P(·|x2)[dX (x′1, x

′
2)] =

∑
x′
1∈X ,x′

2∈X

dX (x′1, x
′
2)P(x′1 | x1)P(x′2 | x2)

=
∑

x′
1∈X ,x′

2∈X

dΨ(ϕ(x
′
1), ϕ(x

′
2))P(x′1 | x1)P(x′2 | x2) (isometric embedding)

=
∑

ψ′
1∈Ψ,ψ′

2∈Ψ

dΨ(ψ
′
1, ψ

′
2)

∑
x′
1,x

′
2:ϕ(x

′
1)=ψ

′
1,ϕ(x

′
2)=ψ

′
2

P(x′1 | x1)P(x′2 | x2)

=
∑

ψ′
1∈Ψ,ψ′

2∈Ψ

dΨ(ψ
′
1, ψ

′
2)

 ∑
x′
1:ϕ(x

′
1)=ψ

′
1

P(x′1 | x1)

 ∑
x′
2:ϕ(x

′
2)=ψ

′
2

P(x′2 | x2)


= Eψ′

1∼Pϕ(·|x1),ψ′
2∼Pϕ(·|x2)[dΨ(ψ

′
1, ψ

′
2)].

(40)

D.2 Proof of Denoising Property of Bisimulation Metrics

Proposition 1 (Denoising property of BSM). For any x, x+ ∈ X of an EX-BMDP (Sec. 2.1) with
ϕ∗(x) = ϕ∗(x+), the bisimulation metric (Def. 5) is zero: d∼(x, x+) = 0.

Proof. Let d : X × X → R be any pseudometric. We define the bisimulation operator F on d:
∀x1, x2 ∈ X ,

(F(d))(x1, x2) := max
a∈A

(cR|R(x1, a)−R(x2, a)|+ cTW1(d)(P(x′ | x1, a),P(x′ | x2, a))) .
(41)

We initialize d(0)(x1, x2) = 0,∀x1, x2 and then apply the operator: d(n+1) = F(d(n)),∀n ∈
N. Iteratively, the metric will converge to the unique fixed point d∼ (Ferns et al., 2004; 2011):
limn→∞ d(n) = d∼.
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We show by induction that d(n)(x, x+) = 0 whenever ϕ∗(x) = ϕ∗(x+), and hence d∼(x, x+) = 0
in the limit. The base case n = 0 is immediate, because d(0) ≡ 0. Assume for some n ∈ N,
d(n)(x, x+) = 0 whenever ϕ∗(x) = ϕ∗(x+). Consider the n+ 1-case:

d(n+1)(x, x+) = max
a∈A

(
cR|R(x, a)−R(x+, a)|+ cTW1(d

(n))(P(x′ | x, a),P(x′ | x+, a))
)
.

(42)
Recall in an EX-BMDP, R(x, a) only depends on s = ϕ∗(x) and a. Since ϕ∗(x) = ϕ∗(x+),
the reward difference term is zero. The remainder of the expression is governed by the transition
distance term:

W1(d
(n))(P(x′ | x, a),P(x′ | x+, a)) = inf

µ∈T (P(·|x,a),P(·|x+,a))

∑
x′,x′

+∈X

d(n)(x′, x′+)µ(x
′, x′+),

(43)
where T (P,Q) is the coupling space for P and Q. Consider the coupling that pairs next-state
samples by forcing them to share the same task-relevant state. Let ξ, ξ+ be the task-irrelevant noise
underlying x, x+ (i.e., [ϕ∗(x), ξ] = q−1(x)). Since ϕ∗(x) = ϕ∗(x+), the coupling µ is defined by

µ(x′, x′+) =
∑

s′∈S,ξ′∈Ξ,ξ′+∈Ξ

p(s′ | ϕ∗(x), a)p(ξ′ | ξ)p(ξ′+ | ξ+)q(x′ | s′, ξ′)q(x′+ | s′, ξ′+). (44)

In this construction, any sample (x′, x′+) shares the same task-relevant state s′. By the inductive
hypothesis, d(n)(x′, x′+) = 0. Thus,∑

x′,x′
+∈X

d(n)(x′, x′+)µ(x
′, x′+) =

∑
x′,x′

+∈X

0 = 0. (45)

Therefore, W1(d
(n))(P(x′ | x, a),P(x′ | x+, a)) = 0 and d(n+1)(x, x+) = 0.

Proposition 2 (Denoising property of PBSM with an exo-free policy). Define an exo-free pol-
icy (Islam et al., 2022) π : X → ∆(A) that is independent of noise, i.e., π(a | x) = π(a | x+),∀a ∈
A whenever ϕ∗(x) = ϕ∗(x+). For any x, x+ ∈ X of an EX-BMDP with ϕ∗(x) = ϕ∗(x+), the
policy-dependent bisimulation metric (Def. 6) with an exo-free policy π is zero: dπ(x, x+) = 0.

Proof. This is a proof sketch, adapting the bisimulation metric (BSM) proof above to PBSM.

By induction, consider the n+ 1-case:

d(n+1)(x, x+) =
(
cR|Rπ(x)−Rπ(x+)|+ cTW1(d

(n))(Pπ(x′ | x),Pπ(x′ | x+))
)
. (46)

Since ϕ∗(x) = ϕ∗(x+) and both reward and policy are exo-free, we have Rπ(x) =
∑
a π(a |

x)R(x, a) =
∑
a π(a | x+)R(x+, a) = Rπ(x+), i.e., the reward difference term is zero. Consider

the transition difference term, we construct a similar coupling:

µ(x′, x′+) =
∑

a∈A,s′∈S,ξ′∈Ξ,ξ′+∈Ξ

π(a | x)p(s′ | ϕ∗(x), a)p(ξ′ | ξ)p(ξ′+ | ξ+)q(x′ | s′, ξ′)q(x′+ | s′, ξ′+).

(47)
In this coupling, any sample (x′, x′+) shares the same task-relevant state s′. Hence d(n+1)(x, x+) =
0 and by the convergence of PBSM operator (Castro, 2020), we have dπ(x, x+) = 0.

Remark 2 (PBSM may not exhibit denoising property at convergence). In general, an optimal
policy is not necessarily exo-free. That implies even if a policy converges to an optimal one, denoted
as π∗, the corresponding PBSM, dπ

∗
, may still lack the denoising property.

Consider the following counterexample. For x, x+ ∈ X be an anchor-positive pair with the same
task-relevant state. By bisimulation relation (Li et al., 2006), they have the same optimal-value
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function: Q∗(x, a) = Q∗(x+, a),∀a ∈ A. Now, suppose there exist two distinct optimal actions
a1, a2 ∈ A, such that Q∗(x, a1) = Q∗(x, a2) = maxa∈AQ

∗(x, a) and a1 ̸= a2. Construct a
deterministic optimal policy, π∗, such that π∗(x) = a1 and π∗(x+) = a2. In this case, although
Q∗(x, a1) = Q∗(x+, a2), the reward difference |Rπ(x) − Rπ(x+)| can be still nonzero when
R(ϕ∗(x), a1) ̸= R(ϕ∗(x), a2). Thus, for this optimal policy π∗, dπ

∗
(x, x+) can also be nonzero.

This example indicates that the PBSM under an optimal policy – namely, the fixed point attained by
PBSM-based methods (e.g., DBC, DBC-normed) – may not exhibit the denoising property. □

In fact, similarly to Remark 2 illustrating negative results for policy-dependent metrics, we find
that model-irrelevance abstraction does not necessarily imply Qπ-irrelevance abstraction, thereby
clarifying the scope of the classic result (Li et al., 2006).

Remark 3 (Model-irrelevance abstraction ϕmodel may not imply Qπ-irrelevance abstraction
ϕQπ ). In (Li et al., 2006, Theorem 2), it is established that ϕmodel implies ϕQπ for any policy π.
Here, we revisit this statement and demonstrates that it does not extend to exo-dependent policies.
To see why the classical result fails in this setting, let x, x+ ∈ X be an anchor-positive pair with the
same task-relevant state. If ϕmodel implies ϕQπ , we would haveQπ(x, a) = Qπ(x+, a),∀a ∈ A,∀π.

However, consider a counterexample similar to Remark 2. Suppose x, x+ deterministically transits
to x′, x′+, respectively under an action a, and the policy π is deterministic. Since Qπ(x, a) =

R(x, a) + γQπ(x′, π(x′)) and R(x, a) = R(x+, a), the key question becomes Qπ(x′, π(x′)) ?
=

Qπ(x′+, π(x
′
+)). Although x′, x′+ are bisimilar, an exo-dependent policy may select different actions

for these two states, i.e., π(x′) ̸= π(x′+). In a terminal step of a finite-horizon MDP, for example,
we could have Qπ(x′, π(x′)) = R(x′, π(x′)) ̸= R(x′+, π(x

′
+)) = Qπ(x′+, π(x

′
+)). Therefore,

ϕmodel =⇒ ϕQπ does not hold once we allow for exo-dependent policies. □

E Difficulty Levels of the Tasks

Difficulty levels for each task in state-based and pixel-based DMC are provided in Table 7 and
Table 8 respectively. These levels are based on the average reward across all compared methods
in Table 1. Tasks listed in Table 7 and Table 8 are sorted in ascending order of difficulty. This
ordering is also applied to all other per-task performance tables and figures, facilitating a clearer
understanding of how different methods perform across tasks of varying difficulty levels.

F Implementation Details

F.1 Hyperparameters

Our hyperparameter settings for the benchmarked agents are based on their open-source codebases
and the values reported in their respective papers. Table 9 (above the double rule) shows the general
hyperparameter setting adopted by most agents. For the action repeat, we set it to 4 for most tasks,
to 8 for cartpole (swingup, swingup_sparse), and to 2 for finger spin and walker (walk, run, stand)
following the convention (Yarats et al., 2021a; Zang et al., 2022; Chen & Pan, 2022). Exceptions to
Table 9 are detailed below:

• For MICo (Castro et al., 2021)15, β in MICo distance parametrization is set to 0.1. In MICo’s code,
they use a different hidden unit size 1024 rather than 256 in our implementation, and a reward scale
of 0.1 rather than 1 in our implementation. We assume that changing the hidden unit size alters the
network architecture, and modifying the reward scale effectively changes the environment. Since
other algorithms are evaluated under a unified setting, we avoid such modifications to isolate
algorithmic differences, which are the primary focus of our study.

15https://github.com/google-research/google-research/tree/master/mico

https://github.com/google-research/google-research/tree/master/mico
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Table 7: Difficulty levels for 20 state-based DMC tasks, as determined by the compared methods (Ta-
ble 1). “Avg Reward” stands for the average reward across all IID Gaussian noise settings in Sec. 5.1. For each
run, the reported reward is the average of 10 evaluation points collected around 2M steps. “Max (Min) Reward”
denotes the best (worst) agent’s average reward over 12 runs, while “Max/Min” is the ratio of the best to worst
performance, indicating a task’s ability to discriminate between agent performances.

Task Avg Reward Max Reward Min Reward Max/Min Difficulty

ball_in_cup catch 934.8 977.4 841.7 1.2 Easy
cartpole balance 919.4 997.3 791.2 1.3 Easy
cartpole balance_sparse 877.7 983.6 772.3 1.3 Easy
walker stand 834.6 979.0 437.8 2.2 Easy
cartpole swingup 818.1 874.1 707.6 1.2 Easy
walker walk 805.7 961.9 382.4 2.5 Easy

reacher easy 740.1 955.1 453.0 2.1 Medium
finger spin 728.8 923.6 498.5 1.9 Medium
quadruped walk 703.1 948.9 245.5 3.9 Medium
cartpole swingup_sparse 647.3 839.1 531.9 1.6 Medium
reacher hard 641.1 853.0 340.3 2.5 Medium
finger turn_easy 587.8 926.5 207.7 4.5 Medium
walker run 545.8 776.1 117.4 6.6 Medium
cheetah run 533.4 859.0 129.8 6.6 Medium
pendulum swingup 514.3 824.5 247.2 3.3 Medium

quadruped run 460.7 864.3 199.0 4.3 Hard
finger turn_hard 435.6 893.0 102.6 8.7 Hard
hopper stand 261.9 878.4 22.3 39.3 Hard
acrobot swingup 75.7 246.1 11.2 22.0 Hard
hopper hop 64.7 243.4 1.5 162.4 Hard

Table 8: Difficulty levels for 14 pixel-based DMC tasks, as determined by the compared methods (Ta-
ble 1). “Avg Reward” stands for the average reward across clean background, natural video (colored and
grayscale), natural image (colored and grayscale), and IID Gaussian noise settings described in Sec. 5.1. For
each run, the reported reward is the average of 10 evaluation points collected around 2M steps. “Max (Min)
Reward” denotes the best (worst) agent’s average reward over 5 runs, while “Max/Min” is the ratio of the best
to worst performance, indicating a task’s ability to discriminate between agent performances.

Task Avg Reward Max Reward Min Reward Max/Min Difficulty

cartpole balance 949.3 986.7 905.5 1.1 Easy
cartpole balance_sparse 915.3 999.4 804.6 1.2 Easy
walker stand 887.7 959.1 633.7 1.5 Easy
finger spin 815.2 909.5 426.4 2.1 Easy

cartpole swingup 765.0 853.2 551.1 1.5 Medium
ball_in_cup catch 719.2 887.8 263.4 3.4 Medium
walker walk 718.9 909.1 360.8 2.5 Medium
point_mass easy 421.5 558.6 256.1 2.2 Medium
cartpole swingup_sparse 409.6 680.4 57.8 11.8 Medium

reacher easy 336.8 949.1 113.0 8.4 Hard
pendulum swingup 313.2 468.9 9.3 50.5 Hard
cheetah run 299.4 411.0 144.7 2.8 Hard
walker run 285.5 441.9 77.3 5.7 Hard
hopper hop 73.6 122.5 5.6 22.0 Hard

• For RAP (Chen & Pan, 2022)16, we use the same hyperparameter setting in their open-source
code, where the actor, critic, and encoder learning rates are set to 5 × 10−4, β in MICo distance

16https://github.com/jianda-chen/RAP_distance

https://github.com/jianda-chen/RAP_distance
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parametrization is set to 10−6 (which actually almost disables metric learning), RP and ZP loss
coefficients are set to 10−4, and the encoder feature dimensionality is set to 100.

Table 9: Hyperparameter settings for most agents we benchmarked (above the double rule) and
for environmental configurations (below the double rule).

Hyperparameter Name Value

Replay buffer capacity 1× 106

Replay ratio 0.2
Batch size 128
Discount γ 0.99
Optimizer Adam
Encoder feature dimensionality 50
Hidden unit size in neural networks 256

Critic learning rate 1× 10−3

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.01
Actor learning rate 1× 10−3

Actor update frequency 2
Actor log stddev bounds [−10, 2]
Encoder learning rate 1× 10−3

Encoder soft-update rate τϕ 0.05
Reward model and transition model’s learning rate 1× 10−3

Reward model and transition model’s weight decay 1× 10−7

SAC temperature learning rate 1× 10−4

SAC initial temperature 0.1

Metric loss coefficient λM 0.5
Metric reward coefficient cR 1
Metric transition coefficient cT 0.99
RP loss coefficient λRP 1
ZP loss coefficient λZP 1

Image size 84× 84× 3
Frame stack 3
Paralleled environments 10
Distracting video frames N (per paralleled environment) 1000

F.2 Model Architecture

The general model architectures of all our implemented methods and isolated metric estimation
setting are illustrated in Fig. 8, Fig. 9, Fig. 10, and Fig. 11, respectively. For brevity, only the
forward pass of the neural network is shown, referring to the computation from inputs to outputs
without gradient updates.

F.3 Pixel-based Environmental Setup

In our pixel-based settings, following (Zhang et al., 2020), we use natural videos and images from
the Kinetics-400 dataset (Kay et al., 2017) labeled driving_car as distracting backgrounds. The
dataset is split into 817 training and 90 test video clips, each 10 seconds long, and is publicly
available in our codebase (footnote 2).

For each run, a subset of videos of the training set is sampled for use during training, with the
total number of frames determined by the hyperparameter “distracting video frame N” in Table 9;
that is, the sampled videos must collectively provide at least N frames. In our experiments, we set
N = 1000, sampling 4 to 5 videos depending on their frame rates. The test set is used for OOD
generalization evaluation, ensuring that videos seen during training are excluded from evaluation.
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Figure 8: SAC architecture used in our experiments.
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Figure 9: DeepMDP architecture used in our exper-
iments.

Encoder

Transition 
Model

Reward 
Model

Critic

Metric Loss RP LossZP Loss

Q loss

Actor

Actor loss

Data

Figure 10: General architecture of metric learn-
ing methods, summarizing the architecture used in
our benchmarked metric learning methods (Table 1).
Dotted lines show optional data flows.
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Figure 11: An instance of architecture described
in the isolated metric estimation setting (Sec. 4.4).
Shown is the case where a base agent, SAC (bottom
gray module), is used to collect experiences, which
are then used to train the isolated metric encoder, as
implemented in our experiments in Sec. 5.3. Dot-
ted lines show optional data flows. For example, in
Sec. 5.3, isolated metric estimation for DeepMDP en-
ables data flow only to the ZP and RP losses, whereas
for MICo, only the metric loss is used.
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During OOD evaluation, each parallel environment is assigned a unique set of N distracting frames,
which remain fixed within a run. For example, in our experiments with N = 1000 and 10 parallel
environments, a total of 10000 frames are sampled and fixed during each run.

We elaborate on the instantiation of pixel-based noise settings introduced in Sec. 4.1. In the nat-
ural video noise setting, clean background pixels are replaced with those from distracting videos;
each parallel environment independently samples an initial starting index ξ0, from which the video
is played sequentially as background. In the natural image noise setting, background pixels are re-
placed with those from a single randomly sampled frame in the video dataset, which remains fixed
across all parallel environments throughout each run.

Additionally, Table 9 (below the double rule) presents the environmental hyperparameters. Ta-
ble 10 quantifies the distraction in pixel-based distracting DMC tasks by presenting the percentage
of noised pixels.

Table 10: Percentage of distracting pixels (the pixels that are task-irrelevant) for 14 pixel-based
DMC tasks. These ratios remain consistent across all different pixel-based noise settings introduced
in Sec. 4.1.

Task Noise Ratio (%)

cartpole balance 98.3%
cartpole balance_sparse 98.3%
walker stand 92.6%
finger spin 94.3%

cartpole swingup 98.3%
ball_in_cup catch 99.0%
walker walk 92.6%
point_mass easy 99.7%
cartpole swingup_sparse 98.3%

reacher easy 96.5%
pendulum swingup 98.9%
cheetah run 95.4%
walker run 92.6%
hopper hop 97.3%

G Additional Experiment Results

Table 11 summarizes the per-task result figures presented in this section, each corresponding to an
aggregated score reported in the main text. Detailed noise settings are indicated at the top of each
figure and table.

Additionally, Table 12 reports model update time comparisons from Sec. 5.1. Fig. 28 presents a case
study on six state-based DMC tasks using DBC-normed with LayerNorm and its design variants, as
discussed in Sec. 5.2. Fig. 12 and Fig. 30 serve as alternative illustrations of Fig. 2 and Fig. 4,
highlighting the agents’ sensitivity to noise hyperparameters.
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Table 11: Summary of extended experimental results in Appendix. Per-task results corresponding
to all aggregated scores shown in the main text are included.

Section Description of Settings Main Text
Reference

Per-task Figures /
Tables

Sec. 5.1
Noise std. sweep:
σ ∈ {0.2, 1.0, 2.0, 4.0, 8.0}
(fixed m = 32)

Fig. 2 Table 13 – Table 17
Fig. 13 – Fig. 17

Noise dim. sweep:
m ∈ {2, 16, 32, 64, 128}
(fixed σ = 1.0)

Fig. 2 Table 18 – Table 21
Fig. 18 – Fig. 21

Sec. 5.2
LayerNorm ablation Table 2 Fig. 29

IID Gaussian + Random
projection noise std. sweep:
σ ∈ {0.2, 1.0, 2.0, 4.0, 8.0}
(fixed m = 32)

Fig. 4 Fig. 31 – Fig. 35

Sec. 5.3

SAC (with LayerNorm)
reward curves

Fig. 5 Fig. 36

DF curves on agent encoders
co-trained with RL

Fig. 5 Fig. 37

Pixel-based isolated evaluation
setting curves

– Fig. 38 – Fig. 42

Sec. 5.4
OOD generalization
reward curves

Fig. 7 Fig. 43 – Fig. 46

Reward difference curves Fig. 6 Fig. 47 – Fig. 48
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Table 12: Relative time spent on model updates on NVIDIA L40S GPUs under the same task
(walker/walk, with S = R24 and Ξ = R32). Values represent the multiple of SAC’s updating time.
Key hyperparameters affecting the speed are set identically for all methods to Table 9.

SAC DeepMDP DBC DBC-normed MICo RAP SimSR

Pixel-based 1.00 1.44 2.03 2.12 1.53 2.20 1.75
State-based 1.00 1.42 1.76 1.95 1.39 2.08 1.68

SAC DeepMDP DBC DBC-normed MICo RAP SimSR
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Figure 12: Benchmarking results: reward (left) and denoising factor (right) of seven methods to IID
Gaussian noise dimension (Noise Dim) and standard deviation (Noise Std). Each point is aggregated by 20
state-based tasks in Table 7.

Table 13: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=0.2, noise dim=32.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 974.2 ± 1.4 966.6 ± 8.2 958.0 ± 3.9 975.0 ± 1.8 971.0 ± 4.0 883.5 ± 114.0 978.3 ± 0.9

cartpole balance 968.8 ± 16.7 967.6 ± 9.9 912.7 ± 24.6 988.7 ± 7.4 836.8 ± 155.5 870.9 ± 172.0 995.0 ± 5.9

cartpole balance_sparse 815.9 ± 182.7 882.7 ± 167.7 790.2 ± 143.2 624.0 ± 217.8 579.4 ± 282.6 760.3 ± 193.4 991.9 ± 17.8

walker stand 959.2 ± 28.5 846.2 ± 90.2 621.9 ± 164.8 974.6 ± 5.0 929.3 ± 30.3 842.7 ± 65.6 977.4 ± 4.3

cartpole swingup 867.0 ± 3.9 839.4 ± 13.0 776.0 ± 95.9 582.5 ± 203.8 790.1 ± 143.1 872.7 ± 2.3 876.6 ± 5.2

walker walk 947.2 ± 6.4 780.6 ± 110.7 443.1 ± 133.0 963.8 ± 3.9 819.2 ± 62.2 869.8 ± 63.7 961.9 ± 7.0

reacher easy 861.5 ± 146.6 831.6 ± 153.3 474.1 ± 219.0 556.0 ± 221.6 501.3 ± 262.0 768.0 ± 169.8 957.0 ± 16.1

finger spin 951.4 ± 16.9 861.8 ± 45.0 813.5 ± 36.1 905.8 ± 43.3 837.9 ± 20.5 629.6 ± 152.9 980.8 ± 4.0

quadruped walk 614.2 ± 234.7 817.7 ± 98.6 209.4 ± 55.9 778.1 ± 135.0 820.5 ± 53.7 890.3 ± 47.4 948.3 ± 10.5

cartpole swingup_sparse 824.0 ± 14.1 575.9 ± 221.7 615.1 ± 188.8 661.6 ± 196.7 729.4 ± 148.4 800.5 ± 32.9 835.8 ± 8.7

reacher hard 874.2 ± 55.2 778.5 ± 200.7 675.8 ± 115.8 436.5 ± 234.7 530.3 ± 237.7 322.6 ± 188.7 651.3 ± 160.1

finger turn_easy 853.2 ± 124.2 772.3 ± 120.8 231.1 ± 44.4 806.7 ± 58.3 759.3 ± 81.1 660.5 ± 140.5 914.2 ± 18.7

walker run 668.0 ± 12.9 368.3 ± 123.1 219.5 ± 76.2 747.0 ± 8.0 464.8 ± 28.6 730.4 ± 12.1 794.9 ± 7.4

cheetah run 673.8 ± 23.0 667.2 ± 47.0 134.3 ± 107.7 668.4 ± 11.9 462.9 ± 61.3 529.4 ± 102.4 858.6 ± 16.4

pendulum swingup 380.8 ± 255.2 364.2 ± 265.2 389.6 ± 220.7 836.4 ± 5.4 774.3 ± 128.6 165.3 ± 204.8 841.2 ± 4.9

quadruped run 360.3 ± 71.1 435.6 ± 21.6 176.5 ± 41.0 462.3 ± 55.0 446.3 ± 20.4 542.9 ± 39.3 868.4 ± 29.1

finger turn_hard 774.9 ± 192.2 846.1 ± 35.6 102.2 ± 20.6 580.2 ± 133.3 588.7 ± 158.8 242.6 ± 152.8 880.9 ± 25.8

hopper stand 219.7 ± 61.4 517.2 ± 193.2 11.0 ± 9.4 411.6 ± 160.4 255.0 ± 150.3 36.8 ± 14.0 895.5 ± 24.8

acrobot swingup 68.6 ± 69.0 10.9 ± 2.2 33.2 ± 11.6 86.3 ± 42.5 257.2 ± 28.4 9.5 ± 2.6 214.2 ± 53.9

hopper hop 10.1 ± 9.0 144.6 ± 32.7 0.8 ± 0.2 107.2 ± 36.8 5.3 ± 6.5 5.0 ± 2.5 252.4 ± 8.0
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Table 14: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=32.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 972.5 ± 2.2 972.7 ± 1.5 881.7 ± 157.0 974.0 ± 1.7 969.1 ± 3.7 940.7 ± 56.6 978.5 ± 0.8

cartpole balance 964.7 ± 22.2 948.6 ± 21.6 863.2 ± 31.4 982.3 ± 14.5 972.7 ± 10.2 616.4 ± 262.2 999.2 ± 0.8

cartpole balance_sparse 919.7 ± 59.9 934.1 ± 45.5 843.9 ± 93.4 908.6 ± 68.6 953.7 ± 27.6 703.9 ± 136.3 990.7 ± 11.7

walker stand 968.7 ± 5.1 781.8 ± 122.4 527.4 ± 166.8 974.6 ± 3.9 956.6 ± 9.9 827.2 ± 114.0 977.1 ± 3.6

cartpole swingup 865.7 ± 1.9 837.1 ± 9.1 824.7 ± 22.7 741.2 ± 99.6 770.3 ± 100.2 829.9 ± 78.8 865.3 ± 6.4

walker walk 949.3 ± 4.9 805.0 ± 44.4 561.2 ± 116.3 959.5 ± 8.2 852.9 ± 50.4 895.6 ± 57.1 959.6 ± 13.7

reacher easy 900.6 ± 79.7 900.0 ± 38.4 487.0 ± 143.6 547.4 ± 141.8 650.4 ± 169.1 875.3 ± 57.9 959.5 ± 9.3

finger spin 897.9 ± 22.1 851.5 ± 52.3 626.2 ± 202.6 904.8 ± 32.4 826.6 ± 23.4 519.5 ± 170.5 981.4 ± 3.6

quadruped walk 534.5 ± 201.9 752.1 ± 157.3 314.9 ± 151.6 922.6 ± 51.8 753.4 ± 53.4 875.7 ± 61.5 948.0 ± 10.0

cartpole swingup_sparse 753.3 ± 98.2 796.2 ± 11.9 703.6 ± 93.4 665.9 ± 121.6 817.2 ± 8.6 566.6 ± 102.2 836.6 ± 9.4

reacher hard 825.3 ± 108.1 882.5 ± 71.6 600.7 ± 118.0 640.7 ± 162.9 607.6 ± 156.4 438.2 ± 135.5 864.5 ± 131.0

finger turn_easy 830.1 ± 137.2 773.7 ± 84.9 201.1 ± 42.4 723.1 ± 104.7 722.5 ± 94.8 404.3 ± 162.9 928.4 ± 17.6

walker run 670.2 ± 16.5 416.5 ± 125.5 216.8 ± 69.5 725.3 ± 35.3 432.9 ± 63.0 711.1 ± 15.0 774.2 ± 12.9

cheetah run 646.1 ± 15.5 707.5 ± 23.8 21.3 ± 45.0 653.0 ± 22.0 509.8 ± 21.5 435.9 ± 129.0 863.2 ± 21.1

pendulum swingup 220.6 ± 238.5 284.9 ± 228.7 353.2 ± 257.3 770.3 ± 151.4 827.5 ± 12.3 461.3 ± 243.1 833.8 ± 12.6

quadruped run 416.1 ± 81.2 447.8 ± 16.5 267.3 ± 68.3 471.4 ± 13.8 437.1 ± 18.7 492.2 ± 42.7 846.3 ± 41.6

finger turn_hard 588.6 ± 178.1 513.3 ± 131.8 105.1 ± 17.2 728.5 ± 70.8 603.1 ± 112.9 174.1 ± 61.9 908.7 ± 13.9

hopper stand 109.7 ± 43.2 387.7 ± 196.9 33.8 ± 19.6 293.7 ± 152.9 148.7 ± 76.6 34.7 ± 9.4 848.0 ± 112.5

acrobot swingup 16.2 ± 3.7 12.5 ± 2.2 37.9 ± 10.0 76.5 ± 44.0 137.2 ± 40.2 55.8 ± 35.9 263.5 ± 51.9

hopper hop 9.4 ± 8.4 134.5 ± 26.5 2.8 ± 2.3 84.5 ± 18.7 1.1 ± 0.3 6.4 ± 1.7 245.8 ± 13.3

Table 15: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=2, noise dim=32.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 973.9 ± 1.2 972.0 ± 2.0 938.0 ± 16.3 974.9 ± 1.4 968.9 ± 3.0 908.7 ± 78.4 978.2 ± 0.6

cartpole balance 962.1 ± 21.2 948.8 ± 25.3 892.5 ± 44.6 982.4 ± 11.8 956.9 ± 28.5 768.2 ± 242.0 997.8 ± 4.3

cartpole balance_sparse 973.1 ± 31.2 973.6 ± 24.0 684.2 ± 234.4 962.7 ± 45.4 956.2 ± 48.1 755.7 ± 159.8 990.5 ± 17.5

walker stand 965.2 ± 9.5 763.8 ± 116.7 416.2 ± 166.5 969.5 ± 15.1 930.5 ± 32.5 853.4 ± 89.4 977.9 ± 7.2

cartpole swingup 854.6 ± 6.6 829.4 ± 11.2 711.8 ± 144.2 523.6 ± 199.3 852.4 ± 7.9 864.4 ± 9.6 870.3 ± 8.6

walker walk 933.7 ± 17.9 742.6 ± 134.5 501.3 ± 105.7 947.2 ± 15.2 858.9 ± 50.4 922.2 ± 140.2 958.3 ± 10.3

reacher easy 936.3 ± 28.8 948.6 ± 14.1 463.1 ± 227.2 509.1 ± 249.7 613.7 ± 277.7 841.3 ± 151.1 957.7 ± 22.8

finger spin 850.5 ± 13.1 873.2 ± 36.1 521.1 ± 214.8 902.1 ± 26.2 811.3 ± 15.6 512.7 ± 134.7 973.3 ± 13.5

quadruped walk 626.0 ± 213.3 714.2 ± 148.5 320.5 ± 98.4 808.8 ± 172.7 780.4 ± 39.8 804.2 ± 208.6 954.2 ± 3.9

cartpole swingup_sparse 741.8 ± 148.9 706.9 ± 146.2 665.0 ± 100.0 780.9 ± 14.8 786.7 ± 17.7 514.1 ± 149.1 840.9 ± 6.4

reacher hard 824.6 ± 167.1 807.9 ± 187.3 690.7 ± 144.1 648.8 ± 207.0 658.9 ± 219.9 358.0 ± 211.9 923.8 ± 32.9

finger turn_easy 712.2 ± 143.6 657.5 ± 125.2 230.0 ± 56.4 727.2 ± 77.3 697.0 ± 99.8 273.4 ± 56.4 935.0 ± 14.5

walker run 666.0 ± 11.5 410.2 ± 83.1 80.3 ± 52.7 731.7 ± 16.4 435.4 ± 56.5 696.2 ± 13.9 777.6 ± 10.4

cheetah run 615.9 ± 26.9 665.7 ± 60.9 162.9 ± 100.0 615.7 ± 17.6 483.2 ± 16.7 232.4 ± 181.0 851.5 ± 15.2

pendulum swingup 199.7 ± 222.2 382.9 ± 254.0 256.6 ± 233.7 732.6 ± 167.0 820.5 ± 14.3 557.6 ± 202.7 835.1 ± 9.6

quadruped run 379.0 ± 77.1 414.8 ± 48.6 166.9 ± 42.6 439.6 ± 51.6 440.8 ± 21.8 552.7 ± 52.1 864.5 ± 40.2

finger turn_hard 427.8 ± 195.8 399.3 ± 146.5 91.6 ± 18.0 590.9 ± 87.0 499.7 ± 157.5 228.8 ± 134.7 897.2 ± 19.5

hopper stand 99.8 ± 63.1 544.8 ± 178.8 17.8 ± 12.9 346.3 ± 185.8 77.0 ± 64.7 32.2 ± 12.1 904.7 ± 20.4

acrobot swingup 18.8 ± 18.7 10.9 ± 3.0 23.5 ± 11.3 102.6 ± 46.4 75.4 ± 30.1 36.1 ± 24.8 244.1 ± 47.0

hopper hop 0.2 ± 0.2 129.9 ± 41.5 0.4 ± 0.3 79.1 ± 26.9 2.8 ± 2.8 4.3 ± 4.1 242.6 ± 15.6
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Table 16: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=4, noise dim=32.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 973.9 ± 1.8 960.3 ± 15.7 918.6 ± 41.8 972.2 ± 4.3 967.0 ± 3.5 723.9 ± 139.3 977.2 ± 1.1

cartpole balance 969.2 ± 11.5 931.9 ± 29.9 815.1 ± 91.9 977.8 ± 19.4 957.9 ± 13.2 901.4 ± 171.1 996.4 ± 5.7

cartpole balance_sparse 996.2 ± 3.6 899.8 ± 86.1 831.1 ± 158.1 932.6 ± 103.1 917.9 ± 50.4 830.1 ± 131.0 991.1 ± 17.2

walker stand 951.9 ± 19.4 641.9 ± 146.9 394.7 ± 180.1 971.1 ± 6.4 929.3 ± 28.9 875.1 ± 57.7 978.8 ± 5.8

cartpole swingup 858.5 ± 5.6 823.9 ± 15.7 770.4 ± 34.2 684.2 ± 176.0 850.4 ± 5.4 856.4 ± 21.9 881.2 ± 0.5

walker walk 925.2 ± 26.5 778.4 ± 119.8 323.7 ± 131.3 954.7 ± 5.1 834.2 ± 56.4 925.5 ± 30.6 965.8 ± 4.5

reacher easy 950.6 ± 23.8 828.8 ± 110.3 312.9 ± 184.3 579.6 ± 269.9 732.4 ± 244.1 616.1 ± 234.2 951.3 ± 18.1

finger spin 681.0 ± 144.3 862.5 ± 50.0 220.8 ± 190.4 917.6 ± 22.1 719.2 ± 68.4 528.9 ± 134.6 875.1 ± 46.6

quadruped walk 506.2 ± 209.1 878.9 ± 27.7 204.0 ± 65.6 709.7 ± 147.2 700.7 ± 105.9 768.2 ± 206.0 953.6 ± 9.1

cartpole swingup_sparse 65.2 ± 143.5 385.4 ± 256.0 468.4 ± 219.8 617.6 ± 182.8 562.2 ± 180.6 459.9 ± 198.6 841.4 ± 9.2

reacher hard 580.1 ± 280.0 923.0 ± 32.1 369.3 ± 239.1 624.0 ± 230.1 615.5 ± 221.1 389.7 ± 203.8 942.7 ± 12.6

finger turn_easy 584.0 ± 171.8 491.6 ± 80.8 184.8 ± 28.4 724.5 ± 57.0 503.9 ± 88.5 229.7 ± 41.4 927.2 ± 10.9

walker run 646.4 ± 20.1 432.1 ± 118.4 57.6 ± 46.2 730.9 ± 19.1 462.2 ± 43.1 674.3 ± 15.2 766.5 ± 13.0

cheetah run 607.8 ± 13.2 657.4 ± 41.2 185.9 ± 79.0 575.5 ± 25.8 459.6 ± 24.6 386.2 ± 154.2 857.6 ± 20.8

pendulum swingup 72.3 ± 151.5 162.9 ± 194.8 123.2 ± 159.2 777.4 ± 130.4 831.8 ± 9.2 577.4 ± 196.0 838.7 ± 4.0

quadruped run 322.6 ± 86.0 434.1 ± 24.7 208.0 ± 48.5 476.3 ± 46.3 452.7 ± 16.6 495.4 ± 92.6 850.7 ± 25.8

finger turn_hard 371.1 ± 152.8 215.3 ± 83.6 100.5 ± 19.7 537.5 ± 117.1 312.6 ± 92.0 135.7 ± 45.0 904.8 ± 20.6

hopper stand 21.9 ± 25.2 332.9 ± 200.1 5.3 ± 0.6 179.1 ± 101.0 30.3 ± 25.9 25.2 ± 11.0 828.0 ± 114.3

acrobot swingup 11.4 ± 2.7 10.7 ± 2.1 19.4 ± 10.4 78.4 ± 45.2 43.2 ± 28.5 16.6 ± 13.8 267.3 ± 49.5

hopper hop 0.1 ± 0.0 51.8 ± 28.0 0.2 ± 0.2 75.0 ± 22.7 0.7 ± 0.3 1.3 ± 1.0 255.7 ± 13.1

Table 17: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=8, noise dim=32.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 924.8 ± 95.5 957.7 ± 22.7 924.7 ± 20.2 969.3 ± 4.8 965.2 ± 3.9 760.4 ± 142.3 977.0 ± 1.0

cartpole balance 967.5 ± 12.3 928.7 ± 32.3 814.1 ± 86.6 973.7 ± 12.4 966.6 ± 9.2 950.3 ± 71.2 999.5 ± 0.5

cartpole balance_sparse 984.7 ± 11.4 823.5 ± 160.2 646.6 ± 200.8 982.3 ± 29.3 935.6 ± 34.8 784.0 ± 139.7 985.0 ± 15.4

walker stand 968.6 ± 8.1 522.5 ± 154.5 265.4 ± 118.4 975.8 ± 5.1 932.2 ± 13.8 796.8 ± 63.3 978.5 ± 5.5

cartpole swingup 858.1 ± 5.7 828.6 ± 11.5 778.1 ± 28.9 838.7 ± 9.4 851.9 ± 8.6 865.1 ± 21.4 878.8 ± 4.9

walker walk 919.9 ± 23.6 537.1 ± 133.7 115.8 ± 60.1 954.6 ± 8.8 834.5 ± 78.2 817.5 ± 111.6 966.7 ± 3.0

reacher easy 896.6 ± 70.9 906.6 ± 22.3 306.0 ± 135.1 605.0 ± 201.1 585.7 ± 274.6 552.9 ± 232.2 945.9 ± 44.7

finger spin 226.0 ± 155.0 767.5 ± 115.8 174.4 ± 171.0 841.9 ± 88.1 560.1 ± 50.3 408.0 ± 54.1 849.3 ± 53.8

quadruped walk 407.6 ± 237.5 690.5 ± 142.0 255.5 ± 75.2 804.2 ± 113.3 777.8 ± 61.2 805.9 ± 134.0 953.0 ± 4.8

cartpole swingup_sparse 0.0 ± 0.0 318.3 ± 250.6 526.6 ± 169.5 613.2 ± 181.5 526.0 ± 202.3 199.2 ± 150.1 844.0 ± 1.8

reacher hard 630.9 ± 247.0 808.4 ± 173.4 395.4 ± 245.3 578.9 ± 163.3 367.7 ± 231.4 157.7 ± 100.0 950.8 ± 8.1

finger turn_easy 592.9 ± 176.6 327.3 ± 88.5 201.9 ± 38.5 619.0 ± 35.1 419.0 ± 75.9 240.6 ± 36.4 926.8 ± 10.9

walker run 635.3 ± 19.8 347.8 ± 84.0 23.9 ± 2.6 628.9 ± 25.7 455.9 ± 41.3 649.4 ± 11.1 760.6 ± 19.4

cheetah run 578.8 ± 22.0 628.9 ± 49.6 185.6 ± 86.7 553.2 ± 26.4 433.8 ± 34.2 335.0 ± 87.5 866.3 ± 10.1

pendulum swingup 4.0 ± 3.2 10.9 ± 2.7 124.1 ± 155.1 736.8 ± 243.9 753.1 ± 148.5 462.9 ± 222.3 840.6 ± 5.2

quadruped run 233.8 ± 59.0 381.1 ± 64.9 219.5 ± 63.5 433.3 ± 47.3 417.9 ± 44.2 441.1 ± 93.7 847.4 ± 21.7

finger turn_hard 177.6 ± 66.1 168.3 ± 50.4 97.9 ± 11.8 414.7 ± 49.5 207.2 ± 53.8 110.8 ± 17.0 885.4 ± 24.5

hopper stand 11.4 ± 10.7 116.6 ± 45.1 5.8 ± 0.5 198.1 ± 103.0 29.1 ± 21.1 25.1 ± 14.4 899.1 ± 18.4

acrobot swingup 14.3 ± 5.6 9.8 ± 3.6 11.1 ± 5.8 72.5 ± 43.9 19.8 ± 10.9 17.0 ± 9.8 280.8 ± 32.6

hopper hop 0.1 ± 0.0 31.3 ± 16.7 0.3 ± 0.3 51.1 ± 13.4 0.4 ± 0.3 0.8 ± 0.5 233.9 ± 22.6
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Table 18: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=2.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 975.4 ± 1.2 970.1 ± 5.3 935.1 ± 19.2 973.5 ± 2.7 973.5 ± 2.1 973.2 ± 3.2 978.0 ± 1.0

cartpole balance 950.5 ± 18.7 935.2 ± 27.7 894.1 ± 36.9 983.9 ± 22.2 648.2 ± 248.1 934.6 ± 56.1 990.8 ± 18.6

cartpole balance_sparse 932.6 ± 80.2 976.8 ± 19.6 890.2 ± 81.4 861.6 ± 124.5 548.1 ± 204.1 885.9 ± 48.8 949.6 ± 85.3

walker stand 957.6 ± 17.1 903.4 ± 38.6 737.8 ± 123.8 970.3 ± 8.3 951.9 ± 9.4 907.9 ± 31.3 976.6 ± 9.3

cartpole swingup 862.9 ± 10.2 844.1 ± 14.8 806.9 ± 42.5 757.6 ± 118.0 835.2 ± 36.0 874.8 ± 1.6 873.9 ± 5.5

walker walk 946.4 ± 4.3 821.9 ± 99.4 635.2 ± 123.5 961.6 ± 5.1 847.0 ± 76.0 833.6 ± 135.6 964.7 ± 4.2

reacher easy 858.6 ± 114.2 701.9 ± 212.0 637.4 ± 186.6 361.8 ± 201.3 660.9 ± 262.6 714.6 ± 214.8 929.2 ± 18.6

finger spin 969.0 ± 6.6 903.1 ± 29.2 789.3 ± 41.8 922.9 ± 33.5 875.8 ± 28.6 440.7 ± 151.8 979.5 ± 7.1

quadruped walk 760.2 ± 178.3 807.6 ± 129.3 270.3 ± 131.4 783.7 ± 150.7 787.2 ± 56.5 851.2 ± 96.3 950.5 ± 11.0

cartpole swingup_sparse 787.0 ± 87.2 643.8 ± 191.9 387.3 ± 250.8 718.1 ± 146.1 813.4 ± 15.9 685.2 ± 100.0 834.8 ± 9.8

reacher hard 784.3 ± 106.5 837.9 ± 127.6 430.6 ± 206.5 516.1 ± 249.5 467.3 ± 225.3 185.3 ± 104.2 592.1 ± 165.2

finger turn_easy 934.9 ± 10.0 829.5 ± 98.3 226.9 ± 46.8 753.7 ± 123.1 705.8 ± 118.6 691.6 ± 185.4 912.3 ± 16.3

walker run 681.1 ± 10.3 458.9 ± 84.5 245.5 ± 86.2 751.9 ± 10.0 467.9 ± 23.5 733.7 ± 14.4 781.6 ± 13.9

cheetah run 699.0 ± 13.2 688.6 ± 52.0 167.6 ± 98.0 662.6 ± 24.8 493.7 ± 45.9 484.8 ± 106.5 851.4 ± 25.4

pendulum swingup 565.5 ± 259.6 412.3 ± 262.0 513.3 ± 232.5 767.2 ± 151.8 840.2 ± 4.9 39.7 ± 55.0 770.2 ± 152.5

quadruped run 356.0 ± 90.1 396.8 ± 59.3 170.7 ± 52.5 472.0 ± 59.4 448.3 ± 13.0 571.1 ± 60.6 882.9 ± 24.5

finger turn_hard 689.5 ± 198.0 755.5 ± 113.1 131.0 ± 72.2 516.0 ± 175.0 702.8 ± 118.4 329.1 ± 223.8 864.5 ± 47.5

hopper stand 218.6 ± 59.1 351.6 ± 145.5 22.8 ± 18.7 363.7 ± 180.1 199.8 ± 140.6 39.0 ± 13.0 901.3 ± 25.4

acrobot swingup 46.3 ± 41.4 11.2 ± 2.3 25.6 ± 7.7 83.0 ± 34.8 280.6 ± 21.2 9.2 ± 3.0 183.4 ± 66.7

hopper hop 52.6 ± 39.9 110.0 ± 45.2 1.5 ± 2.0 83.2 ± 29.2 2.4 ± 2.2 4.4 ± 2.3 250.5 ± 15.2

Table 19: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=16.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 974.4 ± 1.8 966.5 ± 14.1 956.9 ± 4.9 975.5 ± 1.3 971.9 ± 2.3 966.5 ± 10.6 978.1 ± 0.8

cartpole balance 958.0 ± 31.8 933.1 ± 17.9 865.9 ± 56.5 990.9 ± 5.0 932.1 ± 58.2 768.3 ± 210.6 996.4 ± 5.6

cartpole balance_sparse 962.2 ± 31.3 937.8 ± 38.4 764.4 ± 120.6 727.8 ± 135.0 820.0 ± 134.4 830.0 ± 79.4 987.1 ± 12.8

walker stand 968.9 ± 6.8 819.0 ± 142.4 514.7 ± 122.9 976.5 ± 3.3 940.2 ± 14.5 887.8 ± 58.6 981.3 ± 2.8

cartpole swingup 865.3 ± 5.2 827.4 ± 20.2 756.9 ± 139.8 794.8 ± 113.9 729.5 ± 185.0 869.9 ± 7.0 870.0 ± 7.1

walker walk 927.3 ± 32.6 822.6 ± 49.6 586.1 ± 146.6 959.2 ± 6.8 808.7 ± 67.5 887.8 ± 64.4 954.2 ± 10.4

reacher easy 851.8 ± 160.0 942.1 ± 27.9 526.6 ± 224.1 600.0 ± 203.9 766.1 ± 204.1 916.4 ± 45.5 962.1 ± 7.1

finger spin 951.3 ± 14.6 837.0 ± 26.9 807.3 ± 67.2 919.1 ± 25.6 798.6 ± 81.6 565.8 ± 169.4 982.9 ± 0.8

quadruped walk 764.3 ± 125.4 883.0 ± 17.7 199.1 ± 52.4 762.7 ± 142.0 790.1 ± 66.4 865.7 ± 93.9 943.3 ± 20.4

cartpole swingup_sparse 829.8 ± 9.1 723.6 ± 145.9 617.0 ± 164.0 735.7 ± 139.5 693.7 ± 182.5 728.9 ± 104.1 837.5 ± 9.3

reacher hard 870.5 ± 38.1 853.9 ± 170.0 628.9 ± 169.2 375.9 ± 236.3 574.4 ± 233.5 362.2 ± 162.2 817.5 ± 136.7

finger turn_easy 847.8 ± 89.8 765.1 ± 92.6 204.0 ± 31.8 742.7 ± 131.9 766.0 ± 86.4 381.7 ± 152.1 920.8 ± 23.9

walker run 669.3 ± 17.8 446.7 ± 91.5 143.7 ± 54.3 743.5 ± 17.2 450.5 ± 42.2 722.7 ± 14.8 795.2 ± 5.0

cheetah run 662.9 ± 19.1 670.3 ± 64.1 69.3 ± 104.1 669.8 ± 13.4 508.0 ± 30.6 522.6 ± 99.1 874.6 ± 14.5

pendulum swingup 372.0 ± 264.5 283.6 ± 238.8 332.5 ± 251.6 766.7 ± 150.9 835.9 ± 5.6 291.1 ± 198.8 765.3 ± 151.3

quadruped run 421.8 ± 79.0 414.1 ± 59.0 193.9 ± 73.4 486.9 ± 29.8 457.0 ± 11.7 537.0 ± 63.3 889.8 ± 41.5

finger turn_hard 707.7 ± 159.4 649.8 ± 134.5 108.4 ± 16.3 637.6 ± 85.1 702.2 ± 104.5 211.5 ± 143.4 879.2 ± 20.5

hopper stand 209.6 ± 148.6 515.7 ± 183.8 97.2 ± 126.9 292.9 ± 123.9 191.7 ± 128.6 41.4 ± 12.7 843.0 ± 82.2

acrobot swingup 25.8 ± 13.7 12.6 ± 2.6 30.1 ± 12.6 59.8 ± 33.4 222.6 ± 17.9 40.9 ± 27.3 245.9 ± 37.0

hopper hop 18.4 ± 13.2 122.4 ± 37.4 3.7 ± 4.5 93.8 ± 35.2 5.5 ± 5.5 6.8 ± 3.5 238.5 ± 28.4
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Table 20: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=64.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 853.7 ± 176.4 970.6 ± 3.1 810.6 ± 189.0 974.7 ± 1.4 965.1 ± 2.7 903.0 ± 78.8 978.2 ± 1.0

cartpole balance 978.8 ± 18.9 932.7 ± 29.9 889.0 ± 37.5 980.5 ± 16.9 967.2 ± 11.1 506.0 ± 259.4 999.8 ± 0.1

cartpole balance_sparse 875.1 ± 117.6 927.2 ± 79.9 885.8 ± 36.0 965.1 ± 37.6 938.5 ± 35.3 741.4 ± 120.5 989.9 ± 13.1

walker stand 965.9 ± 4.4 698.4 ± 163.0 384.4 ± 117.1 970.7 ± 9.7 923.9 ± 29.8 776.7 ± 63.6 980.9 ± 3.3

cartpole swingup 855.8 ± 3.9 836.5 ± 12.7 726.1 ± 142.4 770.9 ± 108.4 853.0 ± 5.7 874.1 ± 9.2 870.7 ± 6.0

walker walk 940.4 ± 7.5 802.7 ± 72.2 408.2 ± 89.8 944.7 ± 31.5 828.3 ± 71.3 915.6 ± 42.6 964.8 ± 3.7

reacher easy 950.7 ± 13.3 798.1 ± 209.1 538.6 ± 155.7 751.9 ± 148.1 761.9 ± 211.0 778.9 ± 193.9 962.3 ± 9.2

finger spin 837.1 ± 15.0 802.9 ± 54.3 460.5 ± 197.1 915.5 ± 28.1 776.3 ± 45.8 496.9 ± 107.2 964.4 ± 17.7

quadruped walk 795.8 ± 154.0 797.5 ± 117.1 233.6 ± 65.9 825.9 ± 77.3 799.8 ± 52.6 824.5 ± 134.6 945.6 ± 12.2

cartpole swingup_sparse 814.0 ± 20.4 798.8 ± 20.7 739.4 ± 67.3 777.3 ± 28.8 793.7 ± 28.5 611.0 ± 162.1 838.2 ± 8.9

reacher hard 904.2 ± 41.1 771.1 ± 197.9 493.5 ± 176.6 654.3 ± 209.1 594.9 ± 266.4 508.8 ± 181.3 944.4 ± 14.2

finger turn_easy 548.0 ± 204.3 500.6 ± 133.6 204.4 ± 21.4 718.1 ± 103.7 708.6 ± 108.3 336.0 ± 116.2 929.3 ± 25.8

walker run 646.4 ± 23.2 495.6 ± 82.7 138.3 ± 54.1 727.3 ± 22.7 443.9 ± 43.2 706.2 ± 15.5 765.0 ± 15.7

cheetah run 598.4 ± 19.9 696.8 ± 28.9 42.4 ± 63.3 616.1 ± 19.8 487.7 ± 30.1 340.3 ± 121.6 841.1 ± 20.8

pendulum swingup 494.2 ± 269.3 497.8 ± 257.4 203.6 ± 211.9 839.1 ± 5.3 803.3 ± 43.7 455.6 ± 254.6 838.9 ± 6.6

quadruped run 420.0 ± 80.5 419.9 ± 31.0 195.3 ± 69.0 456.8 ± 38.4 438.4 ± 26.7 526.2 ± 72.2 863.6 ± 39.4

finger turn_hard 279.0 ± 159.5 344.3 ± 142.0 102.0 ± 18.7 597.3 ± 58.8 294.7 ± 87.1 174.0 ± 67.9 908.2 ± 16.3

hopper stand 94.4 ± 53.1 580.2 ± 165.3 9.6 ± 8.7 351.2 ± 175.7 35.3 ± 28.5 29.4 ± 10.5 903.7 ± 19.2

acrobot swingup 13.9 ± 4.4 12.7 ± 3.5 17.3 ± 9.1 94.9 ± 55.1 67.4 ± 22.3 29.5 ± 24.6 275.4 ± 32.1

hopper hop 2.1 ± 3.8 120.8 ± 44.6 2.6 ± 4.3 92.9 ± 29.0 1.4 ± 0.9 3.4 ± 2.4 245.9 ± 14.1

Table 21: Performance of state-based DMC tasks for the compared methods in noise setting: noise
std=1, noise dim=128.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

ball_in_cup catch 817.5 ± 216.7 966.6 ± 8.1 602.4 ± 260.0 969.4 ± 7.6 964.0 ± 2.3 793.0 ± 143.8 973.7 ± 1.5

cartpole balance 926.5 ± 47.6 943.7 ± 23.0 868.8 ± 55.3 982.9 ± 10.4 818.9 ± 203.4 768.9 ± 222.2 998.9 ± 1.7

cartpole balance_sparse 962.6 ± 46.1 865.8 ± 128.5 631.0 ± 158.5 956.1 ± 33.5 972.9 ± 19.2 671.7 ± 147.7 990.4 ± 11.7

walker stand 953.3 ± 18.0 765.7 ± 128.3 315.8 ± 91.8 972.1 ± 9.2 925.4 ± 18.7 863.1 ± 72.6 980.8 ± 2.1

cartpole swingup 854.4 ± 8.7 835.5 ± 8.2 779.2 ± 27.6 641.8 ± 194.5 849.1 ± 8.6 864.6 ± 4.8 874.0 ± 5.0

walker walk 910.8 ± 29.5 754.4 ± 158.0 239.1 ± 112.6 954.8 ± 6.0 879.3 ± 46.0 899.3 ± 69.0 962.0 ± 6.1

reacher easy 935.3 ± 31.1 859.9 ± 160.6 297.5 ± 157.4 799.6 ± 147.2 621.3 ± 254.4 704.9 ± 288.4 954.5 ± 13.1

finger spin 657.3 ± 53.4 842.4 ± 64.8 394.5 ± 194.0 852.5 ± 64.3 666.3 ± 55.8 433.7 ± 78.0 934.7 ± 38.2

quadruped walk 567.7 ± 222.2 822.5 ± 100.1 209.5 ± 49.9 708.7 ± 125.6 789.1 ± 53.4 803.6 ± 117.2 944.7 ± 14.4

cartpole swingup_sparse 397.2 ± 264.0 650.1 ± 194.3 665.0 ± 104.9 517.7 ± 225.3 0.6 ± 0.7 212.2 ± 172.6 836.3± 9.5

reacher hard 693.0 ± 223.5 899.3 ± 85.7 712.8 ± 152.2 747.7 ± 158.7 263.2 ± 213.3 242.2 ± 177.5 944.9 ± 10.6

finger turn_easy 459.0 ± 118.5 374.4 ± 104.9 210.6 ± 46.1 655.3 ± 53.6 477.5 ± 105.4 237.6 ± 62.4 936.8 ± 7.5

walker run 643.3 ± 14.8 507.0 ± 97.3 26.2 ± 2.9 710.6 ± 28.9 449.9 ± 62.1 703.9 ± 15.7 766.6 ± 12.6

cheetah run 577.4 ± 23.6 648.1 ± 35.9 219.5 ± 80.4 508.5 ± 39.8 441.5 ± 42.3 297.7 ± 142.4 862.4 ± 11.9

pendulum swingup 349.4 ± 271.1 166.2 ± 197.5 85.8 ± 78.0 706.9 ± 176.5 764.4 ± 122.2 741.3 ± 140.4 839.5 ± 5.6

quadruped run 315.3 ± 72.3 409.5 ± 50.1 181.8 ± 52.9 408.6 ± 73.9 446.5 ± 21.8 508.2 ± 61.6 867.3 ± 37.0

finger turn_hard 278.4 ± 110.5 290.4 ± 140.9 94.3 ± 24.0 497.7 ± 49.4 213.2 ± 60.2 126.2 ± 21.1 899.2 ± 27.3

hopper stand 50.6 ± 35.8 524.3 ± 197.3 15.1 ± 12.4 261.3 ± 153.5 28.7 ± 23.2 15.2 ± 8.7 874.0± 42.3

acrobot swingup 14.0 ± 3.0 10.5 ± 2.5 16.1 ± 8.7 101.9 ± 50.1 24.9 ± 8.5 29.1 ± 14.5 243.2 ± 41.1

hopper hop 0.1 ± 0.2 119.9 ± 28.8 0.4 ± 0.2 69.5 ± 26.3 0.9 ± 0.1 1.8 ± 2.3 245.2 ± 16.9

Table 22: Performance of pixel-based DMC tasks for the compared methods with original clean
background.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

cartpole balance 994.5 ± 5.2 959.2 ± 36.7 957.6 ± 38.8 935.7 ± 71.0 981.9 ± 7.8 990.6 ± 8.0 985.1 ± 13.0

cartpole balance_sparse 978.7 ± 46.1 928.9 ± 86.9 604.7 ± 618.1 998.9 ± 2.5 990.8 ± 23.2 990.9 ± 21.5 994.7 ± 7.9

walker stand 968.6 ± 9.0 961.1 ± 20.0 923.8 ± 63.4 963.2 ± 8.6 968.3 ± 7.7 971.1 ± 6.3 875.2 ± 219.7

finger spin 918.2 ± 173.4 973.9 ± 29.9 837.5 ± 197.7 913.5 ± 179.2 845.5 ± 231.1 967.1 ± 40.7 918.6 ± 181.1

cartpole swingup 855.3 ± 3.1 859.7 ± 16.9 845.4 ± 40.6 827.8 ± 15.8 838.5 ± 50.1 859.2 ± 2.8 826.0 ± 56.1

ball_in_cup catch 795.3 ± 468.4 793.2 ± 495.4 327.0 ± 433.9 899.5 ± 161.6 949.5 ± 13.7 967.6 ± 5.9 972.6 ± 7.9

walker walk 785.8 ± 129.8 955.9 ± 16.0 658.8 ± 184.6 941.9 ± 25.7 764.3 ± 18.9 936.6 ± 32.3 957.2 ± 4.1

point_mass easy 326.6 ± 556.4 483.3 ± 548.5 769.8 ± 130.1 425.7 ± 503.9 500.3 ± 569.6 713.7 ± 494.4 180.9 ± 496.9

cartpole swingup_sparse 767.8 ± 44.9 790.2 ± 51.6 731.6 ± 43.5 749.4 ± 41.7 783.5 ± 43.9 730.9 ± 98.0 645.2 ± 448.2

reacher easy 605.8 ± 198.5 135.9 ± 33.4 126.4 ± 119.2 193.0 ± 126.8 195.0 ± 79.3 930.1 ± 46.2 85.2 ± 26.8

pendulum swingup 410.8 ± 491.0 833.5 ± 7.9 14.0 ± 4.0 839.2 ± 24.5 828.3 ± 19.9 829.7 ± 15.3 667.9 ± 462.7

cheetah run 577.0 ± 162.4 398.4 ± 344.8 221.3 ± 265.4 296.4 ± 209.6 589.5 ± 102.0 680.9 ± 214.1 674.3 ± 466.7

walker run 304.3 ± 74.3 503.2 ± 171.3 142.9 ± 111.1 578.2 ± 47.8 480.6 ± 32.8 530.1 ± 225.6 550.5 ± 74.8

hopper hop 160.4 ± 21.1 207.7 ± 46.0 17.9 ± 21.3 129.5 ± 90.3 177.0 ± 21.0 111.1 ± 50.9 112.9 ± 135.7
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Table 23: Performance of pixel-based DMC tasks for the compared methods with grayscale images
background.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

cartpole balance 985.8 ± 5.8 981.6 ± 20.0 729.1 ± 347.2 856.4 ± 299.6 853.6 ± 297.8 989.1 ± 7.8 983.1 ± 10.3

cartpole balance_sparse 998.7 ± 2.9 999.7 ± 0.4 752.3 ± 520.5 761.8 ± 753.8 998.5 ± 1.8 995.0 ± 15.2 986.0 ± 21.1

walker stand 955.7 ± 23.0 950.5 ± 38.0 822.1 ± 189.7 922.8 ± 84.9 952.6 ± 13.5 961.4 ± 10.0 952.0 ± 20.2

finger spin 972.2 ± 16.6 926.4 ± 155.9 558.5 ± 632.9 705.9 ± 499.9 906.8 ± 210.6 955.1 ± 66.0 982.8 ± 4.8

cartpole swingup 856.0 ± 13.3 842.1 ± 33.8 818.4 ± 39.6 764.8 ± 110.6 842.9 ± 25.9 859.3 ± 13.1 492.2 ± 402.0

ball_in_cup catch 761.5 ± 446.8 789.7 ± 503.6 232.4 ± 293.1 630.3 ± 582.7 765.8 ± 435.5 786.6 ± 516.3 576.8 ± 583.3

walker walk 640.0 ± 46.6 931.5 ± 66.0 502.5 ± 224.8 739.5 ± 495.3 712.2 ± 137.8 922.1 ± 13.1 938.6 ± 26.4

point_mass easy 179.2 ± 466.9 338.1 ± 573.1 393.9 ± 490.5 292.4 ± 441.2 533.4 ± 602.9 538.1 ± 609.4 465.7 ± 414.0

cartpole swingup_sparse 615.2 ± 653.1 625.8 ± 435.4 712.1 ± 48.5 590.6 ± 335.6 794.8 ± 15.1 343.6 ± 487.4 789.0 ± 45.1

reacher easy 588.6 ± 178.4 126.7 ± 83.6 116.4 ± 74.6 178.1 ± 90.9 208.0 ± 79.4 966.7 ± 14.6 88.3 ± 38.1

pendulum swingup 46.4 ± 107.3 335.6 ± 561.4 4.9 ± 7.0 342.1 ± 563.8 540.2 ± 579.7 181.9 ± 442.2 345.3 ± 577.1

cheetah run 376.5 ± 36.9 289.7 ± 200.4 210.6 ± 154.5 217.7 ± 244.2 364.8 ± 59.1 409.7 ± 29.2 253.5 ± 285.7

walker run 281.3 ± 52.4 267.1 ± 313.3 74.7 ± 209.4 310.3 ± 327.2 416.2 ± 33.1 469.4 ± 144.8 404.5 ± 269.8

hopper hop 147.9 ± 19.9 100.4 ± 117.5 11.7 ± 31.2 71.7 ± 80.6 121.8 ± 89.5 82.2 ± 56.6 78.3 ± 133.5

Table 24: Performance of pixel-based DMC tasks for the compared methods with colored images
background.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

cartpole balance 984.1 ± 8.9 977.8 ± 13.1 978.4 ± 13.3 924.4 ± 54.5 978.6 ± 15.2 972.4 ± 21.8 978.7 ± 17.2

cartpole balance_sparse 989.8 ± 15.1 999.2 ± 1.1 787.1 ± 500.9 792.4 ± 502.7 996.1 ± 5.6 987.2 ± 29.5 994.7 ± 9.3

walker stand 941.3 ± 53.9 949.7 ± 47.8 883.3 ± 166.4 958.7 ± 9.7 938.8 ± 57.4 963.4 ± 8.1 948.4 ± 26.4

finger spin 975.3 ± 17.4 902.4 ± 207.2 489.8 ± 583.7 670.4 ± 504.0 981.8 ± 2.9 786.8 ± 546.2 984.4 ± 4.0

cartpole swingup 850.4 ± 9.2 844.0 ± 41.5 827.6 ± 20.5 805.0 ± 28.2 837.1 ± 23.9 845.8 ± 34.7 708.3 ± 371.2

ball_in_cup catch 603.2 ± 598.5 933.1 ± 108.6 109.3 ± 18.7 586.0 ± 618.8 768.3 ± 437.4 968.8 ± 5.4 445.6 ± 597.3

walker walk 701.7 ± 158.9 570.0 ± 620.9 635.0 ± 37.4 828.2 ± 125.8 799.8 ± 162.9 907.9 ± 19.0 938.2 ± 23.8

point_mass easy 175.0 ± 479.6 524.0 ± 593.0 298.8 ± 510.6 469.1 ± 437.9 709.5 ± 492.5 539.1 ± 600.5 643.1 ± 455.4

cartpole swingup_sparse 611.4 ± 430.5 767.3 ± 124.5 717.6 ± 20.5 557.3 ± 390.6 783.0 ± 51.2 623.1 ± 407.5 788.9 ± 47.4

reacher easy 680.6 ± 146.4 170.6 ± 81.7 119.7 ± 35.3 185.8 ± 112.3 229.4 ± 78.3 942.0 ± 20.6 101.6 ± 16.1

pendulum swingup 102.6 ± 206.8 172.2 ± 459.8 1.9 ± 1.4 176.6 ± 469.1 610.6 ± 638.5 390.4 ± 487.1 348.5 ± 584.7

cheetah run 363.6 ± 31.9 373.9 ± 58.5 213.5 ± 226.9 285.1 ± 197.0 362.9 ± 36.6 375.8 ± 59.6 205.9 ± 373.6

walker run 269.1 ± 45.2 368.6 ± 268.3 140.9 ± 96.7 324.7 ± 273.9 385.2 ± 33.5 514.1 ± 68.3 543.1 ± 43.0

hopper hop 112.1 ± 127.8 172.4 ± 43.9 10.3 ± 25.1 36.4 ± 114.2 63.2 ± 76.0 71.1 ± 83.2 118.0 ± 133.4

Table 25: Performance of pixel-based DMC tasks for the compared methods with grayscale video
background.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

cartpole balance 976.9 ± 13.6 987.8 ± 8.2 950.9 ± 24.7 880.2 ± 271.4 973.8 ± 16.2 979.1 ± 18.2 956.3 ± 59.8

cartpole balance_sparse 992.8 ± 11.9 995.6 ± 10.7 866.2 ± 126.0 802.9 ± 547.4 996.5 ± 2.9 974.5 ± 41.3 990.6 ± 13.2

walker stand 961.5 ± 3.7 946.6 ± 64.9 643.8 ± 253.2 961.1 ± 3.1 947.8 ± 25.7 971.0 ± 3.9 957.0 ± 8.7

finger spin 976.9 ± 11.8 982.7 ± 2.9 0.0 ± 0.0 974.8 ± 13.1 979.9 ± 7.7 971.4 ± 21.4 902.6 ± 261.3

cartpole swingup 854.9 ± 24.2 866.5 ± 10.9 826.8 ± 43.7 410.4 ± 410.3 854.2 ± 5.8 863.5 ± 7.8 868.0 ± 22.2

ball_in_cup catch 961.6 ± 3.3 690.1 ± 124.2 105.1 ± 30.0 862.4 ± 172.6 935.1 ± 22.4 964.1 ± 10.6 941.1 ± 52.9

walker walk 650.4 ± 191.3 869.2 ± 25.5 146.5 ± 84.5 885.0 ± 46.9 763.3 ± 258.4 913.6 ± 33.1 907.8 ± 48.7

point_mass easy 884.4 ± 23.0 712.3 ± 489.7 166.9 ± 452.1 26.5 ± 71.8 870.0 ± 73.0 449.6 ± 372.0 545.3 ± 596.9

cartpole swingup_sparse 650.8 ± 452.7 646.3 ± 450.0 0.0 ± 0.0 305.9 ± 378.9 802.3 ± 34.2 369.5 ± 401.1 489.9 ± 555.5

reacher easy 313.8 ± 56.9 187.3 ± 57.3 154.3 ± 115.1 167.0 ± 31.8 206.8 ± 84.0 972.0 ± 5.1 75.5 ± 10.5

pendulum swingup 202.5 ± 450.9 839.3 ± 12.3 31.9 ± 85.1 63.1 ± 232.0 707.7 ± 347.0 705.9 ± 325.7 833.7 ± 17.2

cheetah run 359.7 ± 27.3 341.4 ± 67.1 75.8 ± 67.0 174.0 ± 197.1 371.9 ± 12.8 405.0 ± 22.2 342.4 ± 21.7

walker run 244.8 ± 45.7 175.8 ± 106.2 63.1 ± 17.1 180.3 ± 109.5 393.4 ± 16.2 544.0 ± 26.3 270.5 ± 190.6

hopper hop 121.5 ± 84.7 17.3 ± 45.9 0.1 ± 0.1 38.6 ± 67.2 117.7 ± 82.5 77.3 ± 53.8 1.4 ± 1.1
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Table 26: Performance of pixel-based DMC tasks for the compared methods with colored video
background.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

cartpole balance 980.3 ± 8.7 983.2 ± 21.8 904.4 ± 76.5 774.3 ± 355.0 952.9 ± 43.0 949.0 ± 47.2 982.0 ± 9.8

cartpole balance_sparse 985.1 ± 13.8 995.0 ± 8.5 759.3 ± 197.7 972.2 ± 60.5 978.4 ± 63.0 973.3 ± 66.0 997.6 ± 6.7

walker stand 961.8 ± 10.8 916.2 ± 128.5 534.5 ± 347.5 951.0 ± 5.3 943.3 ± 17.7 960.0 ± 12.1 957.7 ± 5.6

finger spin 962.1 ± 27.0 982.2 ± 4.6 163.9 ± 521.6 905.2 ± 177.5 978.8 ± 12.7 860.1 ± 331.9 908.8 ± 212.0

cartpole swingup 848.4 ± 13.9 861.4 ± 169.4 753.1 ± 41.3 293.9 ± 337.8 849.4 ± 10.1 857.1 ± 30.5 830.5 ± 56.6

ball_in_cup catch 937.3 ± 57.6 389.0 ± 264.6 111.1 ± 67.4 762.4 ± 411.0 877.2 ± 113.0 758.7 ± 639.9 891.7 ± 78.2

walker walk 684.6 ± 151.0 667.6 ± 452.6 100.6 ± 144.0 651.9 ± 458.0 845.3 ± 83.9 921.6 ± 30.3 912.6 ± 26.2

point_mass easy 888.2 ± 13.2 366.8 ± 588.0 1.6 ± 2.0 281.8 ± 656.0 889.7 ± 15.3 29.2 ± 41.3 184.4 ± 476.5

cartpole swingup_sparse 705.6 ± 155.5 579.5 ± 429.8 0.0 ± 0.0 45.7 ± 125.3 733.4 ± 128.6 12.4 ± 18.1 673.6 ± 228.7

reacher easy 261.5 ± 118.5 165.6 ± 89.1 180.0 ± 75.4 208.3 ± 96.8 149.8 ± 31.1 960.2 ± 26.8 95.2 ± 46.0

pendulum swingup 80.9 ± 67.7 486.7 ± 434.3 6.2 ± 8.1 338.5 ± 551.4 710.4 ± 429.8 439.2 ± 460.9 656.2 ± 451.1

cheetah run 348.1 ± 6.4 304.0 ± 40.3 53.6 ± 60.9 223.0 ± 49.8 344.6 ± 30.2 396.1 ± 19.5 319.9 ± 21.8

walker run 244.1 ± 70.8 115.8 ± 103.8 54.9 ± 23.3 148.5 ± 153.7 367.0 ± 33.4 492.7 ± 135.4 168.8 ± 170.5

hopper hop 136.3 ± 19.5 23.0 ± 36.9 0.5 ± 1.0 27.8 ± 46.6 106.2 ± 80.3 40.4 ± 43.1 27.5 ± 50.1

Table 27: Performance of state-based DMC tasks for the compared methods with IID Gaussian noise
background.

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR

cartpole balance 975.0 ± 12.3 973.0 ± 40.5 951.0 ± 18.1 982.6 ± 26.8 959.6 ± 23.9 981.3 ± 8.0 988.4 ± 6.1

cartpole balance_sparse 984.8 ± 29.0 999.8 ± 0.4 855.4 ± 118.4 1000.0 ± 0.0 873.7 ± 171.8 962.5 ± 61.3 911.9 ± 105.7

walker stand 951.5 ± 14.2 951.2 ± 37.9 896.1 ± 311.1 373.2 ± 397.6 941.0 ± 33.3 959.0 ± 9.2 936.9 ± 18.3

finger spin 720.5 ± 250.6 587.1 ± 663.7 572.1 ± 648.5 945.1 ± 67.5 814.5 ± 411.0 863.8 ± 306.2 786.3 ± 545.8

cartpole swingup 655.5 ± 282.0 835.9 ± 43.3 796.4 ± 64.1 737.3 ± 258.3 804.7 ± 34.6 851.6 ± 10.4 811.7 ± 88.7

ball_in_cup catch 562.3 ± 351.7 966.1 ± 5.6 202.3 ± 245.4 737.8 ± 636.2 804.7 ± 187.8 898.8 ± 45.0 786.1 ± 494.1

walker walk 608.8 ± 120.0 936.0 ± 34.6 411.0 ± 447.9 685.2 ± 695.2 708.4 ± 199.5 907.4 ± 43.2 933.2 ± 37.8

point_mass easy 5.5 ± 13.5 3.4 ± 5.3 3.2 ± 6.7 3.0 ± 4.1 0.7 ± 5.7 321.7 ± 546.1 171.9 ± 475.9

cartpole swingup_sparse 0.0 ± 0.0 249.6 ± 1073.8 261.2 ± 444.3 257.9 ± 439.8 121.9 ± 320.2 0.7 ± 0.6 469.9 ± 534.3

reacher easy 275.3 ± 121.8 168.6 ± 52.5 178.7 ± 57.1 237.7 ± 116.6 186.3 ± 54.5 961.6 ± 15.6 83.2 ± 9.8

pendulum swingup 657.6 ± 455.6 207.6 ± 657.0 9.1 ± 10.3 215.2 ± 666.8 501.5 ± 540.4 232.7 ± 590.1 175.8 ± 467.3

cheetah run 306.5 ± 33.8 91.8 ± 171.3 214.6 ± 148.5 74.2 ± 199.2 295.9 ± 16.8 309.7 ± 35.5 303.1 ± 120.3

walker run 205.6 ± 25.5 411.2 ± 273.8 26.7 ± 1.8 242.6 ± 239.6 304.9 ± 80.4 330.6 ± 227.2 487.5 ± 36.3

hopper hop 47.3 ± 82.6 28.4 ± 78.6 0.1 ± 0.1 22.0 ± 60.5 45.6 ± 77.3 68.2 ± 47.9 52.1 ± 96.5
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Figure 13: Performance on individual state-based tasks.
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Figure 14: Performance on individual state-based tasks.
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Figure 15: Performance on individual state-based tasks.
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Figure 16: Performance on individual state-based tasks.
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Figure 17: Performance on individual state-based tasks.
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Figure 18: Performance on individual state-based tasks.
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Figure 19: Performance on individual state-based tasks.
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Figure 20: Performance on individual state-based tasks.
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Figure 21: Performance on individual state-based tasks.
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Figure 22: Performance on individual pixel-based tasks.
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Figure 23: Performance on individual pixel-based tasks.
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Figure 24: Performance on individual pixel-based tasks.
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Figure 25: Performance on individual pixel-based tasks.
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Figure 26: Performance on individual pixel-based tasks.
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Figure 27: Performance on individual pixel-based tasks.
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Figure 28: Case study on 6 state-based DMC tasks on DBC-normed with LayerNorm and its variants:
applying the target trick (DBC-normed (Target)), using Huber loss (DBC-normed (Huber)) instead of MSE
as the metric loss, and applying both (DBC-normed (Huber & Target)). X-axis is the environmental step.
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    Noise std: 8.0,    Noise dim: 32
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Figure 29: Case study on six DMC state-based tasks examining the effects of including LayerNorm (the
first and third vs. second and fourth rows). X-axis stands for the environmental step. See Table 2 for a tabular
presentation.
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Figure 30: Aggregated reward (left) and denoising factor (right) of methods on IID Gaussian noise with
random projection setting, varying noise standard deviation, in the 6 selected state-based tasks.
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Figure 31: Performance on individual state-based tasks under the IID Gaussian noise with random
projection setting.
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Figure 32: Performance on individual state-based tasks under the IID Gaussian noise with random
projection setting.
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Figure 33: Performance on individual state-based tasks under the IID Gaussian noise with random
projection setting.
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Figure 34: Performance on individual state-based tasks under the IID Gaussian noise with random
projection setting.
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Figure 35: Performance on individual state-based tasks under the IID Gaussian noise with random
projection setting.
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Figure 36: Reward curves for the isolated metric estimation setting, using the SAC agent with
LayerNorm. Since this setting isolates metric learning, all methods differ only in how the metric
encoder ϕ̃ is shaped, and thus similar performance across methods is expected. This also ensures that
the collected data distribution remains consistent when evaluating different metric learning methods.
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Figure 37: DF for the agent encoder ϕ (co-trained with RL in Sec. 5.1) without LayerNorm.
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Figure 38: Denoising factor curves on six pixel-based DMC tasks under the OOD evaluation set-
ting, measured on the agent encoder ϕ.

0 1 2
1e6

0.0

0.5

1.0 hopper/hop

0 1 2
1e6

pendulum/swingup

0 1 2
1e6

walker/stand

0 1 2
1e6

walker/walk

0 1 2
1e6

cartpole/balance

0 1 2
1e6

ball_in_cup/catch

Environment Steps

M
ea

n 
DF

    Noise setting: Natural Video (Grayscale)
RDBC MICo SimSR DBC

Figure 39: Denoising factor curves on six pixel-based DMC tasks under the ID evaluation setting,
measured on the isolated metric encoder ϕ̃.
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Figure 40: Denoising factor curves on six pixel-based DMC tasks under the OOD evaluation set-
ting, measured on the isolated metric encoder ϕ̃.
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Figure 41: Denoising factor curves on six pixel-based DMC tasks under the ID evaluation setting,
measured on the isolated metric encoder ϕ̃.
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Figure 42: Denoising factor curves on six pixel-based DMC tasks under the OOD evaluation set-
ting, measured on the isolated metric encoder ϕ̃.
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Figure 43: Per-task OOD generalization reward curves for pixel-based DMC tasks.
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Figure 44: Per-task OOD generalization reward curves for pixel-based DMC tasks.
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Figure 45: Per-task OOD generalization reward curves for pixel-based DMC tasks.
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Figure 46: Per-task OOD generalization reward curves for pixel-based DMC tasks.
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Figure 47: Pixel-based DMC per-task generalization reward difference curves.
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Figure 48: Pixel-based DMC per-task generalization reward difference curves.
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