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Summary
A key approach to state abstraction is approximating behavioral metrics (notably, bisimula-

tion metrics) in the observation space, and embed these learned distances in the representation
space. While promising for robustness to task-irrelevant noise shown in prior work, accurately
estimating these metrics remains challenging, requiring various design choices that create gaps
between theory and practice. Prior evaluations focus mainly on final returns, leaving the quality
of learned metrics and the source of performance gains unclear. To systematically assess how
metric learning works in deep RL, we evaluate five recent approaches. We unify them under
isometric embedding, identify key design choices, and benchmark them with baselines across
20 state-based and 14 pixel-based tasks, spanning 250+ configurations with diverse noise set-
tings. Beyond final returns, we introduce the denoising factor to quantify the encoder’s ability
to filter distractions. To further isolate the effect of metric learning, we propose an isolated
metric estimation setting, where the encoder is influenced solely by the metric loss. Our results
show that metric learning improves return and denoising only marginally, as its benefits fade
when key design choices, such as layer normalization and self-prediction loss, are incorpo-
rated into the baseline. We also find that commonly used benchmarks (e.g., grayscale videos,
varying state-based Gaussian noise dimensions) add little difficulty, while Gaussian noise with
random projection and pixel-based Gaussian noise remain challenging even for the best meth-
ods. Finally, we release an open-source, modular codebase to improve reproducibility and
support future research on metric learning in deep RL.

Contribution(s)
1. We analyze five metric learning approaches under the isometric embedding framework to

identify key design choices.
Context: Metric learning methods often diverge significantly between theory and imple-
mentation.

2. We introduce the denoising factor to quantify an encoder’s ability to filter distractions.
Context: Metric learning is often motivated by denoising ability but is rarely evaluated
directly, with prior work relying mainly on qualitative analysis (Zhang et al., 2020).

3. We benchmark five metric learning approaches across diverse distracting domains and find
that common benchmarks add little difficulty to clean tasks, while certain noise settings
remain challenging even for the best methods.
Context: Prior work primarily uses IID Gaussian noise with varied dimensions (Ni et al.,
2024) and grayscale video backgrounds (Zhang et al., 2020).

4. Through ablation studies, we identify layer normalization and self-prediction loss as key
design choices across all methods.
Context: Prior work in metric learning does not isolate the effect of self-prediction loss
and only shows the benefits of normalization in specific methods (Zang et al., 2022).

5. We show that the benefits of metric learning diminish in both return and denoising factor
when key design choices are incorporated into the baseline.
Context: Prior work does not report this limitation of metric learning.
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Abstract

A key approach to state abstraction is approximating behavioral metrics (notably, bisim-1
ulation metrics) in the observation space, and embed these learned distances in the rep-2
resentation space. While promising for robustness to task-irrelevant noise shown in3
prior work, accurately estimating these metrics remains challenging, requiring various4
design choices that create gaps between theory and practice. Prior evaluations focus5
mainly on final returns, leaving the quality of learned metrics and the source of perfor-6
mance gains unclear. To systematically assess how metric learning works in deep RL,7
we evaluate five recent approaches. We unify them under isometric embedding, identify8
key design choices, and benchmark them with baselines across 20 state-based and 149
pixel-based tasks, spanning 250+ configurations with diverse noise settings. Beyond10
final returns, we introduce the denoising factor to quantify the encoder’s ability to fil-11
ter distractions. To further isolate the effect of metric learning, we propose an isolated12
metric estimation setting, where the encoder is influenced solely by the metric loss.13

Our results show that metric learning improves return and denoising only marginally,14
as its benefits fade when key design choices, such as layer normalization and self-15
prediction loss, are incorporated into the baseline. We also find that commonly used16
benchmarks (e.g., grayscale videos, varying state-based Gaussian noise dimensions)17
add little difficulty, while Gaussian noise with random projection and pixel-based Gaus-18
sian noise remain challenging even for the best methods. Finally, we release an open-19
source, modular codebase to improve reproducibility and support future research on20
metric learning in deep RL.121

1 Introduction22

Real-world environments often present high-dimensional, noisy observations, posing challenges for23
RL. For instance, in image-based settings, task-irrelevant variations in background, lighting, and24
viewpoint introduce distractions. Yet, despite this observational complexity, system dynamics are25
typically governed by a compact, task-relevant state. State abstraction (Li et al., 2006; Konidaris,26
2019) provides a framework for extracting such latent representations from raw observations, fil-27
tering out irrelevant information while preserving task-critical structure. A key principle of state28
abstraction is that behaviorally similar states should have similar representations. Traditionally, this29
is enforced through state aggregation (Singh et al., 1994; Givan et al., 2003), grouping states into30
discrete abstract classes based on equivalence relations. However, state aggregation lacks a measure31
of how different states are across classes and struggles with continuous representations, requiring32
infinitely many discrete classes.33

To address this, bisimulation metrics (Ferns et al., 2004; 2011) and their scalable variants (Castro,34
2020; Zhang et al., 2020) have been proposed to define meaningful distances between observations.35
These fall under the broader class of behavioral metrics (Castro et al., 2023), which quantify state36

1The artifact is available at https://anonymous.4open.science/r/understanding_metric-3C44
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similarity based on differences in immediate rewards and transition probabilities. By learning a met-37
ric alongside deep RL, prior work (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021;38
Chen & Pan, 2022; Zang et al., 2022) has shown progress in tackling high-dimensional, noisy tasks.39

Nevertheless, the role of behavioral metric learning in deep RL (metric learning for short) remains40
unclear due to the lack of systematic evaluation. First, its effectiveness relies on accurately estimat-41
ing these metrics, which is challenging in complex tasks. However, prior work primarily measures42
performance through returns, without directly assessing the quality of the learned metrics. Second,43
metric learning is often combined with multiple losses (e.g., self-prediction (Zhang et al., 2020), in-44
verse dynamics (Kemertas & Aumentado-Armstrong, 2021)), as well as architectural choices (e.g.,45
normalization, ensembles (Zang et al., 2022)), making it difficult to isolate the contribution of metric46
learning to performance gains. Third, most studies evaluate only OOD generalization in environ-47
ments with grayscale natural videos as distractions (Zhang et al., 2020), conflating robustness with48
generalization. Lastly, prior evaluations (Tomar et al., 2021; Li et al., 2022) report inconsistent49
results for the same algorithms, raising concerns about reproducibility.50

In this paper, we provide a understanding of how metric learning works in deep RL through51
a systematic evaluation of five recent approaches alongside two baselines. First, we unify these52
metric learning objectives under a common framework using the notion of isometric embedding,53
identifying key design choices for our investigation. Next, to ensure a rigorous and comprehensive54
evaluation, we introduce diverse distraction benchmarks by varying difficulty levels, from Gaussian55
noise to colored natural videos, across both state-based and pixel-based domains, tested under both56
ID and OOD generalization. Then, we quantify the denoising capability – the encoder’s ability to57
filter out distractions. We introduce the denoising factor, which numerically measures how well the58
encoder distinguishes similar from dissimilar observations.2 Finally, we propose an isolated metric59
estimation setting to assess metric learning’s contribution to denoising, independent of other losses.60

Contributions. Our main contributions are as follows:61

1. Conceptual: We analyze five recent metric learning approaches using the isometric embedding62
framework to identify key design choices. In addition, we propose denoising factor to quantify63
an agent’s denoising capability in distracting tasks.64

2. Comprehensive benchmarking: We benchmark these five metric learning methods and base-65
lines on diverse distracting variants of the DeepMind Control (DMC) suite (Tassa et al., 2018).66
In state-based domains, across 20 DMC tasks with 10 IID Gaussian noise settings, SimSR (Zang67
et al., 2022), originally evaluated in pixel-based domains, significantly outperforms other meth-68
ods in both return and denoising factor. In pixel-based domains, across 14 DMC tasks with 6 im-69
age background settings, RAP (Chen & Pan, 2022) performs generally best. SAC (Haarnoja et al.,70
2018) and DeepMDP (Gelada et al., 2019) remain competitive baselines but are often overlooked.71

3. Reevaluating benchmark difficulty: Surprisingly, common distracting benchmarks – varying72
Gaussian noise dimensions in state-based domains and grayscale videos in pixel-based domains73
– add little difficulty. However, Gaussian noise with random projection in state-based domains74
and Gaussian noise in pixel-based domains remain challenging, even for the best methods.75

4. Identifying key design choices: We find self-prediction loss is crucial to SimSR’s success.76
Notably, (layer) normalization, used in SimSR, consistently improves return and denoising77
across all metric learning methods and baselines.78

5. Marginal impact of metric learning (a bitter lesson): The benefits of metric learning diminish79
when key design choices are incorporated into the baseline.80

6. Open-source codebase: We open-source a modular and efficient codebase to improve81
reproducibility in the RL community.82

2Prior work (Zhang et al., 2020) qualitatively analyzes denoising by visualizing representations with t-SNE.
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2 Background83

2.1 Problem Formulation84

We consider a setting where observations contain distractions and focus on a special class of Markov85
decision processes – exogenous block MDPs (EX-BMDPs) (Efroni et al., 2021; Islam et al., 2022).86
Before introducing EX-BMDPs, we first define block MDPs as a prerequisite.87

Block MDPs (Du et al., 2019). A block MDP (BMDP) is a tuple →X ,Z,A, q, p, R, ω↑, where X88
is the observation space, Z is the latent state space, A is the action space, p : Z ↓ A ↔ !(Z) is89
latent transition function, R : Z ↓A ↔ R is (latent) reward function, and ω ↗ [0, 1) is the discount90
factor. The emission function q : Z ↔ !(X ) generates observation x ↘ q(· | z) from latent91
state z. Crucially, BMDP assumes the block structure: ≃ z1, z2 ↗ Z, z1 ⇐= z2 =⇒ supp(q(· |92
z1)) ⇑ supp(q(· | z2)) = ⇓. This ensures that each observation uniquely determines its latent state,93
enabling the existence of the oracle encoder q→1 : X ↔ Z such that q→1(x) = z whenever94
x ↘ q(· | z). The goal of RL in BMDP is to find a policy ε : X ↔ !(A) that maximizes the95
rewards: maxω Eω

[∑↑
t=0 ω

tR(q→1(xt), at)
]
. The policy only receives the observation x without96

access to the latent state z, the latent space Z , or the oracle encoder q→1. While the class of BMDPs97
is equivalent to the class of MDPs (Du et al., 2019), they capture the underlying state from a high-98
dimensional observation. However, BMDPs do not differentiate between task-relevant (endogenous)99
state and task-irrelevant (exogenous) noise in the latent space.100

Exogenous BMDPs (Efroni et al., 2021). An EX-BMDP extends BMDP by factorizing a latent101
state into z = (s, ϑ), where s ↗ S is the task-relevant state and ϑ ↗ ” is the task-irrelevant noise,102
representing distraction. The latent state transition p(s↓, ϑ↓ | s, ϑ, a) factorizes as p(s↓ | s, a)p(ϑ↓ | ϑ),103
where the noise ϑ evolves independently and does not affect the reward function. To simplify nota-104
tion, we denote the reward function as as R(s, a). EX-BMDPs guarantee the existence of a denoising105
map D : Z ↔ S extracts the task-relevant state s from latent state z ↗ Z . Combined with the oracle106
encoder in BMDPs, this enables recovery of the task-relevant state directly from observations: s =107
D(q→1(x)). We define this composite function ϖ↔ = D ⇔ q→1 as the oracle encoder of EX-BMDP.108

2.2 Representation Learning in RL109

In actor-critic methods (Konda & Tsitsiklis, 1999), representation learning is commonly used to110
handle complex MDPs such as EX-BMDPs. The idea is to learn an encoder that maps a raw obser-111
vation to a representation, which is then shared by both actor and critic. Formally, an actor-critic112
algorithm employs an encoder ϖ : X ↔ #, a (latent) actor εε : # ↔ !(A), and a (latent) critic113
Qϑ : #↓A ↔ R, where # is the representation space. In this work, we focus on end-to-end actor-114
critic methods based on the soft actor-critic (SAC) algorithm (Haarnoja et al., 2018). These methods115
jointly optimize the encoder and actor-critic using the RL loss in SAC, denoted as JSAC(ϖ, ϱ,ς).116

Learning state representations solely from reward signals (i.e., RL loss) is challenging in complex117
tasks. To address this, various state abstraction frameworks and representation objectives have118
been proposed (see Ni et al. (2024) for a literature review). Among these, model-irrelevance119
abstraction (Li et al., 2006) defines two conditions for an effective encoder using bisimulation120
relation (Givan et al., 2003). The first condition, known as reward prediction (RP)3, requires that121
the representation preserves reward information. The second condition, known as self-prediction122
(ZP)4 (Ni et al., 2024), requires that the representation preserves latent dynamics information.123
Model-irrelevance abstraction thus defines compact yet informative encoders that retain sufficient124
information for optimal decision-making (Subramanian et al., 2022). By definition, the RP and ZP125
conditions hold when ϖ = ϖ↔ and # = S .5 This implies that the oracle encoder ϖ↔ serves as a126
model-irrelevance abstraction.127

3Formally, in an EX-BMDP, RP condition is →Rω : !↑A ↓ R, s.t.R(ω→(x), a) = Rω(ω(x), a), ↔x, a.
4Formally, in an EX-BMDP, ZP condition is →Pε : !↑A ↓ ”(!), s.t.P (ε↑ | x, a) = Pε(ε↑ | ω(x), a), ↔x, a,ε↑.
5In this case, Rω(s, a) = R(s, a) and Pε(s↑ | s, a) = p(s↑ | s, a).
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To learn a model-irrelevance abstraction, DeepMDP (Gelada et al., 2019) introduces RP and ZP128
losses to approximate the RP and ZP conditions, respectively. Given a data tuple (x, a, r, x↓), these129
losses jointly optimizes the encoder ϖ, the reward model Rϖ, and the latent transition model Pϱ :130

JRP(ϖ,φ) = (Rϖ(ϖ(x), a)↖ r)2, JZP(ϖ, ↼) = ↖ logPϱ(ϖ̄(x
↓) | ϖ(x), a), (1)

where ϖ̄ detaches the encoder from gradient back-propagation. The overall objective JDeepMDP(ϖ)131
for the encoder in DeepMDP combines SAC loss with RP and ZP losses (Eq. 1).132

3 Conceptual Analysis on Behavioral Metrics Learning in RL133

This section establishes a conceptual framework linking behavioral metrics to representations in134
deep RL (Sec. 3.1), and then summarizes how related work instantiates it (Sec. 3.2).135

3.1 Isometric Embedding: Between Behavioral Metrics and Representation136

We aim to find an encoder that maps noisy observations into a structured representation space,137
where distances reflect differences in rewards and transition dynamics smoothly. This representa-138
tion should facilitate RL by ensuring that task-relevant variations are captured. A natural way to139
formalize this goal is through the concept of an isometric embedding (isometry)

6:140

Definition 1 (Isometric Embedding) An encoder ϖ : X ↔ # is an isometric embedding if the141
distances in the original space (X , dX ) are preserved in the representation space (#, d!). Formally,142

dX (x1, x2) = d!(ϖ(x1),ϖ(x2)), ≃x1, x2 ↗ X , (2)

where dX is the target metric (“desired” metric) and d! is the representational metric. See Ap-143
pendix Sec. B.1 for background on metric definitions.144

3.2 Design Choices in Metric Learning145

Table 1: Summary of key implementation choices for the benchmarked methods.
Method dR d! dT Other Losses Transition Model Metric Loss Normalization Target Trick

SAC — — — — — — — —
DeepMDP — — — RP + ZP Probabilistic — — —
DBC Huber Huber W2 closed-form RP + ZP Probabilistic MSE — —
RDBC Huber Huber W2 closed-form RP + ZP Deterministic MSE Max norm —
MICo Abs. MICo Angular Sample-based — — Huber — ↭
SimSR Abs. Cosine Sample-based ZP Probabilistic Ensemble Huber L2 norm —
RAP RAP MICo Angular W2 closed-form RP + ZP Probabilistic Huber — —

Def. 1 provides a general conceptual framework instantiated by several works in deep RL through146
distinct design choices. Rather than delving into theoretical implications, we focus on practical147
implementations reflected in their publicly available codebases, summarized in Table 1.148

Choices of Target Metric dX . The target metric, which captures differences in rewards and tran-149
sition dynamics, is typically formulated as (Castro et al., 2023): for x1, x2 ↗ X ,150

dX (x1, x2) = cRdR(r1, r2) + cT dT (dX )(P (· | x1), P (· | x2)), (3)

which is inspired by bisimulation metrics (Ferns et al., 2004; 2011).7151

• dR, representing immediate state similarity, measures the closeness of sampled immediate rewards152
r1, r2 ↗ R based on x1, x2. Common choices include absolute difference dR(r1, r2) = |r1 ↖ r2|153
(“Abs.” in Table 1) (Zang et al., 2022; Castro et al., 2021), “Huber” distance8 dR(r1, r2) =154
1
2 (r1 ↖ r2)2 1{|r1→r2|<1} +

(
|r1 ↖ r2| ↖ 1

2

)
1{|r1→r2|↗1} (Huber in Table 1), or other specific155

forms (Chen & Pan, 2022).156
6https://en.wikipedia.org/wiki/Isometry
7See Appendix Sec. B.2 for the full formal definition and discussion of the variants of bisimulation metrics.
8https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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• dT , a probabilistic measure of long-term state similarity, typically avoids expensive 1-Wasserstein157
computations in bisimulation metrics. Methods such as (Zhang et al., 2020; Kemertas &158
Aumentado-Armstrong, 2021; Chen & Pan, 2022) approximate transitions using a Gaussian tran-159
sition model with a 2-Wasserstein metric. In contrast, Castro et al. (2021); Zang et al. (2022) rely160
on sample-based distance approximations.161

Choices of Representational Metric d!. To approximate d!, methods employ either a Huber dis-162
tance (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021) (a surrogate for Lp-distance)163
or an angular distance (Castro et al., 2021; Zang et al., 2022; Chen & Pan, 2022).164

Metric Loss Function JM . To approximate an isometric embedding, metric learning methods165
optimize this general objective:166

JM (ϖ) = ↽(d!(ϖ(x1),ϖ(x2))↖ dX (x1, x2)), (4)

where ↽ can be Huber loss (Chen & Pan, 2022; Castro et al., 2021; Zang et al., 2022), or mean square167
error (MSE) (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021).168

Self-prediction (ZP). As discussed, approximating dX often requires a transition model, methods169
adopt distinct approaches: probabilistic models (Zhang et al., 2020; Castro et al., 2021), ensembles170
of probabilistic models (Zang et al., 2022), and deterministic models (Kemertas & Aumentado-171
Armstrong, 2021). MICo, in contrast, employs a sample-based target metric that is free of ZP.172

Normalization. We discuss normalization in the representation space #. RDBC (Kemertas &173
Aumentado-Armstrong, 2021) employs max normalization to enforce boundedness, leveraging prior174
knowledge of target metric constraints. SimSR (Zang et al., 2022) applies L2 normalization to175
enforce unit-length representations. LayerNorm (Ba et al., 2016) is widely used in pixel-based176
encoder across all methods except SimSR. In the broader context of deep RL, normalization has177
been extensively studied for its benefits in stabilizing training and generalization (Li et al., 2023;178
Fujimoto et al., 2023; Elsayed et al., 2024; Gallici et al., 2024).179

Target trick. MICo employs a target network ϖ̄ for encoding one observation in d! when approx-180
imating dX to ensure learning stability. See Castro et al. (2021, Appendix C.2) for further details.181

3.3 Candidate Methods182

We present the design choices of methods to be benchmarked in our work in Table 1. Note that183
RDBC (Kemertas & Aumentado-Armstrong, 2021) incorporates additional components – such as184
intrinsic rewards and inverse dynamics – that enhance performance. However, since these elements185
are orthogonal to our study, they are not included in our implementation. For a fair comparison, our186
experiments employ a probabilistic transition model for all methods that require one.187

4 Study Design: Does Metric Learning Help with Denoising?188

The “denoising capability” of behavioral metric learning is often cited as a motivation in prior189
work (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021; Chen & Pan, 2022; Zang et al.,190
2022). However, most studies evaluate this indirectly by (1) combining metric learning with RL, (2)191
training only on grayscale natural video backgrounds, (3) testing on unseen videos in training, and192
(4) evaluating solely through return performance. This leaves a gap between motivation and actual193
denoising assessment.194

This section bridges that gap with a systematic study design. First, we introduce a diverse range195
of noise settings from IID Gaussian noise and random projections to natural video backgrounds196
(Sec. 4.1), enabling an analysis of how noise difficulty impacts metric learning. Second, we separate197
the noise distributions during training and testing to examine denoising under both ID and OOD198
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Figure 1: Examples of different noise settings in pixel-based domains (three consecutive timesteps each).
From left to right: original clean image, IID Gaussian image, grayscale natural image, colored natural image,
grayscale natural video, colored natural video. Three background images are different for video settings.

generalization settings (Sec. 4.2). Third, we introduce a direct evaluation measure, the denoising199
factor (Sec. 4.3). Finally, to disentangle metric learning from RL, we propose the isolated metric200
estimation setting, where metric learning affects only the encoder, not the RL agent (Sec. 4.4).201

4.1 Noise Settings202

We describe our noise settings using the EX-BMDP framework (Sec. 2.1), where observations fol-203
low x ↘ q(· | z) with z = (s, ϑ).204

IID Gaussian Noise. The task-irrelevant noise ϑt is sampled independently at each timestep from205
an m-dimensional isotropic Gaussian, ϑt ↘ N (µ,⇀2I). For state-based domains, the observation is206
exactly the latent state, i.e., xt = zt with q as the identity mapping. We adjust the noise dimension207
m or noise std ⇀ to modulate difficulty, whereas prior work (Kemertas & Aumentado-Armstrong,208
2021; Ni et al., 2024) only varies m with a small ⇀. For pixel-based domains, noise is applied per209
pixel in the background and overlaid by the robot foreground’s pixels, with q as a rendering function.210

IID Gaussian Noise with Random Projection. This setting applies only to state-based do-211
mains where s ↗ Rn. Before interaction with the MDP, we construct a full-rank square matrix212
A ↗ R(n+m)↘(n+m) with entries sampled as Aij ↘ N (µA,⇀2

A). At each time step, we generate213
m-dimensional IID Gaussian noise ϑt ↘ N (0,⇀2I) and then apply a linear projection to obtain214
observation xt = Azt where zt = (st, ϑt). Since A is full rank, st can be recovered from xt using215
A→1. This setting is more challenging than IID Gaussian noise, as it linearly entangles st and ϑt,216
with q as the linear projection.9217

Natural Images. This setting applies only to pixel-based domains, replacing the clean background218
with a randomly selected natural image. As in the original environment, the background remains219
fixed during training. Images can be grayscale or colored, introducing different levels of visual220
complexity. In EX-BMDP notation, ϑt is stationary and q is a rendering function.221

Natural Videos. This setting also applies only to pixel-based domains, replacing the clean back-222
ground with with natural video. The underlying noise ϑt ↗ N, representing the frame index, follows223
the update rule ϑt = (ϑt→1 + 1) mod N , where N is the total number of frames. These videos224
can be grayscale or colored, with the grayscale setting widely used in metric learning (Zhang et al.,225
2020; Kemertas & Aumentado-Armstrong, 2021; Zang et al., 2022; Chen & Pan, 2022).226

4.2 Denoising Involves ID and OOD Generalization227

In this work, “denoising” refers to a form of generalization that removes task-irrelevant noise from228
observations, enabling generalization to tasks with unseen noise. The evaluation settings differ based229
on whether the noise distribution remains unchanged or shifts between training and testing.230

9Voelcker et al. (2024) similarly projects observations using a random binary matrix in discrete domains.
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In-distribution (ID) Generalization Evaluation. The training and testing environments (EX-231
BMDPs) are identical, meaning the same noise distribution is applied in both phases. For example,232
IID Gaussian noise remains unchanged throughout training and testing.233

Out-of-distribution (OOD) Generalization Evaluation. The training and testing EX-BMDPs234
share the same task-relevant parts (i.e., p(s↓ | s, a), p(s0), R(s, a)) but differ in noise distributions235
(i.e., p(ϑ↓ | ϑ), p(ϑ0)). For instance, natural videos from a training dataset are employed during236
training, while videos from a distinct test dataset are used during evaluation. This evaluation setup237
is widely used in metric learning (Zhang et al., 2020; Kemertas & Aumentado-Armstrong, 2021;238
Zang et al., 2022; Chen & Pan, 2022).239

4.3 Quantifying Denoising via the Denoising Factor240

We introduce the denoising factor (DF), a measure that quantifies an encoder ϖ’s ability to filter241
out irrelevant details while retaining essential information.10 It also provides insight into how the242
behavioral metrics are approximated, given that exact behavioral metrics are nearly inaccessible243
via fixed-point iteration in high-dimensional state or action spaces. To compute DF, we define a244
positive score and a negative score for an encoder ϖ. Inspired by triplet loss (Schroff et al., 2015)245
in contrastive learning, we compute these scores by selecting an observation x as an anchor, then246
constructing a positive example x+ similar to x, and a negative example x→ dissimilar to x.247

Definition 2 (Positive score) The positive score of an encoder ϖ w.r.t. the metric d” measures the248
average representational distance between anchors and their positive examples:249

Posd!(ϖ) := Ex≃ςω(x),φ+≃ς(φ+),x+≃q(·|↼→(x),φ+)

[
d”(ϖ(x),ϖ(x

+))
]
, (5)

where ⇁ω(x) is the stationary state distribution under the policy ε and ⇁(ϑ+) is a stationary noise250
distribution. The sampling x+ ↘ q(· | ϖ↔(x), ϑ+) ensures that x+

shares the same task-relevant251
state s = ϖ↔(x) but has different noise ϑ+.252

In the temporally-independent noise setting, ⇁(ϑ+) matches the noise transition; in the natural-video253
setting, ⇁(ϑ+) is a uniform distribution over frame indices {0, 1, . . . , N ↖ 1}.254

Definition 3 (Negative score) The negative score of an encoder ϖ w.r.t. the metric d” measures the255
average representational distance between anchors and their negative examples:256

Negd!
(ϖ) := E

x,x↑iid≃ςω

[
d”(ϖ(x),ϖ(x

→))
]
, (6)

where x, x→
are IID samples from ⇁ω .257

Definition 4 (Denoising factor (DF)) The denoising factor of an encoder ϖ w.r.t. the metric d” is258
defined as the normalized difference between the negative and positive scores. As a result, a higher259
DF indicates better denoising ability.260

DFd!(ϖ) :=
Negd!

(ϖ)↖ Posd!(ϖ)

Negd!
(ϖ) + Posd!(ϖ)

↗ [↖1, 1]. (7)

4.4 Decoupling Behavioral Metric Learning from RL261

In many behavioral metric learning methods, the encoder ϖ is optimized via a combination of262
losses: the RL loss (e.g., JSAC(ϖ)), the reward-prediction loss JRP(ϖ), the self-prediction loss JZP(ϖ)263
(Eq. 1), and a metric loss JM(ϖ) (3). This coupling makes it difficult to isolate the direct impact of264
metric learning on representation quality. Moreover, denoising factor (DF, Def. 4) depends on both265
the encoder and the data distribution induced by RL agent. Policies that frequently revisit similar266
task-relevant states under varying noise may inflate DF, making it an unreliable measure of denois-267
ing. Due to the above reasons, we propose to evaluate behavioral metric learning algorithms in an268
isolated metric estimation setting.269

10While the oracle encoder ω→ achieves perfect denoising, direct comparison is impossible as ω lacks access to S.
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Isolated Metric Estimation Setting. To isolate the effect of metric learning, we introduce an iso-270
lated metric encoder ϖ̃ that is optimized solely via the metric loss JM(ϖ̃), while the agent encoder271
ϖ is updated using the remaining training objectives (e.g., JSAC(ϖ) or JDeepMDP(ϖ)). In our exper-272
iments, regardless of the metric learning method, a SAC agent interacts with the environment and273
collect data for learning the metrics. This allows for a fair comparison of DFd!(ϖ̃) across different274
metric learning methods. For methods that rely on self-prediction loss (Zhang et al., 2020; Kemertas275
& Aumentado-Armstrong, 2021; Zang et al., 2022), we learn an isolated transition model using ϖ̃276
while preventing gradient backpropagation to ϖ̃ to ensure isolation.277

5 Experiments278

Experiment Organization. We first conduct a comprehensive evaluation of all the methods (Ta-279
ble 1) across 20 state-based DeepMind Control (DMC) (Tassa et al., 2018; Tunyasuvunakool et al.,280
2020) tasks (listed in Table 5) and 14 pixel-based DMC tasks (listed in Table 6). Evaluations are281
performed under various noise settings using ID generalization. This study covers a significantly282
larger task set than prior works. Our results (Sec. 5.1) provide a broad assessment of agent per-283
formance and task difficulty, as reflected by return variations. Based on these findings, we select284
a subset of representative tasks for fine-grained analysis (Sec. 5.2) to examine the impact of key285
design choices (Sec. 3.2). We further investigate the isolated metric evaluation setting (Sec. 4.4) in286
Sec. 5.3, and assess OOD generalization following prior work in Sec. 5.4.287

Evaluation Protocol. We report the mean episodic reward rather than the IQM (Agarwal et al.,288
2021) to avoid ignoring tasks that are too easy or too challenging. For each run, the reported mean289
episodic reward, bounded within [0, 1000] for all tasks, is the average of 10 evaluation points within290
a 1.95M-2.05M step window and aggregated over seeds. Figures and tables display 95% confidence291
intervals over tasks. For state-based environments, we use 12 random seeds per configuration, where292
a configuration is defined as a (task, noise setting) pair. For pixel-based experiments, we use 5293
random seeds per configuration.294

Approximation of Denoising Factor (Eq. 7). All observations collected in the evaluation stage295
are regarded as anchors. We sample 16 positive samples and negative samples for each anchor using296
the strategy shown in Sec. 4.3. For consistency, we report DF⇐·⇐2

(ϖ).297

5.1 Benchmarking Methods on Various Noise Settings298

Settings. For state-based DMC tasks, we apply IID Gaussian noise, varying either (a) standard de-299
viations ⇀ ↗ {0.2, 1.0, 2.0, 4.0, 8.0} (with a fixed noise dimension m = 32), or (b) noise dimensions300
m ↗ {2, 16, 32, 64, 128} (with a fixed standard deviation ⇀ = 1.0). For pixel-based DMC tasks,301
evaluation is conducted under 6 image background settings: (1) clean background (the original302
pixel-based DMC setting), (2) grayscale natural images, (3) colored natural images, (4) grayscale303
natural videos, (5) colored natural videos, and (6) IID Gaussian noise (with ⇀ = 1.0). ID generaliza-304
tion evaluation is conducted in this subsection. The aggregated reward and DF for settings (a), (b),305
and (1)-(6) are shown in Fig. 2 and Fig. 3, respectively. Per-task results are listed in Appendix Sec. E.306

Implementation Details. For state-based tasks, the encoder is a three-layered MLP, as used by307
SAC (Haarnoja et al., 2018) and RDBC (Kemertas & Aumentado-Armstrong, 2021). For pixel-308
based tasks, the encoder is a CNN followed by LayerNorm (Ba et al., 2016), as used by SAC-309
AE (Yarats et al., 2021b). All the compared methods are implemented based on SAC. For a fair310
comparison, we adopt an identical probabilistic latent transition models and reward models used in311
DBC and RDBC, although some methods, such as SimSR (Zang et al., 2022), propose using an312
ensemble of latent transition models. We follow the exact hyperparameters specific to each metric313
learning method. Please see Appendix Sec. D for further details.314

Benchmarking Findings. We summarize the key findings from Fig. 2 and Fig. 3.315
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Figure 2: Benchmarking results: performance of seven methods across diverse noise settings, aggregating
episodic rewards from 20 state-based (first two rows) and 14 pixel-based tasks (last row). “Noise std” denotes
the IID Gaussian noise’s standard deviation ω, while “noise dim” denotes its dimension m. Bars show 95% CI.

Figure 3: Benchmarking results: reward (left) and denoising factor (right) of seven methods to IID Gaus-
sian noise dimension (Noise Dim) and standard deviation (Noise Std). Each point is aggregated by 20 state-
based tasks in Table 5.

• SimSR consistently achieves the highest performance in most state-based tasks, excelling in both316
return and denoising factor. RAP performs best in most pixel-based tasks but suffers a moderate317
performance drop in state-based tasks. Interestingly, both SimSR and RAP were evaluated only318
in pixel-based domains in their papers, making our state-based findings novel.319

• SAC and DeepMDP, as fundamental metric learning baselines, deliver decent performance on320
both pixel-based and state-based tasks. However, they are often overlooked in prior work.321

• In state-based domains, all methods are generally more robust to increased noise dimensions322
(when ⇀ = 1.0), as commonly used in prior work, than to increased standard deviation (when323
m = 32), as shown in Fig. 3.324

• In pixel-based domains, grayscale natural video, widely used in prior work, is not significantly325
harder than clean background setting (e.g., for SAC and DeepMDP). Surprisingly, the IID Gaus-326
sian noise setting is the most challenging, warranting further study.327

• Different algorithms excel in different tasks (Table 5, Table 6), e.g., RAP in reacher/easy, MICo328
in point_mass/easy (Fig. 23). Broad task coverage is essential to ensure generalizable insights.329

• Adding objectives trades-off computation efficiency. As shown in Table 2, the time cost of opti-330
mizing of a metric loss is close to optimizing a ZP loss by comparing MICo with DeepMDP.331

5.2 What Matters in Metric and Representation Learning?332

To identify key factors in metric learning in state-based domains, we conduct case studies on the333
design choices outlined in Sec. 3.2. We select three medium-to-hard DMC tasks, finger/turn_easy,334
figure/turn_hard, quadruped/run for detailed analysis. First, a notable difference between our default335
encoder implementations for state-based and pixel-based tasks is the inclusion of normalization,336
which may significantly impact benchmarking outcomes. SimSR, the best-performing algorithm in337
state-based environments, employs L2 normalization in the representation space and discusses its338
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Table 2: Relative time spent on model updates on NVIDIA L40S GPUs under the same task (walker/walk,
with S = R24 and ! = R32). Values represent the multiple of SAC’s updating time. Key hyperparameters
affecting the speed are set identically to Table 7.

SAC DeepMDP DBC RDBC MICo RAP SimSR

Pixel-based 1.00 1.44 2.03 2.12 1.53 2.20 1.75
State-based 1.00 1.42 1.76 1.95 1.39 2.08 1.68

Figure 4: Case study on three DMC state-based tasks (IID Gaussian noise, noise dim=32, noise std=8.0),
examining the effects of including LayerNorm (left vs. right three columns), applying the target trick
(RDBC (T)), and using Huber loss (RDBC (H)) instead of MSE as the metric loss.

effectiveness (Zang et al., 2022). This inspires us to examine whether normalization benefits other339
metric learning methods. Second, several techniques used by the best-performing methods merit340
further analysis. For instance, SimSR, RAP, and MICo (which excels in colored natural video set-341
tings) utilize Huber metric loss instead of MSE, while MICo incorporates the target trick (Sec. 3.2).342
Third, we investigate the performance of methods with LayerNorm in a challenging setting: IID343
Gaussian noise with random projection (Sec. 4.1) with ⇀ ↗ {0.2, 2.0, 4.0, 8.0} (with a fixed noise344
dimension m = 32), shown in Fig. 6. Important findings from Fig. 4 to Fig. 6 is as follows:345

• Most methods benefit from LayerNorm in the representation space, improving both reward346
and DF (Fig. 4). Notably, DeepMDP with LayerNorm performs comparably to SimSR.11 For347
RDBC, using Huber loss for the metric and using the target trick enhance performance (Fig. 4).12348

• ZP loss is crucial for SimSR’s success in noisy state-based tasks (Fig. 5).349

• A significant performance drop occurs for all agents when increasing the noise standard deviation350
in IID Gaussian with random projection setting (Fig. 6), even with normalization applied.351
Nevertheless, DeepMDP and SimSR remain relatively robust to the noise.352

5.3 Isolated Metric Evaluation Setting: Does Learned Metrics Denoise?353

We further analyze the proposed setting in Sec. 4.4 in both state-based (shown in Fig. 7) and pixel-354
based settings (shown from Fig. 25 to Fig. 29). We observe that:355

• Generally, metrics learned in isolation achieve some denoising but underperform compared to356
those co-learned with ZP and critic losses or even with ZP and critic losses alone in DeepMDP357
(first two rows of Fig. 7).358

• LayerNorm also works well with isolated metric estimation (last two rows of Fig. 7).359

• MICo’s DF remains relatively low, which aligns with its theoretical property that the metric for360
positive samples is non-zero (Fig. 7), as MICo does not enforce zero self-distance.361

11Our additional experiments reveal that removing LayerNorm in pixel-based environments causes a substantial perfor-
mance drop across all methods, highlighting the critical role of normalization.

12We observe that runs with superior design choices exhibit much more stable representation norms and gradient norms
for both the critic loss and metric loss. Thus, the performance gains shown in Fig. 4 are likely due to improved numerical
stability in extrapolating the metrics and Q values during generalization.

10



Understanding Effectiveness of Learning Behavioral Metrics in Deep Reinforcement Learning

Figure 5: Ablation study on ZP loss on SimSR. “SimSR (Original)” is the configuration benchmarked
in Sec. 5.1, where ZP is integral to the metric estimation. Therefore, we resort to “SimSR (Basic)” setting
(Theorem 2, Zang et al. (2022)), where the ZP component is independent from the metric estimation, and
“SimSR (Basic, No ZP)” is the setting that ZP is detached from SimSR (Basic). This ablation highlights the
impact of detaching ZP on the overall performance.

Figure 6: Aggregated reward (top row) and DF (bottom row) of seven agents on various IID Gaussian with
random projection settings in the 3 selected state-based tasks.

5.4 OOD Generalization362

While prior work has focused on OOD generalization in pixel-based settings, we extend this analysis363
by evaluating all 14 pixel-based tasks. The “grayscale video” setting (and similarly for other set-364
tings) in Fig. 8 denotes using grayscale videos for both training and evaluation, with distinct video365
samples in each phase. Takeaways in Fig. 8 and Fig. 9 are as follows:366

• Comparing Fig. 8 (OOD) with Fig. 2 (ID), all methods struggle to generalize in both grayscale367
and colored image settings. Unlike video backgrounds, which provide temporal variation, static368
images lack diverse cues, making adaptation to unseen backgrounds more challenging.369

• Even with OOD generalization evaluation, SAC and DeepMDP remain competitive baselines370
(Fig. 8).371

• OOD generalization is more challenging in the colored video setting than in the grayscale video372
setting (Fig. 9). Surprisingly, even baselines like SAC exhibit a low reward gap, questioning the373
necessity of incorporating a metric loss in the widely-used grayscale setting.374

Figure 8: Aggregated reward (top row) and DF (bottom row) of seven agents on various noise settings in 14
pixel-based tasks in Table 6 with OOD generalization evaluation.
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Figure 7: Top row: DF for the agent encoder ε (co-trained with RL in Sec. 5.1) without LayerNorm. Mid
row: DF for the isolated metric encoder ε̃ without LayerNorm. Bottom row: DF for ε̃ with LayerNorm. All
use ID generalization evaluation.

Figure 9: Reward gap (performance in ID evaluation minus OOD evaluation) in the grayscale video setting
(left) and the colored video setting (right), aggregated on 14 pixel-based tasks in Table 6.

6 Conclusion375

Takeaways. Based on our empirical studies on behavioral metric learning in deep RL, we highlight376
the following key insights for RL researchers:377

1. To gain a clearer understanding of RL algorithms, initial evaluations should be conducted on378
simple, controlled environments (e.g., varying Gaussian noise std, pixel-based Gaussian noise).379

2. Claims and motivations for metric learning should be supported by rigorous evaluation, including380
measures such as the denoising factor and comparisons between ID and OOD generalization.381

3. Self-prediction loss and LayerNorm are critical design choices that significantly impact metric382
and representation learning.383

4. The benefits of metric learning diminish when key design choices, such as self-prediction loss384
and LayerNorm, are integrated into SAC. This calls for a deeper investigation into when and how385
metric learning provides unique advantages beyond these existing techniques.386

Future work. Our study focuses on continuous control; future work should explore discrete do-387
mains and real-world tasks. The relationship between denoising and return performance remains388
unclear, requiring further investigation. Additionally, improved benchmarks are needed to better389
isolate the effects of metric learning.390
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