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ABSTRACT

Advances in pre-training and large language models have led to the widespread
adoption of pre-trained models for network traffic classification, enhancing ser-
vice quality, security, and stability. However, most existing pre-trained methods
focus solely on payload semantics, neglect temporal dependencies between pack-
ets, and rely on single-dimensional static feature learning. This limitation reduces
their robustness and generalization capabilities in dynamic and heterogeneous net-
work environments. To address these challenges, we propose TrafficBT, a
universal traffic classification framework combining pre-training with multimodal
fine-tuning. It extracts both semantic and spatio-temporal features and uses data
augmentation to handle data scarcity and class imbalance. During pre-training,
TrafficBT leverages large-scale public and real-world traffic datasets to learn
domain-specific semantic representations from payloads. In the fine-tuning stage,
it adopts a multimodal learning framework that employs a gating network to fuse
BERT with a three-layer Transformer architecture, enabling the model to effec-
tively capture both payload semantics and temporal transmission patterns. Exper-
iments show that Traff£icBT achieves F1 scores above 0.99 on most real-world
and benchmark datasets and outperforms eight state-of-the-art baselines across
eight downstream tasks. Notably, it improves performance by 21% in encrypted
proxy website classification, demonstrating strong robustness and generalization.

1 INTRODUCTION

With the advancement of network technologies and growing concerns, encrypted traffic has become
increasingly prevalent in network communications (Wan et al., 2025). It is accompanied by com-
plex transmission patterns and protocol stru ctures. Real-world encrypted traffic classification tasks,
such as VPN detection and malware analysis (Zhao et al.| [2023; |Zhang et al., 2025)), are vital for
cybersecurity enforcement, while encrypted application classification and tunnel website identifica-
tion support traffic visibility and control (Lin et al.,|2022). Therefore, analyzing diverse encrypted
traffic efficiently and accurately has become a key challenge in modern network environments.

Network traffic classification methods can be categorized into traditional Deep Packet Inspection
(DPI) (Sherry et al., |2015)), fingerprinting (Crotti et al., 2007), machine learning (Pacheco et al.,
2018)), deep learning (Rezaei & Liu, [2019;|Q1u et al.||2025)), and pre-trained model-based technique
(Lin et al.} 2022). With the rise of encrypted traffic, the reliance on DPI on plaintext limits its
effectiveness. Fingerprinting and learning-based methods avoid the reliance on plaintext but often
depend on handcrafted features, require large labeled datasets, and struggle with robustness and
generalization under diverse network conditions.

Pre-training techniques mitigate labeled data scarcity and poor generalization via two stages, i.e.,
pre-training and fine-tuning. Self-supervised pre-training on large unlabeled datasets enables the
model to capture domain knowledge, and fine-tuning adapts the model to specific downstream tasks
(Tang et al., 2022)). This paradigm, successful in computer vision and natural language processing,
has recently been applied to network traffic classification. Representative models such as ET-BER
(Lin et al., 2022), TrafficFormer (Zhou et al.,|2025)), NetMamba (Wang et al.,|2024), and YaTC (Zhao
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et al} [2023) outperform traditional methods with stronger feature representations, higher accuracy,
and better adaptability for encrypted traffic classification.

However, existing pre-trained traffic models predominantly focus on payload semantics, neglect-
ing crucial temporal features and transmission patterns essential for characterizing traffic behavior.
This limitation becomes critical when analyzing encrypted traffic, where inaccessible content makes
transmission patterns the key distinguishing factor (Chen et al.l|[2025). Single-feature learning mod-
els often fail to capture these dynamic network behaviors, leading to limited generalization. Fur-
thermore, due to undersampling rare classes, most of the existing methods degrade feature learning
and recognition performance. These shortcomings highlight the need for more robust approaches.

To address the above challenges, we propose TrafficBT, a general network traffic classification
framework that combines pre-training with multimodal fine-tuning. First, to address the severe
class imbalance and sample scarcity in public and real-world datasets, we design modality-specific
data augmentation strategies for BERT and a lightweight Transformer encoder in Traf ficBT, en-
hancing robustness to rare classes and improving overall performance. Second, we pre-trained a
BERT(Devlin et al.,|2019) model on large-scale real-world and public datasets to learn network traf-
fic payload features. We then design TriFormer, a 3-layer Transformer model for multimodal fine-
tuning, which effectively learns dynamic spatio-temporal representations from both flow-level and
packet-level statistics. Furthermore, we employ a gated network to fuse dynamic spatio-temporal
representations from TriFormer with static payload semantics from BERT, which enables the fine-
tuned model to capture features from multiple modalities, enhancing robustness and generalization
across downstream tasks. Finally, we evaluate Traf£icBT on fifteen benchmark datasets covering
eight typical downstream tasks. The main contributions of this work are summarized as follows:

* We propose TrafficBT, a universal network traffic classification framework that inte-
grates pre-training and multimodal fine-tuning to capture both payload semantics and tem-
poral transmission patterns, addressing the limitations of existing methods.

* We propose a novel multimodal learning mechanism using a gated network that fuses dy-
namic spatio-temporal representations from TriFormer with static payload semantics from
BERT, enabling robust feature extraction across diverse network scenarios.

* We conduct extensive experiments on fifteen public datasets involving eight typical down-
stream tasks. The results show that TrafficBT outperforms eight state-of-the-art base-
lines and achieves the best performance. In particular, on the website classification task
under the encrypted proxy task, it exceeds the best baseline by 21%, demonstrating its
superior robustness and generalization ability.

2 RELATED WORK

2.1 TRADITIONAL TRAFFIC CLASSIFICATION METHODS

Rule-based Methods. These methods classify traffic using predefined rules, protocol specifica-
tions, or signature libraries, such as DPI and fingerprint matching (Sherry et al.,|2015; |Crotti et al.}
2007). Despite their interpretability, they perform poorly on encrypted traffic. For example, Flow-
print (Van Ede et al.| [2020) constructs fingerprints from unencrypted packet protocol fields, working
well in lightly encrypted scenarios but degrading under complex or end-to-end encryption due to its
reliance on plaintext features.

Machine Learning-based Methods. These methods leverage flow-level statistics (e.g., packet
size, inter-arrival time) to train classifiers such as Decision Trees, Random Forests, Support Vector
Machines (SVM), and K-Nearest Neighbors (KNN). By focusing on flow patterns rather than pay-
loads, they exhibit greater resilience to encryption compared to rule-based approaches. However,
these methods heavily rely on manual feature engineering. Representative methods like Appscanner
(Taylor et al., 2016)) use Random Forest classifiers with 54 handcrafted statistical features. Although
these methods can be effective in certain scenarios, their applicability may be limited under dynamic
traffic patterns or strong encryption.

Deep Learning-based Methods. Deep learning methods automatically extract features from raw
traffic data for end-to-end classification. Common models include Convolutional Neural Networks
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Figure 1: The schematic illustration of the Traf ficBT Framework.

(CNNss) for raw bytes or images, Recurrent Neural Networks (RNNs) for temporal patterns, Graph
Neural Networks (GNNs) for flow-structured graphs, and Transformers for capturing long-range
dependencies. They outperform traditional methods and handle encrypted traffic well, but often
lack generalizability across tasks. Representative models include FS-Ne (Liu et al.l 2019a)), which
uses RNNs on packet length sequences, and GraphDApp (Shen et al.| 2021)) and TFE-GNN (Zhang
et al.,[2023)), which apply GNNs on flow graphs.

2.2  PRE-TRAINED MODELS FOR TRAFFIC CLASSIFICATION

BERT-based Pre-training Methods. These methods leverage BERT’s strength in contextual
modeling to capture sequential dependencies within network flows for improved traffic represen-
tations. Representative models include ET-BERT (Lin et al., |2022) and TrafficFormer (Zhou et al.,
2025)), both based on the BERT-base architecture with tokenizers trained on hexadecimal payloads
to better capture domain-specific characteristics. For example, ET-BERT segments traffic into bursts
by 5-tuples and employs masked burst modeling and same-origin burst prediction as self-supervised
tasks to capture burst-level semantics, enabling multi-task fine-tuning for diverse downstream tasks.

MAE-based Pre-training Methods. These methods transform network traffic into image-like ma-
trices (Hang et al., |2023)). They then apply a Masked Autoencoder (MAE) (He et al.l 2022) for
self-supervised learning to capture latent structural patterns. It improves the detection of hidden
anomalies and unknown attacks. YaTC (Zhao et al., [2023)) segments traffic into packets and flows,
constructs multi-level flow representation matrices as MAE input, and uses masked reconstruction
to learn semantic structures. The pre-trained MAE encoder is then fine-tuned with a linear classifier
for downstream tasks.

However, the above classic pre-trained methods mainly focus on payload semantics and ignore the
multimodal traffic representation (i.e., temporal features and transmission patterns) necessary to
characterize traffic behavior. Therefore, in this paper, we focus on the use of multimodal traffic
representation to enhance model performance.

3 METHODOLOGY

Key Challenge. Achieving a general and robust classification of encrypted traffic remains a sig-
nificant challenge. The key challenge lies in jointly learning payload semantics and spatio-temporal
statistical features. Due to input length limitations, existing pre-trained models typically process
only three to five concatenated packets. In contrast, a typical network flow comprises dozens of
packets. As a result, these pre-trained models struggle to capture temporal dynamics and sequential
flow structures while simultaneously modeling payload features. Achieving effective joint learning
without changing the original pre-training task remains an open problem.

Our Solution. To address the above challenge, we propose TrafficBT, a pre-trained language
model architecture that leverages multimodal traffic representations, as illustrated in Fig.[I} Specif-
ically, the proposed model comprises three key phases: the traffic representation phase, the pre-
tuning phase, and the fine-tuning phase. In the traffic representation phase, raw traffic is segmented
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into flows and packets, extracting both spatio-temporal features and payload-level characteristics
to capture the inherent semantics of encrypted communication patterns. In the pre-training phase,
TrafficBT trains BERT on large-scale public and real-world traffic datasets, utilizing data aug-
mentation to mitigate class imbalance and sample scarcity. During the fine-tuning phase, it inte-
grates spatio-temporal traffic features with payload semantics by simultaneously fine-tuning BERT
and leveraging the Transformer-based TriFormer module. A gating network then fuses these repre-
sentations, enabling effective multimodal traffic modeling for downstream tasks.

3.1 TRAFFIC REPRESENTATION PHASE

We first segment each . pcap file into multiple flows based on the 5-tuple (source/destination IPs
and ports and protocol), forming the basic unit for subsequent processing.

Payload Feature Extraction. For each flow, we extract the first five packet payloads along with
IP and transport-layer headers, convert them to hexadecimal, and concatenate them into a byte se-
quence. This sequence is split into overlapping bigrams (e.g., 01bb8713 — 01bb, bb87, 8713),
each representing a 16-bit token. All possible bigrams form a fixed vocabulary of 65,536 unique
tokens, with a direct one-to-one mapping to token IDs. Flows are tokenized with this vocabulary
and truncated to 256 tokens. We introduce five special tokens: [CLS] (sequence-level representa-
tion), [MASK] (masked modeling), [SEP] (end marker), [PAD] (padding), and [UNK] (out-of-vocab
bigrams). The resulting sequences are used for BERT pre-training.

Spatio-temporal Feature Extrac-
tion. For a given network flow, dy-
namic spatio-temporal properties are
reflected in statistical descriptors cap-
turing its temporal patterns and trans-
mission behavior. To effectively
model these aspects, we extract 42
flow-level features and 28 packet-
level features, as summarized in Ta-
bles A comprehensive descrip-
tion of these features is provided in

Appendix [A]

Category Feature Name

timestamp, delta_time, relative_time,

Time-related time_since_last_handshake

Length & Direction packet_length, payload_length, direction

avg_delta_time_last_5, uplink ratio_last_5,

Last-5 Statistics avg/std_pkt_len_last_5

Protocol & TCP Flags seq_diff, window_size

tls_record_type, tls_version, cipher_suite_len,

TLS-related handshake_phase, key_update_count

entropy, chi_square, printable_ratio,

null_byte_ratio, byte_pair_corr

‘ protocol_id, tcp_flag_(syn/ack/fin), is_ack_only,
Content Statistics ‘

L. Table 1: Statistical Features of Network Traffic Packets.
Flow & Packet Statistical Features.

Specifically, the flow-level feature extraction scheme encompasses five key dimensions, yielding 42
features that comprehensively describe the structural and behavioral patterns of network flows, as
provided in Table [T We extract packet-level features across six dimensions to capture temporal
patterns, protocol behaviors, and content characteristics, as shown in Table Among the above sta-
tistical features, categorical and flag-type attributes are encoded into numeric representations using
categorical encoding. For numerical features, Min-Max normalization is applied to mitigate scale
disparities, particularly for time- and length-related attributes, thereby enhancing training stability
and convergence.

Category ‘ Feature Name

Data Augmentation. The prevalence of
class imbalance in real-world datasets

Packet Count Statistics | Total Fwd Packets, Total Bwd Packets

Packet Length Statistics Packet Length Min/Max/Mean/Std/Total (Fwd,

leads to models biased towards major-
ity classes, a problem inadequately ad-
dressed by conventional undersampling
techniques. We utilize input-specific data
augmentation strategies to enhance model
robustness and minority class representa-
tion. Our augmentations are carefully cal-
ibrated to be realistic yet non-disruptive,

Bwd, Flow)

IAT Min/Max/Mean/Std/Total (Fwd, Bwd,

Inter-Arrival Time (IAT) ‘ Flow)

FIN, SYN, RST, PSH, ACK, URG, CWR, ECE

TCP Flags ‘ Flag Count

Flow Rate Statistics ‘ Flow Bytes/s, Flow Packets/s

Table 2: Statistical Features of Network Traffic Flows.

reflecting that phenomena like packet corruption or reordering seldom exceed a 10% rate in practice.
For payload data, we simulate information loss by masking 10% of bytes and enriching structural
diversity by shuffling packet order with a 10% probability. For statistical features, we emulate mea-
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surement noise by adding 5% local random noise, simulate anomalies by masking 10% of features,
and promote temporal dependency learning by shuffling the feature sequence with a 10% probability.
Fig. [[]illustrates the overall TrafficBT framework integrating these augmentation strategies.

3.2 PRE-TRAINING PHASE

Pre-traing Task. During pre-training, we omit the Next Sentence Prediction task, as RoOBERTa
(Liu et al.l [2019b) shows that it offers limited performance improvement. Instead, inter-packet
pattern learning is deferred to multimodal fine-tuning. The model focuses solely on the Mask Bi-
gram Model task to capture internal payload structures. To this end, we build a large-scale data set
of one million network flows, combining real-world mobile app traffic with public VPN, Tor, and
DNS datasets. Specifically, 15% of the tokens in each input sequence are randomly selected for
masking. Of these, 80% are replaced with [MASK], 10% remain unchanged, and 10% are substi-
tuted with random tokens. BERT’s bidirectional Transformer architecture leverages both preceding
and succeeding contexts to predict masked tokens, effectively capturing the semantic and structural
characteristics of the payload. During training, the negative log-likelihood (NLL) loss is utilized to
optimize the model and is defined as follows:

k
Lypy = — Y _log (P(MASKi — token; | X; 9)) , (1)

i=1

where 6 denotes the trainable parameters of TrafficBT, and k is the number of masked bigram
tokens. The conditional probability P(-) is modeled by the Transformer encoder with parameters 6.
The input sequence is X, MASK; is the predicted token at the ¢-th masked position, and token; is
the original token.

Layer Freezing Strategy. After pre-training, we freeze the first 8 BERT layers and keep the top 4
layers trainable for subsequent fine-tuning. This approach reduces trainable parameters and speeds
up fine-tuning, beneficial for small datasets or limited resources. Lower layers capture general
features and are retained to preserve pre-trained knowledge, while upper layers adapt to specific
tasks (Devlin et al) [2019). This strategy also helps prevent overfitting and catastrophic forgetting.
Prior studies indicate that freezing intermediate layers often achieves performance comparable to or
even better than full fine-tuning, especially in tasks like text classification and question answering
(Vilares et al., [2020]).

A
Packet feature | WiineEmEeD |y x]
3.3 FINE-TUNING PHASE melta-se(!uence : % Fusion output
earning Embedding Fusion
. . 1 ]
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L e p \
spatio temporalo statistical fegtures. It ingle Packet [t 1 _ Fowtee |y
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TriFormer Architecture. Fig. [ illus- Figure 2: The architecture of the proposed TriFormer.

trates the detailed architecture of Tri-
Former, which comprises three hierarchical Transformer encoder modules designed to capture multi-
level spatio-temporal patterns from network traffic.

¢ Single-Packet Feature Sequence Learning: A 2-layer Transformer with 4 heads models intra-
packet feature sequences, capturing local temporal patterns.

e Packet Feature Meta-Sequence Learning: A 4-layer Transformer encoder with 8 attention
heads per layer processes the full sequence of packet-level features in a network flow (up to 100
packets). Inputs retain original packet ordering and timestamps to capture critical inter-packet
temporal dynamics and transmission patterns.
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e Flow Feature Sequence Learning: A 2-layer Transformer encoder with 4 attention heads models
global flow statistics. This distills high-level flow characteristics to better model cross-packet
temporal relationships and multimodal representations.

¢ Fusion Projection Layer: Packet sequences and flow statistics are concatenated and compressed
to 256 dimensions via a linear projection, integrating multi-level features for joint modeling with
BERT semantics.

Fusion Gate Design. The gating network (see Fig. [1]) enables adaptive multimodal fusion. Ini-
tially, cross-attention between payload semantics and spatio-temporal statistics (inspired by Visu-
alBERT (Li et al., 2019)) with self-attention shows slow convergence and limited gains. Adding
residual connections (He et al., [2016) slightly improves convergence. Fusion is then simplified by
concatenating features and applying a linear layer, resulting in faster training. Details of these at-
tempts and comparisons are provided in Appendix [E]. Finally, we introduce a gating mechanism
to learn modality-specific weights and adaptively combine features (Kim et al.| [2020). The fused
output then undergoes a linear transformation for downstream tasks, which strengthens multimodal
representation learning.

For multimodal fusion, we use the [CLS] token from the last hidden layer of BERT (first 8 layers
frozen) as the payload semantic representation fggrr € R7%8 (Lin et al.| 2022). The encoded output
of TriFormer represents the spatio-temporal statistical representation fr; € R256. A linear projec-
tion layer reduces fggrr € R7% to 256 dimensions to align with fr; € R?%6. Subsequently, both
features are normalized to ensure stable training and avoid gradient issues:

feerr = LayerNorm(Linearres 256 (fserr)),  fri = LayerNorm(fry). (2)
We concatenate the normalized features and compute gating weights via three expert branches. The
gating coefficient is the maximum of the three weights:
fou = foerrs fru] € B2, 0 = max o(Linear,(feur)) € (0,1). 3)
1€1,2,
Finally, the features are combined via a weighted sum to form a fused representation. This repre-
sentation is then processed by a four-layer MLP classification head to obtain the final prediction
U
§ = MLP(a - fggrr + (1 — @) - frii)- 4)

Multimodal Fine-tuning Strategy. The multimodal fine-tuning process (see Fig. [1]) adopts a 3-
stage warm-up strategy. This design mitigates unstable gradients caused by directly training unini-
tialized TriFormer and fusion modules with BERT. (1) BERT is warmed up for n epochs, fine-tuning
only its last 4 layers while freezing the first 8 layers. To reduce gradient suppression and improve
convergence stability, BERT’s 1-layer classification head is replaced with a 2-layer head. (2) Tri-
Former undergoes a warm-up phase of 3n epochs through downstream classification training to
ensure effective learning of its encoded features. Given that TriFormer converges significantly faster
than BERT, simultaneous warm-up accelerates overall training. (3) With both BERT and TriFormer
warmed up and their parameters frozen, their hidden representations serve as inputs to the fusion
gating network. We then warm up the fusion gate for 2n epochs via downstream classification tasks,
ensuring a stable and effective fusion learning process during the subsequent full fine-tuning stage.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

We implement Traf £icBT with PyTorch 2.1.2 and run all experiments on a single NVIDIA A800
workstation. Then, we provide the details of the pre-training datasets, pre-training settings, fine-
tuning datasets, fine-tuning settings, metrics, and baselines.

Pre-training Datasets. As shown in Table [3| this study utilizes the NUDT-Mobile (Zhao et al.,
2024)) dataset, which contains real-world network traffic collected internally by NUDT (China).
In addition, publicly available datasets ISCXVPN2016 (Gil et al.| [2016), ISCXTor2016 (Lashkari
et al.l 2017), and CIRA-CIC-DoHBrw-2020 (MontazeriShatoori et al., |2020) are incorporated as
supplementary pre-training data sources. A detailed description is in Appendix
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Pl‘e'traiﬂing Settings' Prior studies in- Dataset | Size | #Flows | #Classes Included Protocols
dicate that the first 3 to 5 packets of a net-
work flow carry most of the key informa-
tion (Meng et all 2023). We extract the  1scxveN2016 ‘ 15.6 GB ‘ 4,824 ‘
first 5 packets (headers and payloads) as
BERT input, with a max sequence length
of 256, a hidden size of 768, and 12 Trans- CIRACIC-
former layers. Since most flows have _DoHBrw-2020 ‘
fewer than 100 packets, we use the statis-
tical characteristics of the first 100 packets
as input to the TriFormer module. The pre-training phase runs on a single NVIDIA A800 GPU
(80 GB memory) with batch size 32 and gradient accumulation over 4 steps (effective batch size
128) for 3 epochs. The initial learning rate is Se-5, with 1000 warm-up steps and a weight decay of
0.01. Mixed-precision training (FP16) is enabled. The AdamW optimizer and linear learning rate
scheduler are used. The training uses HuggingFace Trainer with masked language modeling.

TCP, UDP, HTTP, TLSv1.2,

NUDT-Mobile SSLv2, WebSocket, ...

1122 GB ‘ 1,157,245 ‘ 280 ‘

TLSv1.2, SFTP, SSDP,
SNMP, NTP, GQUIC, ...

|

TLSv1.1, TLSv1.2,
7 FTP-DATA, SSL, HTTP,
|

ISCXTor2016 19.7GB 39,018

WebSocket, ...

TCP, TLSv1.2, TLSv1.3,
SSLv2, SSL, ...

75.5GB ‘ 771,497 ‘

Table 3: Overview of Pre-training Datasets.

Fine-tuning Datasets. To ensure robust evaluation, we evaluate downstream classification on 15
datasets covering eight task types, including VPN and Tor traffic classification, network service and
application classification, malware detection, encrypted proxy identification, website classification
under proxy, and device classification under attacks. To prevent data overlap, we adopt a leave-one-
out strategy, excluding the fine-tuning dataset from pre-training. The 15 datasets span diverse real-
world traffic scenarios, including ISCXVPN2016 (Service, APP) (Gil et al., 2016}, ISCXTor2016
(Lashkari et al.,|2017), USTC-TFC-2016 (Benig, Malware) (Wang et al.,[2017), CrossPlatform (An-
droid, i0OS) (Ren et al., [2019), NUDT-Mobile (Zhao et al., [2024), Datacon2020 (DataCon Commu-
nityl, 2021a), Datacon2021 (Parts 1,2) (DataCon Community}, [2021b), and CIC-IoT 2022 (Flood)
(Dadkhah et al.||2022), providing a comprehensive benchmark for evaluating the generalization and
robustness. Detailed dataset descriptions are provided in Appendix [C|

Fine-tuning Settings. To mitigate class imbalance, we construct a balanced training set with 1000
flows per class via sampling or data augmentation. Each dataset is divided into training and testing
sets in a ratio of 8:2. Fine-tuning is conducted using the AdamW optimizer with a cosine decay
learning rate schedule and a 10% warm-up phase. The learning rates are set to 3e-5 for BERT,
8e-5 for TriFormer to address smaller gradients, and Se-6 for the Fusion Gate to ensure stable op-
timization. For each dataset, results are averaged over three runs with different random seeds for
stability.

Evaluation Metrics. For evaluation, we use four standard classification metrics, i.e., Accuracy
(AC), Precision (PR), Recall (RC), and F1-score. We calculate the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). Based on these, the four metrics
are defined as follows:

Accuracy = TP+TN Precision = L )
Y="TPYTN+FP+FN’ T TPYFP
TP Precision x Recall
Recall = —— Fl1- =2 . 6
ecd TP+ FN’ score % Precision + Recall ©

For multi-class tasks, we report macro-averaged Precision, Recall, and F1-score to ensure that each
class contributes equally to the overall evaluation. This approach is consistent with our use of
balanced sampling and data augmentation to mitigate class imbalance. It provides a comprehensive
and fair assessment of both overall performance and per-class performance.

Baselines. To comprehensively evaluate the proposed method, we select eight representative base-
lines, including traditional approaches such as FlowPrint (Van Ede et al.l 2020) and AppScanner
(Taylor et al.,|2016), and deep learning models like FS-Net (Liu et al.,|2019a)) and GraphDApp (Shen
et al.| [2021), all relying on spatio-temporal statistical features. We also included four pre-trained
models, i.e., ET-BERT (Lin et al.l [2022)), TrafficFormer (Zhou et al. |2025), NetMamba (Wang
et al., 2024), and YaTC (Zhao et al., | 2023)—that focus on payload semantics. TrafficBT inte-
grates both modalities for enhanced multimodal representation. Comparisons with single-modality
models confirm the superiority of our design. All baselines were trained and evaluated on the same
datasets for fair comparison. See Appendix [D]for baseline details.
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Dataset | ISCX-VPN (Service) | ISCX-NonVPN (Service) | ISCX-VPN (App) | ISCX-NonVPN (App) | ISCX-Tor

Method | AC PR RC Fl | AC PR RC Fl | AC PR RC Fl | AC PR RC Fl | AC PR RC FI
FlowPrint  [0.9728 0.9321 09344 0.92920.8528 0.8234 0.8276 0.8243]0.7617 0.4388 0.5108 0.45690.7895 0.6660 0.6459 0.6366]0.7386 0.3291 0.3452 03049
AppScanner  0.6148 0.9959 0.6148 0.7602|0.3609 0.9819 0.3609 0.5278]0.6825 0.9930 0.6825 0.8090|0.3683 0.9911 0.3683 0.5370]0.2101 0.9681 0.2101 03453
FS-Net 0.8771 0.8998 0.8984 0.8990[0.6492 0.7212 0.5956 0.5957|0.9104 0.6044 0.6305 0.6129|0.0226 0.0017 0.0769 0.0034|0.6944 03341 04333 0.3770
GraphDApp | 0.5000 0.2457 0.2262 0.1952|0.3218 0.3573 0.2142 0.1241]0.4793 0.0800 0.0862 0.06180.4036 0.0724 0.0793 0.0487|0.4539 0.1900 0.2548 0.1901
ET-BERT  |0.9375 09375 0.9375 0.9375]0.7675 04430 0.7630 0.5540]0.9167 0.9167 0.9167 09167 [0.7153 0.7233 0.7153 0.7173]0.5243 0.5238 05238 0.5238
TrafficFormer | 0.8784 0.8629 0.8784 0.8669|0.7083 0.6894 0.7083 0.6867 | 0.7083 0.6894 0.7083 0.6867 |0.8333 0.8533 0.8333 0.8339 |0.5294 07549 0.5284 0.5555
NetMamba | 0.9793 0.9795 0.9793 0.9794|0.8320 0.8315 0.8320 0.8298|0.9056 0.9089 0.9056 0.9056|0.9155 0.9182 0.9155 0.9160(1.0000 1.0000 1.0000 1.0000
YaTC 0.9984 0.9985 0.9984 0.9984|0.9382 0.9385 0.9382 0.9383|0.9762 0.9784 0.9762 0.9763 |0.9694 0.9700 0.9694 0.9691 |1.0000 1.0000 1.0000 1.0000
TrafficBT [1.0000 1.0000 1.0000 1.0000]0.9717 0.9721 0.9717 0.9718]0.9930 0.9931 0.9930 0.9930|0.9830 0.9832 0.9830 0.9829|1.0000 1.0000 1.0000 1.0000
Dataset | ISCX-NonTor | CIC-IoT 2022 Attacks(Flood) | USTC-TFC 2016 (Malware) | USTC-TFC 2016 (Benign) | NUDT-Mobile
Method | AC PR RC Fl | AC PR RC FlI | AC PR RC Fl | AC PR RC FlI | AC PR RC FI
FlowPrint  |0.9597 0.8802 0.8506 0.8613|0.7896 0.6629 0.6078 0.5883]0.9520 0.7466 0.8000 0.7636]0.7365 0.7365 0.7365 0.7365|0.4751 04865 04509 0.4505
AppScanner |0.5300 0.9865 0.5300 0.6895|0.5123 0.9957 0.5123 0.6765]0.1702 0.9991 0.1702 0.2908|0.5101 0.9931 0.5101 0.6740|0.2715 09910 02715 0.4262
FS-Net 0.8925 0.7702 0.5220 0.5877[0.7674 0.6196 0.6661 0.5849|0.8611 0.8782 0.8349 0.8437|0.8975 0.9481 09130 0.9236|0.6375 0.6521 0.6220 0.6272
GraphDApp | 0.4852 0.1206 0.1452 0.0981|0.4501 0.1622 0.2299 0.1616]0.3660 0.4472 0.1994 0.1831]0.5575 0.5686 0.5262 0.4705|0.0156 0.0001 0.0036 0.0001
ET-BERT  [0.8318 0.8429 0.8429 0.8429]0.4216 0419 0419 0419 |0.9142 09142 09142 0.9142 - - - 08578 0.8618 0.8578 0.8581
TrafficFormer | 0.7231 0.7231 0.7231 0.7338]0.9505 0.9534 0.9505 0.9509|0.9677 0.9624 0.9677 0.9636|0.6180 0.6941 0.6180 0.6478 |0.8805 0.8844 0.8805 0.8806
NetMamba | 0.9872 0.9873 0.9872 0.9872|0.9980 0.9980 0.9980 0.9980 | 0.9680 0.9684 0.9680 0.9679|1.0000 1.0000 1.0000 1.0000 |0.9329 09377 0.9329 0.9333
YaTC 09514 0.9499 0.9514 0.9501|1.0000 1.0000 1.0000 1.0000|0.9829 0.929 0.9829 0.9829|1.0000 1.0000 1.0000 1.0000 |0.9013 0.9502 0.9013 0.9156
TrafficBT |0.9942 0.9942 0.9942 0.9942|1.0000 1.0000 1.0000 1.0000 | 0.9947 0.9949 0.9949 0.9948|1.0000 1.0000 1.0000 1.0000 |0.9710 0.9715 0.9710 0.9709
Dataset | CrossPlatform (android) | CrossPlatform (ios) | Datacon2020 | Datacon2021 (part]) | Datacon2021 (part2)
Method | AC PR RC Fl | AC PR RC FlI | AC PR RC Fl | AC PR RC Fl | AC PR RC FI
FlowPrint ~ |0.8543 0.8543 0.8543 0.8543|0.9082 0.9082 0.9082 0.9082]0.7250 0.8161 0.5466 0.5052]0.2587 0.0235 0.0909 0.0374|0.0249 0.0002 0.0100 0.0005
AppScanner |0.1864 0.9794 0.1864 0.3132|0.1314 0.9791 0.1314 0.2318]0.6438 0.9592 0.6438 0.7704]0.1919 0.9809 0.1919 0.3210]0.0732 0.9644 0.0732 0.1361
FS-Net 04614 0.2996 0.2662 0.2710|0.3494 0.2602 0.2420 02417 |0.9212 09177 0.8919 0.9034]0.6971 0.8506 0.6730 0.7221]0.0058 0.0001 0.0100 0.0001
GraphDApp | 0.0418 0.0002 0.0047 0.0004 | 0.0486 0.0040 0.0062 0.0019]0.6978 05911 0.5075 0.4367|0.2643 0.2707 0.1734 0.1018 |0.0252 0.0003 0.0100 0.0005
ET-BERT  [0.9922 0.9869 0.9783 0.9814]0.9918 0.9831 0.9846 0.9829]0.9550 0.9551 0.9551 0.9550]0.7401 0.8264 0.7203 0.7048 |0.0747 0.0194 0.0762 0.0267
TrafficFormer | 0.7081 0.7180 0.7087 07057 | 0.4798 0.5141 0.4798 0.4861|0.7708 0.7786 0.7708 0.7692|0.9906 0.9911 0.9906 0.9891 [0.0533 0.0260 0.0533 0.0210
NetMamba | 0.9797 0.9817 0.9797 0.9782|0.9837 0.9794 0.9837 0.9807|0.8400 0.8617 0.8400 0.8405|0.9914 0.9926 0.9914 0.9891 [0.1134 0.1393 0.1134 0.1008
YaTC 09790 0.9792 0.9790 0.9790|0.9084 0.9096 0.9084 0.9082|0.9894 0.9894 0.9894 0.9893|0.9997 0.9997 0.9997 0.9897 |0.7814 0.7818 0.7814 0.7800
TrafficBT |0.9911 0.9913 0.9911 0.99100.9916 0.9901 0.9916 0.98970.9947 0.9947 0.9947 0.99471.0000 1.0000 1.0000 1.0000 |0.9507 0.9505 0.9507 0.9504

Table 4: Performance Comparison on Fifteen Public Datasets Across Eight Baseline Methods.
(The best-performing results are highlighted in Bold; - denotes that the method is not applicable
to the dataset.)

4.2 NUMERICAL RESULTS

Downstream Task Classification. As shown in Table[d] while Traf £icBT consistently achieves
state-of-the-art results, a detailed analysis reveals specific limitations in baseline models, especially
on complex datasets. Traditional methods falter when faced with modern traffic characteristics.
FlowPrint, for example, degrades on anonymized and complex traffic, with its Fl-score dropping
from 0.9292 on ISCX-VPN to 0.3049 on ISCX-Tor. Similarly, AppScanner is biased by class im-
balance, showing high Precision but low F1-scores (e.g., 0.5278 on ISCX-NonVPN). Models like
FS-Net and GraphDApp demonstrate insufficient feature learning, as they perform poorly on nearly
all encrypted and large-scale datasets. More advanced models also exhibit specific weaknesses.
ET-BERT and TrafficFormer show performance instability on datasets with bursty patterns or com-
plex port usage, such as CIC-IoT 2022 and NUDT-Mobile. NetMamba, though generally robust,
struggles with malicious traffic, showing lower F1-scores on USTC-TFC 2016 (Malware) and Dat-
acon2020. Even the strong baseline YaTC is unstable on tasks with over 100 classes, notably on
CrossPlatform (10S), NUDT-Mobile, and Datacon2021 Part 2, where its F1-score drops to 0.7800.
In contrast, Traf£icBT overcomes these challenges. By integrating a pre-trained BERT for se-
mantics with a TriFormer for spatio-temporal modeling, it demonstrates superior robustness and
generalization. It achieves SOTA results across all tasks, with most scores exceeding 99%, and
surpasses YaTC by over 21% on the challenging Datacon2021 Part 2 benchmark.

Impact of Multimodal Fine-tuning. To evaluate our multimodal fine-tuning strategy, we conduct
an ablation study on the ISCX-NonVPN dataset by training BERT (semantic), TriFormer (spatio-
temporal), and the full TrafficBT separately. As shown in Fig. 3bl BERT and TriFormer are
pre-trained for 10 and 30 epochs, respectively, before individual fine-tuning. TrafficBT then
combines both models for joint fine-tuning. Training and validation performance are measured using
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loss and Fl-score. Results show that TrafficBT achieves lower loss and more stable F1-scores
during fine-tuning, demonstrating that multimodal fusion enhances feature learning.

Impact of Pre-training. To evaluate the effect of domain-specific pre-training on BERT perfor-
mance in network traffic modeling, we fine-tune a standard BERT and a domain-pretrained BERT
on the ISCX-NonVPN dataset. Loss and F1 score are adopted as evaluation metrics. Fig.[3ashows a
25% F1 drop in standard BERT, demonstrating the benefit of traffic-specific pre-training in modeling

network patterns' --TF W (T) BT W (T) —TBT T (T) —TF T (T) —BT T (T)

TF W (V) BT W (V) TBT T (V) TFT (V) BT T (V)
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1.00
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(a) Performance Trends of Domain-Specific Pre- (b) Performance Trends of TriFormer (TF), BERT
Trained (PT) and Non-Pre-Trained (noPT) BERT (BT), and TrafficBT (TBT) Across Warm-Up and
Across Fine-Tuning Phases. Fine-Tuning Phases.

Impact of Data Augmentation. As shown in Table ] ET-BERT and TrafficFormer perform
poorly on ISCX-Tor due to class imbalance. To validate our augmentation strategy, we evaluate
loss and F1-score on this dataset. Fig.a] shows that augmentation significantly improves BERT,
TriFormer, and TrafficBT, confirming its effectiveness for imbalanced traffic classification. We
further assess model robustness on 20 NUDT classes, each containing more than 500 flows, down-
sampled to 500. Two versions of TrafficBT, fine-tuned with and without perturbations within the
data augmentation methods, are evaluated under 4 mask probabilities. The augmented model consis-
tently outperforms the non-augmented one in accuracy and F1, demonstrating improved robustness.

——train (DA) —train (no DA) val (DA) —val (no DA)

- . ——noDA TrafficBT DA TrafficBT
TriFormer BERT TrafficBT
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]
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(a) Performance of TrafficBT With Data Aug- (b) Comparison of Model Robustness With Data
mentation (DA) and Without (noDA) During Warm-  Augmentation (DA) and Without (noDA).
Up and Fine-Tuning Phases.

ImpaCt Of MOdel SeleCtion in TriFormer. —TCN Train—TCN Val—Transformer Train—Transformer Val
Given the sequential nature of spgho-temp_oral 50/ manstormer Zoor 0.8
- - 0.6
features, we compare two lightweight archltec . LZW ¢
tures, Transformer and Temporal Convolutional G40 \ 0.9 Ho.a
v -
Networks (TCNs) (Bai et all, [2018), for tem- 20| | (0,10203040 | u g5 [wv\,iv’v“"‘v“‘"""
poral modeling in TrafficBT. Both models e ——— "
. . 0 10 20 30 40 50 0 10 20 30 40 50
use the same TriFormer packet-level inputs and Epoch Epoch

are evaluated by training/validation loss and F1 )
score. Fig. [5] shows that Transformer consis- Figure 5: Performance Comparison of TCN and
tently achieves lower loss and higher F1, prov- Transformer Models on Spatio-Temporal Features

ing its superiority as the temporal backbone. in TrafficBT.

5 CONCLUSION

This paper introduced TrafficBT, a network traffic classification framework that advances pre-
trained language models through multimodal representation learning. It achieved state-of-the-art
results on fifteen datasets across eight downstream tasks by effectively capturing payload seman-
tics and high-quality spatiotemporal features, outperforming eight existing baselines. Notably,
TrafficBT also delivered the best performance on the challenging encrypted proxy website clas-
sification task, demonstrating the promising potential of pre-trained models in network security
management.
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USE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

In the preparation of this manuscript, we utilized Large Language Models (LLMs) to aid in polishing
the writing. The primary use of these models was to improve the grammar, clarity, and conciseness
of the text. All scientific contributions, including the core ideas, experimental design, results, and
their interpretation, remain entirely the work of the authors. The LLM served solely as a writing
assistance tool.

APPENDIX

In the supplemental material, we provide the following additional details:

§AE We provide a detailed description of the spatio-temporal statistical features utilized in this
paper.
We describe the 42 flow-level statistical features.
We describe the 28 packet-level statistical features.

§BE We provide a detailed description of all the datasets utilized for the pre-training phase.

We provide a detailed description of all the datasets utilized for the fine-tuning phase across
eight downstream tasks.

We provide a detailed description of the eight representative baseline models we have ex-
perimented with.

§EE We provide additional supplementary experiments and results.

We present an ablation study comparing three different fusion mechanisms (gating,
cross-attention, and residual cross-attention) to validate our model’s architectural
choice.

A SPATIO-TEMPORAL STATISTICAL FEATURES

In this section, we provide a detailed description of the flow-level and packet-level statistical features
used in our study, including their definitions, semantic interpretations, and their roles in characteriz-
ing network traffic behaviors.

A.1 FLOW-LEVEL STATISTICAL FEATURES

These network traffic statistical features consist of 42 dimensions across 5 categories, comprehen-
sively characterizing flow behavior from multiple perspectives, as shown in Table [5] A detailed
description of each feature category is provided as follows:

1) Packet Count Statistics These features reflect the directionality and frequency of interactions
within a flow, which are useful for identifying session patterns or detecting unidirectional anomalies
such as DoS attacks.

* Total Fwd Packets: The total number of packets transmitted from the source to the destina-
tion within a flow.

12
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Table 5: Statistical Features of Network Traffic Flows.

Category Feature Name

Packet Count Statistics Total Fwd Packets, Total Bwd Packets

‘ Packet Length Min/Max/Mean/Std/Total (Fwd,

Packet Length Statistics

Bwd, Flow)
Inter Arrival Time (IAT) IAT Min/l\/[ax/MeaFrK)S\:,()l/TOtal (Fwd, Bwd,
TCP Flags FIN, SYN, RST, PSH, ACK, URG, CWR, ECE
= Flag Count

Flow Rate Statistics Flow Bytes/s, Flow Packets/s

* Total Bwd Packets: The total number of packets transmitted from the destination back to
the source.

2) Packet Length Statistics These statistics capture the payload characteristics of the traffic and
are useful for identifying encrypted flows (e.g., fixed-size packets) or abnormal patterns associated
with malicious behavior.

* Packet Length Min/Max/Mean/Std/Total (Fwd, Bwd, Flow): The minimum, maximum, av-
erage, standard deviation, and total length of packets, computed separately for forward,
backward, and overall flow directions.

3) Temporal Behavior Metrics These metrics reflect the temporal dynamics of a flow and help
detect anomalies (e.g., high-speed scanning or bot activity) and model application-level behavior.

» IAT Min/Max/Mean/Std/Total (Fwd, Bwd, Flow): The minimum, maximum, average, stan-
dard deviation, and sum of inter-arrival times between consecutive packets, computed for
forward, backward, and overall directions.

4) TCP Flag Statistics These flags indicate various control and connection states, and unusual
flag combinations can reveal potential intrusions such as SYN floods or port scans.

* FIN, SYN, RST, PSH, ACK, URG, CWR, ECE Flag Count: The occurrence counts of eight
TCP control flags within a flow:
— SYN: connection initiation
— FIN: connection termination
— RST: connection reset

ACK: acknowledgment

PSH: push function

URG: urgent data

— CWR: congestion window reduced

ECE: explicit congestion notification

5) Flow Rate Features These features are effective for detecting bursty behaviors (e.g., DDoS
attacks) and distinguishing between different application types, such as bulk data transfers or real-
time services.

» Flow Bytes/s: The total number of bytes in the flow divided by the flow duration, repre-
senting the data transmission rate.

* Flow Packets/s: The total number of packets divided by the flow duration, representing the
packet transmission rate.

13
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Table 6: Statistical Features of Network Traffic Packets.

Category Feature Name

timestamp, delta_time, relative_time,

Time-related time_since_last_handshake

Length & Direction packet_length, payload_length, direction

avg_delta_time_last_5, uplink_ratio_last_5,
avg/std_pkt_len_last_5

protocol_id, tcp_flag_(syn/ack/fin), is_ack_only,

Protocol & TCP Flags seq-diff, window_size

tls_record_type, tls_version, cipher_suite_len,

TLS-related handshake_phase, key_update_count

entropy, chi_square, printable_ratio,

null_byte_ratio, byte_pair_corr

Last-5 Statistics ‘
Content Statistics ‘

A.2 PACKET-LEVEL STATISTICAL FEATURES

These packet-level network traffic statistical features encompass 28 dimensions across 6 categories,
providing a comprehensive characterization of packet behavior from diverse aspects, as shown in
Table

1) Time-related Features These features capture the temporal context of each packet within a
flow:
* timestamp: The absolute time at which the packet was captured.

* delta_time: The time interval between the current packet and the previous packet in the
same flow.

* relative_time: The elapsed time since the beginning of the flow.

* time_since_last_handshake: Time passed since the last observed handshake event (e.g.,
TLS or TCP), useful for assessing session intervals.

2) Length and Direction Features These features describe the size and direction of packet trans-
mission:

» packet_length: Total length of the packet, including headers and payload.

* payload_length: Length of the payload portion (excluding protocol headers).

¢ direction: Direction of the packet, typically uplink (client to server) or downlink (server to
client).

3) Last-5 Statistics These short-term statistics summarize recent flow behavior based on the last
five packets:
» avg_delta_time last_5: Average inter-arrival time over the last five packets.
 uplink_ratio_last_5: Proportion of uplink packets among the last five.

» avg_pkt_len_ last_5, std_pkt_len_last_5: Average and standard deviation of packet lengths
over the last five packets.

4) Protocol and TCP Flag Features These features capture transport-layer protocol behaviors
and TCP control signals:

 protocol_id: Numerical identifier for the protocol (e.g., TCP, UDP).

 tcp_flag syn, tcp_flag_ack, tep_flag_fin: Indicators for the presence of SYN, ACK, and
FIN flags.

14
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* is_ack_only: Flag indicating whether the packet contains only an ACK without payload or
other flags.

* seq_diff: Difference in TCP sequence numbers between consecutive packets.

* window _size: Advertised TCP window size reflecting buffer capacity.

5) TLS-related Features These features describe encrypted session characteristics:

* tls_record_type: Type of TLS record (e.g., handshake, application data).
* tls_version: TLS protocol version used.

* cipher_suite_len: Length of the cipher suite list.

* handshake_phase: Current phase of the TLS handshake process.

» key_update_count: Number of observed TLS key update events.

6) Content Statistics These features evaluate the statistical properties of packet payloads:

* entropy: Randomness or unpredictability in packet content.

* chi_square: Deviation of byte frequency from a uniform distribution.

* printable_ratio: Ratio of printable ASCII characters in the payload.

* null_byte_ratio: Proportion of null (zero) bytes, indicating binary or compressed data.

* byte_pair_corr: Correlation between adjacent byte pairs to assess structural redundancy.

B PRE-TRAINING DATASET

In this section, we provide a detailed introduction to the datasets used for pre-training in this study,
as shown in Table[7] For model pre-training, we employed four publicly available datasets: NUDT-
Mobile, ISCX-VPN-NonVPN, ISCXTor2016, and CIRA-CIC-DoHBrw-2020. These datasets col-
lectively offer a broad and diverse representation of network traffic scenarios. Among them, NUDT-
Mobile is a recently collected large-scale real-world mobile traffic dataset from the National Uni-
versity of Defense Technology (NUDT), which is incorporated to enhance the model’s robustness
in diverse and realistic mobile network environments. A detailed description of each dataset is
provided below:

Table 7: Overview of Pre-training Datasets.

Dataset | Size | #Flows | #Classe Included Protocols
. TCP, UDP, HTTP, TLSv1.2,
NUDT-Mobile 112.2 GB ‘ 1,157,245 ‘ 280 ‘ SSLv2. WebSocket, ...
TLSv1.2, SFTP, SSDP,
ISCXVPN2016 ‘ 15.6 GB ‘ 4,824 ‘ 5 ‘ SNMP, NTP, GQUIC, ...
TLSv1.1, TLSv1.2,
ISCXTor2016 19.7 GB 39,018 7 FTP-DATA, SSL, HTTP,
WebSocket, ...
CIRA-CIC- TCP, TLSv1.2, TLSv1.3,
DoHBrw-2020 ‘ 755 GB ‘ 771497 ‘ 2 ‘ SSLv2, SSL, ...

NUDT-Mobile Dataset (Zhao et al.,[2024). This dataset is a large-scale, real-world Android traf-
fic dataset collected by the National University of Defense Technology to address the lack of accu-
rately labeled and shareable mobile application traffic. Collected between May and July 2020 using
a custom framework based on Android’s VPNService and NetLog, it contains 611.23 GB of la-
beled traffic generated by 224 volunteers using 94 Android devices (Android 6-10) across 9 brands.
Network types include WiFi (85%) and mobile (3G/4G/LTE), and 350 mainstream apps from 22
categories are covered, each contributing at least l00MB of traffic.
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The released dataset includes anonymized pcap files and corresponding label logs, along with sup-
plemental files describing application metadata, device information, and byte distribution statistics.
Owing to its scale, labeling precision, and thorough anonymization, NUDT-Mobile serves as a strong
benchmark for mobile traffic analysis and encrypted application classification.

ISCXVPN2016 Dataset (Gil et al., 2016). This dataset provides a diverse and well-labeled col-
lection of real-world network traffic for evaluating encrypted traffic analysis. It includes flows from
various application categories under both regular and VPN (OpenVPN/UDP) conditions, enabling
fine-grained classification and behavioral comparisons. Researchers simulated user behavior using
two accounts (Alice and Bob) interacting with applications like Skype, Facebook, Gmail, and uTor-
rent. Traffic was captured in controlled environments using Wireshark and tcpdump, with only the
target app active during each session to ensure accurate labeling.

The dataset spans 14 traffic categories, each with both VPN and non-VPN variants, including
web browsing, email, chat, streaming, file transfer, VoIP, and P2P. It provides full packet captures
(.pcap) and flow-level summaries (.csv) generated via ISCXFlowMeter. Thanks to its realis-
tic traffic structure and rich labels, this dataset is widely used for VPN detection, encrypted traffic
classification, and intrusion detection benchmarking.

ISCXTor2016 Dataset (Lashkari et al., 2017). This dataset is a labeled network traffic dataset
collected by the Canadian Institute for Cybersecurity (CIC) to support anonymized traffic analysis. It
contains both Tor-based and regular traffic flows across a wide range of applications, enabling com-
parison between encrypted and non-encrypted behaviors. Five simulated users generated traffic from
popular services, including browsing (Chrome, Firefox), chat (Skype, Facebook, Hangouts), email
(Thunderbird), file sharing (BitTorrent), and multimedia streaming (Spotify, YouTube, Vimeo).

Tor-based traffic spans eight representative categories such as browsing, email, chat, streaming,
file transfer, VoIP, and P2P. Traffic was captured simultaneously at both the user end and a gate-
way node to align Tor and non-Tor sessions, with labels verified based on application usage.
The dataset includes full packet captures (.pcap) and flow-level summaries (.csv) generated
via ISCXFlowMeter, making it a valuable benchmark for anonymized traffic classification and
privacy-preserving service analysis.

CIRA-CIC-DoHBrw-2020 Dataset (MontazeriShatoori et al., 2020). This dataset was released
by the Canadian Institute for Cybersecurity in collaboration with CIRA to support DNS over HTTPS
(DoH) traffic analysis. It contains labeled traffic categorized into non-DoH, benign-DoH, and
malicious-DoH flows. Data was collected using five web browsers and multiple DoH resolvers
(AdGuard, Cloudflare, Google, and Quad9), with malicious flows generated by tunneling tools such
as dns2tcp, DNSCat2, and Iodine to simulate covert channels.

To enhance flow-level analysis, the dataset introduces the concept of packet clumps—aggregated
sequences of packets in the same direction—reducing noise from control packets. It includes full
packet captures (. pcap) and flow-level features extracted by DoHLyzer and DoHMeter, covering
28 statistical and temporal attributes. This dataset is widely used for DoH traffic detection, DNS
tunneling analysis, and encrypted communication threat modeling.

Pre-training Dataset Summary By integrating diverse datasets, the pre-training stage benefits
from broad exposure to encrypted and anonymized traffic, enhancing the robustness and general-
ization of learned representations. This enables effective performance in downstream tasks such as
traffic classification, anomaly detection, and privacy-aware analysis.

C FINE-TUNING DATASET

This section provides a detailed overview of the 15 fine-tuning datasets used in this study, including
their sources, traffic categories, file formats, and other relevant details, as shown in Table B} To
evaluate the generalization capability of the proposed model, we utilize 15 publicly available datasets
spanning eight classification tasks. These datasets cover a wide range of real-world network traffic
scenarios, serving as comprehensive benchmarks for downstream evaluation. A brief summary of
each dataset and its application context is presented below.
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Table 8: Overview of Fine-tuning Datasets.

Task \ Dataset \ #Flows | #Classes
VPN Traffic Classification | ISCX-VPN (Service, App) | 1.816/3,008 | 5/5
Tor Traffic Classification | ISCX-Tor \ 172 \ 7
Service Classification | ISCX-NonVPN (Service), ISCX-NonTor | 3,008/38.846 |  5/7
ISCX-NonVPN (App), USTC-TFC 3,159/231,449 | 137280/
Application Classification (Benign), CrossPlatform (Android, i0S), /114,824 / 10/211/
NUDT-Mobile 46,829 /24,529 195
Malware Classification | ~ USTC-TFC (Malware), Datacon2020 | 92,587/63,980 |  10/2
Proxy Classification ‘ Datacon2021 (Part 1) ‘ 21,005 ‘ 11
Website Classification Datacon2021 (Part 2) 32,516 100
(Proxy)
Device Classification ‘ CIC-IoT 2022 (Flood) ‘ 27963 ‘ 100

(Under Attacks)

ISCXVPN2016(Service, App) (Gil et al., 2016). This dataset includes labeled VPN and non-
VPN traffic with service and application annotations. A comprehensive overview is provided in the
section

ISCXTor2016 (Lashkari et al.,2017). This dataset captures traffic in both Tor and non-Tor en-
vironments, facilitating research on anonymous and obfuscated traffic detection. Refer to the pre-
training dataset descriptions in the section [B] for further details.

USTC-TFC-2016 (Benign, Malware) (Wang et al., 2017). This dataset is a publicly available
dataset for malware traffic classification, addressing issues like limited data volume and lack of raw
traffic in earlier studies. It contains 3.71 GB of raw PCAP files split into 20 categories—10 malicious
and 10 normal. Malicious traffic was sourced from CTU malware traces (2011-2015), while normal
traffic was generated using IXIA BPS, covering typical applications like P2P, VoIP, email, social
media, and gaming.

A dedicated tool, USTC-TK2016, converts PCAPs into deep learning—ready image-like samples,
resulting in 752,000 labeled flows. The dataset supports both flow-level and payload-level analysis,
making it a valuable benchmark for traffic classification using machine learning and deep learning
techniques.

CrossPlatform (Android, iOS) (Ren et al., 2019). This dataset contains labeled network traf-
fic collected from 600 popular Android and iOS apps across China, the US, and India, with data
captured between August and November 2017 on iOS 10 and Android 6 devices. Each app was
manually interacted with for five minutes, and traffic was intercepted using Mitmproxy to analyze
HTTP/HTTPS transmissions. PII leakage was detected using the ReCon machine learning tool.

The dataset records detailed PII types (e.g., IMEI, GPS, email), encryption status (plaintext vs.
encrypted), communication protocols, recipient types (first-party vs. third-party), and contacted
domains (e.g., Google, Umeng). Statistical comparisons reveal cross-national differences in privacy
exposure, such as higher PII leakage in Indian apps and more plaintext transmission in Chinese apps.
The dataset includes raw traffic traces and annotated summaries, serving as a valuable benchmark
for mobile app privacy analysis under varying regulatory and cultural conditions.

The dataset used in our experiments was publicly available at the time of experimentation and sub-
mission. However, the hosting site is currently inaccessible, and the dataset is no longer publicly
available.

NUDT-Mobile (Zhao et al., 2024). A recently collected large-scale real-world mobile network
dataset based on Android devices. It covers diverse application types and user behaviors, aiding
in enhancing the robustness and generalization of mobile traffic classification models. For detailed
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dataset description and collection methodology, please refer to the specific introduction in the sec-
tion

Datacon2020 (DataCon Community, 2021a). This dataset was provided by QiAnXin Technol-
ogy Research Institute to support research on encrypted malware traffic detection. It contains
TLS/SSL-encrypted network traffic generated by running malware and benign Windows executables
in a controlled sandbox environment between February and June 2020. All samples communicate
over port 443.

The dataset includes 6,000 training samples (3,000 malware and 3,000 benign) and 4,000 test sam-
ples (2,000 each), with a clear temporal split: malicious training samples are from Feb—May 2020,
and test samples from June 2020. All benign samples were collected throughout 2020. This dataset
provides a realistic and balanced benchmark for evaluating encrypted traffic classification methods
under evolving behavioral and temporal conditions.

Datacon2021 (Part 1 & 2) This dataset captures extensive encrypted network traffic generated
by various proxy software and different websites accessed through these proxies. It is designed to
support two core research tasks: identifying the proxy software based on traffic characteristics and
recognizing websites accessed through encrypted proxies.

In Part 1, the focus is on classifying traffic according to the proxy software that generated it. The
dataset provides labeled PCAP samples organized in a sample folder, where filenames encode
the proxy category and sample index (e.g., label_n.pcap). Additionally, a real_data folder
contains unlabeled traffic from diverse proxy software, allowing for evaluation and testing. The
proxy software categories include popular tools such as Open VPN (UDP and TLS versions), Psiphon
(TCP and TLS), V2Ray, Clash, Lantern, WireGuard, Shadowsocks, Firefox, and others.

Traffic was generated in a controlled Windows environment using automated browsing scripts with
Python’s selenium to visit curated website lists, while t shark was employed for traffic capture.

Part 2 addresses the task of identifying websites based on encrypted traffic routed through a sin-
gle proxy software. This portion contains training data with labeled PCAP filesin a train_data
folder, and a test_data folder with unlabeled traffic samples generated by different websites
through the same encrypted proxy. This setup supports research in website fingerprinting and en-
crypted traffic classification under proxy obfuscation.

Overall, this dataset provides a rich benchmark for studying encrypted proxy traffic behavior, en-
abling the development of models for proxy identification and website classification in encrypted
network environments.

CIC-IoT 2022(Flood) (Dadkhah et al.,[2022). This dataset contains labeled network traffic from
a variety of IoT devices communicating over Wi-Fi (IEEE 802.11), Zigbee, and Z-Wave, captured
in a controlled lab setting. It supports IoT device profiling, behavior modeling, and attack detection
across six experiment types: Power, Idle, Interactions, Scenarios, Active, and Attacks.

Traffic was captured using Wireshark and dumpcap from dual-interface machines connected to both
the gateway and local IoT devices via unmanaged switches. Attack scenarios include RTSP brute
force and flooding attacks using tools like Nmap and Hydra. The dataset includes packet capture
files (. pcap) and flow-level statistics for each device or scenario, making it a valuable benchmark
for IoT traffic classification, anomaly detection, and security research in smart environments.

Fine-tuning Dataset Summary The datasets employed in this study span a wide range of net-
work traffic types, including VPN, proxy, malware, mobile, IoT, and DNS over HTTPS (DoH)
traffic. They collectively cover diverse benign and malicious behaviors across various network en-
vironments and device categories. With rich annotations and realistic traffic patterns, these datasets
enable robust training and evaluation for tasks such as encrypted traffic classification, anomaly detec-
tion, device profiling, and privacy risk analysis. Their diversity ensures comprehensive assessment
of model generalization and effectiveness in real-world network security applications.
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D BASELINES

To facilitate reproducibility and provide further insights, we briefly describe the implementation
details and core characteristics of the eight representative baselines evaluated in this study.

FlowPrint (Van Ede et al.,[2020). FlowPrint is a fingerprinting-based method for encrypted mo-
bile traffic classification, capable of identifying known applications and detecting previously unseen
ones without relying on payload content or prior knowledge. It operates through five key steps:
feature extraction from TCP/UDP flows (e.g., destination IP/port, TLS certificate metadata, timing,
packet sizes), destination-based clustering, browser traffic filtering via Random Forest, construction
of a temporal co-occurrence graph, and fingerprint extraction using maximal cliques matched by
Jaccard similarity.

FlowPrint leverages rich metadata features, including destination attributes (IP, port, TLS fields),
temporal patterns (inter-flow intervals, packet timings), and basic size statistics. It processes .pcap
files directly and is well-suited for TLS-encrypted environments. Default parameters include a 300s
batching window, 30s co-occurrence window, and a 0.9 similarity threshold. The method has been
evaluated on multiple datasets such as ReCon, Cross-Platform, Andrubis, and Browser, demonstrat-
ing its effectiveness in practical encrypted traffic scenarios.

AppScanner (Taylor et al.,[2016). AppScanner is a lightweight baseline for Android app identi-
fication under encrypted traffic (e.g., HTTPS/TLS), relying solely on flow-level statistical features
without decrypting payloads or using IP/DNS information. It collects labeled traffic via ADB and
UI automation tools by launching one app at a time, preprocesses .pcap files into flows segmented
by bursts and ports, and extracts 40 statistical features (e.g., min/max/mean size, quantiles, packet
count, skewness) computed separately for inbound, outbound, and bidirectional directions.

A supervised classifier (typically Random Forest with 150 trees) is trained using one of three strate-
gies: Per Flow Length, Single Large Classifier, or Per App Classifier. The best performance is
achieved by the Per App strategy with a confidence threshold of 0.7, yielding over 99% accuracy
across 110 Google Play apps. AppScanner supports both online and offline identification modes,
and uses real-time rejection of low-confidence predictions to reduce false positives.

FS-Net (Liu et al.,2019a). FS-Net is an end-to-end deep learning model for encrypted traffic clas-
sification that requires no manual feature engineering. It takes raw packet length sequences as input
and directly predicts application labels. The architecture features embedding layers, bidirectional
GRU-based encoder and decoder modules, a reconstruction mechanism to enhance representation
learning, and an MLP-based classifier.

FS-Net supports packet length sequences by default, with optional integration of message type se-
quences. Key strengths include end-to-end learning, auxiliary reconstruction loss, lightweight de-
sign, and extensibility. On a benchmark of 18 application classes, it achieves 99.14% true positive
rate and 0.9906 accuracy, outperforming traditional sequence-based models.

GraphDApp (Shen et al.,[2021). GraphDApp is a GNN-based model for encrypted DApp traffic
classification in the Ethereum ecosystem. It represents each traffic flow as a Traffic Interaction Graph
(TIG), where packets are nodes and edges encode temporal and burst relationships. No manual
features are engineered; packet lengths and directions serve as node attributes.

The model uses three graph convolutional layers with ReLU and dropout, sum pooling for node
aggregation, and an MLP classifier. Trained with Adam optimizer, GraphDApp achieves 8§9.22%
accuracy on 40-class closed-world classification and 99.73% AUC in open-world scenarios with
1,260 background apps. It also generalizes well to mobile app traffic. In summary, GraphDApp
leverages graph structures and GNN embeddings to provide a robust, end-to-end baseline for en-
crypted traffic classification without handcrafted features.

ET-BERT (Lin et al.,2022). ET-BERT is a pre-trained Transformer model for encrypted traffic
classification that removes the need for handcrafted features. It learns contextual byte-level rep-
resentations from over 30GB of unlabeled encrypted traffic via self-supervised pre-training, then
fine-tunes on various downstream tasks including application identification, VPN detection, and
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TLS 1.3 classification. The input encodes raw encrypted byte streams into directional BURST token
sequences using a combination of bi-gram and Byte-Pair Encoding. Pre-training uses two objectives:
Masked BURST Modeling (predict masked tokens) and Same-origin BURST Prediction (determine
if sub-BURST pairs come from the same burst) to capture local and transmission semantics.

ET-BERT uses a 12-layer Transformer with BERT-base configurations and supports packet- or flow-
level inputs during fine-tuning. It achieves state-of-the-art results on multiple benchmarks, e.g.,
92.5% F1 on Cross-Platform, 98.9% on ISCX-VPN-Service, and 97.41% on CSTNET-TLS 1.3, and
shows strong few-shot performance even with limited labeled data. In summary, ET-BERT provides
a robust and versatile baseline for encrypted traffic analysis by leveraging burst-aware tokenization
and self-supervised learning to capture rich byte-level semantics.

TrafficFormer (Zhou et al., [2025). TrafficFormer is a Transformer-based model for encrypted
traffic classification that leverages burst-level encoding and a hybrid pre-training framework. It em-
ploys two pre-training tasks—Masked Burst Modeling (MBM) to learn local contextual semantics
by predicting masked tokens within bursts, and Same-Origin-Direction-Flow (SODF) classification
to capture directional and flow-level structural dependencies. During fine-tuning, Random Initializa-
tion Field Augmentation (RIFA) randomly resets irrelevant header fields (e.g., IPID, TCP sequence
number) to enhance model robustness against protocol variations.

TrafficFormer’s input is constructed by extracting 64 bytes from the first five packets per flow, en-
coding them as hexadecimal bigrams, applying Byte Pair Encoding (BPE), and formatting into se-
quences compatible with a 12-layer BERT-base Transformer. Pre-trained on large-scale, unlabeled
encrypted traffic, TrafficFormer achieves strong performance on downstream tasks such as applica-
tion identification and protocol detection by effectively modeling burst semantics and flow structure
with augmented robustness.

NetMamba (Wang et al.,|[2024). NetMamba is a lightweight baseline for encrypted traffic clas-
sification based on a Mamba architecture that replaces Transformer self-attention with a linear-
complexity state space model (SSM) for efficient long-range dependency modeling. It represents
each flow using the first five packets, extracting 80 bytes of header and 240 bytes of payload per
packet, forming a 1600-byte sequence divided into 401 non-overlapping 4-byte strides. The model
is pre-trained via masked autoencoding, reconstructing 90% randomly masked strides, and fine-
tuned using a simple MLP classifier on the encoder’s [CLS] token. Input tokens are embedded
directly without vocabulary or BPE tokenization, with learnable positional embeddings preserving
order.

NetMamba’s flow segmentation removes sensitive identifiers to prevent shortcut learning, making
it suitable for large-scale or latency-sensitive deployment. In summary, NetMamba offers an effi-
cient, real-time-capable baseline that leverages stride-based input and linear SSM modeling without
relying on CNNs or handcrafted features.

YaTC (Zhao et al., 2023). YaTC (Yet Another Traffic Classifier) is a strong baseline for en-
crypted traffic classification in low-resource scenarios. It introduces a Multi-Level Flow Represen-
tation (MFR) that converts each flow’s first five packets into a 40x40 byte matrix, preserving multi-
level semantics while mitigating dominance from long packets. This matrix is split into 400 non-
overlapping 2x2 patches, each flattened and linearly embedded into 192-dimensional tokens with
positional encoding. YaTC employs a ViT-style Transformer encoder pre-trained using a masked
autoencoder (MAE) strategy, masking 90% of patches and reconstructing them with MSE loss to
learn robust byte-level features. For downstream tasks, the decoder is removed, and the encoder
output undergoes row- and column-wise average pooling before classification via an MLP.

Flows are segmented by 5-tuple keys, with anonymization masking MAC, IP, and port fields to
avoid shortcuts. Packets are flattened into 320-byte vectors forming the input matrix. In summary,
YaTC offers a compact, expressive model that captures structural flow semantics without payload
inspection, delivering strong performance especially in few-shot and encrypted traffic classification
tasks.

Baseline Summary The first four baselines (FlowPrint, AppScanner, FS-Net, and GraphDApp)
rely on various hand-crafted or learned representations of spatio-temporal statistical features, all
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of which are fully covered by the statistical features extracted by Traf ficFBERT, facilitating a
fair and consistent comparison. The remaining four models (ET-BERT, TrafficFormer, NetMamba,
and YaTC) leverage pre-trained architectures with payload-level inputs, offering strong semantic
baselines for benchmarking multimodal fusion performance.

E SUPPLEMENTARY EXPERIMENTS

E.1 FUSION MODEL SELECTION

To validate the design choice of the fusion
module in TrafficBT, we conducted
supplementary experiments by compar-
ing three variants: (1) cross-attention,
(2) cross-attention with residual connec-
tions, and (3) a gating mechanism. The
comparisons were performed in both the
warming-up and finetuning stages, with
the F1-score used as the evaluation metric.

As shown in Fig. [6] during the warming-
up stage, the gating mechanism achieves
slightly lower Fl-scores than cross-
attention with residual connections, while
plain cross-attention performs the worst
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Figure 6: Performance Comparison of Fusion Mod-
ule Variants in TrafficBT During Warm-up and
Fine-tuning Stages (F1-Score). ResCross denotes
cross-attention with residual connections, Cross de-
notes plain cross-attention, and Gate denotes the gating
mechanism.

and converges much more slowly. In the finetuning stage, the gating mechanism and cross-attention
with residual connections yield comparable F1-scores, whereas cross-attention remains significantly
inferior in both performance and convergence speed. Considering that cross-attention introduces
higher computational cost and greater architectural complexity, we ultimately adopt the simpler
gating mechanism as the fusion module of TrafficBT.
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