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ABSTRACT

Accurately identifying the site of origin (SoO) of early ventricular activation is
crucial for catheter ablation, an effective therapeutic option for treating ventric-
ular arrhythmia. However, due to the limited availability of clinical data and
the errors introduced during data preprocessing, achieving precise localization
remains a challenge. While deep learning models offer an end-to-end approach
for data input in the ECG field, they often suffer from overfitting caused by lim-
ited training data, hindering continuous performance improvement. This paper
proposes a Simple data-parameters Balancing framework for early ventricular ac-
tivation Origin Localization (SimBOL). By using onset-based data augmentation,
the SimBOL method expands the training data derived from clinical samples. The
framework utilizes a small-scale 1D convolution model that balances the relation-
ship between available training data and model complexity, effectively mitigating
overfitting and eliminating the need for extensive data preprocessing. SimBOL
achieves a localization error as low as 9.83 mm, which meets clinical acceptable
localization error ¡ 10 mm and outperforming existing methods in predicting the
SoO of early ventricular activation. The discussion about data augmentation and
model architecture on ECG signal processing, offering new insights into optimiz-
ing deep learning applications for ECG-based tasks.

1 INTRODUCTION

Catheter ablation has emerged as a useful therapeutic option for treating ventricular arrhythmias
Levine et al. (2016), including ventricular tachycardia (VTs) and premature ventricular complexes
(PVCs) Sapp et al. (2016); Cronin et al. (2019), both of which are major causes of sudden cardiac
arrest (SCA). Accurately identifying the site of origin (SoO) of early ventricular activation is criti-
cal for electrophysiologists to focus their mapping and targeting efforts on a specific region during
catheter ablation Asirvatham & Stevenson (2016). Currently, pace-mapping is one of the primary
clinical mapping approaches for localizing the SoO Josephson et al. (1982). As illustrated in Figure
1, this method involves template-matching analysis and a “trial and error” approach, where intracar-
diac pace-mapping ECG morphologies (12-lead pacing ECGs) are compared to those of the targeted
VT/PVC 12-lead ECGs using commercial modules Guenancia et al. (2022); Zhou et al. (2020b;
2021). Despite their utility, these systems do not provide direct localization information, pace-
mapping is time-consuming and heavily dependent on the operator’s expertise Zhou et al. (2023).

With the recent advancement of artificial intelligence (AI) in medicine Singhal et al. (2023);
Lakkaraju et al. (2022); Alowais et al. (2023), several studies Yang et al. (2017); Pereira et al. (2019);
Gyawali et al. (2019); Missel et al. (2020); Nakamura et al. (2021); Li et al. (2021); Chang et al.
(2022) have explored the use of deep learning methods to identify the SoO of early ventricular acti-
vation, offering end-to-end signal processing and automatic extraction of complex patterns in ECG
signals. In studies such as Gyawali et al. (2017; 2019); Missel et al. (2020), the real pacing-site data
(ECG and corresponding pacing-site coordinates) available is relatively small (in the thousands)
compared to the vast datasets used in deep learning (often in the millions or billions). The over-
parameterization characteristic of deep learning models means that their effectiveness heavily de-
pends on the number of training parameters and the size of the training data Allen-Zhu et al. (2019).
When the number of training parameters is comparable to or far exceeds the available training data,
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Figure 1: A schematic of the entire pace-mapping process is shown. On the left, the doctor uses
electrodes to pace different areas of the ventricle, generating 12-lead pacing ECG. On the right, 12-
lead ECG are collected from the body surface when an abnormality occurs in a specific heart region.
The red solid line highlights the QRS complex of the ECG signals.

the risk of overfitting increases, limiting the model’s ability to generalize and improve performance
Dietterich (1995); Rice et al. (2020); Santos & Papa (2022). To address overfitting in deep models
for this task, some studies Hendrycks et al. (2019); Jaiswal et al. (2020); Krishnan et al. (2022)
have proposed pre-training with a generation task as a proxy, providing a warm start for subsequent
model fine-tuning. Although these approaches can reduce overfitting, commonly-used architectures
such as LSTM Graves & Graves (2012); Yu et al. (2019) and transformer Vaswani (2017); Devlin
(2018) remain complex and cumbersome, adding additional challenges to the training process.

In this work, we propose a Simple data-parameters Balancing framework for ventricular arrhythmia
Origin Localization, (SimBOL). Not only does SimBOL outperform previous methods in terms of
SoO localization accuracy, but it is also simpler, requiring neither specialized input data preprocess-
ing Zhou et al. (2019) nor a pre-training process Gyawali et al. (2019). Due to the limited availability
of the pacing-site data (ECG and corresponding site coordinates), SimBOL produces an onset-based
data augmentation strategy. This approach expands the training dataset by randomly resampling
within specific regions determined by onset points in ECG signals. Unlike previous models Yang
et al. (2017); Pereira et al. (2019); Gyawali et al. (2019); Nakamura et al. (2021); Li et al. (2021);
Chang et al. (2022); Missel et al. (2020), where the number of model parameters greatly exceeded
the available training data, SimBOL provides a small-scale model that maintains a balance between
data and parameters. It combines 1D convolution and fully connected layer, exploiting the robust-
ness of 1D convolution in extracting features from time-series signals to handle augmented, irregular
data effectively during training. The balance significantly reduces the model’s overfitting and sta-
bilizes its localization performance. Furthermore, SimBOL predicts site coordinates to calculate
distance loss instead of traditional label prediction loss, reducing the potential biases introduced by
operations like SoftMax in model training. Experimental results demonstrate that SimBOL achieves
the SoO localization within 10mm, significantly better than the current most accurate method, SVR
Zhou et al. (2019), by over 2mm. The discussion about data augmentation and model architecture
on ECG signal processing, offer- ing new insights into optimizing deep learning applications for
ECG-based tasks. In summary, the contributions of this paper are summarized as follows:

• This work introduces Onset-based data augmentation, a method that leverages physical
characteristics of ECG signal. By resampling specific regions of the ECG data, this method
effectively increases the amount of training data for deep learning models, providing critical
data support for their application in the ECG field.

• This work proposes a data feature extraction model specifically designed for ECG signals.
By appropriately stacking 1D convolution and fully connected layers, the model effectively
extracts features from the augmented, irregular ECG signals. Its small scale offers a new
direction to mitigating overfitting during model training in the ECG field.

• The SimBOL training framework achieves a coordinate prediction distance error of less
than 10mm, significantly improving upon the current best localization method, which has
an error of 12mm. Its minimal requirements for input data processing not only increase
accuracy but also enhance convenience and efficiency in clinical settings.
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2 RELATED WORK

2.1 EARLY VENTRICULAR ACTIVATION ORIGIN LOCALIZATION

Using 12-lead ECGs data to guide clinicians in locating the SoO of early ventricular activation
has long been a focus of clinical and biomedical research. In 2017, Sapp et al. (2017) proposed
subdividing the 16 segments of a generic left ventricle (LV) into 238 triangles. They collected a
pacing-site database that included pacing 12-lead ECGs and corresponding pacing locations. By
applying a multiple linear regression (MLR) method Zhou et al. (2019), they derived coefficients
linking the pacing ECGs to their corresponding pacing locations. These coefficients were then
used to predict the SoO of early LV activation when having a pacing ECG or VT/PVC ECG. In
this approach, the ECG for each lead was represented by a single value based on the 120 ms QRS
integral. However, this method is highly sensitive to the selection of the QRS onset and by focusing
only on the integral of the first 120 ms of the QRS complex, it may provide a limited understanding
of ventricular contraction, without fully capturing the dynamics of ventricular relaxation.

Due to AI’s powerful data analysis and feature extraction capabilities, some studies Lai et al. (2021);
Haq et al. (2021); Liu et al. (2023) are exploring the use of deep learning (DL) to process clinically
relevant but “hidden” patterns in ECG signals, thereby assisting in identifying the SoO of early ven-
tricular activation. Yang et al. (2017) employed a comprehensive DL approach using two CNNs
(Segment CNN and Epi-Endo CNN) to localize PVC origin onto 25 specific ventricular segments
(17 LV segments, 8 RV segments) and distinguish between endocardial and epicardial activation
origins. Pereira et al. (2019) employed a shallow neural network for PVC detection, focusing on
distinguishing between left and right ventricles. Tested on three datasets with 328 patients, the
network demonstrated high specificity but relatively low sensitivity. Gyawali et al. (2019); Missel
et al. (2020) used a generation task with GRU models, followed by fine-tuning for localization. The
model achieved a mean localization accuracy of 12.84 mm within ten segments of a generic LV en-
docardium. Li et al. (2021) developed an optimized ResNet-18 network for localizing PVC origins.
Chang et al. (2022) developed a DL model with two sets of CNN layers for predicting the Ventric-
ular Arrhythmia origin. However, the performance of these models is significantly constrained by
overfitting due to the limited availability of clinical data and the over-parameterized of deep models.

2.2 DIFFERENCE BETWEEN ECG AND SPEECH SIGNALS

Many speech-related tasks Dureja & Gautam (2015); Wali et al. (2022) use the spectral information
of speech signals as input for model training. This is mainly because the content of human speech
is primarily conveyed through frequency information, while amplitude and timbre only represent
the loudness and quality of the sound Fitch (2000). In contrast, ECG data, being electrical signals,
presents unique challenges; its amplitude, as a crucial component that carries important information
about the strength of heart contractions Malmivuo & Plonsey (1995). Additionally, the frequency
in ECG data reflects the distinct beating patterns of the heart’s chambers. Furthermore, since heart
signals are influenced by the body when transmitted to the body surface, 12-lead ECG data often
suffers from significant noise interference Clifford et al. (2006), making it more difficult to capture
heart rate frequency information accurately. As a result, directly applying speech-domain models to
ECG data processing is not ineffective.

3 PACING-SITE DATA

3.1 PACING-SITE ECGS

Figure 2 presents a complete 12-lead pacing ECG collected in real time during clinical procedures.
The 12 different colors in the figure represent the distinct signals recorded by each electrode. The
location indicated by the red arrow is the pacing spike, which is a small electrical signals generated
by a catheter to stimulate the ventricle. The onset, marked by a white point in Figure 2, signals
the start of electrical activity that leads to the QRS complex, highlighted in the green box, which
represents ventricular contraction. The QT interval Goldenberg et al. (2006), shown in the blue box,
covers the electrical activity of both ventricular contraction and relaxation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

QT interval

QRS Complex 

Figure 2: A segment of a 12-lead pacing ECG signals. The red arrow indicates the pacing spike,
which are small electrical signals generated by a catheter to stimulate the heart. The green box
highlights the QRS complex, the blue window shows the QT interval, and the onset, marked by a
white point, represents the start of both.

3.2 PACING-SITE LOCATIONS

Short axis

Basal

Mid-cavity

Apical

Horizontal long axis

Vertical long axis

A B

Figure 3: Two different methods for localizing the SoO. The first method divides the LV endocardial
surface into 16 regions, as indicated by figure A. The second method, as shown in figure B,localize
the SoO into 238 regular triangles, each marked by a yellow circle with a number.

The 3D geometry of the generic LV endocardial surface, derived from a necropsy specimen of a nor-
mal human heart Sapp et al. (2017), was divided into 16 anatomical segments (indicated in Figure
3A). These segments were further divided into 238 triangular elements to represent the LV endo-
cardium Sapp et al. (2017) (as shown in the Figure 3B). Each triangle is defined by three Cartesian
coordinates (X, Y, and Z), with the origin at the LV apex and the Z-axis oriented toward the mid-
point of the mitral valve. For clinical application, pacing sites from patient-specific electroanatomic
mapping data were manually registered onto these triangular elements within the 16 segments.

4 SIMBOL FRAMEWORK

4.1 ONSET-BASED DATA AUGMENTATION

In the preprocessing of pacing ECG data, not all pacing beats are clinically usable due to factors such
as motion artifacts, ectopic beats (highlighted by the red dashed box in Figure 4), and non-captured
beats where the stimulus-QRS delay exceeds 40 ms. Previous studies, such as Zhou et al. (2020a),
used a single beat per pacing site and represented each lead’s ECG using a 120 ms QRS integral
to identify the SoO of early LV activation. While this approach showed strong localization ability
Zhou et al. (2020a), it may miss important information beyond the initial 120ms of the QRS com-
plex, limiting usable training data and introducing subjectivity in determining the optimal 120-ms
QRS interval. To overcome these limitations, SimBOL produced Onset-based Data Augmentation
strategy. This strategy aims to increase the availability of training data by generating additional
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samples and simplifies the selection of QRS onset regions. By enhancing the dataset size and reduc-
ing the complexity of data preprocessing, SimBOL improves the robustness of ECG analysis and
facilitates more accurate clinical assessments.

Onset-based Data Augmentation

β

Figure 4: The onset-based data augmentation strategy and some of the resampling results. The blue
dashed box indicates the resampling interval β. The white dot represents the optimal onset point.
The red dashed box indicates the unusable, irregular QT interval.

Assuming the sampling rate of a sample is F , the duration of the QT interval is less than ∆, and
time interval between two spikes is Γ, the actual number of sample points P within a QT interval
is P = F × ∆ and the actual number of sample points L between two spikes is L = F × Γ. To
determine the optimal onset time, which corresponds to point t, we define the interval β = [ t-P2 ,
t ] as the range for selecting the resampling start point. SimBOL augments the training dataset by
randomly choosing the start point τ from this β interval and then sampling L points from τ , forming
a single training data sample. As shown in Figure 4, since L > P , each sample will include a
portion or the entirety of the QT interval. Any portion of P that is not captured within the sample is
filled by adjacent QT interval data. By performing N resamplings at each onset point, SimBOL×N

generates a training dataset that is N -fold larger than the original training dataset.

4.2 MODEL ARCHITECTURE
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Figure 5: Illustration of the specific structure of the model used by SimBOL. It mainly consists of
two stacked 1D convolutional blocks, followed by a fully connected layer.

By leveraging the physical characteristics of ECG signals, we developed a compact training model
that combines 1D convolution with activation functions. This model has a limited number of pa-
rameters, helping to balance the scale of training data and model complexity, while effectively
maintaining the ability to extract features from ECG signals. The detailed model architecture is
illustrated in Figure 5. Based on actual clinical ECGs, SimBOL sets the input length of the resam-
pled signals, denoted as L (detailed in Section 4.1), to 800. Consequently, the model first employs
a 7 × 7 1D convolution to extract coarse-grained features from the data, followed by a 3 × 3 1D
convolution to capture finer-grained features. The most significant single-sample temporal features
within each sample are then extracted using activation functions and pooling layers. To ensure that
the model captures both the temporal features of the ECG signals and the relationships among the
12 leads, SimBOL transposes the obtained data representation and then applies a 3 × 3 1D con-
volution to extract the sequential relationships between the leads. The final representation, F , is a
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1600-dimensional vector. Finally, a fully connected layer is used to generate the coordinates of VA
origin corresponding to the input sample.

4.3 EVALUATION PROTOCOL

SimBOL employs a coordinate prediction strategy for localization. Specifically, the model’s final
fully connected layer is designed to output a 3-dimensional coordinate P = (x, y, z). The training
loss L, shown in equation 1, is then calculated by measuring the Euclidean distance between the
predicted coordinate and the reference coordinate P ′ = (x′, y′, z′).

L = ||P − P ′||2 (1)

5 EXPERIMENTS

5.1 EXPERIMENT DATASETS

In this study, we utilized a pacing-site dataset containing 1,012 LV pacing sites, as referenced in
Sapp et al. (2017). Each pacing site includes paired data: electrocardiograms (ECGs) and their
corresponding pacing locations. The ECG recordings consist of approximately 15 seconds of con-
tinuous 12-lead pacing signals, captured at a sampling rate of 1,000 Hz during routine pace-mapping
procedures on the LV endocardium. The pacing locations were mapped onto the generic LV com-
posed of 238 triangular segments. Each site is defined by the (x, y, z) coordinates of the center of
one of these triangles. Notably, the 1,012 pacing sites do not cover all 238 triangle labels in the
model. On average, each triangle is associated with fewer than 10 clinical samples, and some tri-
angles have as few as one or even no samples. Specifically, 25 triangle labels have no associated
clinical samples, and 27 labels have only one corresponding clinical sample. Details of the dataset
are provided in the Appendix A.1.

5.2 EXPERIMENTS SETTING

5.2.1 DATASET DIVISION STRATEGY

To ensure a reasonable division between the training and test sets, for triangle labels with more
than two samples, we randomly selected 20% of the samples (rounded up) as the test set, with the
remaining 80% used as the training set. For triangle labels with only two samples, we randomly
selected one as the training sample and the other as the test sample. For triangle labels with only
one sample, to increase the amount of training data, we included these samples exclusively in the
training dataset. This approach resulted in 231 test samples and 781 training samples. SimBOL
resamples each training sample using onset-based data augmentation.

5.2.2 DATA AUGMENTATION WITH SIMBOL

SimBOL applies onset-based data augmentation by resampling each training sample multiple times.
The number of resample N for each training sample is determined by a resampling rate, ×N . Ad-
ditionally, SimBOL resampled each test sample to enhance the generalization capability of the test
set. In all experiments, we fixed the resamples rate for the test set at ×10, resulting in 2,3,10 test
samples for evaluation. We did not apply onset-based data augmentation to the original 1,012 clini-
cal samples before splitting them into training and test sets. Doing so would have made the domains
of the training and test sets identical, which would prevent the test results from accurately reflecting
the model’s generalization and potential overfitting.

5.2.3 TRAINING SETTING

During the training process, SimBOL consistently set the training epochs to 400 and the batch size
to 350. We used the Adam optimized with hyperparameters: beta1 =0.9, beta2 = 0.98, epsilon
= 1e−9, and a weight decay of 1e−3. The model was trained using a cosine annealing learning
rate schedule with 500 warmup steps and an initial learning rate of 1e−3. All experiments were
conducted on 4 NVIDIA 4090 GPUs. To ensure the stability and reliability of the experimental
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results, each experiment was run five times with different random seeds, and the mean and variance
were calculated.

5.3 PERFORMANCE OF SIMBOL

5.3.1 COORDINATE PREDICTION ACCURACY

To compare the localization accuracy of different methods, we measured the average distance be-
tween the predicted coordinates and the corresponding reference coordinates on the test samples.
The mean and variance of localization accuracy for each method are shown in Figure 6. To com-
pare the performance differences between SimBOL and other methods, Figure 6 shows the different
performance of the SimBOL under different resampling rates: ×1 (SimBOL×1), ×2 (SimBOL×2),
×3 (SimBOL×3), ×4 (SimBOL×4), and ×5 (SimBOL×5), as described in section 4.1. The value in
parentheses in the legend correspond to the mean of locallization accuracy for each method.

QRSi CNN f-SAE(GRU) SVR SimBOLx1 SimBOLx2 SimBOLx3 SimBOLx4 SimBOLx5 SimBOLx10 SimBOLx15
Recent Methods

10
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f-SAE(GRU) (12.84 mm)
SVR (11.80 mm)
SimBOL

Figure 6: Comparison of the localization accuracy for each methods. To better illustrate SimBOL’s
performance, the figure shows the results at different resampling rates SimBOL×N . Each point in the
figure represents the mean and variance of the average distance between the predicted coordinates
and the corresponding true coordinates for the respective method across all test sets.

The QRS integral (QRSi) Sapp et al. (2012), used as a baseline in VA origin localization, is a linear
model that employs the commonly-used feature of 120-ms QRS integrals, calculated as the 120-ms
time integral of the QRS complex using the standard trapezoidal rule. The CNN model Yang et al.
(2017) is inspired by premature ventricular contraction (PVC) localization from 12-lead ECG data
and uses 2D convolution layers to extract features. The results in the Figure 6 also indicate that using
2D convolution to jointly extract temporal features and 12-lead relationships from ECG signals does
not demonstrate a significant advantage. The f-SAE(GRU) Gyawali et al. (2019) is a deep model
based on GRU modules Dey & Salem (2017), where the GRU is pre-trained through a generative
task to mitigate overfitting during the training phase of the SoO localization. Although this method
effectively improves the accuracy of predicting the SoO, the overall training process is complex,
the model has a large number of parameters, and it requires specific input intervals for the data.
The SVR model Zhou et al. (2019) is a linear regression model based on 120-ms QRS-integrals. It
achieved an average localization accuracy of 11.80 mm, making it the most accurate method to date.
However, this method is highly sensitive to the selection of the QRS onset; accurately identifying the
QRS onset in ventricular arrhythmias is a challenging task due to the irregular and variable nature
of arrhythmic ECG signals Reznichenko S & S (2024).

By analyzing the results of SimBOL, we observe that its localization accuracy improves as the
resampling rate increases. With only one-fold resampling, SimBOL achieves a localization accuracy
of 12.94 mm, which is very close to that of f-SAE(GRU) at 12.84 mm, and significantly higher
(worse performance) than SVR. However, as the resampling rate increases, SimBOL’s localization
error decrease from 12.94 mm to 9.88 mm at a ×5 resampling rate. However, as the amount of
training data continues to increase, the model’s performance did not show significant improvement
and stabilized around 9.80 ± 0.19 mm. This result aligns with the empirical conclusion Krizhevsky
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et al. (2017); Chen et al. (2020); Ni et al. (2023); Dubey et al. (2024) in traditional deep learning:
model performance improves with an increase in training data and eventually reaches a plateau.

5.3.2 THE PERFORMANCE IN 16 SEGMENTS

This section evaluates SimBOL’s localization accuracy across all test samples by classifying the
results into 16 segments, showing how the model’s accuracy varies across the 16 segments at re-
sampling rates: ×1, ×3, ×5, ×10 and ×15. Detailed comparison results are presented in Figure 7.
The results in parentheses in the legend represent the average coordinate prediction distance for the
SimBOL model at each resampling rate, which is consistent with the results in Figure 6.
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Figure 7: Coordinate prediction distance of SimBOL models across 16 segments at five different
resampling rates: ×1, ×3, ×5, ×10, and ×15. The results in parentheses in the legend represent the
average coordinate prediction distance for the SimBOL model at each resampling rate.

Comparing the results of SimBOL models with five different resampling rates reveals that, in most
segments, the localization error decreases as the resampling rate (and thus the amount of training
data) increases. The most significant performance improvements are observed between the ×1,
×3, and ×5 resampling rates. Beyond ×5, the differences between SimBOL×5, SimBOL×10, and
SimBOL×15 are not significant in most segments, indicating a plateau in performance gains.

However, localization results for four segments, specifically segment 7, 8, 9, and 14, are notably
unstable. In these segments, the localization accuracy did not improve or remain stable with the
increase in training data; instead, it actually worsened. As shown in Figure 3 A, segments 8, 9 and
14 correspond to the ventricular septum, an area of the heart with complex anatomical features. The
presence of the conduction system, including Purkinje fibers, makes electrical signals from these
regions difficult to localize. Moreover, fewer pacing data were collected from these segments, which
may have contributed to the decreased accuracy. For segment 7, we also observed poor localization
results. This could be because segment 7 is located near the papillary muscles, where many pacing
points are not on the endocardial surface but within the intraventricular area. The unique anatomical
features of this region make it challenging for the model to accurately localize pacing sites. These
findings not only demonstrate the overall stability of the SimBOL model but also highlight key
areas—specifically segments 7, 8, 9, and 14—that significantly impact the model’s performance.
Identifying these challenging regions provides direction for future improvements in finer-grained
localization techniques.

5.4 THE INFLUENCE OF DATA AUGMENTATION

To analyze the impact of different data augmentation strategies on the performance of the Sim-
BOL model, we incorporated several traditional data augmentation methods—Noise Augmenta-
tion (NA), Amplitude Scaling Augmentation (ASA), and Random Baseline Wander Augmentation
(RBWA)—on top of the Onset-based Data Augmentation (ODA). As shown in Figure 8, The NA
adds random noise within a specific range R to each point of the resampled input. The ASA scales
the original input sample by multiplying it with a random factor within a specific range Q. The
RBWA introduces a sinusoidal wave to the original input, with the wave’s period matching the sam-
ple length, and its amplitude drawn from a specific range Z. Details of the augmentation settings
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ODA ODA+NA ODA+ASA ODA+RBWA

None ODA+NA ODA+ASA ODA+RBWAODA ODA+ALL

Figure 8: Illustration of the training data without data augmentation (None) and with five different
data augmentation combinations. ODA refers to Onset-based Data Augmentation, NA stands for
Noise Augmentation, ASA represents Amplitude Scaling Augmentation, RBWA refers to Random
Baseline Wander Augmentation ,and ALL represents the combination of NA, ASA, and RBWA.

can be found in the Appendix A.5. For this experiment, R, Q, and Z were all within the range
[0.15, 0.25]. Table 1 illustrates the effect of applying various combinations of data augmentations
at different resampling rates ×N on the coordinate prediction distance of the SimBOL model. The
column marked None refers to the case where no data augmentation, including ODA, was applied.
These results are denoted by ‘/’, as there were no resampling or data augmentation processes in-
volved. The bold values represent the lowest prediction distance error results for the model at the
current sampling rate.

Table 1: Comparison of the impact of different data augmentation combinations and resampling
rates on the performance of the SimBOL model.

×N ×1 ×2 ×3 ×4 ×5 ×10 ×15

ODA 12.94±0.28 11.15±0.24 10.70±0.24 10.29±0.20 9.88±0.18 9.78±0.20 9.80±0.19

+NA 13.41±0.32 11.65±0.30 11.23±0.31 10.88±0.26 10.12±0.23 10.12±0.21 10.14±0.23
+ASA 12.81±0.26 11.18±0.24 10.68±0.22 10.33±0.21 9.84±0.20 9.80±0.18 9.92±0.20

+RBWA 13.64±0.33 12.21±0.26 11.10±0.27 10.34±0.23 10.02±0.22 9.82±0.21 9.76±0.23
+ALL 13.81±0.25 11.75±0.22 10.92±0.23 10.25±0.22 9.83±0.20 9.80±0.18 9.88±0.19

None 12.95±0.22 / / / / / /

From the results in the table, it is clear that adding Noise Augmentation (+NA) on top of ODA
has the most significant negative impact on the model’s performance. Regardless of the resam-
pling rate, the model’s prediction accuracy consistently decreased after introducing NA. We believe
this is due to the unstructured noise disrupting the temporal features of the input data, making the
relationship between ECG features and their corresponding coordinates less stable, which in turn
affect the model’s predictions. In contrast, both ASA and RBWA slightly improved the prediction
accuracy of the SimBOL model at certain sampling rates compared to using only ODA. However,
these methods introduced a slight decrease in stability, as indicated by the increased variance in re-
sults. When comparing the results of ODA alone with ODA combined with all three traditional data
augmentation methods (+ALL), it becomes evident that after increasing the training data (when the
resampling rate reached × 4), the model’s performance shows no significant difference from using
ODA alone. Additionally, comparing the model’s performance with ODA to the ”None” case (no
data augmentation), it is apparent that SimBOL’s model is not highly sensitive to input data struc-
ture, as the final average prediction error is the same in both cases. However, once the training data
increases through resampling, the importance of ODA becomes clear. In every combination of data
augmentation strategies, the model’s performance consistently improves as the amount of training
data increases.

5.5 THE INFLUENCE OF MODEL PARAMETERS AND STRUCTURE

Extensive research in deep learning have demonstrated the strong feature extraction capabilities of
the Transformer architecture Vaswani (2017) particularly for sequential signals. In this section, we
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discuss the impact of inserting multi-head self-attention layers Niu et al. (2021) at different layers
of the SimBOL model on its final coordinate prediction accuracy. Specifically, we experimented
with adding two stacked multi-head self-attention layers (denoted as T) either before the input layer
(T+SimBOL) or before the fully connected layer (SimBOL+T) in the SimBOL model. For detailed
information on the structure of T, please refer to Appendix A.6. Figure 9 shows the average coor-
dinate prediction performance of these models under different resampling rates ×N . The values in
parentheses in the legend represent the average prediction error for each model when the resampling
rate reaches ×100.

Figure 9: The trend in coordinate prediction accuracy at different resampling rates for three different
model architectures: SimBOL+T, T+SimBOL, and SimBOL). The results in parentheses in the
legend represent the average coordinate prediction distance for these model at resampling rate ×100.

The results in the figure 9 show that adding a Transformer structure before the fully connected layer
(SimBOL+T) leads to a decreases in performance. As the resampling rate increases, the prediction
error for the SimBOL+T model decreases from 15.36mm at the ×1 to 10.62mm at the ×100. How-
ever, this is still 0.79mm higher than the original SimBOL model. We believe this is because, after
passing through the SimBOL module, the data features become highly abstracted, making the T
structure less effective. Additionally, the large number of training parameters in the T likely hinders
overall model training. In contrast, the T+SimBOL model, which applies the self-attention structure
to create a data representation with consistent dimensions, preserve a significant amount of detailed
information of the data, and then processes this representation with the SimBOL module for high-
dimensional mapping. The T+SimBOL model achieves a prediction accuracy that is similar to the
original SimBOL model, which only a 0.05mm difference at the ×100 resampling rate. Comparing
the accuracy curves, we observe that the T+SimBOL model stabilizes at a resampling rate of ×15,
whereas the SimBOL model stabilizes at ×5 due to its smaller number of parameters.

The performance trends of the T+SimBOL and SimBOL models illustrate that a model’s effec-
tiveness is influenced by the balance between the number of model parameters and the amount of
training data. Larger model scales, such as T+SimBOL, require more training data to support their
performance. The comparison between the T+SimBOL and SimBOL+T models demonstrates that
the model structure has a significant impact on the final performance.

6 CONCLUSION

This paper presents a Simple data-parameters Balancing framework for ventricular arrhythmia
Origin Localization (SimBOL) in ECG filed. The proposed onset-based data augmentation method
offers a new strategy for expanding training data in the ECG domain for deep learning. The pro-
duced small-scale model, built using stacked 1D convolutions, ensures effective feature extraction
from ECG data while reducing the preprocessing demands of the signals. By balancing training data
and model parameters, SimBOL achieves a localization accuracy of under 10 mm on the unified test
set, which meets clinically-accepted accuracy and improved accuracy by 2 mm compared to the cur-
rent best method, SVR. The experimental discussion demonstrates the performance stability of the
SimBOL model and emphasizes the importance of balancing training data and model parameters.
The discussion about data augmentation and model architecture on ECG signal processing, offer-
ing new insights into optimizing deep learning applications for ECG-based tasks.
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A APPENDIX

A.1 DETAILED INTRODUCTION OF EXPERIMENTAL DATA

The 1,012 distinct clinical samples as experimental data, collected from 39 patients who underwent
ablation for scar-related VT. The study protocols of this dataset were approved by the Nova Scotia
Health Authority Research Ethics Board Hub. The specific 25 triangle labels with no corresponding
clinical samples are: 35, 42, 52, 78, 125, 127, 132, 152, 158, 159, 160, 161, 164, 191, 194, 196, 198,
199, 200, 201, 217, 225, 229, 233, 237. The specific 27 triangle labels have only one corresponding
clinical sample are: 40, 47, 54, 56, 90, 91, 117, 120, 126, 129, 141, 147, 162, 171, 176, 192, 193,
195, 197, 210, 213, 216, 228, 231, 232, 234, 235. Figure 10 shown the number of clinical training
and testing data for each triangle label.
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Figure 10: The number of clinical training and testing data for each triangle label.

A.2 DETAILED COORDINATE PREDICTION RESULTS

Section 5.3.1 presents the average coordinate prediction accuracy of the SimBOL model. Here, we
show the detailed localization accuracy of SimBOL×5 for each triangle label in Figure 11.
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Figure 11: The detailed localization accuracy of SimBOL×5 for each triangle label

From the overall results, it can be observed that SimBOL’s localization accuracy shows little vari-
ation across most triangle labels. However, there are noticeable fluctuations in the accuracy for
several triangle labels, such as 13, 76, 123, 186, 207, and 226. In particular, the localization error
for triangle 186 reached 42.97mm, making it an outlier in the model’s performance. A total of 12 tri-
angular coordinates had a prediction distance exceeding 20mm. Among these, 8 triangle labels were
located in segments 1, 7, 8, 9, and 14, which correspond to the ventricular septum region (section
5.3.2). The least accurate, triangle 186, was found in segment 1.
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A.3 PERFORMANCE OF 16 SEGMENTS CLASSIFICATION

Besides discussing SimBOL’s performance in coordinate prediction, this section reports the
SimBOL×5 average classification accuracy across all test samples for the 16 predefined segments.
The final results are shown in Figure 12.
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Figure 12: Illastration the classification accuracy of the SimBOL×5 on 16 segments.

While the segmentation into 16 regions aids physicians in identifying the broader area of interest,
approximately pinpointing the SoO of early ventricular activation within these regions often ne-
cessitates extensive pacing. This is because discrete localization can create large target areas and
potentially overlook adjacent segments, particularly when the SoO lies on a boundary shared by two
or three neighboring segments. The results in the figure show that the classification accuracy of
segments 7, 8, 9, and 14 is significantly lower than that of other segments. This finding aligns with
the results discussed in section 5.3.2. In conjunction with the results from Section 5.3.2, it is evident
that the SimBOL×5 model’s predicted coordinates in segments 7, 8, 9, and 14 are not only far from
the reference coordinates but also located in different segments.

A.4 THE INFLUENCE OF β INTERVAL

In the manuscript (section 4.1), we set the resampling interval for onset-based data augmentation as
β = [ t-P2 , t ], where the interval length is P/2. In this section, we expanded the resampling interval
into β = [ t-P2 , t + P

2 ], thereby increasing the interval length to P . Table 2 presents the performance
of the SimBOL model at different resampling rates under two different resampling intervals. The
column marked “None” refers to the case where no data augmentation was applied. These results
are denoted by ‘/’, as there were no resampling or data augmentation processes involved. From the
results, we can see that expanding the resampling interval did not lead to a significant difference
in the model’s final localization performance (the performance in ×15, ×20 and ×25). As the
resampling interval expanded, the diversity of the training data increased, which resulted in a slight
increase in the variance of the model’s localization accuracy. However, at higher resampling rates,
the increased training data contributed to more stable model performance.

Table 2: Comparison of the impact of different β interval and resampling rates on the performance
of the SimBOL model.

×N ×1 ×3 ×5 ×10 ×15 ×20 ×25

P/2 12.94±0.28 10.70±0.24 9.88±0.18 9.78±0.20 9.80±0.19 9.87±0.19 9.85±0.19

P 13.01±0.35 12.17±0.30 11.88±0.25 10.12±0.22 9.90±0.23 9.85±0.21 9.91±0.23

None 12.95±0.22 / / / / / /

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 DETAILED SETTINGS FOR DATA AUGMENTATION

Section 5.4 compares the impact of different data augmentation combinations on the performance
of the SimBOL model. Here, we provide a detailed algorithm of the implementation details for the
three data augmentation methods.

Algorithm 1 Noise Augmentation
import torch; import numpy as np
input: 12-lead ECG signals X , noise ranges R.
noise = np.random.uniform(R).
for i in range(X .shape[0]): do

X[i] = X[i] + noise * np.random.randn(X[i].shape[0])
end for
return X

Algorithm 2 Amplitude Scaling Augmentation
import torch; import numpy as np
input: 12-lead ECG signals X , factor ranges Q.
factor = np.random.uniform(Q).
X = X * factor
return X

Algorithm 3 Random Baseline Wander Augmentation
import torch; import numpy as np
input: 12-lead ECG signals X , wander ranges Z.
wander = np.random.uniform(Z).
t = torch.linspace(0, 1, X .shape[1])
t = t.unsqueeze(0)
t = t.repeat(X .shape[0],1)
X = X + wander*torch.sin(2*torch.pi*t)
return X

A.6 DETAILED SETTINGS FOR TRANSFORMER

Section 5.5 discusses the impact of model architecture and parameters on the overall performance
of the SimBOL model. Table 3 provides a detailed explanation of the T structure in both the
T+SimBOL and SimBOL+T models. To minimize changes to the model, we only adjusted their
input dimensions (dim model), while keeping all other training parameters identical to those used
in SimBOL (detailed settings can be reviewed in Section 5.2). the Figure 13 show the detailed
framework of T+SimBOL. And the Figure 14 show the detailed framework of SimBOL+T.

Hyperparameter of T+SimBOL Value
num blocks 2
dim model 800
ff ratio 4
num heads 4
kernel size 3
Pdrop 0.1

Hyperparameter of SimBOL+T Value
num blocks 2
dim model 1600
ff ratio 4
num heads 4
kernel size 3
Pdrop 0.1

Table 3: A detailed explanation of the T structure (in Section 5.5) within both the T+SimBOL and
SimBOL+T models.
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Figure 13: The detailed framework of SimBOL+T model.
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Figure 14: The detailed framework of SimBOL+T model.
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