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ABSTRACT

Aligning large language models (LLMs) with human values and intentions is
crucial for their utility, honesty, and safety. Reinforcement learning from hu-
man feedback (RLHF) is a popular approach to achieve this alignment, but it
faces challenges in computational efficiency and training stability. Recent meth-
ods like Direct Preference Optimization (DPO) and Simple Preference Optimiza-
tion (SimPO) have proposed offline alternatives to RLHF, simplifying the pro-
cess by reparameterizing the reward function. However, DPO depends on a po-
tentially suboptimal reference model, and SimPO’s assumption of a fixed target
reward margin may lead to suboptimal decisions in diverse data settings. In
this work, we propose α-DPO, an adaptive preference optimization algorithm
designed to address these limitations by introducing a dynamic reward margin.
Specifically, α-DPO employs an adaptive preference distribution, balancing the
policy model and the reference model to achieve personalized reward margins.
We provide theoretical guarantees for α-DPO, demonstrating its effectiveness as
a surrogate optimization objective and its ability to balance alignment and di-
versity through KL divergence control. Empirical evaluations on AlpacaEval 2
and Arena-Hard show that α-DPO consistently outperforms DPO and SimPO
across various model settings, establishing it as a robust approach for fine-tuning
LLMs. Our method achieves significant improvements in win rates, highlight-
ing its potential as a powerful tool for LLM alignment. The code is available at
https://anonymous.4open.science/r/alpha-DPO-E0D3.

1 INTRODUCTION

Learning from human feedback is essential for aligning large language models (LLMs) with human
values and intentions (Leike et al., 2018), ensuring they are helpful, honest, and harmless (Askell
et al., 2021). Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022; Stiennon et al., 2020) is a widely used method for fine-tuning LLMs to achieve this goal.
However, RLHF faces challenges, particularly in computational efficiency and training stability due
to its multi-stage process. Recently, alternative offline algorithms like DPO (Rafailov et al., 2023)
and SimPO (Meng et al., 2024) have been explored. Specifically, DPO reparameterizes the reward
function in RLHF to directly learn a policy model (πθ) from preference data, removing the need for
an explicit reward model. Building on DPO, SimPO further simplifies the process by eliminating
the need for a reference model (πref), and introduces a target reward margin γ to enlarge the distance
between the response pair, thereby achieving strong performance. This naturally raises the question:

Do we really need a reference model in the alignment process?

Motivated by this question, we examine SimPO: it can be viewed as a variant of DPO where the
original reference model πref is effectively replaced by an implicit reference model π̂ref. In SimPO,
the target reward margin γ actually reflects a constant difference between the log likelihoods of a
selected response and a rejected one, i.e., (log π̂ref(yw|x)−log π̂ref(yl|x)). As the constant difference
γ is independent of arbitrary responses, this implicitly assumes a uniform reference distribution
(cf. Figure 1). By tuning γ, SimPO effectively finds an “ideal” uniform implicit reference model,
leading to substantial performance improvements over standard DPO, particularly when the original
reference model πref is suboptimal (Hong et al., 2024).
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Figure 1: DPO, SimPO and α-DPO mainly differ in their implicit reference model, as indicated in
the shaded box, leading to variations in their respective loss functions. α-DPO outperforms DPO
and SimPO across a wide range of settings on AlpacaEval 2.

While conceptually appealing with empirical improvements, SimPO has two inherent limitations:
(1) Applying the same target reward margin to all pairwise comparisons ignores the variability in
the data (Yang et al., 2024; Wu et al., 2024), potentially leading to suboptimal decisions in some
cases; and (2) The implicit assumption of a uniform reference model somehow lacks a solid theo-
retical foundation. These limitations could hinder the model’s ability to achieve alignment across
varied training data, especially in domains with diverse preferences or complex reward structures
(Morimura et al., 2024; He et al., 2024).

To address these limitations of SimPO, we propose an adaptive preference distribution, which leads
to an adaptive reward margin for different response pairs. We term this simple yet effective pref-
erence optimization algorithm α-DPO. Specifically, the adaptive preference distribution is heuristi-
cally set as: π̂ref(y|x) = U(y|x) (πθ(y|x)/πref(y|x))α. Here, U(y|x), inspired by SimPO, employs a
uniform distribution to establish an initial target reward margin, while the term (πθ(y|x)/πref(y|x))α
adjusts the balance between the policy model πθ and the reference model πref to achieve a person-
alized reward margin. When α = 0, α-DPO reduces to SimPO; as α increases, the ratio between
πθ and πref becomes dominant, enabling a personalized, dynamic target. More important, α-DPO
offers several intriguing theoretical insights:

• Theoretical Guarantee via Lower Bound: We prove that α-DPO’s objective serves as a lower
bound on the online SimPO loss. This theoretical guarantee justifies the use of α-DPO as a surro-
gate optimization objective and ensures that optimizing it leads to improved policy performance
and generalization.

• Balancing Alignment and Diversity: We demonstrate that α-DPO balances alignment and di-
versity via KL divergence control. By approximating the sequential KL divergence between the
policy and the reference model, α-DPO achieves computational efficiency and robustness, partic-
ularly when the reference model is not well-calibrated at the token level.

Extensive analysis indicates that α-DPO leverages preference data more effectively by assigning per-
sonalized margins to each pair, resulting in an improved policy model. As demonstrated in Figure 1,
our method consistently outperforms DPO and SimPO across three base model settings (Mistral2-
7B, Llama3-8B, and Gemma2-9B) on AlpacaEval 2 and Arena-Hard (cf. Section 5). Notably, we
achieve a 58.7 length-controlled win rate on AlpacaEval 2, and a 35.7 win rate on Arena-Hard,
establishing it as the strongest 8B open-source model to date.

2 PRELIMINARIES

Offline Alignment. In the offline alignment problem, we have access to a dataset D = {(x, yw, yl)}
comprising prompts x and labeled response pairs (yw, yl) obtained from a reference policy πref.
Here, yw is the preferred (winning) response and yl is the less preferred (losing) response. Although
the underlying latent reward function r∗(x, y) that governs these preferences is not directly observ-
able, the Bradley-Terry (BT) model (Bradley & Terry, 1952) provides a framework for modeling
pairwise comparisons:

P(yw ≻ yl|x) =
exp(r∗(x, yw))

exp(r∗(x, yw)) + exp(r∗(x, yl))
, (1)
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where r∗(x, y) assigns a latent reward to each response y given prompt x. The goal of offline
alignment is to learn a policy πθ that approximates r∗(x, y) using D.

Reinforcement Learning from Human Feedback (RLHF). Classical offline alignment algorithms
employ reinforcement learning with a KL-regularized reward objective (Bai et al., 2022; Ziegler
et al., 2019; Ouyang et al., 2022), defined for a regularization parameter η > 0:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− βDKL[πθ(y|x)||πref(y|x)], (2)

where rϕ(x, y) is the reward function learned using the BT model on the preference dataset, πθ is
the policy model being optimized, πref is the fixed reference policy, typically obtained via supervised
fine-tuning. The KL-divergence regularizes the policy to remain close to the reference model.

Directed Preference Optimization (DPO). DPO (Rafailov et al., 2023) is a leading offline prefer-
ence optimization method. Instead of learning an explicit reward model, DPO reparameterizes the
reward function r(x, y) using a closed-form expression involving the optimal policy:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (3)

where Z(x) is the partition function independent of y. This leads to the DPO loss for any triplet
(x, yw, yl):

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yl|x)

)]
. (4)

where σ(·) denotes the sigmoid function.

Simple Preference Optimization (SimPO). SimPO (Meng et al., 2024) introduces two key con-
tributions: (1) a length-normalized reward, calculated as the average log-probability per token of a
response under the policy model πθ, and (2) a target reward margin γ to ensure the reward difference
between winning and losing responses exceeds this margin. The SimPO loss is formulated as:

LSimPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
, (5)

where |y| denotes the length (i.e., number of tokens) of response y, normalizing the reward by
response lengths, and γ is the target reward margin.

3 METHOD

In this section, we establish a unified framework that connects DPO and SimPO (Section 3.1), high-
lighting the critical role of the reference model in preference optimization. We then introduce α-
DPO (Section 3.2), a novel preference optimization algorithm that synergizes the strengths of both
DPO and SimPO.

3.1 A COMMON FRAMEWORK FOR DPO AND SIMPO

A key insight in our work is that SimPO implicitly adopts a uniform distribution over the vocabulary
as its reference model, whereas DPO employs the SFT model as the reference. By examining the
role of the reference model in both methods, we derive the following result:
Theorem 3.1. Let U(y|x) denote a uniform distribution over the vocabulary for a given input x,
replacing πref(y|x) in the DPO loss function. Then, the DPO loss function simplifies to:

L(πθ;U) = −E(x,yw,yl)∼D [log σ (β (log πθ(yw|x)− log πθ(yl|x))− γ)] , (6)

where γ = β (logU(yw|x)− logU(yl|x)) is a constant. Under a length-normalized reward formu-
lation, this loss function becomes:

LLN(πθ;U) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
. (7)

Therefore, SimPO can be interpreted as a special case of DPO where the reference model is a
uniform distribution.

3
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Why does uniform policy assign different probabilities to winning and losing responses: The
selection mechanism biases the probability distributions of winning and losing responses, even
though both are sampled from the same SFT model. A reward model assigns scores to responses,
selecting the highest-scoring as yw and the lowest-scoring as yl. This process changes the effective
corpora for winners and losers, leading to different values for the uniform distribution over each.

Theorem 3.1 establishes a unified framework for DPO and SimPO by showing that replacing
the reference model πref in DPO with a uniform distribution U reduces the DPO loss to the
SimPO loss, up to a constant term γ. This reveals that SimPO is essentially DPO with a uni-
form reference model. Consequently, the term β (log πref(yw|x)− log πref(yl|x)) collapses to a
constant, emphasizing the pivotal role of the implicit reference model in preference optimization.
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Figure 2: log πref(yw|x) −
log πref(yl|x) along the trai-
ing steps.

Limitations of DPO: As depicted in Figure 2, the reference model
πref in DPO may not effectively distinguish between the preferred
(yw) and less preferred (yl) responses, as its outputs do not inher-
ently reflect the preference information. In contrast, using a uniform
distribution as in SimPO results in a reward margin γ, ensuring that
the reward difference between the preferred and less preferred re-
sponses is entirely governed by the policy model πθ.

Limitations of SimPO: While SimPO simplifies the loss function
by using a constant offset γ, it overlooks the variability inherent
in different data instances, as γ remains the same across all train-
ing samples. This rigidity could lead to suboptimal performance,
especially in the presence of noise or inconsistencies in the data.
Moreover, completely discarding the original reference model πref may fail to capture important
distinctions between response pairs that could be leveraged to improve learning.

3.2 PROPOSED METHOD: α-DPO

Our analysis highlights the significant impact of the reference model in preference optimization. To
overcome the limitations identified in both DPO and SimPO, we propose the following principles:

Principle 1: The reference model should contribute to differentiating between preferred and less
preferred responses.

Principle 2: The reference model should adapt to discrepancies between response pairs to capture
instance-specific nuances.

Principle 1 addresses the shortcoming in DPO, where the reference model may inadequately distin-
guish between yw and yl, introducing uncertainty without a guaranteed margin. Principle 2 rectifies
the oversimplification in SimPO, where the absence of a reference model fails to account for vari-
ability across different instances.

Deriving the α-DPO Objective. Starting from the standard Reinforcement Learning (RL) objective
for preference optimization, we redefine the reference model πref as an implicit reference model π̂ref,
formulated as:

π̂ref(y|x) ∝ U(y|x) (πθ(y|x)/πref(y|x))α , (8)
where α is a hyperparameter controlling the influence of the policy model on the reference model,

and U(y|x) is a uniform distribution serving as a constant baseline. When α = 0, π̂ref reduces to
the uniform distribution as in SimPO; when α = 1, it incorporates the ratio between the policy and
reference models as in DPO. We provide the motivation for Equation 8 in Appendix B.

Substituting π̂ref into the original DPO loss function, we obtain the α-DPO objective:

Lα-DPO(πθ, πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πθ(yl|x)

− β log
π̂ref(yw|x)
π̂ref(yl|x)

)]
= −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(yw|x)
πθ(yl|x)

)
− [γ + αM(x, yw, yl)]

)]
,

(9)

where γ = β
(
log U(yw|x)

U(yl|x)

)
is a constant offset as before, and M(x, yw, yl) is defined as:

M(x, yw, yl) = β

(
log

πθ(yw|x)πref(yl|x)
πref(yw|x)πθ(yl|x)

)
. (10)
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The term M(x, yw, yl) measures the divergence between the policy model πθ and the reference
model πref over the response pairs, effectively capturing instance-specific discrepancies as described
in Principle 2.

Stop Gradient on π̂ref: Although π̂ref depends on πθ and πref, it is intended to serve as a fixed
reference during optimization. To prevent gradients from backpropagating through π̂ref to πθ, we
apply a stop-gradient operation, denoted as sg[·], ensuring that π̂ref remains constant during the
policy updates.

Normalization of M(x, yw, yl): To stabilize training and avoid M(x, yw, yl) dominating the loss
due to scale variations, we apply Z-score normalization (Patro & Sahu, 2015) to M:

M∗(x, yw, yl) =
M(x, yw, yl)− µM

σM
, (11)

where µM and σM are the mean and standard deviation of M computed over the training dataset.

Length-normalized Reward Formulation: Inspired by the technique used in SimPO, we incor-
porate length normalization into our method. This adjustment ensures that rewards are scaled ap-
propriately with respect to the length of the sequences, thereby stabilizing the training process. As
demonstrated in our experiments (cf. Appendix C.2), we also confirmed that even without length
normalization, our method remains effective and continues to show performance improvements.

Final Objective: Incorporating the above considerations, the final α-DPO loss function becomes:

Lα-DPO(πθ, πref) = −E(x,yw,yl)∼D [log σ (u(x, yw, yl)− sg [γ + αM∗(x, yw, yl)])] , (12)

where u(x, yw, yl) =
β

|yw| log πθ(yw|x) − β
|yl| log πθ(yl|x). This formulation ensures balanced in-

fluence between the policy and reference models, aligning with Principles 1 and 2. By incorporating
the normalized discrepancy term M∗(x, yw, yl), α-DPO adaptively adjusts the margin between pre-
ferred and less preferred responses based on instance-specific differences, enhancing learning.

4 THEORETICAL ANALYSIS OF α-DPO

In this section, we provide a theoretical analysis of α-DPO by connecting its objective to the online
SimPO loss. We also explore how α-DPO manages the trade-off between alignment and diversity
through KL divergence control.

4.1 RELATION OF α-DPO TO ONLINE SIMPO

In this section, we relate the α-DPO objective to the online SimPO loss and demonstrate how our
preference optimization method leads to a generalization bound for the policy model. We consider
the following definitions:

Definition 4.1 (Online SimPO Loss). Let πθ represent the current policy and πθold represent the
policy from a previous iteration. The online SimPO loss is defined as:

Lonline
SimPO(πθ, πref) = −E(x,yw,yl)∼πθold

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
, (13)

where σ(·) is the sigmoid function, β is a scaling parameter, |y| represents the sequence length, and
γ is a margin parameter.

By applying importance sampling, this loss can be rewritten as:

Lonline
SimPO(πθ, πref) = −E(x,yw,yl)∼πref

[
w(yw, yl|x) log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
,

(14)
where the importance weight w(yw, yl|x) is given by:

w(yw, yl|x) =
πθold(yw|x)
πref(yw|x)

· πθold(yl|x)
πref(yl|x)

. (15)

5
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However, this importance weighting scheme can lead to undesirable results when πθold(yl|x) >
πref(yl|x), particularly for rejected responses. In such cases, the weight assigned to less preferred
responses becomes disproportionately large, which is counterintuitive and can negatively impact the
optimization process. To address this issue, we propose an alternative weighting scheme:

wcorr(yw, yl|x) =
πθold(yw|x)
πref(yw|x)

· πref(yl|x)
πθold(yl|x)

. (16)

This corrected weighting inversely scales the weight of overrepresented rejected responses, effec-
tively reducing their influence in the expectation and improving the alignment between πθ and πref.
While this adjustment deviates from the standard importance sampling framework, it functions as
a variance reduction technique that biases the estimator towards more desirable properties. Similar
approaches have been explored in importance sampling literature to mitigate variance issues (Hanna
et al., 2019; Patterson et al., 2021). We now establish that the α-DPO objective serves as a lower
bound on the online SimPO loss, justifying its use as a surrogate optimization objective.
Lemma 4.2 (Tight bound between α-DPO and online SimPO loss). For any policy model πθ and
reference model πref, there exists a sufficiently small α > 0 such that the following inequalities hold:

|Lonline
SimPO(πθ, πref)− Lα-DPO(πθ, πref)| ≤ ε(α),

where
ε(α) = Eπref [α|B| |log σ(A)− σ(A) + 1|] ,

A = β
|yw| log πθ(yw|x)− β

|yl| log πθ(yl|x)− γ, and B = log πθ(yw|x)
πref(yw|x) − log πθ(yl|x)

πref(yl|x) .

Lemma 4.2 establishes that our objective Lα-DPO(πθ, πref) tightly approximates the online SimPO
loss Lonline

SimPO(πθ, πref) within a controllable margin ε(α) that depends linearly on α. By choosing α
to be sufficiently small, we can make ε(α) arbitrarily close to zero, ensuring that the gap between
Lα-DPO and Lonline

SimPO is negligible.

4.2 BALANCING ALIGNMENT AND DIVERSITY VIA KL DIVERGENCE CONTROL

Balancing alignment performance with response diversity is crucial in recent alignment methods
(Zeng et al., 2024; Wang et al., 2024a; Ji et al., 2024a). A popular approach is the Token-Level
Direct Preference Optimization (TDPO) method (Zeng et al., 2024), which introduces fine-grained
control of the KL divergence at the token level. Given a prompt x and preceding tokens y<t, the
policy πθ generates the next token z by sampling from πθ(z|x, y<t).

By mapping the reward model to a token-level format, the TDPO loss is defined as:

LTDPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

− δ(x, yw, yl)

)]
,

(17)
where the margin term δ(x, yw, yl) is defined as:

δ(x, yw, yl) = βDSeqKL[x, yl;πref||πθ]− βDSeqKL[x, yw;πref||πθ], (18)

= β

|yl|∑
t=1

Ez∼πref [log
πref(z|[x, y<t

l ])

πθ(z|[x, y<t
l ])

]− β

|yw|∑
t=1

Ez∼πref [log
πref(z|[x, y<t

w ])

πθ(z|[x, y<t
w ])

] (19)

and DSeqKL[x, y;πref||πθ] denotes the sequential KL divergence between πref and πθ along the se-
quence y given x.
Lemma 4.3 (Equivalence of Margin Terms). Let δ(x, yw, yl) denote the difference in sequential
KL divergences between the reference policy πref and the policy πθ along the sequences yw and yl,
respectively, defined as:

δ(x, yw, yl) = βDSeqKL[x, yl;πref||πθ]− βDSeqKL[x, yw;πref||πθ],

If we approximate the sequential KL divergences using the log-probability ratios of the sequences,
then δ(x, yw, yl) simplifies to:

δ(x, yw, yl) ≈ β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
.

Consequently, δ(x, yw, yl) is approximately equivalent to the margin term M(x, yw, yl) in the α-
DPO objective.

6
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Table 1: AlpacaEval 2, Arena-Hard results across four settings. “WR” denotes the raw win
rate,“LC” the length-controlled win rate, and “SC” the style-controlled win rate. The best results
are highlighted in bold, while the second-best are underlined.

Method
Llama3-Instruct (8B) Mistral-Instruct (7B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) SC (%) LC (%) WR (%) LC (%) WR (%) SC (%) LC (%) WR (%)

SFT 24.0 23.6 22.1 22.2 22.4 19.0 15.4 18.3 13.2 12.9

DPO 40.2 38.1 31.9 32.0 31.2 20.3 17.9 18.9 13.7 13.4
IPO 35.9 34.4 29.2 29.9 30.2 22.3 18.6 22.4 16.6 16.2
CPO 29.6 34.4 26.3 28.1 29.4 26.2 31.7 26.6 21.4 23.8
KTO 38.3 34.1 30.3 30.6 30.3 19.4 20.3 21.5 16.0 16.8
ORPO 31.6 29.8 26.6 26.6 26.3 24.0 23.0 24.4 18.5 18.6
R-DPO 40.3 37.3 33.1 32.9 32.9 21.4 22.2 18.7 14.0 13.8
SimPO 43.8 38.0 33.5 33.5 32.6 30.2 32.1 25.6 19.8 20.1

α-DPO 46.6 38.1 34.1 34.2 33.3 32.3 32.6 27.2 21.5 21.5

Method
Llama3-Instruct v0.2 (8B) Gemma2-Instruct (9B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) SC (%) LC (%) WR (%) LC (%) WR (%) SC (%) LC (%) WR (%)

SFT 24.0 23.6 22.1 22.2 22.4 48.7 36.5 32.0 42.2 42.1

DPO 51.9 50.8 26.1 31.5 33.9 70.4 66.9 43.9 55.6 58.8
IPO 40.6 39.6 31.1 34.2 34.9 62.6 58.4 41.1 51.9 53.5
CPO 36.5 40.8 29.4 32.8 34.2 56.4 53.4 42.4 53.3 55.2
KTO 41.4 36.4 27.1 29.5 28.9 61.7 55.5 41.7 52.3 53.8
ORPO 36.5 33.1 28.8 30.8 30.4 56.2 46.7 35.1 45.3 46.2
R-DPO 51.6 50.7 29.2 34.3 35.0 68.3 66.9 45.1 55.9 57.9
SimPO 55.6 49.6 28.5 34.0 33.6 72.4 65.0 45.0 56.1 57.8

α-DPO 58.7 51.1 30.8 36.3 35.7 73.4 66.1 48.6 59.3 60.8

The approximation leverages the assumption that the expectation over z can be approximated by
the log-probability ratios at the sequence level. Specifically, we recognize that the sequential KL
divergence between πref and πθ along a sequence y can be approximated by:

DSeqKL[x, y;πref||πθ] =

|y|∑
t=1

Ez∼πref

[
log

πref(z|x, y<t)

πθ(z|x, y<t)

]
≈ log

πref(y|x)
πθ(y|x)

.

This approximation reduces computational complexity by operating at the sequence level rather than
the token level, making it particularly advantageous when dealing with long sequences or when the
reference policy πref is not well-calibrated at the token level. Applying this approximation to both
yw and yl, the difference δ(x, yw, yl) simplifies to the difference of log-probability ratios, thereby
establishing the equivalence with the margin term in α-DPO.

Lemma 4.3 highlights that the margin term δ(x, yw, yl), which represents the sequential KL di-
vergence difference between preferred and rejected responses, can be directly mapped to the term
M(x, yw, yl) in α-DPO. This mapping underscores the theoretical connection between the two ap-
proaches in terms of alignment control. While TDPO operates at the token level and provides fine-
grained control, α-DPO offers greater computational efficiency by operating at the sequence level
without sacrificing performance. Moreover, the sequence-level approximation enhances robustness
to token-level noise in πref, making α-DPO particularly suited for scenarios where the reference
policy may not be perfectly aligned. Refer to Appendix C.4, where we compare TDPO and α-DPO.

5 EXPERIMENTS

In this section, we present the main results of our experiments, highlighting the superior performance
of α-DPO over existing methods on various benchmarks and ablation studies to analyze the impact
of different components of α-DPO.

5.1 EXPERIMENTS SETUP

Models and training settings. We optimize preferences using three model families: Llama3-8B
(AI@Meta, 2024), Mistral2-7B (Jiang et al., 2023), and Gemma2-9B (Rivière et al., 2024), all in
the Instruct setup. Following Meng et al. (2024), we utilize pre-trained instruction-tuned models
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Table 2: Ablation studies under Llama3-Instruct v0.2 and Mistral-Instruct settings. We ablate
each key design of α-DPO and explore variants of the implicit reference model π̂ref.

Method
Llama3-Instruct v0.2 (8B) Mistral-Instruct (7B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) SC (%) LC (%) WR (%) LC (%) WR (%) SC (%) LC (%) WR (%)

U(·|x) 55.6 49.6 28.5 34.0 33.6 30.2 32.1 25.6 19.8 20.1

U(·|x) (πθ(·|x)/πref(·|x))α 58.7 51.1 30.8 36.3 35.7 32.3 32.6 27.2 21.5 21.5

w/o Normalization 56.5 49.7 23.1 28.4 27.7 32.1 33.1 25.2 19.7 19.6
w/o sg 2.7 3.7 7.7 5.4 6.3 27.2 27.7 25.8 20.3 20.7
γ = 0 51.2 44.9 30.0 34.5 33.3 31.9 31.3 24.2 19.6 19.3

U(·|x) (πθ(·|x))α 57.2 50.4 27.6 33.5 32.9 31.6 34.1 26.9 21.3 21.5
U(·|x) (πref(·|x))α 56.3 49.5 29.0 34.3 33.5 28.6 30.9 25.5 20.1 20.3
U(·|x) (1/πref(·|x))α 56.3 49.2 29.0 34.4 33.8 32.2 33.1 26.0 20.7 20.6

(meta-llama/Meta-Llama-3-8B-Instruct, mistralai/Mistral-7B-Instruct-v0.2, google/gemma-2-9b-it)
as SFT models. For a fair comparison, we use the same training data as SimPO: princeton-
nlp/llama3-ultrafeedback-armorm1, princeton-nlp/mistral-instruct-ultrafeedback2, and princeton-
nlp/gemma2-ultrafeedback-armorm 3 for Llama3-8B, Mistral2-7B, and Gemma2-9B, respectively.
Additionally, the v0.2 Llama3-Instruct setup uses RLHFlow/ArmoRM-Llama3-8B-v0.1 (Wang
et al., 2024b) as the reward model for ranking generated data, significantly enhancing performance.
These configurations represent state-of-the-art methods, positioning our models among the top per-
formers on various leaderboards.

Evaluation benchmarks. We evaluate our models using two widely recognized open-ended
instruction-following benchmarks: AlpacaEval 2 (Li et al., 2023) and Arena-Hard (Li et al., 2024).
These benchmarks assess the models’ conversational abilities across a diverse range of queries and
are extensively used by the research community. For AlpacaEval 2, we report the length-controlled
win rate (LC) and raw win rate (WR). For Arena-Hard, we provide the win rate (WR), length-
controlled win rate (LC), and style-controlled win rate (SC) compared to baseline models. Note that
style significantly impacts performance on these leaderboards.

Baselines. We compare α-DPO with several state-of-the-art preference optimization methods:
DPO (Rafailov et al., 2023), SimPO (Meng et al., 2024), IPO (Azar et al., 2023), CPO (Xu et al.,
2024), KTO (Ethayarajh et al., 2024), ORPO (Hong et al., 2024), and R-DPO (Park et al., 2024).
We also include the SFT model as a baseline. We thoroughly tune the hyperparameters for each
baseline and report the best performance. Further details can be found in Appendix C.1.

5.2 MAIN RESULTS

α-DPO consistently outperforms existing preference optimization methods. As shown in Ta-
ble 1, while all preference optimization algorithms improve over the SFT baseline, α-DPO achieves
superior performance compared to existing methods specifically on the AlpacaEval 2 LC metric.
These significant improvements highlight the robustness and effectiveness of α-DPO. Specifically,
α-DPO outperforms the best baseline by an average of 3 percentage points in AlpacaEval 2 LC win
rate. Furthermore, on benchmarks such as Arena-Hard, α-DPO achieves state-of-the-art or second-
best results, demonstrating its competitiveness across different evaluation settings.

Impact of Metrics on Leaderboard Rankings. While both benchmarks are widely used, the stan-
dard win rate (WR) metric shows poor separability among different methods, making it challenging
to distinguish their relative performance. Minor differences in WR may stem from biases towards
generating detailed or aesthetically pleasing responses, aligning with observations by Dubois et al.
(2024) and Chen et al. (2024a). In contrast, the length-controlled (LC) and style-controlled (SC)
win rates offer more reliable and interpretable metrics, as they reduce the influence of verbosity and
stylistic biases, thereby better reflecting true performance.

The importance of the design on the implicit reference model. As the core contribution
of this work is to propose a novel reference model π̂ref(y|x) = U(y|x) (πθ(y|x)/πref(y|x))α,
we also evaluate other variants of the reference model. Specifically, we compare α-DPO with
three variants: (1) π̂ref(y|x) = U(y|x) (πθ(y|x))α, (2) π̂ref(y|x) = U(y|x) (πref(y|x))α, and (3)

1https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm
2https://huggingface.co/datasets/princeton-nlp/mistral-instruct-ultrafeedback
3https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm
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(a) KL divergence of yw over steps.

0 100 200 300 400
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

KL
 d

iv
er

ge
nc

e 
on

 y
l

SimPO
Ours( =0.3)

(b) KL divergence of yl over steps.
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Figure 3: Analysis of KL divergence and LC trade-off. (a) KL divergence for chosen samples (yw),
(b) KL divergence for rejected samples (yl), and (c) relationship between LC and KL divergence.
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Figure 4: Impact of α on (a) LC and SC win rate, (b) reward difference distribution, and (c) log-
likelihood distribution of chosen responses in α-DPO.
π̂ref(y|x) = U(y|x) (1/πref(y|x))α. As shown in Table 2, most of the variants perform better than
SimPO (π̂ref(y|x) = U(y|x)), which demonstrates the importance of adaptive margin between pairs.
Besides, our proposed reference model consistently outperforms other variants, indicating the effec-
tiveness of the proposed design.

All key designs in α-DPO are crucial. To further analyze the impact of different components in α-
DPO, we conduct ablation studies by removing key components from α-DPO. As shown in Table 2,
removing normalization, stop gradient, or setting γ = 0 all lead to significant performance drops,
highlighting the importance of these components in α-DPO.

5.3 KL DIVERGENCE CONTROL IN α-DPO

Outstanding Performance and Lower KL. As noted in Rafailov et al. (2023); Zeng et al. (2024), it
is crucial to consider both performance and KL divergence when comparing algorithms. A slightly
higher win rate accompanied by a significantly higher KL divergence is often not desirable. In line
with the design principles of TDPO, we implemented SimPO and α-DPO. Figure 3a 3b presents the
KL divergence curves. The results indicate that as α increases, the KL divergence of α-DPO remains
stable or even decreases slightly when compared to SimPO. This demonstrates that α-DPO not only
achieves superior performance but also maintains a lower KL divergence, indicating a better balance
between alignment and control of KL divergence during the training process.

Mitigating Over-Optimization. Over-optimization, as described by Gao et al. (2023) and Rafailov
et al. (2024), refers to a phenomenon where model performance exhibits a hump-shaped pattern
across different targets: beyond an optimal point, further increasing the KL budget results in dimin-
ishing returns. To investigate this, we evaluate SimPO and α-DPO at four intermediate checkpoints,
corresponding to different KL budgets. As illustrated in Figure 3c, it is intriguing that while the per-
formance of our approach does decrease with increasing KL budget, the decline is relatively modest.
This indicates that our method effectively mitigates the issue of over-optimization.

5.4 THE IMPACT OF α IN α-DPO

Effect of α on Performance. We investigated how the parameter α in α-DPO impacts the win rate
on AlpacaEval 2 and Arena-Hard. The results, as shown in Figure 4 (a), indicate that the style-
control win rate on Arena-Hard initially increases and then decreases with increasing α. In contrast,
the length-control win rate on AlpacaEval 2 exhibits a consistently increasing trend. This suggests
that the optimal value of α varies depending on the evaluation benchmarks. Further experiments
refer to Appendix C.3.

Impact of α on the reward distribution. We visualize the distribution of the learned reward margin
r(x, yw) − r(x, yl) and the log likelihood of the chosen response log πθ(yw|x) under different α
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values in Figure 4 (b,c). Decreasing α results in a flatter reward margin, while the log likelihood
distribution remains relatively unchanged. Conversely, in SimPO (cf. Figure 6), increasing γ yields
a flatter reward margin distribution but at the cost of also flattening the log likelihood distribution,
which undesirably lowers the log likelihood of positive samples. This indicates that α-DPO can
better balance the relationship between the reward margin and log likelihood.

6 RELATED WORK

Reinforcement learning from human feedback. RLHF is a technique that aligns large language
models with human preferences and values (Christiano et al., 2017; Ziegler et al., 2019; Ouyang
et al., 2022; Azar et al., 2023). Traditional RLHF can be divided into three stages: supervised fine-
tuning (Zhou et al., 2023; Taori et al., 2023; Geng et al., 2023; Conover et al., 2023; Köpf et al.,
2023; Ding et al., 2023), reward modeling (Gao et al., 2023; Luo et al., 2023; Chen et al., 2024b;
Lightman et al., 2023; Havrilla et al., 2024; Lambert et al., 2024), and policy optimization (Schul-
man et al., 2017; Anthony et al., 2017). In the third stage, Proximal Policy Optimization (PPO)
is a widely used algorithm. Additionally, Xiong et al. (2023) proposed efficient algorithms for the
reverse-KL regularized contextual bandit framework in RLHF. Ye et al. (2024) introduced provably
efficient algorithms for KL-regularized Nash-Learning from Human Feedback (NLHF). Further-
more, Ji et al. (2024b) developed an active-query-based PPO algorithm with specific regret bounds
and query complexity.

Offline direct preference optimization. Several alternative preference optimization objectives have
been proposed in addition to DPO (Rafailov et al., 2023). IPO (Azar et al., 2023) addresses the over-
fitting issues associated with DPO. ORPO (Hong et al., 2024) and SimPO (Meng et al., 2024) aim
to eliminate the dependence on a reference model. R-DPO (Park et al., 2024) focuses on mitigating
exploitation based on sequence length. KTO (Ethayarajh et al., 2024) deals with preference opti-
mization when data are not pairwise. CPO (Xu et al., 2024) and β-DPO(Wu et al., 2024) emphasize
the quality of preference data. Another line of research explores comparisons among more than two
instances (Dong et al., 2023; Liu et al., 2024a; Song et al., 2024; Yuan et al., 2023).

Online direct preference optimization. Offline direct preference optimization methods are sim-
ple but rely on preference data collected offline. RLHF methods interact online with the language
model being aligned but require policy gradients. In contrast, online direct preference optimiza-
tion methods combine the advantages of both approaches. Yuan et al. (2024) proposed a “self-
rewarding” approach in which the policy being aligned provides online feedback to itself. Alterna-
tively, OAIF (Guo et al., 2024) is a novel online preference optimization method that can leverage
feedback from any LLM, including those stronger than the LLM being aligned. Swamy et al. (2024)
also concurrently investigate the importance of online preference but still rely on reward models
(RMs). SELMA (Zhang et al., 2024) improves exploration efficiency by selectively favoring re-
sponses with high potential rewards rather than indiscriminately sampling unseen responses.

7 DISCUSSION

Conclusion. We proposed α-DPO, an adaptive preference optimization method that improves LLM
alignment by introducing a dynamic reward margin based on instance-specific differences. α-DPO
addresses limitations in previous methods like DPO and SimPO by balancing alignment and di-
versity through KL divergence control. Our theoretical guarantees and empirical results show that
α-DPO consistently outperforms baselines on benchmarks like AlpacaEval 2 and Arena-Hard, with
significant improvements in win rates, establishing it as a robust solution for LLM fine-tuning.

Limitations and Future Work. While α-DPO enhances performance, it introduces an additional
hyperparameter, α, requiring manual tuning. Future work could focus on developing an adaptive ap-
proach to automatically adjust this parameter. Additionally, although we show α-DPO’s theoretical
equivalence to online methods, it remains an offline approach. Extending it to online learning would
allow real-time adaptation, broadening its application in interactive environments. Lastly, we ob-
served that different benchmarks, such as AlpacaEval 2 and Arena-Hard, require distinct parameter
settings for optimal performance. Investigating a more generalized approach that adapts effectively
across multiple benchmarks would further improve the model’s versatility.
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A APPENDIX

A.1 PROOF OF THEOREM 3.1

Theorem 3.1. Let U(y|x) denote a uniform distribution over the vocabulary for a given input x,
replacing πref(y|x) in the DPO loss function. Then, the DPO loss function simplifies to:

L(πθ;U) = −E(x,yw,yl)∼D [log σ (β (log πθ(yw|x)− log πθ(yl|x))− γ)] , (6)

where γ = β (logU(yw|x)− logU(yl|x)) is a constant. Under a length-normalized reward formu-
lation, this loss function becomes:

LLN(πθ;U) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
. (7)

Therefore, SimPO can be interpreted as a special case of DPO where the reference model is a
uniform distribution.

Proof. Let U(y|x) denote a uniform distribution over the vocabulary V for a given input x. Specifi-
cally, for any sequence y, the uniform distribution is defined as:

U(y|x) =
|y|∏
t=1

1

|V|
=

(
1

|V|

)|y|

.

Consider the DPO loss function:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yl|x)

)]
.

By substituting πref = U , the term involving the reference policy simplifies to:

β log
πref(yw|x)
πref(yl|x)

= β (logU(yw|x)− logU(yl|x)) = γ,

where γ is a constant. This constancy arises because yw and yl are chosen from distinct subsets of
the vocabulary, ensuring that logU(yw|x) − logU(yl|x) does not depend on the lengths of the se-
quences but is instead determined by the fixed probabilities of the respective subsets. Consequently,
γ remains fixed across all samples in D.

Substituting back into the DPO loss function, we obtain:

L(πθ;U) = −E(x,yw,yl)∼D [log σ (β (log πθ(yw|x)− log πθ(yl|x))− γ)] .

Under the length-normalized reward formulation, the rewards are adjusted by the lengths of the
sequences yw and yl. This normalization yields:

LLN(πθ;U) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
.

Here, γ remains a fixed constant since it is derived from the uniform distribution over distinct vo-
cabulary subsets corresponding to yw and yl.

Comparing this with the SimPO loss function:

LSimPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
,

it is evident that:
LLN(πθ;U) = LSimPO(πθ).

Thus, when the reference policy πref is a uniform distribution over distinct vocabulary subsets for yw
and yl, the DPO loss function simplifies to the SimPO loss function with γ being a fixed constant.
This establishes that SimPO is a special case of DPO under the specified conditions.
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A.2 PROOF OF LEMMA 4.2

Lemma 4.2 (Tight bound between α-DPO and online SimPO loss). For any policy model πθ and
reference model πref, there exists a sufficiently small α > 0 such that the following inequalities hold:

|Lonline
SimPO(πθ, πref)− Lα-DPO(πθ, πref)| ≤ ε(α),

where
ε(α) = Eπref [α|B| |log σ(A)− σ(A) + 1|] ,

A = β
|yw| log πθ(yw|x)− β

|yl| log πθ(yl|x)− γ, and B = log πθ(yw|x)
πref(yw|x) − log πθ(yl|x)

πref(yl|x) .

Proof. To establish the tight bound between L2 = Lα-DPO(πθ, πref) and L1 = Lonline
SimPO(πθ, πref), we

proceed as follows.

The online SimPO loss L1 is defined as:

L1 = −Eπref

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)
· w(yw, yl|x)

]
,

where the importance weight w(yw, yl|x) is:

w(yw, yl|x) =
πθ,old(yw|x)
πref(yw|x)

· πref(yl|x)
πθ,old(yl|x)

.

Under the relationship between the old policy πθ,old and the current policy πθ:

πθ,old(y|x) = C(y|x)
(

πθ(y|x)
πref(y|x)

)α

πref(y|x),

the importance weight w(yw, yl|x) simplifies to:

w(yw, yl|x) =
C(yw|x)
C(yl|x)

(
πθ(yw|x)
πref(yw|x)

· πref(yl|x)
πθ(yl|x)

)α

.

Assuming α is sufficiently small and C(y|x) varies smoothly, we approximate:

C(yw|x)
C(yl|x)

≈ 1,

leading to:

w(yw, yl|x) ≈
(

πθ(yw|x)
πref(yw|x)

· πref(yl|x)
πθ(yl|x)

)α

= eαB ,

where B = log πθ(yw|x)
πref(yw|x) − log πθ(yl|x)

πref(yl|x) .

Define A = β
|yw| log πθ(yw|x)− β

|yl| log πθ(yl|x)− γ. Substituting, L1 becomes:

L1 = −Eπref

[
log σ(A) · eαB

]
.

Using a Taylor series expansion, we approximate:

w(yw, yl|x) = eαB ≈ 1 + αB +
α2B2

2
+O(α3).

Similarly, we expand log σ(A− αB) around A:

log σ(A− αB) ≈ log σ(A)− αB(1− σ(A)) +
α2B2

2
(σ(A)− σ(A)2) +O(α3),

where:
d

dA
log σ(A) = 1− σ(A),

d2

dA2
log σ(A) = σ(A)− σ(A)2.
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For L1, substituting the expansion of w(yw, yl|x):
L1 = −Eπref [log σ(A) · w(yw, yl|x)]

≈ −Eπref

[
log σ(A)(1 + αB +

α2B2

2
)

]
= −Eπref [log σ(A)]− αEπref [B log σ(A)]− α2

2
Eπref [B

2 log σ(A)] +O(α3).

For L2, substituting the expansion of log σ(A− αB):

L2 ≈ −Eπref

[
log σ(A)− αB(1− σ(A)) +

α2B2

2
(σ(A)− σ(A)2)

]
= −Eπref [log σ(A)] + αEπref [B(1− σ(A))]− α2

2
Eπref [B

2(σ(A)− σ(A)2)] +O(α3).

The difference L1 − L2 is:

L1 − L2 = −αEπref [B(log σ(A) + 1− σ(A))]

− α2

2
Eπref

[
B2(log σ(A) + σ(A)− σ(A)2)

]
+O(α3).

The magnitude of the difference is bounded by:

|L1−L2| ≤ αEπref [|B| · | log σ(A)− σ(A) + 1|]+α2

2
Eπref

[
B2 · | log σ(A) + σ(A)− σ(A)2|

]
+O(α3).

By defining:
ε(α) = Eπref [α|B| · | log σ(A)− σ(A) + 1|] ,

and neglecting higher-order terms for small α, we obtain:

|L1 − L2| ≤ ε(α).

A.3 PROOF OF LEMMA 4.3

Lemma 4.3 (Equivalence of Margin Terms). Let δ(x, yw, yl) denote the difference in sequential
KL divergences between the reference policy πref and the policy πθ along the sequences yw and yl,
respectively, defined as:

δ(x, yw, yl) = βDSeqKL[x, yl;πref||πθ]− βDSeqKL[x, yw;πref||πθ],

If we approximate the sequential KL divergences using the log-probability ratios of the sequences,
then δ(x, yw, yl) simplifies to:

δ(x, yw, yl) ≈ β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
.

Consequently, δ(x, yw, yl) is approximately equivalent to the margin term M(x, yw, yl) in the α-
DPO objective.

Proof of Lemma 4.3. We begin by expanding the definition of δ(x, yw, yl):

δ(x, yw, yl) = βDSeqKL[x, yl;πref∥πθ]− βDSeqKL[x, yw;πref∥πθ]

Expanding each sequential KL divergence, we have:

DSeqKL[x, y;πref∥πθ] =

|y|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t])

πθ(z | [x, y<t])

]
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Substituting this into the expression for δ, we obtain:

δ(x, yw, yl) = β

|yl|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t
l ])

πθ(z | [x, y<t
l ])

]
− β

|yw|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t
w ])

πθ(z | [x, y<t
w ])

]
Under the assumption that the reference policy πref has large errors, we approximate the expectation
Ez∼πref with a uniform distribution. This approximation simplifies each expectation term as follows:

|y|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t])

πθ(z | [x, y<t])

]
≈ log

πθ(y | x)
πref(y | x)

Applying this approximation to both sequential KL divergence terms, we obtain:

δ(x, yw, yl) ≈ β

(
log

πθ(yl | x)
πref(yl | x)

− log
πθ(yw | x)
πref(yw | x)

)
This expression can be rewritten as:

δ(x, yw, yl) ≈ β

(
log

πθ(yw | x)
πref(yw | x)

− log
πθ(yl | x)
πref(yl | x)

)
= M(x, yw, yl)

where M(x, yw, yl) is the margin term defined in the α-DPO objective. Thus, we have shown that:

δ(x, yw, yl) ≈ M(x, yw, yl)

This completes the proof.

B THE MOTIVATION FOR THE PROPOSED π̂REF(y|x)

The motivation for the proposed reference policy π̂ref(y|x) can be clarified as follows:

• Utility Theory Perspective: The proposed π̂ref(y|x) is designed with the uniform distribution

U(y|x) as a baseline. The term
(

πθ(y|x)
πref(y|x)

)α

dynamically adjusts the reward margin by balancing
contributions from the policy and reference models. This mechanism can be interpreted through
the lens of utility theory as relative attractiveness, enabling adaptive instance-specific reward mod-
eling.

• Gradient Perspective By introducing π̂ref(y|x), the framework mitigates the label flipping issues
found in DPO or SimPO. In the SimPO framework, the gradient is expressed as:

∇θLSimPO(πθ) = −βE(x,yw,yl)∼D

[
sθ

(
1

|yw|
∇θ log πθ(yw|x)−

1

|yl|
∇θ log πθ(yl|x)

)]
,

where sθ = σ
(

β
|yl| log πθ(yl|x)− β

|yw| log πθ(yw|x) + γ
)

.

This formulation may amplify weights when the reward estimate is incorrect. By contrast, under
α-DPO:

sθ = σ

(
β

|yl|
log πθ(yl|x)−

β

|yw|
log πθ(yw|x) + γ + αM(x, yw, yl)

)
,

the additional αM(x, yw, yl) component increases weight when the reward estimate is accurate,
ensuring a more robust reward signal.

• Motivational Core The central goal of the proposed α-DPO is to address the unreliability of the
reference policy, as outlined in Section 3.1. By integrating the policy model into the reference
model design, the quality of the reference model is enhanced, improving fine-tuning performance.
Similar concepts have been explored in recent works (Gorbatovski et al., 2024; Liu et al., 2024b).
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C EXPERIMENTS

C.1 IMPLEMENTATION DETAILS

We observed that the performance of various methods is highly sensitive to model parameters and
learning rates. To ensure a fair comparison, we conducted a hyperparameter search as specified in
the respective papers. The specific search ranges are detailed in Table 3. Furthermore, due to recent
updates to both Llama3-8b and Instruct-7b models, we had to re-implement SimPO as the original
results were no longer directly applicable.

Training hyperparameters. For other parameters, we used a consistent batch size of 128 across
all methods. The learning rate was searched within the range of [3e-7, 5e-7, 8e-7, 1e-6], and all
models were trained for a single epoch with a cosine learning rate schedule and a 10% warmup
phase. Adam was used as the optimizer (Kingma & Ba, 2014). Additionally, the maximum sequence
length was set to 2048.

Table 3: Various preference optimization objectives and hyperparameter search range.

Method Objective Hyperparameter

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1]

IPO (Azar et al., 2023)
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

− 1
2τ

)2

τ ∈ [0.01, 0.1, 0.5, 1.0]

CPO (Xu et al., 2024) − log σ (β log πθ(yw|x)− β log πθ(yl|x))− λ log πθ(yw|x) α = 1.0, β ∈ [0.01, 0.05, 0.1]

KTO (Ethayarajh et al., 2024) −λwσ
(
β log πθ(yw|x)

πref(yw|x) − zref

)
+ λlσ

(
zref − β log πθ(yl|x)

πref(yl|x)

)
, λl = λw = 1.0

where zref = E(x,y)∼D [βKL (πθ(y|x)||πref(y|x))] β ∈ [0.01, 0.05, 0.1]

ORPO (Hong et al., 2024) − log pθ(yw|x)− λ log σ
(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
,

λ ∈ [0.1, 0.5, 1.0, 2.0]
where pθ(y|x) = exp

(
1
|y| log πθ(y|x)

)
R-DPO (Park et al., 2024) − log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

− (α|yw| − α|yl|)
)

α ∈ [0.05, 0.1, 0.5, 1.0]
β ∈ [0.01, 0.05, 0.1]

SimPO (Meng et al., 2024) − log σ
(

β
|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x)− γ

)
β ∈ [2.0, 4.0, 6.0, 8.0]
γ ∈ [0.3, 0.5, 1.0, 1.2, 1.4, 1.6]

α-DPO − log σ (u(x, yw, yl)− sg [γ + αM∗(x, yw, yl)]) β ∈ [2.5, 10.0], γ ∈ [0.1, 0.3, 0.5]
where u(x, yw, yl) =

β
|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x) α ∈ [1e− 2, 5e− 2, 0.1, 0.2]

Table 4: The hyperparameter values in α-DPO used for each training setting.

Setting β γ α Learning rate

Mistral-Instruct 2.5 0.15 5e-2 6e-7
Llama3-Instruct 2.5 0.6 0.2 1e-6
Llama3-Instruct-v0.2 10.0 0.4 0.2 1e-6
Gemma2-Instruct 10.0 0.4 5e-2 8e-7

Hyperparameter in α-DPO. Table 4 outlines the hyperparameters used for α-DPO under various
settings. It’s important to note that while our approach involves three key parameters, we have found
through experience that β can be reliably set to 10.0 by default. Among these parameters, γ typically
requires more careful tuning. As for α, we have observed consistent performance improvements
when set to 5e-2 by default. If you are already familiar with the parameter settings for SimPO, you
can focus your search primarily on α or simply adopt the default setting of α = 5e− 2.

Decoding hyperparameters. The decoding hyperparameters used in this study are the same as
those employed by SimPO4. We extend our sincere gratitude to the SimPO team for sharing their
invaluable insights.

Computation environment. All training experiments presented in this paper were conducted us-
ing 8×A100 GPUs, as per the procedures detailed in the alignment-handbook repository.5

4https://github.com/princeton-nlp/SimPO/tree/main/eval
5https://github.com/huggingface/alignment-handbook
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Figure 5: α-DPO LC on AlpacaEval 2 with different α values.

C.2 α-DPO WITHOUT LENGTH-NORMALIZED

In this paper, we consider length-normalized training as a stability technique and not as a primary
contribution of this work. Existing research (Meng et al., 2024) has demonstrated that length nor-
malization can indeed enhance model performance, particularly with respect to the length control
win rate. However, to validate the general applicability of α-DPO—specifically, its stability and per-
formance without length normalization—we conducted experiments across several models: meta-
llama/Meta-Llama-3-8B-Instruct, mistralai/Mistral-7B-Instruct-v0.2, and google/gemma-2-9b-it.

We evaluated DPO, SimPO without length normalization, and α-DPO without length normalization.
The experimental results, as shown in Table 5, demonstrate that α-DPO consistently achieves per-
formance improvements even without the use of length normalization. This indicates the robustness
and general effectiveness of α-DPO.

Table 5: Performance comparison without length-normalization on AlpacaEval2. “LC” denotes the
length-controlled win rate, and “WR” represents the raw win rate.

Method Llama3-Instruct (8B) Mistral-Instruct (7B) Llama3-Instruct v0.2 (8B) Gemma2-Instruct (9B)
LC (%) WR (%) LC (%) WR (%) LC (%) WR (%) LC (%) WR (%)

DPO 40.2 38.1 20.3 18.0 51.1 53.3 70.2 66.9
SimPO w/o LN 42.4 40.4 30.5 38.2 49.2 52.6 71.2 69.9
α-DPO w/o LN 44.4 42.6 32.0 38.4 51.1 54.0 72.7 70.5

C.3 α-DPO WITH DIFFERENCT α

To analyze the impact of α on the model, we adjust its value for four different models. The results
are illustrated in Figure 5. When α is set to 0, the model degenerates to SimPO. As α increases,
performance improves across all models, although the optimal value of α varies among them. This
highlights the significance of α.

It is noteworthy that within the parameter tuning range [1e-2, 5e-2, 0.1, 0.2], the optimal α values
are consistently around 0.1 or even closer to 5e-2. This observation aligns with our Lemma 4.2,
which indicates that smaller α values result in a lower estimation error in the online SimPO.

C.4 COMPARISON WITH TDPO

To investigate the relationship between TDPO and α-DPO, we conducted the experiments, with the
results outlined below.

In its original form, TDPO did not perform well on LLAMA2-8B. By applying Lemma 4.3, we mod-
ified the expression M(x, yw, yl) in α-DPO to use TDPO’s δ(x, yw, yl), converting our sentence-
level estimations to a token-level calculation. This adjustment resulted in a noticeable perfor-
mance improvement, which we attribute to the length-normalization, γ and z-score normalization
of δ(x, yw, yl). Nevertheless, the modified TDPO still underperformed compared to α-DPO. This
indicates that, when the πref is suboptimal, token-level calculations are prone to significant errors.
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Table 6: Performance comparison between TDPO and α-DPO.

Method Llama3-Instruct (8B)
LC (%) WR (%)

TDPO 52.8 45.9
α-DPO w/ δ(x, yw, yl) 56.9 50.4
α-DPO w/ M(x, yw, yl) 58.7 51.1
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Figure 6: (a) SimPO: Reward difference distribution under different γ values. (b) α-DPO: Reward
difference distribution under different α values. (c) SimPO: Log likelihood distribution on chosen
responses under different γ values. (d) α-DPO: Log likelihood distribution on chosen responses
under different α values.
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