
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Worst-Case-Optimal Joins on Graphs with Topological Relations
Anonymous Author(s)

ABSTRACT
Spatial data play an important role in many applications built over

knowledge graphs, and are frequently referenced in queries posed

to public query services, such as that of Wikidata. Querying for

spatial data presents a significant challenge, as topological relations

such as adjacent or contains imply inferred information, such as

through the transitivity of the containment relation. However, de-

spite all the recent advances in querying knowledge graphs, we

still lack techniques specifically tailored for topological informa-

tion. Applications looking to incorporate topological relations must

either materialize the inferred relations, incurring high space and

maintenance overheads, or query them with less efficient recursive

algorithms, incurring high runtime overheads.

In this paper we address the problem of leveraging topological

information in knowledge graphs by designing efficient algorithms

to process these queries. Our solution involves building a specific in-

dex that stores the topological information in a convenient compact

form, and includes specialized algorithms that infer every possible

relation from the basic topological facts in the graph. We show that,

while using essentially the same space required to solve standard

graph pattern queries, we can incorporate topological predicates,

accounting for all the inferred information, all within worst-case-

optimal time. We implement our scheme and show experimentally

that it outperforms baseline solutions by a notable margin.

ACM Reference Format:
Anonymous Author(s). 2025. Worst-Case-Optimal Joins on Graphs with

Topological Relations. In Proceedings of The Web Conference (TheWebConf
’25).ACM,NewYork, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Knowledge graphs are composed of diverse types of binary relations

as distinguished by edge labels [27]. An individual relation may

have specific semantic conditions, for example, transitivity, symme-

try, asymmetry, antisymmetry, reflexivity, irreflexivity, etc. Though

a wide variety of graph database engines [3, 38] have been proposed

that can manage and query knowledge graphs, they typically do

not take into account the diverse semantics of different relations.

For example, a recent breakthrough for evaluating database queries

more efficiently has been the development of worst-case-optimal
(wco) join algorithms [43], which can help improve the performance

of graph databases [1, 5, 10, 28, 37, 44, 53, 56]. However, such tech-

niques are agnostic to the semantics of relations.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

In the geospatial domain, the semantics of topological relations

play a crucial role. For example, if region𝐴 borders region 𝐵, region

𝐴′ contains 𝐴, region 𝐵′ contains 𝐵, and regions 𝐴′ and 𝐵′ do not

overlap, this gives the implicit relation region 𝐴′ borders region 𝐵′.
We focus on querying such topological relations, which incorporate

spatial data by means of containment, disjointness, and adjacency

relations, and which form a key part of a variety of open knowledge

graphs on the Web, including DBpedia [33], LinkedGeoData [51],

Wikidata [55], among various others. Other kinds of hierarchical

information – such as the taxonomies present in DBpedia [33],

Wikidata [55], etc. – exhibit topological semantics as well.

Though topological databases have been used in geographic

information systems for decades [50], querying topology in knowl-

edge graphs is not well-supported: topological databases based on

the relational paradigm are not well-suited for querying knowledge

graphs, while, to the best of our knowledge, no graph database en-

gine supports topological relations directly. Though the semantics

of such relations can be captured via regular path queries (RPQs)
and relational algebra, the translation is cumbersome, and the per-

formance of such rewritings in existing engines leaves (as we show

later) much room for improvement. This highlights the need for effi-

cient support for querying topological relations in graph databases.

In this paper, we study how to evaluate basic graph patterns

(BGPs), as form the core of modern graph query languages [2],

with topological relations. To illustrate, consider the topological

relations contains(𝑥,𝑦), disjoint(𝑥,𝑦), and touches(𝑥,𝑦) between
regions. One may consider fully materializing these relations prior

to querying. There are two problems with this approach, however.

Firstly, there is much inferred information that must either be

explicitly encoded in the table, or obtained at query time with

other mechanisms. But materializing fully inferred topological rela-

tions requires a prohibitive amount of space (an obvious case is the

contains relation, which would require storing all transitive con-

tainment relations). On the other hand, using existing mechanisms

such as RPQs results in complex queries involving combinations of

RPQs and linear algebra that are hard to evaluate (see Section 8),

and for which wco guarantees are not believed to exist [12, 15].

Secondly, querying negated version of the relations – like asking

for non-contained or non-adjacent regions – requires either encod-

ing (typically huge) tables for not-contains(𝑥,𝑦), not-disjoint(𝑥,𝑦),
and not-touches(𝑥,𝑦), or handling negations of complex queries in

the language, and paying the corresponding price in performance.

We show how to efficiently handle such topological relations

in both space and time. Concretely, take a graph database with 𝑛

nodes, 𝑁 labeled edges (or triples) and𝑀 base adjacency relations

between nodes (from which others can be derived). We can then in-

dex the graph using𝑂 (𝑛+𝑁 +𝑀) space so that BGPs extended with
containment and adjacency constraints, plus their negations, can be

answered in wco time, exactly as if we had stored the explicit tables

contains(𝑥,𝑦), disjoint(𝑥,𝑦), touches(𝑥,𝑦), not-touches(𝑥,𝑦), etc.
including all information inferred from the base relations.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Africa

Central Africa

contains

Northern Africa

contains

disjoint

Chad

contains

Libya

containstouches

Arabiclanguage language

Figure 1: Graph with two states in Northern and Central
Africa, their topological relations and their languages

To achieve this result we extend the Leapfrog Triejoin (LTJ)

algorithm [54], which solves BGPs in wco time [28], to handle topo-

logical semantics. Our experimental results show that our solution

outperforms a baseline that treats topological semantics at the end

by an average factor of 6.5. It also outperforms, by an order of mag-

nitude, a solution based on translating the topological semantics

into RPQs evaluated over off-the-shelf SPARQL engines.

Motivating Example. Figure 1 provides a snippet of a knowl-

edge graph describing regions, their topological relations (touches,
disjoint and contains) and their official languages. Over this knowl-

edge graph, we could consider posing the following query (BGP):

𝑄1 = {(Africa, contains, 𝑥), (Africa, contains, 𝑦),
(𝑥, touches, 𝑦), (𝑥, language, 𝑧), (𝑦, language, 𝑧)}

This query asks for pairs of regions in Africa that touch and share

a language. We may expect this query to return:

𝑥 𝑦 𝑧

Chad Libya Arabic
Libya Chad Arabic

However, if we run the query over the knowledge graph in amanner

agnostic to the semantics of contains, we will receive empty results

since the fact that Africa contains Chad and Libya (only) implicitly

holds via the transitivity of this topological relation.

As another example, consider the simpler BGP:

𝑄2 = {(Africa, contains, 𝑥), (Africa, contains, 𝑦), (𝑥, touches, 𝑦)}

We may after some consideration expect the results to be:

𝑥 𝑦

Chad Libya
Libya Chad
Central Africa Northern Africa
Northern Africa Central Africa
Central Africa Libya
Libya Central Africa
Northern Africa Chad
Chad Northern Africa

Here, the fact that Central Africa andNorthern Africa touch can be

inferred from the observations that they are disjoint and contain two

regions that touch. Likewise we can infer from the semantics of the

indicated topological relations, and this graph, that Central Africa
touches Libya, and Northern Africa touches Chad, with further

results given by the symmetry of the touch relation.

The goal of this paper is to explore techniques for efficiently (in

both space and time) evaluating BGPs with topological relations.

Paper overview. Section 2 recaps relatedworks on spatial databases
and topological relations in graphs. Section 3 defines the core con-

cepts used throughout the paper. Section 4 discusses our extension

of a seminal worst-case-optimal join algorithm to support topo-

logical relations. Section 5 outlines support for containment and

disjointness relations, while Section 6 outlines support for adja-

cency relations. Section 7 proves the worst-case optimality of our

scheme and then states our theoretical result. Section 8 discusses

the implementation of our scheme and describes our experiments

and results. Finally, Section 9 concludes.

2 RELATEDWORKS
We now discuss works relating to spatial databases and topology

in graph databases before highlighting novelty.

Spatial databases. Topological relations have long been studied

in the context of geographical information systems (GIS). Egenhofer

& Franzosa [18] present a seminal, set-based framework for defining

sixteen topological spatial relations, nine of which are applicable

for polygonal areas on a plane. The Region Connection Calculus

(RCC) [48, 49], which was proposed around the same time, features

eight binary topological relations for spatial regions.

Later works looked to integrate topological relations into spa-

tial query languages and databases. Papadimitriou et al. [46] pro-

pose a query language based on eight of Egenhofer & Franzosa’s

topological properties: overlaps, disjoint, equal, meets (what we
call touches), contains, covers (contains and shares a boundary),

contained by, and covered by. They prove that the closure of these

relations, in combination with typical logical operators, gives rise

to a query language that is complete for topological queries.

Such relations are implemented in many of the spatial database

systems used for GIS applications [50]. Modern predecessors of such

systems include PostGIS [45], and spatial extensions of relational

databases such as Oracle [29], Microsoft SQL Server [20], etc.

Topology in graph databases. Avariety of open knowledge graphs

on theWeb contain topological relations, often from the geographic

domain. Examples of knowledge graphs dedicated to geographic in-

formation include GeoNames
1
, LinkedGeoData [51], WorldKG [17],

etc. Other cross-domain open knowledge graphs, such as DBpe-

dia [33], Wikidata [55], YAGO [26], etc., further contain topological

relations capturing geographical and taxonomic information.

Query languages have emerged for querying graphs with spatial

information, including GeoSPARQL [9], which, alongside support

for geometry and distance, features three families of topological

relations, including that of Egenhofer et al., and RCC. Implementa-

tions of GeoSPARQL include Parliament [9], with extensions also

available in well-known engines, such as Jena
2
. A similar language,

called stSPARQL [31], supports spatial and time features, including

topological relations, as implemented by Strabon [32]. Other popu-

lar commercial graph database engines implement custom spatial

features, including Neo4j
3
, TigerGraph

4
, etc.

Key applications involve a combination of networks/graphs in a

spatial context, including topological analyses of power grids [30,

1
See https://www.geonames.org/

2
See https://jena.apache.org/documentation/geosparql/

3
See https://neo4j-contrib.github.io/spatial/

4
See https://www.tigergraph.com/solutions/geospatial-analysis/

2

https://www.geonames.org/
https://jena.apache.org/documentation/geosparql/
https://neo4j-contrib.github.io/spatial/
https://www.tigergraph.com/solutions/geospatial-analysis/


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Worst-Case-Optimal Joins on Graphs with Topological Relations TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

47], road networks [21], genomes [16], as well as querying the

geographic knowledge graphs previously mentioned [25].

Novelty. We address the efficient evaluation of basic graph pat-

terns over graphs that feature topological (and non-topological)

relations. To the best of our knowledge, this problem has not been

well-studied, where the works described in this section would ben-

efit from such techniques. We provide the first worst-case-optimal

algorithm for evaluating BGPs with key topological relations, while

also carefully addressing efficiency in terms of space and time.

3 CORE CONCEPTS
We introduce key concepts and notation that will be used through-

out relating to graph databases, worst-case optimality, Leapfrog

Triejoin, compact data structures, and topological relations.

3.1 Graph Databases
A graph database is defined herein as a labeled directed graph𝐺 , i.e.,

a set of edges of the form 𝑠
𝑝
−→ 𝑜 , from node 𝑠 to node 𝑜 with label 𝑝 .

Such edges are denoted by triples (𝑠, 𝑝, 𝑜) ∈ U3
, whereU is a totally

ordered universe of constants. We call𝑁 = |𝐺 | the number of triples

in𝐺 , and dom(𝐺) the domain of𝐺 , that is, the subset ofU used as

constants in 𝐺 . For simplicity we assume dom(𝐺) = {1, . . . , 𝑛}.
We query graph databases by means of basic graph patterns

(BGPs). LetV be a universe of variables. A BGP 𝑄 is a set of triple
patterns, each of which is a tuple of the form (𝑠, 𝑝, 𝑜) ∈ (U ∪V)3,
that is, it combines constants from U and variables from V . Let

vars(𝑄) denote the set of variables used in𝑄 . A binding is a mapping

from variables in vars(𝑄) to constants in U. Given 𝑄 and 𝐺 , we

call a binding a solution if and only if binding the variables of 𝑄

accordingly results in a subgraph of 𝐺 . The problem is to output

the set of all the solutions, denoted 𝑄 (𝐺).

3.2 Topological Relations
Our topological model consists of a set of objects, and the following

binary relations between some pairs of objects:

• 𝑥 ⊑𝑦: 𝑥 is contained in 𝑦.

• 𝑥 ⊓̸ 𝑦: 𝑥 and 𝑦 are disjoint.

• 𝑥 |𝑦: 𝑥 and 𝑦 are adjacent, or “touch”.

We further consider the negated relations 𝑥 @ 𝑦, 𝑥 ⊓ 𝑦, 𝑥 |𝑦: not
contained in, not disjoint and not adjacent, respectively.

The relation ⊑ forms a hierarchy. A hierarchy is an order (i.e.,

it is reflexive, antisymmetric, and transitive) such that if 𝑥 ⊑𝑦 and

𝑥 ⊑ 𝑧, then 𝑦 ⊑ 𝑧 or 𝑧 ⊑ 𝑦. In other words, the Hasse diagram of

⊑ is a forest. We do not allow partial overlaps between objects:

two regions are either disjoint or one contains the other. Formally,

𝑥 ⊓ 𝑦 ⇔ 𝑥 ⊑𝑦 ∨ 𝑦⊑𝑥 (so 𝑥 ⊓ 𝑦 is symmetric). The relation | is also
symmetric. Two adjacent nodes are considered to be disjoint (i.e.,

nodes containing each other are not adjacent), per rule a1 next. Rule

a2 implies that, if two nodes are adjacent, then all their ancestors

are also pairwise adjacent unless one contains the other.

a1. If 𝑥 ⊑𝑦 then 𝑥 ̸ | 𝑦; if 𝑥 |𝑦 then 𝑥 ⊓̸ 𝑦.
a2. If 𝑥 |𝑦, 𝑥 ⊑𝑥 ′, and 𝑦⊑𝑦′, then 𝑥 ′ |𝑦′, or 𝑥 ′⊑𝑦′, or 𝑦′⊑𝑥 ′.
Our setup is a specialization of Region Connection Calculus

(RCC) [48, 49], which further allows objects to overlap. Figure 2

𝐴 𝐵 𝐴 𝐵
𝐵

𝐴

𝐵

𝐴

𝐴 DC 𝐵 𝐴 EC 𝐵 𝐴 TPP 𝐵 𝐴 NTPP 𝐵

𝐴 𝐵
𝐴

𝐵

𝐴

𝐵

𝐴

𝐵

𝐴 PO 𝐵 𝐴 EQ 𝐵 𝐴 TPPi 𝐵 𝐴 NTPPi 𝐵

Figure 2: The 8 relations of the Region Connection Calculus

shows the 8 RCC relations, which are jointly exhaustive and pair-

wise disjoint, that is, every pair of objects has exactly one relation.

Our relation 𝑥 ⊑𝑦 corresponds to ‘𝑥 EQ 𝑦’ or ‘𝑥 TPP 𝑦’ or ‘𝑥 NTPP

𝑦’ (or ‘𝑦 TPPi 𝑥 ’ or ‘𝑦 NTPPi 𝑥 ’), without distinction. Relation 𝑥 |𝑦
corresponds to ‘𝑥 EC 𝑦’, and 𝑥 ⊓̸ 𝑦 to ‘𝑥 EC 𝑦’ or ‘𝑥 DC 𝑦’. Relation

‘𝑥 EQ 𝑦’ corresponds to 𝑥 = 𝑦, and our model forbids ‘𝑥 PO 𝑦’.

3.3 Worst-Case Optimality
The AGM bound [7] defines a limit on the number of solutions

for natural join queries in a relational setting. Given a natural join

query 𝑄 and a relational instance 𝐷 , the AGM bound of 𝑄 over 𝐷

is the maximum number of tuples (results) generated by evaluating

𝑄 over any instance 𝐷′ of size not greater than 𝐷 . If we simply

assume that the size of all relations is in𝑂 (𝑁 ), we can speak of the

AGM bound of 𝑄 , denoted herein by 𝑄∗, as a function of 𝑁 . The

AGM bound can also be extended to BGPs on graph databases [28],

where 𝑄∗ is the maximum number of solutions that BGP 𝑄 may

have on any graph database with 𝑂 (𝑁 ) triples.
An algorithm finding all the solutions of a BGP 𝑄 is said to be

worst-case optimal (wco) if it runs in time 𝑂 (𝑄∗) in data complexity
(i.e., assuming that the number of terms |𝑄 | in 𝑄 is a constant).

This is because, in the worst case, the algorithm has to enumerate

𝑄∗ solutions, which requires Ω(𝑄∗) time. A logarithmic overhead

factor (i.e., 𝑂 (𝑄∗ log𝑁 )) is often permitted in wco algorithms to

allow more flexibility in the underlying implementations. This is

the case for Leapfrog Triejoin (LTJ), one of the most popular wco

algorithms for BGPs on graph databases [28, 54].

3.4 Leapfrog Triejoin (LTJ)
The variant of the LTJ algorithm that solves BGPs in graphs pro-

ceeds by “eliminating” one variable at a time [28, 54], i.e. finding

all candidate bindings for the variable that may lead to a solution.

LTJ first defines an initial ordering (𝑥1, . . . , 𝑥𝑣) of vars(𝑄). Start-
ing with 𝑥1, LTJ finds each binding 𝑐 ∈ dom(𝐺) for 𝑥1 such that,

for every triple pattern 𝑡 where 𝑥1 appears, if 𝑥1 is replaced by 𝑐

in 𝑡 , then the evaluation of the modified 𝑡 over 𝐺 is non-empty.

This is equivalent to intersecting the binding of 𝑥1 over all the

individual triple patterns 𝑡 where 𝑥1 appears. LTJ uses a procedure

called ‘seek’ to find each consecutive value 𝑐 in that intersection.

Procedure seek uses in turn the primitive leap(𝑥1, 𝑐) to iteratively

find, in each triple pattern 𝑡 where 𝑥1 appears, the next possible

candidate for the intersection, which corresponds to the smallest

binding for 𝑥1 in 𝑡 that is over some threshold 𝑐 . When procedure

seek finally finds a value 𝑐 that appears in all triple patterns 𝑡 where

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑥1 appears, LTJ binds 𝑥1 to 𝑐 and recursively continues eliminating

the other variables. In each recursion branch where all 𝑣 variables

have been eliminated, LTJ reports a solution with the bindings of

(𝑥1, . . . , 𝑥𝑣). When the recursion returns to 𝑥1, LTJ keeps finding

new bindings for it from 𝑐 + 1 onwards, and returns to the caller

when all the bindings have been explored.

For LTJ to run in 𝑂 (𝑄∗ log𝑁 ) time (i.e., for the algorithm to be

wco), it suffices that primitive leap is supported in 𝑂 (log𝑁 ) time.

The Ring [4, 5] is a recent implementation of LTJ that retains its

time complexity while requiring only 3𝑁 + 𝑜 (𝑁 ) words of space;
note that 3𝑁 words is the space needed to just list the triples of 𝐺

in plain form. We build on this compact representation because we

aim to extend LTJ while keeping the total space usage low.

3.5 Compact Data Structures
We make use of various compact data structures [41] in order to

keep the space usage low. We present them in the depth that is

needed to follow the paper.

Bitvectors. A bitvector is a sequence 𝐵 [1 . . 𝑛] that supports the
following operations:

• Accessing the bit at position 𝑖 , that is, 𝐵 [𝑖].
• Computing the number rank𝑏 (𝐵, 𝑖) of times bit 𝑏 ∈ {0, 1}

occurs in the prefix 𝐵 [1 . . 𝑖].
• Finding the position select𝑏 (𝐵, 𝑗) of the 𝑗th occurrence of

the bit 𝑏 ∈ {0, 1} in 𝐵.

• Finding the position succ𝑏 (𝐵, 𝑖) of the first occurrence of bit
𝑏 ∈ {0, 1} in 𝐵 [𝑖 . . 𝑛]. This is indeed select𝑏 (rank𝑏 (𝐵, 𝑖−1)+
1), but it can be implemented more efficiently in practice.

All of these operations can be computed in 𝑂 (1) time by spending

just 𝑜 (𝑛) additional bits on top of 𝐵 [13, 39].

Permutations. Apermutation𝜋 on [𝑛] can be stored using𝑛 log𝑛+
𝑂 (𝜖 𝑛) bits of space (our logarithms are in base 2) so that one can

compute any 𝜋 (𝑖) in time𝑂 (1), and any 𝜋−1 ( 𝑗) in time𝑂 (1/𝜖) [40].
In this paper we use the setting 𝜖 = 1/log𝑛, to use 𝑛 log𝑛 +𝑂 (𝑛)
bits and accessing the inverse permutation in time 𝑂 (log𝑛).

Ordinal trees. An ordinal tree of 𝑛 nodes can be represented

using a sequence of 2𝑛 parentheses: traverse the tree in DFS order,

appending an opening parenthesis when arriving at a new node

and a closing one after having visited all of its descendants. Those

parentheses can then be represented as a bitvector 𝑃 [1 . . 2𝑛] (say,
encoding the opening parenthesis as a 1 and the closing one as a

0). By using 𝑜 (𝑛) additional bits, one can carry out the following

operations in 𝑂 (1) time, among many others [42]:

• The position close(𝑥) of the parenthesis that closes the one
that opens at 𝑃 [𝑥] = 1.

• The position open(𝑥) of the parenthesis that opens the one
that closes at 𝑃 [𝑥] = 0.

• The position enclose(𝑥) of the opening parenthesis that

most tightly encloses that one at 𝑃 [𝑥] = 1.

• The position rmq(𝑥,𝑦) where the minimum excess occurs
between positions 𝑥 and 𝑦. The excess at position 𝑧 is the

number of opening and not yet closed parentheses up to

position 𝑧, that is, rank1 (𝑃, 𝑧) − rank0 (𝑃, 𝑧).

Wavelet matrices. A wavelet matrix [14] represents an 𝑛 × 𝑛

grid with 𝑀 points using 𝑀 log𝑛 + 𝑜 (𝑀 log𝑛) + 𝑂 (𝑛) bits, while
supporting various orthogonal range queries [8]. The queries we

are interested in are finding the leftmost/rightmost/highest/low-

est point in an orthogonal range of the grid. Those correspond

to the operations called rel_min_lab_maj and rel_min_obj_maj,
and analogous versions to find maxima instead of minima, on the

structure BinRel-WT [8], which solves them in time 𝑂 (log𝑛).

4 QUERYING GRAPHS WITH TOPOLOGICAL
RELATIONS

4.1 Model
We assume that (some) nodes of 𝐺 feature topological relations

between them, per Section 3.2. These relations are encoded in the

graph itself via triples of the form (𝑥, contains, 𝑦), (𝑥, contained, 𝑦),
and (𝑥, touches, 𝑦). From those triples, which we call axioms, we
derive the relations of Section 3.2 as follows.

• 𝑥 ⊑ 𝑦 iff axioms (𝑥, contained, 𝑦) or (𝑦, contains, 𝑥) occur
in the graph, or it can be derived from axioms by reflexivity

and transitivity. We use a closed-world assumption, so 𝑥 @𝑦
iff we cannot derive 𝑥 ⊑𝑦.

• 𝑥 |𝑦 iff there is an axiom (𝑥, touches, 𝑦) or (𝑦, touches, 𝑥)
in the graph, or it can be derived from rule a2 of Section 3.2.

Again, 𝑥 ̸ | 𝑦 holds iff we cannot derive 𝑥 |𝑦.
• 𝑥 ⊓ 𝑦 iff we can derive 𝑥 ⊑𝑦 or 𝑦⊑𝑥 , otherwise 𝑥 ⊓̸ 𝑦 holds.

Note that rules like a1 or the antisymmetry of ⊑ are not used to

derive relations; the axioms must hold them for consistency.

We then extend our BGPs with additional constraints of the form
𝑥 ⊑ 𝑦, 𝑥 ⊓ 𝑦, 𝑥 |𝑦, and their negations, where 𝑥 and 𝑦 are either

constants or variables. The solutions to these extended BGPs are the
bindings such that, once the variables are substituted, all the triples

appear in the graph and all topological constraints (per the above

itemization) are satisfied.

4.2 Algorithms
To achieve the promised optimality, we extend LTJ so that it can

handle the constraints while maintaining the leap(𝑥, 𝑐) operation
working in time at most 𝑂 (log𝑛). The treatment of the constraints

differs depending whether 𝑥 or 𝑦 is bound first.

• For 𝑥 ⊑ 𝑦, if 𝑥 is bound, leap(𝑥, 𝑐) is implemented with

function contained(𝑥, 𝑐), which returns the smallest 𝑦 ≥ 𝑐

such that 𝑥 ⊑𝑦. If𝑦 is bound, then leap(𝑦, 𝑐) is implemented

with function contains(𝑦, 𝑐), which returns the smallest

𝑥 ≥ 𝑐 such that 𝑥 ⊑ 𝑦. The negated versions, for 𝑥 @ 𝑦,

are implemented with functions not-contained(𝑥, 𝑐) and
not-contains(𝑦, 𝑐), respectively.

• For 𝑥 ⊓̸ 𝑦, if 𝑥 is bound, leap(𝑥, 𝑐) is implemented with func-

tion disjoint(𝑥, 𝑐), which returns the smallest 𝑦 ≥ 𝑐 such

that 𝑥 ⊓̸ 𝑦. If 𝑦 is bound, leap(𝑦, 𝑐) is similarly implemented

with disjoint(𝑦, 𝑐). The negated version, for 𝑥 ⊓ 𝑦, is imple-

mentedwith function not-disjoint(𝑥, 𝑐) (or not-disjoint(𝑦, 𝑐)).
• For 𝑥 |𝑦, if 𝑥 is bound, leap(𝑥, 𝑐) is implemented with func-

tion touches(𝑥, 𝑐), which returns the smallest 𝑦 ≥ 𝑐 such

that𝑥 |𝑦; the case of bound𝑦 uses touches(𝑦, 𝑐). The negated
4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Worst-Case-Optimal Joins on Graphs with Topological Relations TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

version, for𝑥 ̸ | 𝑦, is implementedwith function not-touches
(𝑥, 𝑐) (or not-touches(𝑦, 𝑐)).

If both 𝑥 and 𝑦 are constants, we just check if the fact holds

and, if it does, we remove it from the extended BGP; otherwise

the query has no results. The remaining case is that both 𝑥 and

𝑦 are variables; to handle it within LTJ we also create functions

contained(𝑐), contains(𝑐), etc., which return the smallest 𝑧 ≥ 𝑐

that contains some node, is contained in some node, and so on.

In Sections 5 and 6 we describe how we handle those functions

efficiently. Some of them are implemented in constant time and

others in time 𝑂 (log𝑛); the only exception is not-touches, which
takes time𝑂 ((ℎ/𝜖) log𝑛) whereℎ is the height of the hierarchy and

𝜖 is a space-time tradeoff parameter. This yields our main result;

see the details in Appendix A.1.

Theorem 1. Let 𝐺 be a graph with 𝑛 nodes and 𝑁 triples. We can
build an index of size 𝑂 (𝑛 + 𝑁 ) that solves any extended BGP 𝑄 not
involving constraints of the form 𝑥 ̸ | 𝑦 with exactly one variable, in
time 𝑂 (𝑄∗ · |𝑄 | log𝑛), where 𝑄∗ is the maximum size of the output
of 𝑄 on any graph with at most |𝑄 |𝑛 nodes and |𝑄 |𝑁 triples. Given a
query without such constraints, we can choose a parameter 1 ≤ 𝜖 ≤ ℎ

at index construction time so that the index uses 𝑂 (𝜖 𝑁 ) additional
space and time becomes 𝑂 (𝑄∗ · |𝑄 | (ℎ/𝜖) log𝑛), for ℎ the maximum
length of a chain of containment relations between nodes of 𝐺 .

5 CONTAINMENT AND DISJOINTNESS
The main idea of our data structure handling containment and

disjointness relations is to store the Hasse diagram of the relation

⊑ (which is a forest) using balanced parenthesis as shown in Sec-

tion 3.5. However, we also renumber the node identifiers, which

form an interval [1 . . 𝑛], so as to assign their postorder number in

this forest (see, e.g., [34, 57]). Recall that a postorder visits first the

children of a node, left to right, and then visits the node. The pos-

torder numbers will be the identifiers used internally for indexing

and querying. The mapping with the external identifiers, if neces-

sary, will be provided with a permutation 𝜋 : [1 . . 𝑛] → [1 . . 𝑛], so
that 𝜋 (𝑖) will be the external identifier of the node with postorder

number 𝑖 . Function 𝜋 will be stored as described in Section 3.5, so

that the translation of query results takes constant time, while the

external identifiers appearing in BGPs𝑄 can be translated into their

corresponding internal identifiers (i.e., postorder numbers) in time

𝑂 ( |𝑄 | log𝑛) using the operation 𝜋−1 ( 𝑗).
As we explain in Section 3.5, we can represent the Hasse dia-

gram of ⊑ in 2𝑛 + 𝑜 (𝑛) bits using balanced parentheses. If there

are several trees in the forest, we concatenate their parenthetical

representations. Since we use the postorder numbering of nodes,

in this paper the identifier of a tree node will be the position of

its closing parenthesis. Our representation supports the following

primitives (among others) in constant time:

• node(𝑖) = select0 (𝑖) gives the forest node with postorder 𝑖 ,

• postorder (𝑥) = rank0 (𝑥) yields the postorder of node 𝑥 ,
• first (𝑥) = 1 + rank0 (open(𝑥)) gives the least postorder in

the subtree rooted at 𝑥 ,

• lca(𝑥,𝑦) = close(enclose(rmq(𝑥,𝑦) + 1)) gives the lowest
common ancestor of nodes 𝑥 and 𝑦.

Our postorder numbering has convenient properties:

(1) All the nodes contained in 𝑥 form a range of postorders,

that is 𝑥 ⊑𝑦 iff first (𝑦) ≤ postorder (𝑥) ≤ postorder (𝑦);
(2) Let us call ancestor (𝑥, 𝑗) the 𝑗th ancestor of node 𝑥 (where

𝑗 = 0 yields 𝑥 itself and 𝑗 = 1 gives its parent). Then the

sequence postorder (ancestor (𝑥, 𝑗)) is increasing with 𝑗 .

We can then implement the containment operations as follows,

all in constant time. Figure 3 illustrates the operations.

contains(𝑥, 𝑐): Return 𝑐 if node(𝑐) ⊑ 𝑥 , as node(𝑐) is already in

the subtree of 𝑥 . Otherwise, if 𝑐 < postorder (𝑥) return first (𝑥),
the first postorder following 𝑐 that is below 𝑥 . Else return ⊥, as
𝑐 > postorder (𝑥) and no postorder following 𝑐 can be inside 𝑥 .

not-contains(𝑥, 𝑐): Return postorder (𝑥) + 1 if node(𝑐) ⊑ 𝑥 , as

that is the least postorder following 𝑐 of a node not contained in 𝑥 .

Otherwise return 𝑐 , as node(𝑐) is already out of the subtree of 𝑥 .

contained(𝑥, 𝑐): Return 𝑥 if 𝑐 ≤ postorder (𝑥), because 𝑥 has the

least postorder among its ancestors. Otherwise, 𝑐 is on, or departs

from, the root-to-𝑥 path at a node 𝑦 = lca(𝑥, node(𝑐)). The answer
is then postorder (𝑦), as we prove next (see Appendix A.2).

Lemma 1. Let 𝑥 and 𝑧 be such that postorder (𝑥) < postorder (𝑧).
Then 𝑦 = lca(𝑥, 𝑧) is the node with the minimum postorder (𝑦) ≥
postorder (𝑧) that is an ancestor of 𝑥 .

not-contained(𝑥, 𝑐): Return 𝑐 if 𝑥 @ node(𝑐), as 𝑐 is already not

an ancestor of 𝑥 . Otherwise, we should climb the path formed by

ancestor (node(𝑐), 𝑗), 𝑗 = 1, 2, . . . until finding an ancestor 𝑦 having

another child to the right, and the answer is the first postorder

under 𝑦. This is easily detected in the parentheses representation

𝑃 [1 . . 2𝑛] of the tree: we want to find the first opening parenthesis

to the right of 𝑃 [node(𝑐)], which is done in constant time with

𝑗 = succ1 (𝑃, node(𝑐)) − node(𝑐) (cf. Section 3.5); the answer is 𝑐 + 𝑗 .

Disjointness. Based on the containment algorithms, we answer

disjoint(𝑥, 𝑐) by returning 𝑐 if 𝑐 < first (𝑥). Otherwise, if 𝑐 ≤
postorder (𝑥), then node(𝑐) ⊑ 𝑥 , so we reset 𝑐 ← postorder (𝑥) + 1
to get out of the area below 𝑥 . Finally, once we have ensured that

𝑐 > postorder (𝑥), we simply return not-contained(𝑥, 𝑐). To answer

not-disjoint(𝑥, 𝑐), we return first (𝑥) if 𝑐 < first (𝑥). Otherwise, we
return 𝑐 if node(𝑐) ⊑ 𝑥 . Otherwise, 𝑐 > postorder (𝑐) and we just

return contained(𝑥, 𝑐). In all cases the process takes constant time.

Zero or two bound variables. See Appendix A.3.

6 ADJACENCY CONSTRAINTS
We assume 𝑀 adjacency axioms of the form (𝑥, touches, 𝑦) in 𝐺 ,

from which the whole set of adjacency relations are derived.

We use a data structure that takes𝑀 log𝑛(1+𝑜 (1)) bits of space
and infers all the derived relations, answering the queries in time

𝑂 (log𝑛). The data structure uses an 𝑛 × 𝑛 binary matrix 𝐴 con-

taining 2𝑀 1s, where the rest are 0s: for each axiom (𝑥, touches, 𝑦)
or (𝑦, touches, 𝑥), we set 1s at 𝐴[postorder (𝑥), postorder (𝑦)] and
𝐴[postorder (𝑦), postorder (𝑥)] (we later tighten this space).

Recall that the set of postorders of all the descendants of𝑥 forms a

range [first (𝑥) . . postorder (𝑥)]. By rule a2, every 𝐴[𝑖, 𝑗] = 1 where

first (𝑥) ≤ 𝑖 ≤ postorder (𝑥) implies that 𝑥 | node( 𝑗), because some

descendant of 𝑥 is adjacent to node( 𝑗)—unless 𝑥 contains node( 𝑗).
5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

T

x

first(x) 1+postorder(x)
(a) contains(𝑥, 𝑐 ) and not-contains(𝑥, 𝑐 )

not−contained

contained

x

first(x) 1+postorder(x)

(b) disjoint(𝑥, 𝑐 ) and not-disjoint(𝑥, 𝑐 )

x

lca(x,c)

(c) contained(𝑥, 𝑐 )

)))))((( )

x c open(y)

j=3

first(y)

x

first(y)

y

(d) not-contained(𝑥, 𝑐 )

Figure 3: Illustration of operations (solid curves) and their negations (dashed curves), for all cases of 𝑐 (grayed node). The
parentheses on the top left of Figure 3(d) illustrate how the distance 𝑗 between 𝑐 and the answer postorder is found.

Furthermore, every ancestor of node( 𝑗) is also adjacent to 𝑥 , again

by rule a2—unless that ancestor of node( 𝑗) contains 𝑥 .
To compute touches(𝑥, 𝑐), we want the least postorder ≥ 𝑐 of a

node that is adjacent to 𝑥 . We consider two ranges of columns in 𝐴.

Columns 𝑗 ≥ 𝑐 . Each𝐴[𝑖, 𝑗] = 1with first (𝑥) ≤ 𝑖 ≤ postorder (𝑥)
and 𝑗 ≥ 𝑐 implies 𝑥 | node( 𝑗), and thus 𝑗 can be the answer, unless

𝑥 and node( 𝑗) contain one another. By rule a1, 𝑥 @ node( 𝑗), as
otherwise node(𝑖) ⊑node( 𝑗) holds. Yet, it may be that node( 𝑗) ⊑𝑥 .

We handle the case 𝑗 ≥ 𝑐 as follows. Let 𝑗 be minimal such

that 𝐴[𝑖, 𝑗] = 1 for some first (𝑥) ≤ 𝑖 ≤ postorder (𝑥) and 𝑗 ≥ 𝑐 . If

node( 𝑗) @ 𝑥 , then 𝑗 is the best answer from the matrix columns

[𝑐 . . 𝑛]: the ancestors of node( 𝑗) have larger postorders, and other

1s in this area of 𝐴 have larger postorders, too. If node( 𝑗) ⊑ 𝑥 ,

then the least 𝑗 ≥ 𝑐 is below 𝑥 , and therefore we must find the

leftmost answer in the columns [postorder (𝑥) + 1 . . 𝑛], that is, we
set 𝑐 ← postorder (𝑥) + 1 and find again the minimal 𝑗 . This second

time, if there is a new answer 𝑗 , it cannot be contained in 𝑥 .

Columns 𝑗 < 𝑐 . For each𝐴[𝑖, 𝑗] with first (𝑥) ≤ 𝑖 ≤ postorder (𝑥)
and 𝑗 < 𝑐 , an ancestor of node( 𝑗) can be the answer, unless 𝑥 ⊑
node( 𝑗) or node( 𝑗) ⊑𝑥 . The first case cannot occur by rule a1. If the
second case occurs, then the ancestors of node( 𝑗) are not suitable
either, as they contain or are contained in 𝑥 .

We handle the case 𝑗 < 𝑐 as follows. Let 𝑗 be maximal such

that 𝐴[𝑖, 𝑗] = 1 for some first (𝑥) ≤ 𝑖 ≤ postorder (𝑥) and 𝑗 < 𝑐 . If

node( 𝑗) @ 𝑥 , we use Lemma 1 to find in 𝑦 = lca(node( 𝑗), node(𝑐))
the ancestor of node( 𝑗) with minimum postorder (𝑦) ≥ 𝑐 ; note that

no ancestor of 𝑗 can be contained in 𝑥 . If instead node( 𝑗) ⊑𝑥 , then
the rightmost 𝑗 < 𝑐 is below 𝑥 and we must find the maximum 𝑗 in

columns [1 . . first (𝑥) − 1] of 𝐴, that is, we set 𝑐 ← first (𝑥) − 1 and
find the maximal 𝑗 and compute 𝑦 again. This second time 𝑗 will

not be contained in 𝑥 ; still we must discard 𝑦 if it contains 𝑥 .

The reason why we can just take Lemma 1 on the rightmost

suitable 𝑗 is given next (see Appendix A.4). It shows that using

Lemma 1 on 𝑦 yields a smaller answer than using 𝑥 .

Lemma 2. Let 𝑥 ,𝑦, and 𝑧 be such that postorder (𝑥) < postorder (𝑦)
< postorder (𝑧). Then postorder (lca(𝑥, 𝑧)) ≥ postorder (lca(𝑦, 𝑧)).

The actual algorithm. We have shown that, if we store each

adjacency axiom twice, then we need to find the leftmost/rightmost

1 in a 3-sided area of 𝐴 𝑂 (1) times to get the best candidate in

columns [𝑐 . . 𝑛] and [1 . . 𝑐 − 1], and then we can pick the smallest

of two answers. To store each axiom (𝑥, touches, 𝑦)/(𝑦, touches, 𝑥)
only once, we arbitrarily store 𝐴[postorder (𝑥), postorder (𝑦)] = 1 or
𝐴[postorder (𝑦), postorder (𝑥)] = 1. The answer to touches(𝑥, 𝑗) is
then found as the minimum of four candidates: two obtained as

described, and other two with the analogous query in the other

direction (i.e., on 3-sided areas𝐴[1 . . 𝑐−1] [first (𝑥) . . postorder (𝑥)]
and 𝐴[𝑐 . . 𝑛] [first (𝑥) . . postorder (𝑥)]).

To solve those orthogonal range queries within the promised

space, we resort to the wavelet matrices described in Section 3.5,

which use 𝑀 log𝑛 + 𝑜 (𝑀 log𝑛) + 𝑂 (𝑛) bits and carry out those

queries in time𝑂 (log𝑛). This is also the complexity of touches(𝑥, 𝑐).

Negated adjacency. A basic solution for not-touches(𝑥, 𝑐) is to
invoke touches(𝑥, 𝑐+ 𝑗) for 𝑗 = 0, 1, . . . until touches(𝑥, 𝑐+ 𝑗) > 𝑐+ 𝑗 ,
so we can answer not-touches(𝑥, 𝑐) = 𝑐+ 𝑗 . By using𝑂 (𝜖 𝑀) further
words of space, for any 𝜖 ≤ ℎ, we can guarantee a time bound of the

form𝑂 ((ℎ/𝜖) log𝑛), whereℎ is the maximum height of a tree in the

Hasse diagram of the relation ⊑. For every node 𝑥 , we consider all

the nodes𝑦 such that 𝑥 |𝑦 (not only as an axiom, but as a derived fact

as well). We then store a list, associated with 𝑥 , of all the maximal

long runs of ⌈ℎ/𝜖⌉ or more consecutive values in this set.

Since there are at most ℎ𝑀 derived adjacency relations, there

can be at most 𝜖 𝑀 runs to store, which yields the promised space.

On the other hand, we can try the basic method for 𝑗 = 0, 1, . . . , ℎ/𝜖 ,
and if we fail for them all, then we are inside a long run, which can

be searched in the list in logarithmic time so as to return the first

value following the run. We can choose, for example, a constant 𝜖

to have𝑂 (𝑀) space and𝑂 (ℎ log𝑛) time, or some 𝜖 = Θ(ℎ) to have

𝑂 (ℎ𝑀) space and 𝑂 (log𝑛) time.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Worst-Case-Optimal Joins on Graphs with Topological Relations TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Zero or two bound variables. See Appendix A.5.

7 WORST-CASE OPTIMALITY
In this section we show that the extended LTJ is worst-case optimal:

its running time, for an extended BGP 𝑄 and a graph 𝐺 is always

bounded by the maximum number of answers of 𝑄 over any graph

𝐺 ′ with (about) the same number of nodes and edges.

To prove worst-case optimality, we first bound the number of

answers of an extended BGP, and then show the extended LTJ

algorithm runs in time given by this bound. We only focus on

extended BGPs 𝑄 that are consistent, that is, if there is at least

one graph 𝐺 for which 𝑄 (𝐺) is nonempty. This condition can be

checked in polynomial time [24].

Bounding the number of answers. For an extended BGP 𝑄 , con-

sider the conjunctive query flat(𝑄) that has an atom𝑇𝑦,𝑧,𝑤 (𝑦, 𝑧,𝑤)
for each pattern (𝑦, 𝑧,𝑤) ∈ 𝑄 , and atoms 𝐷𝐶 (𝑢), 𝐷𝐶 (𝑣) for each
constraint 𝐶 in 𝑄 that mentions variables 𝑢 and 𝑣 . Using the tech-

niques introduced by Cucumides et al. [15], it is not difficult to show

that the size of 𝑄 (𝐺), for a graph 𝐺 with 𝑁 triples and 𝑛 nodes, is

upper bounded, in data complexity, by the size of the evaluation of

flat(𝑄) over the database instance 𝐼 (𝐺) in which each 𝑇𝑥,𝑦,𝑧 con-

tains every triple in 𝐺 , and 𝐷𝐶 contains every node
5
. Hence, 𝑄 (𝐺)

is always bounded by 2
𝜌∗ (flat(𝑄 ),(𝑁,𝑛) )

, where 𝜌∗ (flat(𝑄), (𝑁,𝑛))
is the AGM bound of flat(𝑄) over instances with 𝑁 triples and 𝑛

nodes [7]. Next we show a matching lower bound. Unlike the upper

bound, this result does not follow from the techniques of Cucumides

et al.[15], as it is deeply related to the topological constraints in

graphs (see Appendix A.6). Furthermore, notice the result is slightly

weaker than the original AGM bound. This is due to the presence

of self joins in extended BGPs (see e.g. [23]).

Proposition 2. Given an extended BGP 𝑄 with ℓ triple patterns,
there are arbitrarily large graphs 𝐺 with ℓ𝑁 triples and ℓ𝑛 nodes for
which 𝑄 (𝐺) ≥ 𝜌∗ (flat(𝑄), (𝑁,𝑛)).

Analyzing the algorithm. Next, we show our algorithm does

indeed run in worst-case-optimal time. In the following we use 𝑄∗

to refer to 2
𝜌∗ (flat(𝑄 ),(𝑁,𝑛) )

; in view of Proposition 2, we can assert

that 𝑄∗ is the maximum size of the output of 𝑄 over any graph

with at most |𝑄 |𝑁 triples and |𝑄 |𝑛 nodes.

Proposition 3. The extended LTJ algorithm runs on an extended
BGP 𝑄 over a graph 𝐺 in time 𝑂 (𝑄∗ · |𝑄 | log𝑛) if 𝑄 does not use
the not-touches constraint, and in𝑂 (𝑄∗ · |𝑄 | (ℎ/𝜖) log𝑛) for queries
involving the not-touches constraint, where ℎ is the maximum length
of a chain of containment relations between nodes of𝐺 and 1 ≤ 𝜖 ≤ ℎ.

Proof. Recall that standard LTJ runs in time𝑂 (𝑄∗ · |𝑄 |𝑓 (𝑁,𝑛))
when leap operations are implemented in time 𝑂 (𝑓 (𝑁,𝑛)) [54].

Consider any ordering of variables. We show that the running

time of our algorithm is bounded by the running time taken by the

Ring [4] to process flat(𝑄) over 𝐺 . Budget allocation is as follows.

As long as we do not bind any variable participating in a topo-

logical constraint, budget is allocated directly as Ring operations

are identical. Now whenever we bind a variable 𝑥 that participates

5
Note that this upper bound does involve a constant that depends on the query, the

reason is that the original AGM bound is given for join queries, which do not repeat

relations, while our queries do repeat relations. See [15] for further discussion.

in a constraint, the number of leap operations for 𝑥 we do when

processing 𝑄 is at most the number of leaps for processing flat(𝑄):
any constraint 𝐶 (𝑥,𝑦) is replaced in flat(𝑄) with 𝐷 (𝑥), 𝐷 (𝑦), so
constraints can only reduce the number of leap operations.

The Ring implements the leap operations in time 𝑂 (log𝑛) [4].
In the preceding sections we have shown that leap operations

on topological constraints can be performed in time 𝑂 (log𝑛), or
𝑂 ((ℎ/𝜖) log𝑛) if the constraint is of type not-touches. This gives
our desired running time bound. □

8 IMPLEMENTATION AND EXPERIMENTS
We implemented our index in C++ as an extension of the Ring [4, 5],

which solves basic BGPs using LTJ in little space. Like the Ring,

our implementation is single-threaded and it is built on top of the

Succinct Data Structures Library (SDSL) [22]. Our implementation

is available at https://anonymous.4open.science/r/Toporing-6FD5/.

To process extended BGPs, we implemented the leap procedures

exactly as described in Sections 5 and 6. The LTJ algorithm is then

applied without changes, other than detecting the topological triple

patterns so as to treat them in special form. Our index is called

TopoRing in the experiments. More details are given in Appendix B.

Dataset. To test our solution we queried the truthy Wikidata

graph [55] with 2,762 real-world graph patterns extracted from the

Wikidata query logs [36]. Further details are given in Appendix B.

A baseline. For comparison, we developed a non-trivial (but not

worst-case optimal) baseline based on the Ring and the data struc-

tures presented in Sections 5 and 6. Unlike our solution, where both

standard and topological triple patterns in a BGP are processed

together following the LTJ process, the baseline works in two steps:

i) First, process all the standard triple patterns of the BGP using the

Ring in order to obtain a partial binding of values to variables, and

then ii) filter or extend each partial binding with the topological

triple patterns, using the ideas in Sections 5 and 6. In part ii), the
triples with two bound variables are processed first, as they serve to

filter the solutions. We then continue with triples with one bound

variable, which are used to extend the binding. Finally, we end with

triples with both unbound variables. Notice that when a variable is

bound during evaluation, other triples having that variable reach a

higher priority to be processed next.

Virtuoso, Blazegraph and Jena. Our topological queries can be

expressed in SPARQL, albeit resorting to more complex queries

that combine BGPs, RPQs and negation. Along these lines we also

include the Virtuoso [19], Blazegraph [52] and Apache Jena [11]

SPARQL engines, translating queries into their equivalent SPARQL

syntax; Appendix B gives the details. To provide a fairer comparison

with our in-memory solution, we tested the engines on a RAM disk.

8.1 Experimental results
Topological primitives. We measured the standalone time of our

primitives contains(𝑥, 𝑐), contained(𝑥, 𝑐), touches(𝑥, 𝑐), and their

negations not-contains(𝑥, 𝑐), not-contained(𝑥, 𝑐) and not-touches
(𝑥, 𝑐) (with 𝜖 = 2), obtaining 9.5, 14.1, 27.3, 9.4, 9.0, and 30.6 nanosec-

onds, respectively. Those times are the average of 20 million queries

over random subjects 𝑥 and random valid objects 𝑐 . A standard

leap(𝑥, 𝑐) on the Ring was much slower, 340 nanoseconds.

7

https://anonymous.4open.science/r/Toporing-6FD5/


813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Toporing Baseline Virtuoso Blazegraph Jena

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(a) All queries

(19/167/62+932/205+390/677+327)

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(b) 1 topological constraint

(5/127/32+755/78+351/553+289)

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(c) 2 topological constraints

(9/30/23+141/101+33/96+32)

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(d) 3+ topological constraints

(5/10/7+32/26+2/28+2)

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(e) 1 containment constraint

(4/117/21+711/49+338/490+285)

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(f) 2+ containment constraints

(13/34/27+164/116+35/112+34)

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(g) 1 adjacency constraint

(1/10/12+52/38+13/71+4)

0

100

200

300

400

500

600

Ti
m

e 
(s

ec
s)

(h) 2+ adjacency constraints

(1/6/3+5/7+0/8+0)

Figure 4: Runtimes grouped by number and kind of topological constraints. For each system the number of queries with timeout
is shown in parentheses, as (TopoRing/Baseline/Virtuoso timeouts+errors/Blazegraph timeouts+errors/Jena timeouts+errors).

Extended BGPs. Figure 4 shows how the running times distribute

on the tested queries. The overall results in Figure 4(a) show that

TopoRing is significantly faster than the other alternatives, with

an average query time of 7.52 seconds, 6.5 times less than that of

our Baseline and an order of magnitude less than the average of

Virtuoso, Blazegraph and Jena. While many queries are solved fast,

as witnessed by the low medians, a significant part of them are

indeed difficult. In particular, TopoRing times out on 19 queries, the

Baseline on 167 queries, Virtuoso on 62, Blazegraph on 205, and

Jena on 677 queries. However, we found that Virtuoso, Blazegraph

and Jena also exhibit 932, 390 and 327 non-timeout errors, resp.,

due to an apparent bug processing zero-or-many (*) paths between
two variables, where it throws an error or returns no results when

results are expected. Adding up timeouts and errors, Virtuoso is

unable to properly handle 994 queries (36%), Blazegraph 595 queries

(21%) and Jena 1,004 queries (36%).

Figures 4(b)-4(d) separate the queries by the number of topologi-

cal constraints. It shows that those constraints affect query times by

a significant margin, driving the average times of TopoRing from

4.46 seconds with one constraint to 87.3 with three. The impact on

the Baseline is even higher, and Virtuoso, Blazegraph and Jena solve

very few queries with three constraints in less than 600 seconds.

Figures 4(e)-4(h) classify the queries according to the number of

containment and adjacency constraints, respectively. It can be seen

that the latter pose a heavier load to the TopoRing than the former,

but again, the effect on the Baseline, Virtuoso, Blazegraph and Jena

is much higher, up to the point that the median times out in both.

Space usage. Our TopoRing uses 15.5GB, that is, 17.38 bytes per

triple (bpt). From this space, 12.30 bpt are used by the underlying

Ring and 5.08 bpt by our structures handling topological constraints.

Virtuoso, Blazegraph and Jena, on the other hand, use 60.07,

90.79 and 95.83 bpt, respectively. This space includes the dictionary

mapping between nodes and their strings. This mapping can be

added to the Ring at a space cost of 3.68 bpt [4] with no impact on

query time. With this mapping, our TopoRing would use 21.06 bpt.

9 CONCLUSIONS AND FUTUREWORK
Many knowledge graphs contain topological relations, often – but

not exclusively – to represent geospatial relations, such as contains

and touches. Hereinwe have proposed techniques that are efficient –

in both time and space – for querying knowledge graphs, returning

results entailed via the semantics of topological relations. We have

formally characterized the efficiency of our approach, showing,

for example, that it constitutes a worst-case-optimal algorithm. In

practice, our approach provides notable speed-ups when compared

with internal and external (SPARQL) baselines for evaluating a

real-world workload of queries extracted from Wikidata logs.

In terms of limitations, our index structure does not currently

permit updates; these could be supported via dynamic compact data

structures for ordinal trees and wavelet matrices [35, 42]. Further-

more, the index structures we use work in RAM, where adapting

them to work efficiently on the disk is non-trivial due to the ran-

dom access patterns that they generate. Finally, our representation

permits having hierarchies other than contains, as long as each

element belongs to only one hierarchy. However, our model can be

extended to allow for overlaps in hierarchies (see Appendix C).

The semantic properties of topological relations – in particular,

symmetry and transitivity – may also apply to a broader class of

relations. Indeed, through our SPARQL baseline, we showed that

such semantics can be supported via (2)RPQs. However, for RPQs,

it is unlikely that useful worst-case-optimal guarantees exist [12].

This raises the question of where, precisely, is the barrier for wco

guarantees, and for what kinds of RPQs – or semantic properties –

can algorithms boasting such guarantees be provided.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Worst-Case-Optimal Joins on Graphs with Topological Relations TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,

and Christopher Ré. EmptyHeaded: A Relational Engine for Graph Processing.

ACM Trans. Database Syst., 42(4):20:1–20:44, 2017.
[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and

Domagoj Vrgoc. Foundations of modern query languages for graph databases.

ACM Computing Surveys, 50(5):68:1–68:40, 2017.
[3] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM

Computing Surveys, 40(1):1:1–1:39, 2008.
[4] Diego Arroyuelo, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro,

Juan L. Reutter, Javiel Rojas-Ledesma, and Adrián Soto. The Ring: Worst-case

optimal joins in graph databases using (almost) no extra space. ACM Transactions
on Database Systems, 49(2):article 5, 2024.

[5] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-

Ledesma, and Adrián Soto. Worst-case optimal graph joins in almost no space.

In Proc. ACM International Conference on Management of Data (SIGMOD), pages
102–114, 2021.

[6] Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit

Vogtenhuber, and Alexander Wolff. Representing graphs by polygons with edge

contacts in 3d. In Proc. 36th European Workshop on Computational Geometry
(EuroCG), page article 53.

[7] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans

for relational joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.
[8] Jérémy Barbay, Francisco Claude, and Gonzalo Navarro. Compact binary relation

representations with rich functionality. Information and Computation, 232:19–37,
2013.

[9] Robert Battle and Dave Kolas. Enabling the geospatial Semantic Web with

Parliament and GeoSPARQL. Semantic Web, 3(4):355–370, 2012.
[10] Alexander Bigerl, Lixi Conrads, Charlotte Behning,Muhammad Saleem, andAxel-

Cyrille NgongaNgomo. Hashing the hypertrie: Space- and time-efficient indexing

for SPARQL in tensors. In Proc. 21st International SemanticWeb Conference (ISWC),
pages 57–73, 2022.

[11] Jeremy J Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,

and Kevin Wilkinson. Jena: Implementing the Semantic Web recommendations.

In Proc. 13th World Wide Web Conference; Alternate Track Papers & Posters, pages
74–83, 2004.

[12] Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path

queries. In Proc. 24th International Conference on Database Theory (ICDT), pages
19:1–19:20, 2021.

[13] David Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[14] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez. The wavelet matrix:

An efficient wavelet tree for large alphabets. Information Systems, 47:15–32, 2015.
[15] Tamara Cucumides, Juan Reutter, and Domagoj Vrgoč. Size bounds and algo-

rithms for conjunctive regular path queries. In Proc. 26th International Conference
on Database Theory (ICDT 2023), 2023.

[16] Olaf Delgado-Friedrichs, Stephen T. Hyde, Michael O’Keeffe, and Omar M.

Yaghi. Crystal structures as periodic graphs: the topological genome and graph

databases. Structural Chemistry, 28(1):39–44, 2017.
[17] Alishiba Dsouza, Nicolas Tempelmeier, Ran Yu, Simon Gottschalk, and Elena

Demidova. WorldKG: A world-scale geographic knowledge graph. In Proc.
30th ACM International Conference on Information and Knowledge Management
(CIKM), pages 4475–4484, 2021.

[18] Max J. Egenhofer and Robert D. Franzosa. Point-set topological spatial relations.

International Journal of Geographical Information Systems, 5(2):161–174, 1991.
[19] Orri Erling and Ivan Mikhailov. Rdf support in the virtuoso dbms. In Networked

Knowledge-Networked Media: Integrating Knowledge Management, New Media
Technologies and Semantic Systems, pages 7–24. Springer, 2009.

[20] Yi Fang, Marc T. Friedman, Giri Nair, Michael Rys, and Ana-Elisa Schmid. Spatial

indexing in Microsoft SQL Server 2008. In Proc. ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 1207–1216, 2008.

[21] Markus Gerke, Matthias Butenuth, Christian Heipke, and Felicitas Willrich.

Graph-supported verification of road databases. ISPRS Journal of Photogrammetry
and Remote Sensing, 58(3):152–165, 2004.

[22] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to

practice: Plug and play with succinct data structures. In Proc. 13th International
Symposium on Experimental Algorithms (SEA), pages 326–337, 2014.

[23] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and

treewidth bounds for conjunctive queries. Journal of the ACM, 59(3):1–35, 2012.

[24] Michelangelo Grigni, Dimitris Papadias, and Christos Papadimitriou. Topological

inference. In Proc. 14th International Joint Conference on Artificial Intelligence
(IJCAI), part 1, pages 901–907, 1995.

[25] Rolf Grütter, Ross S. Purves, and Lukas Wotruba. Evaluating Topological Queries

in Linked Data Using DBpedia and GeoNames in Switzerland and Scotland.

Transactions in GIS, 21(1):114–133, 2017.
[26] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.

YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia.

Artificial Intelligence, 194:28–61, 2013.

[27] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Se-

bastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,

Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine

Zimmermann. Knowledge graphs. ACM Computing Surveys, 54(4):71:1–71:37,
2022.

[28] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrian Soto. A worst-case op-

timal join algorithm for SPARQL. In Proc. International Semantic Web Conference
(ISWC), pages 258–275, 2019.

[29] Ying Hu, Siva Ravada, Richard Anderson, and Bhuvan Bamba. Topological

relationship query processing for complex regions in Oracle Spatial. In Proc.
International Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL), pages 3–12, 2012.

[30] Bowen Kan, Wendong Zhu, Guangyi Liu, Xi Chen, Di Shi, andWeiqing Yu. Topol-

ogy Modeling and Analysis of a Power Grid Network Using a Graph Database.

International Journal of Computational Intelligence Systems, 10(1):1355–1363,
2017.

[31] Manolis Koubarakis and Kostis Kyzirakos. Modeling and Querying Metadata in

the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL.

In Proc. 7th Extended Semantic Web Conference (ESWC), Part I, pages 425–439,
2010.

[32] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A

Semantic Geospatial DBMS. In Proc. International Semantic Web Conference
(ISWC), Part I, pages 295–311, 2012.

[33] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,

Sören Auer, and Christian Bizer. DBpedia - A large-scale, multilingual knowledge

base extracted from Wikipedia. Semantic Web, 6(2):167–195, 2015.
[34] Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular

path expressions. In Proc. 27th International Conference on Very Large Databases
(VLDB), pages 425–436, 2001.

[35] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences

and full-text indexes. ACM Transactions on Algorithms, 4(3):article 32, 2008.
[36] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and Adrian

Bielefeldt. Getting the most out of Wikidata: Semantic technology usage in

Wikipedia’s knowledge graph. In Proc. 17th International Semantic Web Confer-
ence (ISWC), pages 376–394, 2018.

[37] Amine Mhedhbi, Chathura Kankanamge, and Semih Salihoglu. Optimizing One-

time and Continuous Subgraph Queries using Worst-case Optimal Joins. ACM
Transactions on Database Systems, 46(2):6:1–6:45, 2021.

[38] Amine Mhedhbi and Semih Salihoglu. Modern techniques for querying graph-

structured relations: Foundations, system implementations, and open challenges.

Proceedings of the VLDB Endowment, 15(12):3762–3765, 2022.
[39] J. Ian Munro. Tables. In Proc. 16th Conference on Foundations of Software Tech-

nology and Theoretical Computer Science (FSTTCS), pages 37–42, 1996.
[40] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct

representations of permutations and functions. Theoretical Computer Science,
438:74–88, 2012.

[41] Gonzalo Navarro. Compact Data Structures – A practical approach. Cambridge

University Press, 2016.

[42] Gonzalo Navarro and Kunihiko Sadakane. Fully-functional static and dynamic

succinct trees. ACM Transactions on Algorithms, 10(3):article 16, 2014.
[43] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal

join algorithms. Journal of the ACM, 65(3):16:1–16:40, 2018.

[44] Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q.

Ngo, Christopher Ré, and Atri Rudra. Join processing for graph patterns: An

old dog with new tricks. In Proc. 3rd International Workshop on Graph Data
Management Experiences and Systems (GRADES), pages 2:1–2:8, 2015.

[45] Regina Obe and Leo S Hsu. PostGIS in action. Simon and Schuster, 2021.

[46] Christos H. Papadimitriou, Dan Suciu, and Victor Vianu. Topological Queries in

Spatial Databases. Journal of Computer and System Sciences, 58(1):29–53, 1999.
[47] Hongbin Qiu, Aihua Zhou, Bin Hu, Bo Chai, Sen Pan, and Pei Yang. TAnalyzer:

A graph database based topology analysis tool for power grid. In Proc. 2nd
International Conference on Computer Science and Application Engineering (CSAE),
pages 6:1–6:5, 2018.

[48] D. A. Randell, Z Cui, and A. G. Cohn. A spatial logic based on regions and

connection. In Proc. 3rd International Conference on Knowledge Representation
and Reasoning, pages 165–176, 1992.

[49] Jochen Renz. The region connection calculus. In Qualitative Spatial Reasoning
with Topological Information, pages 41–50. Springer, 2002.

[50] Philippe Rigaux, Michel Scholl, and Agnès Voisard. Spatial databases - with
applications to GIS. Elsevier, 2002.

[51] Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer. LinkedGeoData:

A core for a web of spatial open data. Semantic Web, 3(4):333–354, 2012.
[52] Bryan B. Thompson, Michael Personick, and Martyn Cutcher. Linked Data Man-

agement, chapter The Bigdata® RDF Graph Database, page 193–237. Chapman

and Hall/CRC, 2014.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[53] Wilco van Leeuwen, Thomas Mulder, Bram Van De Wall, George Fletcher, and

Nikolay Yakovets. AvantGraph Query Processing Engine. Proceedings of the
VLDB Endowment, 15(12):3698–3701, 2022.

[54] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In

Proc. International Conference on Database Theory (ICDT), pages 96–106, 2014.
[55] Denny Vrandecic and Markus Krötzsch. Wikidata: A free collaborative knowl-

edgebase. Communications of the ACM, 57(10):78–85, 2014.

[56] Domagoj Vrgoč, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo,

Carlos Buil-Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and Juan

Romero. MillenniumDB: An Open-Source Graph Database System. Data Intelli-
gence, pages 1–39, 06 2023.

[57] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.

Lohman. On supporting containment queries in relational database management

systems. In Proc. ACM International Conference onManagement of Data (SIGMOD),
pages 425–436, 2001.

A PROOFS AND MISSING DETAILS
A.1 Details of Theorem 1
The total space incurred by our data structures is 3𝑁 +𝑛+(1+𝜖)𝑀 =

𝑂 (𝑁 + 𝑛) words of space (each of log𝑛 bits), plus sublinear terms,

where 𝑀 ≤ 𝑁 is the number of triples of the form (𝑥, touches, 𝑦).
Precisely, we use:

• 3𝑁 log𝑛+𝑜 (𝑁 log𝑛) bits for a Ring built on the graph edges.
• 𝑛 log𝑛 +𝑂 (𝑛) bits to store a permutation between actual

node identifiers and convenient internal identifiers.

• 𝑀 log𝑛 + 𝑜 (𝑀 log𝑛) +𝑂 (𝑛) bits to store the adjacencies.

• 5𝑛 + 𝑜 (𝑛) bits to represent the hierarches and cases with

zero bound variables.

• (𝜖 𝑀) log𝑛 bits to support not-touches.

Combined with the worst-case optimality we prove in Section 7,

we obtain the theorem.

A.2 Proof of Lemma 1
Proof. By definition𝑦 is an ancestor of𝑥 and of 𝑧, so postorder (𝑦)

≥ postorder (𝑧) > postorder (𝑥), thus 𝑦 ≠ 𝑥 . We now prove that 𝑦 is

the lowest node in the path to 𝑥 with large enough postorder, that

is, its child𝑤 towards 𝑥 has postorder (𝑤) < postorder (𝑧).
Note that 𝑧 cannot descend from 𝑤 by definition of 𝑙𝑐𝑎, so 𝑧

descends from a child 𝑤 ′ ≠ 𝑤 of 𝑦. Then 𝑤 must precede 𝑤 ′:
otherwise, since 𝑥 descends from𝑤 , we would have postorder (𝑧) <
postorder (𝑥). Therefore, it holds that postorder (𝑤) < postorder (𝑧),
a contradiction. □

A.3 Containment and disjointness with zero or
two bound variables

Checking any of the relations of Section 5 between two constants 𝑥

and 𝑦 is trivially carried out by computing 𝑥 ⊑𝑦 and 𝑦⊑𝑥 . For two
variables, the simplest implementation for the general functions

contains(𝑐) and contained(𝑐) is to store a bitvector of length 𝑛 for

each, using succ1 (𝑐) to find the next postorder that contains some

node or is contained in some node. This yields constant time with

just 2𝑛+𝑜 (𝑛) extra bits; recall Section 3.5. Functions not-contains(𝑐)
and not-contained(𝑐) are implemented with succ0 (𝑐) on the same

bitvectors. The corresponding functions for disjointness are triv-

ial: disjoint(𝑐) is always ⊥ if ⊑ forms a single tree consisting of a

single path, otherwise it is always 𝑐 . For not-disjoint(𝑐), we enu-
merate first the 𝑡 trees of ⊑ formed by isolated nodes, and thus

not-disjoint(𝑐) is 𝑡 + 1 if 𝑐 ≤ 𝑡 , or else 𝑐 .

A.4 Proof of Lemma 2
Proof. Since𝑤 = lca(𝑥, 𝑧) is an ancestor of both 𝑥 and 𝑧, it holds

that first (𝑤) ≤ postorder (𝑥) < postorder (𝑦) < postorder (𝑧) ≤
postorder (𝑤), and thus 𝑦 descends from𝑤 . Since both 𝑦 and 𝑧 de-

scend from 𝑤 , 𝑤 ′ = lca(𝑦, 𝑧) descends from 𝑤 as well, and thus

postorder (𝑤) ≥ postorder (𝑤 ′). □

A.5 Adjacency with zero or two bound variables
The case of bound𝑥 and𝑦 can be checked as touches(𝑥, postorder (𝑦)) =
postorder (𝑦), in 𝑂 (log𝑛) time. For two bound variables, we again

implement touches(𝑐) with a bitvector telling which postorders

touch some other node, and answer it with succ1 on the bitvector,

in constant time. The negated adjacency, not-touches with zero or

two bound variables, is handled analogously with no further space.

A.6 Proof of Proposition 2
Proof. Let us begin with some terminology. We say that 𝑄

is irreducible if there exists no set of variables or constants that

form a cycle of containment constraints 𝑥 ⊑𝑦. Queries that are not
irreducible can be made so by identifying cycles in containment

constraints and replacing them with identities, as 𝑥 ⊑ 𝑦,𝑦 ⊑ 𝑥 is

equivalent to 𝑥 = 𝑦. This is why we shall only focus on irreducible

queries.

Further, let us first assume our query only uses constraints 𝑢⊑
𝑣 , 𝑢 | 𝑣 , or 𝑢 ̸ ⊓ 𝑣 . This proof is of independent interest since it

provides bounds even under the assumption that regions must

always be connected. We later explain how to extend this proof for

the remaining operators.

Assume 𝑄 involves ℓ triples and 𝑘 − ℓ constraints, so that it has

the form

∧ℓ
𝑖=1𝑇 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 )∧

∧𝑘
𝑖=ℓ+1𝐶𝑖 (𝑢𝑖 , 𝑣𝑖 ), where each𝐶𝑖 (𝑢𝑖 , 𝑣𝑖 )

is one of 𝑢𝑖 ⊑ 𝑣𝑖 , 𝑢𝑖 | 𝑣𝑖 or 𝑢𝑖 ̸ ⊓ 𝑣𝑖 . Then flat(𝑄) has the form∧ℓ
𝑖=1𝑇𝑖 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 ) ∧

∧𝑘
𝑖=ℓ+1 𝐷𝑖 (𝑢𝑖 ) ∧ 𝐷𝑖 (𝑣𝑖 ).

Let 𝑥 = vars(𝑄). We use the dual program of the AGM bound of

flat(𝑄), considering arbitrary integers 𝑁 and 𝑛 for the number of

triples and nodes of a graph:

maximize:

∑︁
𝑥∈𝑥

𝑣𝑥

subject to: 𝑣𝑦𝑖 + 𝑣𝑧𝑖 + 𝑣𝑤𝑖
≤ log𝑁, 𝑖 = 1, . . . , ℓ

𝑣𝑝𝑖 ≤ log𝑛, 𝑖 = ℓ + 1, . . . , 𝑘
𝑣𝑞𝑖 ≤ log𝑛, 𝑖 = ℓ + 1, . . . , 𝑘
𝑣𝑥 ≥ 0, 𝑥 ∈ 𝑥

By duality, any solution

∑
𝑥∈𝑥 𝑣𝑥 for the dual is always smaller than

the corresponding primal solution, with equality when the solutions

are optimal. Let us assume that 𝑁 and 𝑛 are of the form 2
𝐿𝑁

and

2
𝐿𝑛

for some 𝐿𝑁 , 𝐿𝑛 ∈ N, so the optimal solution of both the primal

and dual are rational. Let (𝑣𝑥 )𝑥∈𝑥 be the dual solution and write

each 𝑣𝑥 as 𝑝𝑥/𝑏. Then (𝑝𝑥 )𝑥∈𝑥 is an optimal solution to the linear

program with cardinalities 𝑁𝑏 , 𝑛𝑏 . Now we present a graph𝐺 with

ℓ𝑁𝑏
triples and ℓ𝑛𝑏 nodes such that |𝑄 (𝐺) | ≥ 2

𝜌∗ (flat(𝑄 ),(𝑁𝑏 ,𝑛𝑏 ) )
.

Vertices and triples of 𝐺 are as follows:

• The vertices of 𝐺 are the union of sets 𝑉𝑥 = {𝑎𝑥
1
, . . . , 𝑎𝑥

2
𝑝𝑥 }

for each 𝑥 ∈ 𝑥 .
• For every triple 𝑇𝑖 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 ) in 𝑄 , add to 𝐺 all tuples in

𝑉𝑦𝑖 ×𝑉𝑧𝑖 ×𝑉𝑤𝑖
.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Worst-Case-Optimal Joins on Graphs with Topological Relations TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

From the construction we verify that every triple 𝑇𝑖 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 )
contributes with at most 2

𝑝𝑦𝑖 +𝑝𝑧𝑖 +𝑝𝑤𝑖 ≤ 2
𝑏 log𝑁 = 𝑁𝑏

triples and

every constraint𝐶 (𝑢𝑖 , 𝑣𝑖 ) contributes 2𝑝𝑢𝑖 + 2𝑝𝑣𝑖 ≤ 2 · 2𝑏 log𝑛 = 2𝑛𝑏

additional nodes. All of this guarantees that the graph contains at

most ℓ𝑇𝑏
triples and ℓ𝑛𝑏 nodes.

We next show how to construct the topology of the graph, for

which we need a few more definitions. For a consistent, irreducible

query 𝑄 , its constraint graph has an undirected edge from node 𝑥

to node 𝑦 for each constraint between 𝑥 and 𝑦 in 𝑄 . The subset-
constraint graph has a directed edge from node 𝑥 to node 𝑦 for each

constraint 𝑥 ⊑𝑦 in 𝑄 .

Lemma 3. If 𝑄 is consistent and irreducible, then: (1) Its subset-
constraint graph is acyclic. (2) If 𝑦 is reachable from 𝑥 in the subset-
constraint graph of 𝑄 , then 𝑄 cannot mention 𝑥 and 𝑦 together in
any other constraint.

Proof. First item follows because cycles in the subset-constraint

graph can be reduced, as these imply equality between all variables

in the cycle. Second item follows because our hierarchy assump-

tion implies that 𝑥 ⊑𝑦 is mandated by 𝑄 , and then if 𝑥 and 𝑦 are

mentioned in any other constraint 𝑄 would not be consistent. □

To construct the topology of𝐺 , consider the constraint-graph of

𝑄 . We make us of a result by Arseneva et al. [6], which states that

for the constraint graph of𝑄 we can build a set of (interior) disjoint

polygons in 3D, one for each node of the constraint graph, so that

two polygons share a side if and only if the corresponding vertices

are adjacent in the constraint graph. Note that this construction

results in a set of polygons, one per each variable of𝑄 , that share a

side if and only if the query 𝑄 contains a constraint (be it subset,

adjacency or disjointedness) that mentions both variables.

Denote this set of polygons as Π. From Π we construct the topol-

ogy of 𝐺 via a series of refinements.

First, for each variable 𝑥 in the constraint graph of 𝑄 , recall

we defined 𝑉𝑥 = {𝑎𝑥
1
, . . . , 𝑎𝑥

2
𝑝𝑥 }, and let 𝑛𝑥 = |𝑉𝑥 |. Let 𝜋𝑥 be the

polygon associated with variable 𝑥 in Π. Partition the polygon

into 𝑛𝑥 subpolygons 𝜋𝑥
1
, . . . , 𝜋𝑥𝑛𝑥 in such a way that 𝜋𝑥

1
shares all

the facets of 𝜋𝑥 , such as in Figure 5. Then, associate each element

𝑎𝑥
𝑖
∈ 𝑉𝑥 with the polygon given by

⋃
𝑗≤𝑖 𝜋

𝑥
𝑗
. Denote this polygon

as 𝑝 (𝑎𝑥
𝑖
), and notice in particular that 𝑝 (𝑎𝑥𝑛𝑥 ) = 𝜋𝑥 .

This construction ensures the following:

• For each variable 𝑥 , all polygons associated with elements

in 𝑉𝑥 satisfy all adjacency axioms previously satisfied by

𝜋𝑥 . As a consequence, for every constraint 𝑥 | 𝑥 ′ in𝑄 , every

element in 𝑉𝑥 is adjacent to every element in 𝑉𝑥 ′ .

• Since adjacent polygons are considered disjoint, for each

constraint 𝑥 ⊓̸ 𝑥 ′ in 𝑄 we have that every element in 𝑉𝑥 is

disjoint to every element in 𝑉𝑥 ′ .

We will further refine this topology to account for subset con-

straints in 𝑄 . We deal separately with each connected compo-

nent of the subset-constraint graph of 𝑄 . For each such compo-

nent 𝐶 , which by Lemma 3 is a DAG, we first ensure that every

node in 𝐶 has at most one outgoing edge, by iteratively replac-

ing edges (𝑥,𝑦) and (𝑥, 𝑧), corresponding to constraints 𝑥 ⊑ 𝑦

πx1
πx2

πx
nx

⋯
p(ax2)

p(ax1)

Figure 5: Partition of polygon 𝜋𝑥 . Each node 𝑎𝑥
𝑖
in the graph

is then associated with polygon 𝑝 (𝑎𝑥
𝑖
) = ⋃

𝑗≤𝑖 𝜋
𝑥
𝑗
.

πy1

p(ax
i )

πy2
p(ax

i )

Figure 6: Redefinition of 𝑝 (𝑎𝑥
𝑖
) when facing constraints 𝑦1⊑𝑥

and 𝑦2 ⊑ 𝑥 from the initial construction (left) to the final
result (right).

and 𝑥 ⊑ 𝑧, with (𝑥,𝑦), (𝑦, 𝑧).6 Importantly, this modification en-

sures that for every pair 𝑥 , 𝑧 of nodes in the component 𝐶 of the

constraint graph, if 𝑥 is an ancestor of 𝑧 in 𝐶 , then 𝑥 is also an

ancestor of 𝑧 in the modified graph. Pick one node traversal of

this graph. In this order, we do the following. If a variable 𝑥 has

no ancestor, that is, if there is no 𝑦 such that (𝑦, 𝑥) is in 𝐶 , we

leave all 𝑛𝑥 polygons for 𝑥 as constructed before. Otherwise let

𝑦1, . . . , 𝑦𝑘 be the nodes such that edges (𝑦1, 𝑥), . . . , (𝑦𝑘 , 𝑥) belong
to the subset-constraint graph. Then, for each element 𝑎𝑥

𝑖
in 𝑉𝑥 ,

redefine 𝑝 (𝑎𝑥
𝑖
) = 𝑝 (𝑎𝑥

𝑖
) ∪ 𝜋𝑦1 · · · ∪ 𝜋𝑦𝑘

. Figure 6 depicts this con-

struction for a specific polygon 𝑝 (𝑎𝑥
𝑖
) that shares a side with two

other polygons 𝜋𝑦1
and 𝜋𝑦2

.

Notice, then, that each of the polygons associated with elements

in 𝑉𝑦1 , . . . ,𝑉𝑦𝑘 are contained in all the polygons associated with

any element in 𝑉𝑥 . Hence, the topology so far satisfies the sub-

set constraints in the modified graph, and since the modification

preserves ancestry, it also satisfies the subset constraints in𝐶 . More-

over, for each constraint 𝑦 𝑗 ⊑𝑥 we have that every element in𝑉𝑦 𝑗
is

contained in any element in 𝑉𝑥 Furthermore, all other constraints

in 𝑄 mentioning variable 𝑥 continue to be satisfied, as the only

disjoint/adjacent constraints that are falsified in this construction

involve two variables in 𝐶 where one is an ancestor of the other,

which we assume not to exist by Lemma 3.

6
Since we assume topologies are hierarchies, whenever 𝑎 ⊑ 𝑏, 𝑎 ⊑ 𝑐 hold we have

either 𝑎 ⊑𝑏,𝑏 ⊑𝑐 or 𝑎 ⊑𝑐, 𝑐 ⊑𝑏. Hence, with this refining we are forcing one of these

two cases for every element realizing the original constraints.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Concerning the evaluation, since the graph contains all com-

binations of the corresponding nodes participating in one of the

triples in 𝑄 , and since constraints 𝐶 (𝑥,𝑦) in 𝑄 are realized in all

elements in 𝑉𝑥 ×𝑉𝑦 , we immediately obtain that that evaluation

𝑄 (𝐺) contains all tuples 𝑡 ∈ 𝑉𝑥1 × · · · ×𝑉𝑥𝑛 . We now have a graph

𝐺 with the desired cardinality profile for which

𝑄 (𝐺) ≥ 2

∑
𝑥 ∈𝑥 𝑝𝑥

;

the right item corresponds to 2
𝜌∗ (flat(𝑄 ),(𝑁𝑏 ,𝑛𝑏 ) )

by duality. □

Extending the proof for negated operators. To deal with the re-

maining operators, we need to modify the construction above so

that polygons for constraints 𝑥 ⊓̸ 𝑦 in the constructed graph are not

adjacent but disconnected. We can further show that this modified

construction continues to serve as a lower bound for queries even

if we add an additional constraint that enforces that two regions

are disconnected. Finally, to show the bound for our full query lan-

guage, all we need to do is to use our axioms to rewrite queries so

that they only use adjacency, subset, disjoint and disconnected con-

straints, for which we can apply the result outlined in the previous

paragraph. Details are omitted due to space limitations.

Our proof provides lower bounds even in a restricted topological

space like polygons in R3
. We can even build a worst-case instance

in R2
if topological regions may correspond to a set of disconnected

areas in the plane: for every 𝐶 (𝑥, 𝑥 ′) we create two touching areas

disconnected from all the others, one belonging to the region of 𝑥

and the other of 𝑥 ′. We can further enforce that regions are simple

connected areas if the constraints graph of the query is planar. In

such a case, a planar embedding of its dual produces a set of regions,

one per variable, that touch each other iff they are connected by a

constraint. Those regions play the role of the polygons of Arseneva

et al. [6].

B DETAILS ON THE EXPERIMENTAL RESULTS
Variable elimination order in TopoRing. It is well known that the

order in which variables are eliminated may have a huge impact

in practice on the running times of LTJ [54]. The Ring chooses

the order based on estimating the number of solutions to triple

patterns. We extend such estimations to topological relations using

our data structures. We estimate the cardinality 𝑐 (𝑡) of a topological
constraint 𝑡 as follows: If no variable is bound, 𝑐 (𝑡) is estimated as

the total number of nodes with that topological relation. If 𝑡 is of

the form 𝑥 ⊑𝑦 and 𝑥 is bound, then 𝑐 (𝑡) is estimated as the depth

of the node to which 𝑥 is bound. If instead 𝑦 is bound, then 𝑐 (𝑡) is
estimated to be the number of descendants of the node to which

𝑦 is bound. Those values are computed in constant time with the

data structure for ordinal trees described in Section 3.5. If 𝑡 is of

the form 𝑥 |𝑦 and one of 𝑥 and 𝑦 is bound, then we (under)estimate

𝑐 (𝑡) as the number of adjacency axioms of the descendants of the

bound variable 𝑥 .

Dataset and queries. We extracted all queries containing a single

BGP, filtering those not mentioning topological properties, any

disconnected BGPs that would invoke a Cartesian product, and

BGPs that are duplicate with respect to isomorphism of variables.

We selected two predicates from Wikidata to represent the con-

tainment relation: P150 (contains the administrative territorial entity)

and P131 (located in the administrative territorial entity), and the

predicate P47 (shares boundary with) to represent the adjacency

relation. The data structures presented in Section 5 need to have

a forest on the relation ⊑, but this dataset is, in fact, a directed

acyclic graph. To overcome this problem, we retained only a span-

ning tree of the directed acyclic graph by deleting 1,393,677 triples.

We further include edges for all other predicates in the graph, but

without any special interpretation. The complete resulting dataset

has 𝑁 = 957,450,487 triples (107,836,911 subjects, 242,124,917 ob-

jects, 5,419 predicates, and 𝑛 = 296, 008, 192 unique nodes). From

those triples, 6,881,975 correspond to containment and 499,741 to

adjacency. The selected query log contains 2,782 queries, each of

which mentions at least one of the predicates P150, P131, or P47.

Translating queries to SPARQL. A topological constraint 𝑥 ⊑𝑦 is

translated into the following:

SELECT DISTINCT ?x ?y {
?x (P150|^P131)* ?y .
?x (P150|^P150|P131|^P131|P47|^P47) ?x_e . }

With the auxiliary variable 𝑥_𝑒 , we make sure that the query only

binds 𝑥 to a node that participates in topological relations. A con-

straint of the form 𝑥 |𝑦 is translated into the following syntax:

SELECT DISTINCT ?x ?y {
?x (P150|^P131)* ?x_s .
?y (P150|^P131)* ?y_s .
?x_s (P47|^P47) ?y_s .
FILTER NOT EXISTS {
?x ((P150|^P131)*|(^P150|P131)*) ?y } }

This extended query captures the fact that 𝑥 or a sub-region of 𝑥

touches 𝑦 or a sub-region of 𝑦, and the filter excludes the cases

where 𝑥 contains 𝑦 or vice-versa.

Experimental setup. Experiments were run on a machine with

two Intel Xeon Silver (4316) processors, clocked at 2.30GHz; 251GB

RAM memory clocked at 3,200 MT/s; 40 physical cores each one

with L1i, L1d and L2 caches of size 32KB, 48KB and 1,280KB, respec-

tively; and a L3 cache of size 30MB. The machine runs Linux 5.14.0-

162.22.2.el9_1, in 64-bit mode. The code was compiled with GCC

11.3.1 using flags -msse4.2 -O3 -ffast-math -funroll-loops
-fno-omit-frame-pointer. TopoRing times are averaged over 4

executions. Because they were much slower, Baseline times were

averaged over 2 executions and Virtuoso, Blazegraph and Jena over

1 execution. A timeout of 10 minutes was set per query.

C RELATING MULTIPLE HIERARCHIES
Our representation permits having the elements distributed across

more than one hierarchy, though each element must belong to only

one. This is represented by a set of Hasse diagrams, or as explained,

as a forest of hierarchy trees, and concretely as a concatenation

of their parenthesis sequences. By definition, there cannot be con-

tainment relations between different hierarchies (in particular, an

object cannot be contained in two objects that are not one contained

in the other). We do support having adjacency relations between

different hierarchies, which may fit some applications.

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Worst-Case-Optimal Joins on Graphs with Topological Relations TheWebConf ’25, April 28–May 2, 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Allowing overlaps. In other cases, there may be overlap between
elements from different hierarchies (e.g., two hierarchies of admin-

istrative subdivisions). This information will be considered when

answering whether two regions are disjoint: we said until now that

𝑥 ⊓ 𝑦 ⇔ 𝑥 ⊑𝑦 ∨ 𝑦 ⊑ 𝑥 . We now add another possibility for 𝑥 ⊓ 𝑦
to hold: 𝑥 and 𝑦 are declared to overlap in an axiom (i.e., graph

triple) (𝑥, overlaps, 𝑦). Not-disjointness will then be determined by,

in addition to containment, the overlapping axioms stored in a

binary matrix 𝑂 [𝑖, 𝑗], and enforcing a rule analogous to a2:

o1. If 𝑥 ⊓ 𝑦, 𝑥 ⊑𝑥 ′, and 𝑦⊑𝑦′, then 𝑥 ′ ⊓ 𝑦′.
Our extended algorithm to answer not-disjoint(𝑥, 𝑐) takes the

smallest between two candidates. The first is obtained exactly

as before (we return first (𝑥) if 𝑐 < first (𝑥); else we return 𝑐 if

node(𝑐) ⊑ 𝑥 ; else we return contained(𝑥, 𝑐)). The second is ob-

tained from the matrix 𝑂 much as with touches, yet in simpli-

fied form because rule o1 is simpler than a2 (i.e., it allows re-

turning nodes containing 𝑥): among the cells 𝑂 [𝑖] [ 𝑗] = 1 for

first (𝑥) ≤ 𝑖 ≤ postorder (𝑥), we choose the minimum among the

smallest 𝑗 ≥ 𝑐 , and lca(node( 𝑗), node(𝑐)) for the largest 𝑗 < 𝑐 .

Recall that, in the actual algorithm, we perform four searches on

matrix𝑂 instead of two, to avoid storing each axiom twice. Overall,

this takes time 𝑂 (log𝑛) and stores the overlap axioms only once.

The case for disjoint(𝑥, 𝑐) is analogous: we take the smallest

between two candidates. The first is obtained exactly as before

(we return 𝑐 if 𝑐 < first (𝑥); else, if 𝑐 ≤ postorder (𝑥), we reset

𝑐 ← postorder (𝑥) +1; and in either case return not-contained(𝑥, 𝑐)).
The second candidate is obtained from the matrix 𝑂 much as with

not-touches, for which we showed how to answer queries in time

𝑂 ((ℎ/𝜖) log𝑛) using an 𝑂 (𝜖) fraction of extra space.

Independent hierarchies. If we do need objects to belong to dif-

ferent hierarchies (as in our original Wikidata graph), we can cre-

ate one distinct identifier 𝑖𝑑ℎ per hierarchy ℎ, and add a triple

(𝑖𝑑ℎ, corresponds_to, 𝑖𝑑), where 𝑖𝑑 is the global identifier of the

object. Those triples must be considered in queries, as we should

relate only the global identifier to other nodes. All of these exten-

sions continue to support LTJ’s leap operation in the required time.

More precisely, since there is only one hierarchy per object, the

triples (𝑖𝑑ℎ, corresponds_to, 𝑖𝑑) involve a key constraint. To obtain

the AGM bound for these types of queries one needs to chase these
key constraints, as done by Gottlob et al. [23], but LTJ is still optimal

in this case with respect to the chased query. Hence, our algorithm

maintains worst-case optimality, as stated in Theorem 1.

13


	Abstract
	1 Introduction
	2 Related works
	3 Core Concepts
	3.1 Graph Databases
	3.2 Topological Relations
	3.3 Worst-Case Optimality
	3.4 Leapfrog Triejoin (LTJ)
	3.5 Compact Data Structures

	4 Querying Graphs with Topological Relations
	4.1 Model
	4.2 Algorithms

	5 Containment and Disjointness
	6 Adjacency Constraints
	7 Worst-Case Optimality
	8 Implementation and Experiments
	8.1 Experimental results

	9 Conclusions and Future Work
	References
	A Proofs and missing details
	A.1 Details of Theorem 1
	A.2 Proof of Lemma 1
	A.3 Containment and disjointness with zero or two bound variables
	A.4 Proof of Lemma 2
	A.5 Adjacency with zero or two bound variables
	A.6 Proof of Proposition 2

	B Details on the Experimental Results
	C Relating Multiple Hierarchies

