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Figure 1. 3D Gaussian avatars with accurate and robust physics-based animation. We present MPMAvatar,
a framework for creating 3D Gaussian avatars from multi-view videos, that support physically accurate and
robust animations, especially for loose garments. Ours is also zero-shot generalizable to novel scene interactions.

Abstract

While there has been significant progress in the field of 3D avatar creation from
visual observations, modeling physically plausible dynamics of humans with loose
garments remains a challenging problem. Although a few existing works address
this problem by leveraging physical simulation, they suffer from limited accuracy
or robustness to novel animation inputs. In this work, we present MPMAvatar, a
framework for creating 3D human avatars from multi-view videos that supports
highly realistic, robust animation, as well as photorealistic rendering from free
viewpoints. For accurate and robust dynamics modeling, our key idea is to use
a Material Point Method-based simulator, which we carefully tailor to model
garments with complex deformations and contact with the underlying body by
incorporating an anisotropic constitutive model and a novel collision handling
algorithm. We combine this dynamics modeling scheme with our canonical avatar
that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling
high-fidelity rendering for physically realistic animations. In our experiments,
we demonstrate that MPMAvatar significantly outperforms the existing state-of-
the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2)
rendering accuracy, and (3) robustness and efficiency. Additionally, we present a
novel application in which our avatar generalizes to unseen interactions in a zero-
shot manner—which was not achievable with previous learning-based methods
due to their limited simulation generalizability. Our project page is at: https:
//KAISTChangmin.github.io/MPMAvatar/.

1 Introduction
Creating 3D human avatars has been an important research problem due to their broad range of
applications, including virtual and augmented reality, computer games, and content creation. The
key goals of this field include modeling and learning avatars that support (1) photorealistic rendering
from free viewpoints and (2) realistic animation driven by sparse motion inputs (e.g., SMPL-X [51]
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parameters). On the rendering side, recent approaches based on 3D Gaussian Splatting [22] have
shown remarkable progress in enabling high-fidelity avatar rendering from free viewpoints. However,
realistically animating avatars under novel motion inputs remains a challenging problem, especially
for loose garments. Existing methods typically model these garment motions using piecewise linear
transformations [1, 3, 6, 48, 61, 72, 47, 73] or pose-dependent geometric correctives [5, 35, 38, 39, 65],
but they are known to be limited in accurately capturing complex deformations and tend to overfit to
motions observed during training, as discussed in [78].

To address these limitations, incorporating physics-based prior via physically simulating the avatar
dynamics can be an effective approach to enhance the realism and generalizability of animation.
There are only a few works towards this direction; Xiang et al. [69] proposes an avatar simulated using
X-PBD [41], but their method relies on a time-consuming manual parameter search to approximate
reasonable cloth behavior. PhysAvatar [78] is the most recent physics-based avatar that adopts
C-IPC [31] for garment simulation. However, the simulator fails when the animation inputs, SMPL-
X [51] meshes, have a small degree of self-penetration, which can occur as they are practically
obtained via estimation (e.g,. fitting the parametric model to input observations). This causes C-IPC
to fail to resolve the collision in the Continuous Collision Detection (CCD) stage [31], thus the
driving body meshes are manually adjusted to avoid simulation failures in this method. In terms of
appearance, PhysAvatar relies on mesh-based rendering, which limits its ability to capture fine-grained
appearance details.

In this paper, we propose MPMAvatar, a framework for creating 3D human avatars from multi-view
videos that enables (1) physically accurate and robust animation especially for loose garments, as
well as (2) high-fidelity rendering based on 3D Gaussian Splatting [22]. For garment dynamics
modeling, our key idea is to use a Material Point Method [17] (MPM)-based simulator, which is
capable of simulating objects under complex contacts without failure cases via feedforward velocity
projection. However, directly adopting the existing MPM simulator [17], mainly used for general
object dynamics modeling, introduces two challenges for effective garment dynamics modeling for
our avatar.

First, garments typically exhibit a codimensional manifold structure, and their physical properties
vary significantly depending on the direction (e.g., in-manifold vs. normal directions). Second,
the existing collision handling algorithm [17] of MPM is mainly designed for colliders that are
analytically represented using level sets (e.g., simple geometries such as spheres), which is not
applicable in our scenario where the collider is SMPL-X [51] body mesh underlying the garments.
To address these issues, we tailor our MPM simulator by (1) adopting an anisotropic constitutive
model [16] to better model the manifold-dependent dynamics of garments, and (2) by introducing a
novel collision handling algorithm that can handle more general colliders represented as meshes. We
combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D
Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic
animations.

In our experiments, we demonstrate that MPMAvatar outperforms the current state-of-the-art physics-
based avatar [78] in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3)
simulation robustness and efficiency. Additionally, we present a novel application in which our avatar
generalizes to novel scene interactions in a zero-shot manner – demonstrating the generalizability of
our physics simulation-based dynamics modeling. Our code will be also publicly available to allow
full reproducibility.

Overall, our contributions can be summarized as follows:

• We present MPMAvatar, a novel framework for creating 3D clothed human avatars from
multi-view videos. Our avatar supports physically realistic and robust animations, especially
for loose garments, as well as high-quality rendering.

• We present an MPM [17]-based simulation method carefully tailored for effective garment
dynamics modeling, based on an anisotropic constitutive model [16] and mesh-based collider
handling.

• We empirically demonstrate that MPMAvatar achieves superior performance than the ex-
isting SOTA physics-based avatar (PhysAvatar [78]) in terms of (1) dynamics modeling
accuracy, (2) rendering accuracy, and also (3) simulation robustness and efficiency.

• We show that our physics-based simulation method is zero-shot generalizable to interactions
with an unseen external object. To the best of our knowledge, MPMAvatar is the first to
empirically demonstrate this ability.
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2 Related Work

Physics-based simulation methods. Physics-based simulation methods [46, 41, 21, 30, 31, 17]
simulate object dynamics by solving the governing differential equations (e.g., conservation of
momentum). Position-Based Dynamics (PBD) [46, 41] directly manipulates the positions of particles
to satisfy physical constraints. While it is fast and stable, it is limited in accurately modeling
complex material behaviors due to the lack of explicit physical modeling (e.g., plasticity). Variational
integrators [21], such as IPC [30] and its cloth-specific extension C-IPC [31], formulates simulation
as the iterative minimization of a total energy potential, which is possibly augmented with barrier
terms to robustly handle contact and friction. While C-IPC is effective for simulating cloth and
was thus adopted in the current SOTA physics-based avatar [78], it fails to resolve collisions for
noisy colliders during Continuous Collision Detection (CCD), as discussed in Sec. 1. Some recent
works [37, 33] explore differentiable cloth simulation for inverse problems. However, they primarily
operate in simplified settings without complex colliders, making them less applicable to collision-
heavy scenarios like clothed human avatars. Material Point Method (MPM) [17] simulates continuum
materials by hybridly representing them with Lagrangian particles and an Eulerian grid, and is
known for robust handling of large deformations and self-collisions. Due to these advantages crucial
for simulation stability and accuracy, our work adopts MPM, while further tailoring its simulation
scheme for more effective garment dynamics modeling for our avatar. In a later section (Sec. 5),
we demonstrate that our simulation method outperforms C-IPC used in the SOTA physics-based
avatar [78] in both dynamics modeling accuracy and robustness.

Learning-based simulation methods. Some existing methods [8, 7] use neural network-based
simulators trained on large datasets to implicitly encode physics. However, they have limited
generalizability beyond the training dynamics and cannot guarantee physically plausible deformations,
as object dynamics are predicted by the network. As discussed in [8], this leads to failure cases
when objects move faster or more erratically than in the training data. Thus, directly following the
motivation of the recent physics-based avatar [78], we adopt a physics-based simulation. In Sec. 5,
we additionally show that our MPM-based simulation method is zero-shot generalizable to novel
scene interactions — which is not achievable through learning-based simulation.

Dynamic avatar reconstruction from visual inputs. Learning 3D human avatars from visual inputs
has been an active area of research in computer vision and graphics. Earlier methods rely on (1) a mesh
representation [51, 9, 11, 56, 71, 10, 24, 29, 23, 62], which is computationally efficient but struggles
to capture details for rendering, or (2) an implicit representation [13, 52, 68, 77, 53, 18, 27, 28], which
captures high-frequency geometry and appearance details but complicates dynamics modeling due
to the absence of explicit geometry. Most recent avatar reconstruction methods [20, 36, 45, 49, 79]
use 3D Gaussian Splats (3DGS) [22], which address these limitations by enabling high-fidelity
rendering while using explicit representation, facilitating more effective dynamics modeling. For
modeling avatar dynamics, existing methods often represent garment motions using piecewise linear
transformations [1, 3, 6, 48, 61, 72, 47, 73] or pose-dependent geometric correctives [5, 35, 38, 39, 65].
However, these approaches are limited in their ability to capture complex deformations and tend
to overfit to the training motion data, as discussed in [78]. To enable more realistic and physically
accurate animations, a few works [58, 69, 78] have integrated simulators such as XPBD [41, 58],
C-IPC [31, 70]. However, they require manual parameter search, or manual adjustment for body
mesh colliders to avoid simulation failures, as discussed in Sec. 1. A related line of work, such as
DiffAvatar [34], focuses on generating physically plausible garments from static 3D scans using
differentiable simulation. However, their formulation omits appearance modeling and is tailored for
scan-based asset preparation, rather than dynamic avatar reconstruction from visual observations.
Note that some existing works on garment-only modeling (not the clothed avatars as in our work)
adopt a neural network-based simulator [8, 7, 55], but they do not guarantee physically based behavior
and are known to have limited generalizability compared to physics-based simulators [78].

3 Preliminaries: Material Point Method (MPM)

Material Point Method (MPM) [17] models an object as a continuum, enabling the simulation of
diverse materials including solids, liquids, and gases. MPM advances the simulation by representing
the continuum using both Lagrangian particles and an Eulerian grid and solving two governing
equations: (a) conservation of mass and (b) conservation of momentum:
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(a)
Dρ

Dt
+ ρ∇ · v = 0, (b) ρ

Dv

Dt
= ∇ · σ + ρg, (1)

where ρ and v are density and velocity, respectively. D
Dt denotes the material derivative, σ is the

cauchy stress tensor, and g is the gravitational acceleration. During simulation, physical quantities
such as mass and momentum are two-way transferred between the particles and the grid. Here,
mass conservation is straightforwardly achieved due to the invariant mass carried by Lagrangian
particles, while momentum conservation is performed on the Eulerian grid to efficiently approximate
the spatial derivatives. When solving Eq. 1b for updating momentum on the grid, computing the
cauchy stress tensor σ is the key in capturing the material behavior. More specifically, it is defined as
σ = 1

det(F)
∂ψ
∂FF

T , where F is the deformation gradient that linearly approximates local deformations,
and the strain-energy density function ψ, which depends on F, quantifies the energy stored through
the deformation. For defining ψ, various constitutive models [59, 25, 60] have been developed to
define ψ, such that it can effectively model various material behaviors (e.g. for jelly, snow, sand, and
fluids).

4 MPMAvatar: Photorealistic Avatars with Physics-Based Dynamics

In this section, we present MPMAvatar, a framework that learns 3D human avatars from multi-view
videos that support (1) physically accurate and robust animation and (2) high-quality rendering. In
the following sections, we first describe our avatar representation (Sec. 4.1). We then present our
physics-based approach to modeling avatar dynamics, which is particularly effective for realistically
animating loose garments (Sec. 4.2). Finally, we explain how the proposed physically-based dynamic
avatar can be learned from multi-view video inputs (Sec. 4.3).

4.1 Avatar Representation

To enable both physically realistic animation and high-fidelity rendering, we use a hybrid representa-
tion that combines (1) a mesh with physical parameters to enable physically based animation, and (2)
3D Gaussian Splats [22] for high-quality rendering. Formally, we represent the canonical geometry
of an avatar with a 3D triangular meshM1 = (V1, F), where V1 and F are mesh vertices and faces,
respectively. 1 To model the physics-based dynamics of the geometry, the avatar is also represented
with physical parameters P = (E, ν, γ, κ, ρ, α). It consists of material parameters used for traditional
Material Point Method (MPM) [17] simulation (Young’s modulus E and Possion’s ratio ν), additional
material parameters for anistropic dynamics modeling (shear stiffness γ and normal stiffness κ, which
will be introduced in Sec. 4.2.1), density ρ, and the rest geometry parameter α.

To enable high-fidelity rendering, we represent the avatar appearance with 3D Gaussian Splats [22]
G = {gi}i=1···NG . Each Gaussian Splat gi is parameterized by a translation vector ti ∈ R3, a
quaternion qi ∈ R4, a scale vector si ∈ R3, an opacity oi ∈ R, and color ci represented by spherical
harmonics [22]. Note that our Gaussian Splats are attached to the canonical avatar meshM1, where
each gi is associated with a face ofM1. More specifically, following [54], we define all spatial
parameters of gi in the local coordinate system with respect to its associated mesh face, allowing our
Gaussian Splats to naturally deform according to the underlying mesh deformations.

4.2 Physics-Based Dynamics Modeling

We now explain how we model the dynamics of our avatar discussed in Sec. 4.1 – to achieve highly
realistic and physically grounded animations. Following the existing physics-based avatar [78],
we animate the body (non-garment regions) of the avatar using Linear Blend Skinning [15], while
animating its garments driven by the underlying body motions (represented with SMPL-X [51]
meshes) via physical simulation. For the simulation, we adopt Material Point Method (MPM) [17]
due to its effectiveness in modeling large deformations and robustly handling collisions (Sec. 2).
While MPM is actively adopted in recent 3D scene simulation methods [4, 76, 70], it is mainly used
for modeling the dynamics of general objects (e.g., flower pots, elastic torus).

1While the deformation gradient is also denoted by F, we allow a slight abuse of notation to remain consistent
with notation conventions used in related work.
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Figure 2. Overview of our dynamic avatar modeling. We hybridly represent our canonical avatar with (1)
a mesh with physical parameters for geometry and dynamics modeling, and (2) 3D Gaussian Splats [22] for
appearance modeling (Sec. 4.1). This avatar can be animated via linear blend skinning for non-garment regions
and physical simulation for garment regions (Sec. 4.2.1) with our novel collision handling algorithm (Sec. 4.2.2).
Visualization key. Blue arrows indicate body grid velocities, green arrows denote garment grid velocities, and
red arrows show colliding grid regions where velocity projection is applied.

In this work, we carefully tailor the simulator [17] to achieve more effective modeling of garment
dynamics in our avatar. In particular, we (1) adopt the anisotropic constitutive model [16] to better
model the manifold-dependent dynamics of garments, and (2) introduce a collision handling algorithm
designed to effectively resolve garment-body collisions. In what follows, we further elaborate on
these two modifications.

4.2.1 Anisotropic Dynamics Modeling for Garments

Garments typically exhibit a codimensional manifold structure, and their physical properties vary
depending on it. For example, garments can easily stretch along in-manifold directions, but not along
the normal directions. To accurately model this behavior, we adopt the anisotropic constitutive model
proposed by Jiang et al. [16] underlying our MPM simulator. In particular, they propose to model the
strain energy for anisotropic material depending on each Lagrangian particle’s material directions,
which are approximated using Lagrangian mesh. More specifically, the deformation gradient F at
each particle is compuated as F = dD−1, where D = [D1,D2,D3] ∈ R3×3 is the original material
direction and d = [d1,d2,d3] ∈ R3×3 is the deformed material direction (see Fig. 2). Since the
strain-energy density function ψ must be invariant under rotations, they apply QR-decomposition
F = QR, and ψ is reparameterized as ψ(F) = ψ̂(R), such that:

ψ̂(R|E, ν, κ, γ) = ψ̂normal(R33|κ) + ψ̂shear(R13,R23|γ) + ψ̂in-plane(R11,R12,R22|E, ν),

where ψ̂normal, ψ̂shear, and ψ̂in-plane are functions for penalizing normal deformation, shearing, and in-
plane deformation, respectively (refer to [16] and Appendix C for details). Note that this constitutive
model [16] requires a Lagrangian mesh representing the codimensional object to track the material
directions, which had motivated our avatar representation (Sec. 4.1) based on a hybrid mesh and
Gaussian Splats. As the official implementation of the MPM solver for this constitutive model is not
publicly available, we re-implemented it using PyTorch [50] and Warp [40], and plan to release our
code to facilitate future research.

4.2.2 Collision Handling

We additionally introduce a collision handling algorithm designed to effectively resolve our garment-
body collisions.

Collision handling of MPM [17]. The existing collision handling algorithm of MPM is designed
to be effective for an external object (i.e., a collider) represented as a dynamic level set. In a nutshell,
MPM resolves collisions by projecting the grid velocity of the colliding region of the object onto the
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collider’s tangent space, preventing penetration while modeling tangential motion. Technically, this
requires evaluating the velocity and normal of the collider at the Eulerian grids nearby the colliding
regions, which are not strictly on the collider surface. MPM originally enables these evaluations
by considering colliders whose geometry and velocity fields are analytically defined over all points
x ∈ R3 in the ambient 3D space, e.g., a sphere geometry ϕ(x) = ∥x− c∥ − r, where c and r denote
center and radius, respectively. However, our collider is a SMPL-X [51] mesh representing the body
underlying the garment, thus it is not trivial to directly adopt this algorithm.

Our algorithm. To address the above limitation, we introduce a simple yet effective collision
handling algorithm for MPM to support colliders represented as meshes. Note that, in this case,
normal or velocity is defined only on the collider surface, not at all Euclidean grid nodes. To address
this, our idea is to transfer these quantities to nearby grid nodes using B-spline weights, directly
analogical to particle-to-grid transfer in MPM simulation. In Fig. 2, we outline our overall collision
handling procedure consisting of two stages: (1) mesh–to–grid transfer (upper row) and (2) relative
velocity projection (lower row). In the mesh-to-grid transfer stage, we transfer each collider face’s
velocity vf and normal nf to nearby grid nodes using B-Spline weights, producing the extended
collider velocity vci and normal nci at each grid node i. In the relative velocity projection stage, we
first transform the grid velocity into the collider mesh’s reference frame by subtracting the collider
velocity vci . If the relative velocity points inward, we project out its normal component. Finally, we
transform the corrected velocities back into the world frame. It is worth noting that the complexity
of the existing collision handling algorithm of MPM is O(N3

grid), where Ngrid is the grid resolution,
as it requires evaluating the level set function at all grid nodes for collision check. In contrast, the
complexity of our collision handling algorithm is O(Nf), where Nf is the number of the collider mesh
faces. As it is usually Nf ≪ N3

grid (note that Nf ≈ 20K and N3
grid ≈ 8M in our case), our approach

based on a mesh-based collider is extremely more efficient, as well as reflecting a more practical
scenario.

Summary. Using our tailored MPM-based simulator, we can effectively model the anisotropic
dynamics of garments under complex collisions with the underlying body meshes. Later in the
experiments (Sec. 5), we show that our simulation scheme leads to SOTA dynamics accuracy.

4.3 Learning from Multi-View Videos

We now explain how our avatar outlined in the previous sections can be learned from multi-view video
inputs. As a preprocessing step, we first perform 3D mesh tracking on the input frames to capture
dense temporal geomety correspondences, which are used to supervise the subsequent learning stages.
In particular, we use the mesh tracking algorithm of the existing physics-based avatar work [78],
which assumes that a mesh at the first frameM1 = (V1,F) is given (e.g., from an off-the-shelf
static scene reconstruction method), and optimizes the deformed meshes at the subsequent frames
(Mi)i=2···T , where Mi = (Vi,F), based on a rendering loss. For more details on the tracking
algorithm, we refer the reader to [78]. In the following, we focus on explaining how the physical
dynamics (Sec.4.3.1) and appearance (Sec.4.3.2) of our avatar can be learned.

4.3.1 Physical Parameters Learning

We now explain how we learn the physical parameters used to model our garment dynamics. Given the
canonical avatar meshM1 obtained from the prior mesh tracking stage, the set of physical parameters
associated withM1 is defined as P = (E, ν, γ, κ, ρ, α), as previously discussed in Sec. 4.1. Note that
E, ν, γ, and κ are material parameters used for our Material Point Method (MPM) [17] simulation.
Following the recent inverse physics work based on MPM [76], which found that Young’s modulus
E is the key parameter dominating the dynamic behavior and thus fixed the rest of the parameters,
we also fix ν, γ, κ to their default values and focus on learning the other parameters—E, ρ, and α to
mitigate over-parameterization. In the following, we specifically focus on elaborating on our newly
introduced parameter α, used for rest geometry modeling.

Rest geometry modeling. MPM [17] internally computes forces based on the deformation gradient
relative to the object’s rest geometry (i.e., the canonical geometry in the unstressed state, without
external forces such as gravity). Note that existing approaches [4, 76] based on MPM typically
assume ideal conditions, i.e., having the initial frame correspond to an undeformed rest state, limiting
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their applicability in real-world scenarios. In our case, the canonical geometryM1 is obtained from
real-world observations and is therefore already deformed by gravity. To correct this, we additionally
introduce a simple parameter α ∈ [0, 1] to compensate for gravity-induced deformation and learn the
unseen rest geometry of the avatar. Formally, for each edge vector e inM1, we decompose it into two
components: eg , the projection of e onto the gravity direction g, and e⊥, the component orthogonal
to g, such that e = eg + e⊥. Using α, we simply model each edge erest in the rest geometry as:
erest = e⊥ + α eg, where α determines the extent to which the stretch in the gravity direction is
compensated. α is optimized end-to-end along with other physical parameters via inverse physics.

Learning physical parameters. We aim to learnE, ρ, and α such that the simulated mesh dynamics
closely model the real-world garment motions. Given the canonical mesh at the first frameM1, we
simulate its future states using our MPM-based simulator (Sec. 4.2) and the physical parameters P ,
resulting in simulated meshes (M̂i)i=2,...,T over frames [2, T ]. We then optimize the parameters
E, ρ, and α by minimizing the vertex-to-vertex L2 loss between the simulated meshes and the
tracked meshes (Mi)i=2,...,T capturing geometric dynamics from the input video. Following [78],
we perform this optimization using a finite-difference approach. For more implementation details, we
kindly refer the reader to Appendix B.1.

4.3.2 Appearance Learning

For learning the appearance of our avatar, we optimize the parameters of 3D Gaussian Splats G
defined on the canonical geometryM1 at t = 1. As discussed in Sec. 4.1, the spatial parameters
of gi are defined in the local coordinate system with respect to its parent mesh face, allowing it to
naturally deform according to the underlying mesh deformations. Using this, we first deform G to the
other frames at t ∈ {2, . . . , T} based on the tracked mesh deformations (Mi)i=1,...,T , and render
them across all input views and timesteps. We then compute the loss by measuring the photometric
discrepancy between the rendered images and the ground-truth images across all training frames and
views. We finally optimize the parameters of G via gradient descent to minimize this loss.

Note that the preprocessing mesh tracking stage, which we adopt from [78], also employs 3D
Gaussian Splats as a surrogate representation to incorporate rendering loss for optimizing meshes.
However, it learns the Gaussian colors independently for each frame1. In contrast, we learn G from all
input frames and views to better capture regions that are occluded in some views but visible in others,
while still leveraging the previously learned surrogate Gaussian Splats for parameter initialization.
Please refer to Appendix B.2 for the details.

Quasi-shadowing. When rendering our avatar using G via 3D Gaussian Splatting, we additionally
apply quasi-shadowing to enhance rendering fidelity. Following the prior work [2], we model self-
shadowing by leveraging a neural network trained on ambient occlusion features extracted from the
mesh in our hybrid avatar representation. Specifically, we modulate the color of each Gaussian Splat
gi using a shading scalar wp ∈ [0, 1], predicted by the network, to obtain the final color.

5 Experiments

5.1 Experimental Setup

For experimental comparisons, we mainly follow the setup used in the state-of-the-art physics-based
avatar work (PhysAvatar [78]) to perform fair comparisons.

Dataset. We perform our main evaluations on (1) ActorsHQ [14]. In particular, we select four
subjects used in [78]: two characters in loose dresses and two characters in two-piece outfits. For
training each subject, we use 24 frames with large cloth dynamics for physical parameter learning
and 200 frames for appearance learning. For testing, we use 200 unseen frames per subject. Whereas
the existing work [70] only uses ActorsHQ for evaluation, we additionally include four sequences
from (2) 4D-DRESS [66] dataset, to perform more extensive comparisons. We use two subjects in
tops and skirts and two in tops and tight jeans. For training, we use 11 frames for physical parameter
learning and 100 frames for appearance learning, while testing was carried out on 100 unseen frames.

1Note that the existing work [78] with this mesh tracking method discards the surrogate Gaussian Splats and
resorts to mesh-based rendering for its avatar.
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PhysAvatar [78] Ours Ground Truth PhysAvatar [78] Ours Ground Truth
(a) Results on ActorsHQ [14] (b) Results on 4D-DRESS [66]

Figure 3. Qualitative results on test frames in the ActorsHQ [14] and 4D-DRESS [66] datasets. Our method
outperforms PhysAvatar [78] in appearance by rendering sharper, less blurred textures with finer detail and in
geometry by recovering folds and wrinkles that more closely match the ground truth.

Table 1. Quantitative comparisons on ActorsHQ [14] and 4D-DRESS [66] datasets. Bold indicates the best
scores, and underline indicates the second best scores. Our proposed method achieves the best results across all
geometry and appearance metrics on both benchmarks.

Method Geometry Appearance
CD (×103) ↓ F-Score ↑ LPIPS ↓ PSNR ↑ SSIM ↑

(a) Results on ActorsHQ [14] dataset.

A ARAH [65] 1.12 86.1 0.055 28.6 0.957
B TAVA [32] 0.66 92.3 0.051 29.6 0.962
C GS-Avatar [12] 0.91 89.4 0.044 30.6 0.962
D PhysAvatar [78] 0.55 92.9 0.035 30.2 0.957
E MPMAvatar (Ours) 0.42 95.7 0.033 32.0 0.963

F − Anisotropy 6.24 90.3 0.039 28.7 0.957
G − Physics 0.69 92.9 0.039 31.0 0.962
H − Shadow - - 0.033 31.8 0.963

(b) Results on 4D-DRESS [66] dataset.

A PhysAvatar [78] 0.37 96.6 0.022 33.2 0.976
B MPMAvatar (Ours) 0.33 97.2 0.018 34.1 0.977

Baselines. We use the same baselines as in [78], which are four open-sourced avatar reconstruction
methods: ARAH [65], TAVA [32], GS-Avatar [12], and PhysAvatar [78]. Here, PhysAvatar is the
most related baseline to ours, as it is the state-of-the-art work on physics-based avatar. As we
already discussed in Sec. 1, PhysAvatar’s simulator fails when driving body mesh colliders have
self-penetrations. While the original work manually adjusted the body meshes to avoid simulation
failures, these meshes are not publicly available after requests. Therefore, we minimally excluded the
faces of the body mesh collider during collision check to prevent their simulation failure.

Evaluation Metrics. To assess our dynamics modeling accuracy, we compute Chamfer Distance
(CD) [44] and F-Score [64] between the simulated and the ground truth meshes. For F-Score, we
set the threshold τ to 0.001. For evaluating our rendering accuracy, we measure Learned Perceptual
Image Patch Similarity (LPIPS) [75], Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity
Index Measure (SSIM) between the rendered and the ground truth images.

5.2 Experimental Comparisons

Simulation and rendering accuracy. Tab. 1(a) (Rows A-E) and Tab. 1(b) show our main com-
parison results on the ActorsHQ [14] and 4D-DRESS [66] datasets, respectively. Ours achieves the
best results across all geometry metrics on both benchmarks, validating that the animated geometry
using our MPM [17]-based simulation models the most accurate avatar dynamics. Ours also achieves
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Ours Ground Truth Ours− Anisotropy Ground Truth− Shadow− Anisotropy − Physics
(a)  Full ablation study results (b)  Failure case of  − Anisotropy

Figure 4. Qualitative ablation study results.

the best results across all appearance metrics, which shows that 3D Gaussian Splatting [22] with
quasi-shadowing with the ambient occlusion prior extracted from a mesh can be an effective ren-
dering scheme. In Fig. 3, we also show the qualitative comparisons against our most competitive
baseline: PhysAvatar [78]. Our method captures complex cloth deformations (e.g., subtle wrinkles)
more closely to the ground truth, and our rendering based on 3D Gaussian Splatting [22] can more
effectively capture high-frequency appearance details (e.g., complex cloth patterns) than PhysAvatar
based on mesh-based rendering.

Robustness and efficiency. In Tab. 2, we show the simulation success rate and per-frame simulation
time on the ActorsHQ [14] benchmark – compared to PhysAvatar [78]. The success rate measures
the average ratio of successfully simulated frames to the total number of evaluation frames, where we
mark a frame as a failure if the simulation does not terminate within 20 hours for the single frame.
For this evaluation, we disabled the manual relaxation of the collision check for PhysAvatar, which
we originally applied to prevent its simulation failures (Sec. 5.1). The success rate of PhysAvatar is
37.6% while ours is 100%, validating that ours exhibit significantly higher robustness.

For simulation time, we report the average per-frame simulation time over the test sequence. Notably,
we re-applied the manual relaxation of the collision check in PhysAvatar, as its simulation fails to
terminate without this adjustment. As shown in the table, our method achieves a simulation time of
1.1 seconds per frame, compared to 170.0 seconds for PhysAvatar, demonstrating significantly better
efficiency. Note that PhysAvatar [78]’s iterative solver (C-IPC [31]) takes a long time to converge for
resolving complex collisions, whereas our feed-forward MPM simulator runs much faster.

Table 2. Simulation robustness and efficiency comparisons with PhysAvatar [78]. Bold indicates the best
scores. All scores are evaluated on the Actors-HQ dataset [14].

Method Success Rate (%) ↑ Simulation Time (s) ↓

A PhysAvatar [78] 37.6 170.0
B MPMAvatar (Ours) 100.0 1.1

5.3 Ablation Study

Anisotropic constitutive model. − Anisotropy denotes our method variant which does not use
an anisotropic constitutive model [16]. As shown in Tab. 1 (Row F), this variant results in large
degradation in dynamics modeling accuracy, as it does not effectively model the manifold-dependent
behaviors of cloths. Few cases even have severe tearing artifacts, as shown in Fig. 4b.

Physical parameters learning. − Physics denotes our method variant where all the physical
parameters are fixed to their default values without learning. As shown in Tab. 1 (Row G), this results
in suboptimal dynamics modeling accuracy, highlighting the importance of our inverse physics. In
Fig. 4, we visually show that this variant leads to less accurate estimation of cloth deformations.

Quasi-shadowing. − Shadow denotes our method variant where quasi-shadowing is not used for
rendering. As shown in Tab. 1 (Row H), this results in degradation in PSNR. In Fig. 4, we qualitatively
show that its rendering result exhibits significantly less realism than ours with shadowing.
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5.4 Application: Zero-shot Scene Interaction

As an additional application, we showcase that our physics-based simulator is zero-shot generalizable
to interactions with external objects unseen during training. In the right subfigures of Fig. 1, our
avatar garments are naturally deformed as interacting with a chair or sand. This generalizability
can be achieved as our physics-based simulator explicitly leverages the physics prior, unlike in
learning-based simulators [8, 7] known to be less effective in modeling unseen dynamics. We also
note that, owing to the versatility of MPM [17] in handling diverse materials, our framework supports
interactions with deformable particles (e.g., sand), while simulators like C-IPC [31] are limited to
mesh-based simulations. Please see Appendix A for more interaction examples of ours.

6 Conclusion

We presented MPMAvatar, a framework for creating 3D human avatars from multi-view videos that
supports (1) physically accurate and robust animation, as well as (2) high-fidelity rendering. Our
Gaussian Splat-based avatar is animated based on a carefully tailored MPM-based simulator designed
for effective garment dynamics modeling, enabling physically grounded animations.

Limitations. Although our avatar outperformed the existing state-of-the-art physics-based avatar
method [78] in both appearance and geometry, it does not support relighting as in [78]. Also, for
animation, we directly followed [78] and modeled the dynamics of non-garment regions via linear
blend skinning, but this can be further improved, e.g., by using strand-based simulation for hair. We
refer to Appendix D for a more detailed discussion of limitations and future works.
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A Additional Results

In the supplementary video (available on the project page), we show additional qualitative results of
our experiments.
Qualitative Comparisons (Sec. A.1). We present our video results in comparison with PhysA-
vatar [78], a state-of-the-art physics-based avatar method. Our approach consistently achieves more
accurate garment dynamics and higher rendering quality.
Additional Qualitative Results (Sec. A.2). We also include additional qualitative results of our
method on (1) novel pose driving and (2) zero-shot scene interactions. For novel pose driving, our
method accurately models garment deformation driven by motions from the AMASS [42] dataset,
which contains relatively more dynamic motions than our training motions in [14, 66]. For novel
scene interactions, our method models plausible interactions between garments and a variety of
materials (e.g., cushion, sand), as well as mesh-based colliders (e.g., chair, rotor) that were unseen
during training. This generalization is attributed to (1) the versatility of MPM [17] and (2) our
effective mesh-based collision handling method.
Ablation Results (Sec. A.3) In the supplementary video, we additionally validate each of the
key components of our method: (1) the constitutive model for anisotropic elastoplasticity [16], (2)
physical parameter learning, (3) quasi-shadowing, and (4) rest-geometry modeling. In the fourth
ablation, we directly use the canonical geometry as the rest geometry. Specifically, we optimize only
Young’s modulus E and density ρ, while keeping the rest geometry parameter α fixed at 1. Each
component is shown to be critical for accurate dynamics and appearance modeling.
Quantitative Evaluation of Physical Plausibility (Sec. A.4). While we focuses on evaluating
geometric and appearance fidelity which are the standard metrics in recent physics-based avatar
methods [78, 69], the physical plausibility and contact accuracy are also important aspects to assess.
However, quantitatively measuring these properties is challenging due to the lack of ground-truth
physical annotations in real-world RGB datasets [14, 66].

Nevertheless, to provide additional insights, we report two metrics that we find to reflect physical
plausibility and contact quality in practice. First, we measure the average cloth-body Penetration
Depth, defined as the mean of max(0,−d) where d is the signed distance from each cloth vertex to
the SMPL-X [51] body. As shown in Tab. 3, our method significantly reduces penetration depth over
6× lower than PhysAvatar [78], indicating better contact handling.

For the second metric, we adopt the Key Physical Phenomena Detection metric proposed in Phy-
GenBench [43], which computes a plausibility score using a VLM based on how well a given video
aligns with physical plausibility prompts. In Tab. 3, we show that our method achieves a plausibility
score closer to the ground-truth upper bound than PhysAvatar [78], indicating better alignment with
the physical plausibility prompts.

Table 3. Quantitative evaluation of physical plausibility and contact quality. To complement standard
geometry and appearance metrics, we additionally report two metrics that we find to reflect physical plausibility
and contact behavior in practice. Specifically, we measure the average penetration depth (mm) and the Key
Physical Phenomena Detection score [43] on the ActorsHQ [14] dataset. Our method achieves significantly
lower penetration and a higher plausibility score compared to PhysAvatar [78], indicating improved contact
handling and physical realism.

Method Penetration Depth (mm) ↓ Key Physical Phenomena Detection ↑

A PhysAvatar [78] 0.294 1.78
B MPMAvatar (Ours) 0.047 1.83

C Ground Truth - 1.86

Additional Ablation Results on Hyperparameters (Sec. A.5) To demonstrate that our pipeline
remains robust across different simulation setups, we conducted an additional ablation study on the
ActorsHQ [14] benchmark, where we evaluated the framework’s performance while varying key
hyperparameters. In Tab. 4, we observe that variations in (1) time substeps (Rows C-D), (2) physical
parameter initialization (Rows E-I), and (3) mesh triangle numbers (Rows J), do not significantly
affect the final performance; notably, all variants outperform PhysAvatar [78] by a clear margin across
all metrics. Note that for grid resolution, the grid and particle resolutions should be roughly aligned
to enable stable momentum transfer between the two representations during MPM simulation, which
is also a common convention adopted in many existing MPM-based methods [4, 70]. Therefore, we
omitted further ablation on this aspect.
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Table 4. Ablation study on simulation hyperparameters. To examine the robustness of our pipeline, we
ablate key simulation hyperparameters on the ActorsHQ [14] dataset. Specifically, we vary (1) the number of
time substeps N (Rows C–D), testing half and double our default value (N = 400), (2) the initialization of
physical parameters ρ and E (Rows E–I), including 2× and 0.5× our defaults (ρ = 1.0, E = 100) as well as
random initialization within plausible ranges, and (3) the number of mesh triangles (Row J), reducing it to one
quarter of the original resolution. Across all variants, our method consistently outperforms the prior state of
the art [78], showing strong robustness to hyperparameter configurations. Bold indicates the best scores, and
underline indicates the second best scores.

Method Geometry Appearance
CD (×103) ↓ F-Score ↑ LPIPS ↓ PSNR ↑ SSIM ↑

A PhysAvatar [78] 0.55 92.9 0.035 30.2 0.957
B MPMAvatar (Ours) 0.42 95.7 0.033 32.0 0.963

C Ours (N = 800) 0.42 95.6 0.033 32.0 0.963
D Ours (N = 200) 0.42 95.6 0.033 32.0 0.963

E Ours (ρ = 0.5, E = 100) 0.42 95.7 0.034 32.0 0.963
F Ours (ρ = 2.0, E = 100) 0.42 95.6 0.034 32.0 0.963
G Ours (ρ = 1.0, E = 50) 0.42 95.6 0.034 32.0 0.963
H Ours (ρ = 1.0, E = 200) 0.42 95.7 0.034 32.0 0.963
I Ours (randomly initialized) 0.43 95.5 0.033 32.0 0.963

J Ours (0.25× triangles) 0.44 95.4 0.033 32.1 0.964

Table 5. Quantitative comparison against concurrent baselines on the ActorsHQ [14] dataset. Bold and
underlined values indicate the best and second-best scores, respectively. Our method consistently outperforms
recent baselines across all geometry and appearance metrics, highlighting the advantage of physics-based
simulation.

Method Geometry Appearance
CD (×103) ↓ F-Score ↑ LPIPS ↓ PSNR ↑ SSIM ↑

A Gaussian Garments [55] 2.39 86.5 0.042 29.5 0.959
B MMLPHuman [74] 0.47 94.9 0.039 29.3 0.954
C MPMAvatar (Ours) 0.42 95.7 0.033 32.0 0.963

Gaussian Garments [55] MMLPHuman [74] Ours Ground Truth

Figure 5. Qualitative comparison against concurrent baselines on the ActorsHQ [14] dataset. We compare
our method with two recent concurrent methods: Gaussian Garments [55] and MMLPHuman [74]. Gaussian
Garments [55] struggles to produce physically accurate deformations, while MMLPHuman [74] exhibits
unnatural surface artifacts or discontinuities under challenging poses. In contrast, our method yields more
realistic and plausible garment dynamics and geometry.

Comparison with Additional Concurrent SOTA Baselines (Sec. A.6) To further validate our
approach, we additionally compare our method against two recent concurrent state-of-the-art avatar
reconstruction methods: Gaussian Garments [55] and MMLPHuman [74]. Gaussian Garments
replaces explicit simulation with a learned dynamics module based on graph neural networks, while
MMLPHuman models geometry and appearance solely as a function of pose using multiple MLPs.

For both Gaussian Garments [55] and MMLPHuman [74] experiments, we ensure a fair comparison
by aligning key experimental components with our method. For Gaussian Garments [55], we replace
our MPM-based simulation with the learning-based garment simulator from ContourCraft [7], which
serves as the simulation backend of Gaussian Garments [55], while keeping the tracked meshes and
rendering pipeline identical to ours. Since Gaussian Garments [55] models the human body using
only SMPL-X [51] without explicit body appearance modeling, we also use our body modeling
setup to ensure a consistent evaluation environment. For MMLPHuman [74], we follow the official
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implementation and evaluation protocol, and additionally use the same template mesh as in our
method.

As shown in Fig. 5 and Tab. 5, our method outperforms both baselines across all geometry and
appearance metrics. The learned simulator in Gaussian Garments [55] struggles to capture physical
laws under our setting, where physical parameters must be estimated from only one second of motion,
leading to high geometric error. Meanwhile, MMLPHuman [74] lacks explicit surface modeling and
physical understanding, producing unrealistic surface artifacts or broken geometry when encountering
unseen poses. These results demonstrate the advantage of our physics-based modeling pipeline for
reconstructing accurate and plausible dynamic avatars.

B Implementation Details

B.1 Physics-Based Dynamics Modeling

Collision handling. In Alg. 1, we outline our collision handling algorithm. After parameter
initialization (lines 1-3), we iterate over every face f in the collider mesh and transfer its velocity vf
and normal nf to nearby grid nodes based on B-Spline weights (lines 5-11). This yields the extended
velocity vci and normal nci of the collider at grid node i. Then, given the velocity of the simulating
object vi at grid node i, if the vector vi − vci points inward, we project out the normal component —
keeping only the tangential part — to model collision (lines 13–24). Note that this entire procedure
runs in O(Nf) time, as collision checks become simple B-Spline weight lookups rather than costly
level-set queries at all grid nodes.

Algorithm 1 Collision Handling

1: for each i in a set of grid node indices do
2: vci ,n

c
i ← 0,0; ▷ Initialize the zero-value grids for collider

3: end for
4:
5: for each f in a set of collider mesh faces do
6: for i in a set of neighboring grid nodes of xf do
7: wcif ← Bspline(xf ,xi); ▷ Compute interpolation weights using B-spline kernel
8: vci ← vci + wcifvf ;
9: nci ← nci + wcifnf ;

10: end for
11: end for
12:
13: for each i in a set of grid node indices do
14: wci ←

∑
f w

c
if

15: if wci > 0 then ▷ Detect whether a collision has occurred
16: vci ← vci /w

c
i ;

17: nci ← nci/∥nci∥;
18: vreli ← vi − vci ; ▷ Transform velocities into the collider’s reference frame
19: if vreli · nci < 0 then ▷ Check if the relative velocity points inward toward the collider
20: vreli ← vreli − (vreli · nci )nci ; ▷ Project relative velocity onto the collider’s tangent space
21: end if
22: vi ← vreli + vci ▷ Transform velocities back into world frame
23: end if
24: end for

Physical parameters learning. As discussed in Sec. 4.3.1 in the paper, we optimize Young’s
modulus E, density ρ, and rest geometry parameter α by simulating the first-frame canonical
meshM1 = (V1,F) and minimizing the vertex-wise L2 error with respect to the tracked meshes
(Mi)i=2,...,T , whereMi = (Vi,F).

In particular, let the initial mesh vertices be V̂1 = V1. Then, for each subsequent frame, we obtain
the simulated mesh vertices via

V̂i+1 = MPM(V̂i,V1,F,P), (2)

where P = (E, ν, γ, κ, ρ, α) are our physical parameters.
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Here, the canonical vertices V1 and faces F provide the fixed mesh topology used to compute edge
vectors and material directions, which in turn define the deformation gradients for the anisotropic
constitutive model inside the MPM simulation.

We then perform gradient-based optimization for ρ, E and α, such that they minimize the loss

Lphys(P) =
T∑
i=2

∥V̂i −Vi∥2. (3)

Here, each parameter’s gradient is approximated using finite differences – following PhysAvatar [78].
For example, the gradient with respect to density ρ is computed as

∂Lphys

∂ρ
≈ (Lphys(E, ν, γ, κ, ρ+∆ρ, α)− Lphys(E, ν, γ, κ, ρ, α))/∆ρ, (4)

where ∆ρ is the perturbation size.

Training details.

Our MPM simulation uses a time step of ∆t = 0.04 with N = 400 substeps and a grid resolution
of 200. We optimize the physical parameters over 200 iterations using the Adam optimizer. For
finite-difference gradient estimation, the perturbation sizes are set to ∆ρ = 0.05, ∆E = 5, and
∆α = 0.005. The corresponding learning rates are 0.01 for ρ, 0.3 for E, and 0.01 for α. All
parameters are initialized as ρ = 1.0, E = 100, and α = 1.0 for physical parameter learning, while
ν, γ, and κ are fixed at their default values of 0.3, 500, and 500, respectively.

Following PhysAvatar [78], we adopt a stage-wise training scheme: the physical parameters are
optimized first and the tracked meshes remain fixed throughout. Appearance learning is then
performed independently based on the same tracked meshes (see Sec. 4.3).

Simulation time and computing resource. As noted in the main paper (Sec. 5.2), our simulation
runs at approximately 1.1 seconds per frame on a single NVIDIA GeForce RTX 4090.

B.2 Appearance Learning

For the appearance learning (Sec. 4.3.2 in the paper), we leverage the dense temporal correspondences
from the tracked meshes (Mi)i=1...T to transform the canonical Gaussians G (defined in the first
frame) into each subsequent frame. Following [54], we compute the transformations that carries
every Gaussian from its parent triangle in the canonical mesh to the corresponding triangle in the
target frame. This allows us to render all training frames [1, . . . , T ] using a single shared appearance
model G, such that it can be learned jointly from all input views and frames by minimizing:

Lapp = Lrgb + λpLposition + λsLscaling. (5)

Here, Lrgb measures the photometric discrepancy between the rendered and the ground truth images
over all frames and views, and is defined as a weighted sum of L1 loss L1, SSIM [67] loss LSSIM,
and LPIPS [75] loss LLPIPS:

Lrgb = λ1L1 + λSSIMLSSIM + λLPIPSLLPIPS. (6)

In Eq. 5, Lposition = ∥max(µ, ϵp) ∥2 and Lscaling = ∥max(s, ϵs) ∥2 regularize the location offset µ
and the scale s of each Gaussian not to exceed the thresholds ϵp = 1.0 and ϵs = 0.6. This is to
encourage the Gaussians to remain closely aligned with their parent triangle structures.

When optimizing the parameters of G, we follow the standard 3DGS optimization procedure [22]
and employ adaptive density control to increase the number of Gaussians in regions with high
reconstruction error. For the loss weighting hyperparameters, we set λ1 = 0.8, λSSIM = 0.2,
λLPIPS = 0.2, λp = 1.0, and λs = 1.0.
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C Anisotropic Constitutive Model

In this section, we provide additional details on the anisotropic constitutive model used in our
MPM simulation framework, to complement the explanation provided in Sec. 3 and Sec. 4.2.1 of
the main paper. This elaboration aims to help readers better understand how our method captures
direction-dependent garment dynamics.

As explained in Sec. 3, we employ the Material Point Method (MPM) [17] to simulate the evolution
of deformable objects by solving two governing equations: conservation of mass and conservation
of momentum (Eq. 1). Among these, conservation of momentum governs the time evolution of
velocity, and its simulation hinges on the computation of the Cauchy stress tensor σ. This stress
tensor depends on the deformation gradient F and the strain-energy density function ψ via

σ =
1

det(F)

∂ψ

∂F
F⊤,

where ψ is defined by a material-specific constitutive model.

As introduced in Sec. 4.2.1, we adopt the anisotropic constitutive model proposed by Jiang et al. [16],
which is particularly well-suited for modeling thin, codimensional structures like garments. This
model captures how cloth exhibits strong resistance to compression and shearing along the surface
normal while remaining flexible along in-plane directions.

To compute the deformation gradient F at each particle, the model uses local material directions
derived from a Lagrangian mesh. Specifically,

F = dD−1,

where D = [D1,D2,D3] denotes the canonical (undeformed) material directions and d =
[d1,d2,d3] denotes the corresponding deformed directions. Since the strain energy function ψ
must be invariant under rotations, the model applies QR decomposition F = QR and reparameter-
izes the energy as a function of the upper-triangular matrix R:

ψ(F) = ψ̂(R) = ψ̂normal + ψ̂shear + ψ̂in-plane,

where each term independently penalizes a specific type of deformation.

The normal component penalizes compression along the surface normal:

ψ̂normal(R33|κ) =
{
κ
3 (1−R33)

3 if R33 ≤ 1,

0 otherwise,

reflecting the assumption that cloth is typically surrounded by air and thus can freely expand but
should resist compression.

The shear component penalizes off-diagonal shear deformation between in-plane and normal direc-
tions:

ψ̂shear(R13,R23|γ) =
γ

2
(R2

13 +R2
23),

which stabilizes the material frame by discouraging bending or tilting out of plane.

The in-plane component models isotropic stretching within the tangent plane using a fixed-corotated
formulation:

ψ̂in-plane(R11,R12,R22|E, ν) =
E

2(1 + ν)
((σ1−1)2+(σ2−1)2)+

Eν

2(1 + ν)(1− 2ν)
(σ1σ2−1)2,

where σ1, σ2 are the singular values of the in-plane matrix

R2×2 =

[
R11 R12

0 R22

]
.

This overall anisotropic formulation provides the strain-energy density ψ needed to compute the
stress tensor σ in the momentum equation (Eq. 1b), thereby enabling our simulator to capture realistic
garment behavior with directionally varying stiffness. This detailed model plays a central role in
achieving the accurate and physically plausible dynamics demonstrated in our results.
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D Limitations and Future Work

While our method achieves state-of-the-art performance in both appearance and physical dynamics
modeling, we acknowledge several limitations and outline potential directions for future work.

Scalability of Finite-Difference Optimization. Our physical parameter optimization adopts a
finite-difference scheme, which scales linearly with the number of parameters. While this remains
practical for our current setting, where per-garment material parameters suffice due to limited intra-
garment heterogeneity, extending to fine-grained parameterizations (e.g., per-vertex) would increase
computational cost. As a mitigation strategy, incorporating differentiable simulators [37, 33] may
improve scalability in future applications.

Relighting. Our current framework does not support relightable rendering. However, recent
methods [19, 57] have proposed relighting-aware extensions for Gaussian avatars, and our hybrid
representation is compatible with such techniques. We consider this a promising direction to further
enhance rendering realism.

Occlusion-Aware Generalization. Our pipeline directly optimizes appearance only in regions
visible in the multi-view training frames. Consequently, when previously occluded or unseen parts
(e.g., the back side of the avatar) become visible under novel poses or viewpoints, rendering quality
may degrade. Recent works have explored generative priors to inpaint unobserved regions [26], or
diffusion-based view synthesis to generate pseudo multi-view supervision from monocular videos [63].
Incorporating such approaches into our pipeline could improve generalization to occluded or unseen
regions.

E Societal Impact

Our method enables physically accurate dynamic human avatar reconstruction from multi-view
videos, supporting a wide range of applications in virtual reality, digital fashion, and entertainment.
However, the capability to generate lifelike avatars also introduces potential risks, such as the misuse
of the technology for creating deepfakes or other forms of deceptive content. When publishing
our code, we will consider embedding traceable digital watermarks or developing authentication
mechanisms to ensure the responsible use of generated avatars.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we summarized the paper’s contributions and scope in the abstract and
the introduction, and our claims match the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly acknowledge in the conclusion (Sec. 6) that our method does not
support relighting and that our dynamics modeling for non-garment regions can be further
improved.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21



Answer: [NA]
Justification: Our work is application-focused and does not present any new theoretical
results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our primary contributions are the novel simulation-based avatar framework.
All components of this framework are described in the Method section (Sec. 4), and the
implementation details are provided in the supplementary document.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the code was not submitted with the paper due to the need for fur-
ther cleanup, we plan to release it before publication to allow full reproducibility of our
experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our training and test protocols are outlined in the Experimental Setup section
(Sec. 5.1), with further details provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We were unable to perform comprehensive significance testing or include error
estimates due to computational resource limitations. However, we will include them in the
revision.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report our per-frame simulation time in Sec. 5 and include the full details
of our resources (including memory specifications) in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our study uses publicly available datasets under proper access agreements
and does not involve sensitive personal data or human subjects. All experiments were
conducted with standard computational resources and no practices violate privacy, fairness,
or environmental guidelines outlined in the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: As our work enables realistic human avatar creation, we acknowledge that
it can be potentially misused for deepfake generation. We discuss these concerns in the
supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve releasing any high-risk pre-trained models or
sensitive datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the assets used in this work, including the datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not involve releasing new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries: Material Point Method (MPM)
	MPMAvatar: Photorealistic Avatars with Physics-Based Dynamics
	Avatar Representation
	Physics-Based Dynamics Modeling
	Anisotropic Dynamics Modeling for Garments
	Collision Handling

	Learning from Multi-View Videos
	Physical Parameters Learning
	Appearance Learning


	Experiments
	Experimental Setup
	Experimental Comparisons
	Ablation Study
	Application: Zero-shot Scene Interaction

	Conclusion
	Acknowledgement
	Additional Results
	Implementation Details
	Physics-Based Dynamics Modeling
	Appearance Learning

	Anisotropic Constitutive Model
	Limitations and Future Work
	Societal Impact

