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Abstract

Temporal reasoning in multi-session dialogues
presents a significant challenge which has been
under-studied in previous temporal reasoning
benchmarks. To bridge this gap, we propose
a new evaluation task for temporal reason-
ing in multi-session dialogues and introduce
an approach to construct a new benchmark
by augmenting dialogues from LoCoMo and
creating multi-choice QAs. Furthermore, we
present TReMu, a new framework aimed at en-
hancing the temporal reasoning capabilities of
LLM-agents in this context. Specifically, the
framework employs time-aware memorization
through timeline summarization, generating re-
trievable memory by summarizing events in
each dialogue session with their inferred dates.
Additionally, we integrate neuro-symbolic tem-
poral reasoning, where LLMs generate Python
code to perform temporal calculations and se-
lect answers. Experimental evaluations on pop-
ular LLMs demonstrate that our benchmark is
challenging, and the proposed framework sig-
nificantly improves temporal reasoning perfor-
mance compared to baseline methods, raising
from 29.83 on GPT-4o0 via standard prompting
to 77.67 via our approach and highlighting its
effectiveness in addressing temporal reasoning
in multi-session dialogues.'

1 Introduction

In the context of multi-session dialogues, tempo-
ral reasoning is both critical and challenging for
LLM-agents. As dialogue sessions proceed, storing
and retrieving relevant information efficiently be-
comes more difficult (Maharana et al., 2024), such
as failing to retrieve specific temporal details from
long history and dialogues exceed the input limit
of LLMs. Additionally, research has shown that
LLMs overlook important contextual information
from long dialogue histories due to the accumu-
lation of irrelevant historical data, referred to as

'We will release our data and code upon paper acceptance
for reproducibility.

Kyle Wofford: Last Monday I went to a seminar on social entrepreneurship and
met some people with the same ideals. We talked about potentially working
together. Here is a picture of us at our booth.

George Wells: Looks like you all are having a great time! It's key to be around
people who share your enthusiasm. Reminds me of a children’s chess tournament
I volunteered at last Saturday.

An example from LoCoMo for Relative Time

6:18 pm on 18 January, 2022

Amy: Cool shoes! Where'd you get them? I've been busy with work and hikes. I
did a tough one last Fri that was awesome! You hike too?

Emily: Thanks a ton, Amy! Picked up em up last week at the sports store. Hiking
sounds awesome! Haven't done that much, but love trying new trails. Got any recs
for newbies?

12:52 am on 4 July, 2022

Amy: Wow, amazing! By the way, I remember you bought some new running
shoes earlier. Where'd you buy em?

Emily: I got them at Running Paradise - it's got a great selection for all kinds of
runners.

An example from LoCoMo for Cross-Session Dependency

Figure 1: Examples from LoCoMo showing the two
temporal characteristics we focus on in this work.

"historical noise" (Wang et al., 2023). These chal-
lenges underscore the need for enhanced temporal
reasoning capabilities in LLM-agents for effective
handling of multi-session dialogues.

However, most existing temporal reasoning
benchmarks cannot be used directly for this study,
because they are usually built on shorter texts, such
as stories and Wikipedia articles, that contain clear
temporal information (Chen et al., 2021; Wang and
Zhao, 2024; Xiong et al., 2024). Even benchmarks
designed for dialogues, like TimeDial (Qin et al.,
2021) and LoCoMo (Maharana et al., 2024), do not
explicitly consider the special temporal character-
istics in multi-session dialogues, such as relative
time and cross-session dependency. For instance,
speakers often use relative time expressions instead
of specific dates, requiring the model to infer exact
event times. Moreover, it is common for speakers
to recall past events from previous sessions, creat-
ing cross-session dependencies, where events from
different sessions involve the same or related en-
tities and reflect changes over time. This further



requires LL.Ms to retain context effectively when
reasoning about events across multiple sessions.

In this work, we present TReMu (Temporal
Reasoning for LLM-Agents in Multi-Session Di-
alogues), a novel framework designed to enhance
temporal reasoning in multi-session dialogues. Our
framework introduces time-aware memorization,
which uses timeline summarization to generate
summaries for each dialogue session, identifying
events and associating them with their inferred
dates. These summaries, linked to specific times
(either session times or inferred event dates), serve
as retrievable memory. This effectively addresses
events expressed in relative time by distinguishing
when such an event occurred from when it was
mentioned by the speaker.

During reasoning, we propose a neuro-symbolic
temporal reasoning approach inspired by recent
work that integrates LL.Ms with symbolic reason-
ing, translating questions into symbolic language
before using a solver to find answers (Pan et al.,
2023; Olausson et al., 2023). Specifically, given
a temporal question, we retrieve relevant memory
and instruct the LLMs to generate Python code.
This approach leverages the LLMs’ strong Python
coding capabilities and existing Python libraries for
temporal calculations. The generated code serves
as an intermediate rationale. By executing the code
line-by-line, the model follows step-by-step reason-
ing similar to CoT (Wei et al., 2022), leading the
model to select the correct answer.

Due to the absence of temporal reasoning eval-
uation benchmarks specific to multi-session dia-
logues, we propose a method to construct a new
evaluation benchmark focusing on two key tempo-
ral characteristics: relative time and cross-session
dependency. By augmenting dialogues from Lo-
CoMo (Maharana et al., 2024), we create multiple-
choice temporal questions spanning three types of
reasoning to evaluate the temporal reasoning capa-
bilities of LLMs in this context.

We evaluate our framework based on three pop-
ular LLMs—GPT-40, GPT-40-mini, and GPT-3.5-
Turbo—on our benchmark. The results show that
our benchmark is challenging, revealing subopti-
mal performance for LLMs. In contrast, our frame-
work demonstrates superior performance compared
to baseline methods, such as CoT, highlighting the
effectiveness of our approach in improving tempo-
ral reasoning in multi-session dialogues.

Our contributions are as follows:

* We propose a new framework for temporal rea-
soning in multi-session dialogues, integrating
time-aware memorization and neuro-symbolic
temporal reasoning.

* We propose a method to construct a tempo-
ral reasoning evaluation benchmark for multi-
session dialogues by augmenting an existing
dataset, explicitly covering the temporal char-
acteristics of relative time and cross-session
dependency.

* Through extensive experiments, we empiri-
cally show that temporal reasoning in multi-
session dialogues poses significant challenges
for LLMs, even with strategies like CoT. How-
ever, our framework significantly improves
LLMs’ temporal reasoning in this context.

2 Benchmark Construction

In this section, we introduce the construction
pipeline to build our temporal QA benchmark
for evaluating LLM-agents’ temporal reasoning
in multi-session dialogues. As mentioned earlier,
we mainly focus on the two temporal characteris-
tics in multi-session dialogues: relative time and
cross-session dependency.

2.1 Benchmark Design

We propose augmenting an existing dataset to cre-
ate a benchmark for evaluating LLM-agents’ tem-
poral reasoning in multi-session dialogues. After a
thorough examination, we selected LoCoMo (Ma-
harana et al., 2024), which comprises dialogues
averaging 600 turns and 16,000 tokens across up
to 32 sessions. In comparison to existing multi-
session dialogue datasets, LoCoMo features the
longest dialogues and the most sessions (as shown
in Table 1), thus presenting a greater challenge.

As mentioned earlier, our benchmark focuses on
two key temporal characteristics in multi-session
dialogues: relative time and cross-session depen-
dency. To achieve this, we follow previous bench-
marks (Chen et al., 2021; Xiong et al., 2024; Wang
and Zhao, 2024) by creating temporal QA pairs
based on temporal events in the dialogues. Specifi-
cally, we design each temporal QA based on either
a single event or a pair of events:

o Single Event: We select events expressed with
relative time and develop a temporal reasoning type
called Temporal Anchoring, which asks for the ex-
act time of the event.



Dialogue Dataset Avg. Turns  Avg. Sessions Avg. Tokens Time Interval Collection
Per Conv.  Per Conv. Per Conv.
MSC (Xu et al., 2022) 53.3 4 1,225.9 few days Crowdsourcing
Conversation Chronicles (Jang et al., 2023)  58.5 5 1,054.7 few hours - years =~ LLM-generated
LoCoMo (Maharana et al., 2024) (Ours) 304.9 19.3 9,209.2 few months LLM-gen. + crowdsourcing

Table 1: Statistics of the chosen multi-session dialogue dataset, LoCoMo, compared to others.

Question Type Count # of Options # of Events Event Type
Temporal Anchoring 264 5 1 relative time
Temporal Precedence 102 3 2 cross session dependency (+ relative time)
Temporal Interval 234 5 2 cross session dependency (+ relative time)
Total 600 - - -

- Unanswerable 112 - - -

LoCoMo (Maharana et al., 2024) 321 -

Table 2: Dataset statistics and details of the constructed benchmark.# of Options refers to the number of options
for each temporal question. # of Events refers to the number of selected events to create each temporal question.
Event Type specifies the type of temporal events chosen for question creation, where (+ relative time) indicates that
relative time was an additional consideration in event selection. Note that our benchmark not only contains more
temporal QAs than LoCoMo, but also include unanswerable questions.

e Two Events: We choose pairs of relevant
events from different sessions that exhibit cross-
session dependency. We also consider relative time
as an extra factor to increase the complexity of
the questions. Two temporal reasoning types are
applied: Temporal Precedence, which asks which
event occurred first, and Temporal Interval, which
asks for the duration between the two events.

2.2 Construction Pipeline

To construct our benchmark, we follow the design
of our benchmark and utilize a systematic step-by-
step approach with GPT-40. The prompt for each
step is shown in Appendix § A.

Step 1: Temporal Event Extraction We begin by
prompting GPT-40 to extract all temporal events
from each dialogue session. In addition, we instruct
GPT-40 to annotate the relative time expressions
for these events, facilitating the selection process
for creating temporal QAs.

Step 2: Temporal Event Linking Next, we link
the extracted events containing cross-session depen-
dency within the dialogue. We prompt GPT-40 with
the extracted events and instruct it to group those
related to the same or relevant entities across differ-
ent sessions, particularly those reflecting changes
in attributes over time. For example, the event “De-
bra Ryan told her mentor about her business idea”
from an early session is linked to “Debra Ryan
started her own business” from a later session.
Step 3: Temporal QA Creation Once the tempo-
ral events are processed, we prompt GPT-4o to se-
lect those events that meet the criteria for different
temporal reasoning types and generate multiple-

choice temporal QAs. Additionally, we create
unanswerable questions, as in prior QA bench-
marks (Rajpurkar et al., 2018), to comprehensively
assess models’ temporal reasoning capabilities.
Step 4: Quality Control We observe various
noises in generated QAs, such as incorrect infer-
ences about exact times. To ensure the benchmark’s
quality, we follow recent temporal reasoning bench-
marks for LLMs, such as TGQA (Xiong et al.,
2024), to perform quality control. We manually
review each question to verify that it aligns with
our design specifications and that the answers are
correctly grounded in the dialogue. We also revise
well-constructed questions with incorrect answers
and remove any unreasonable ones. The final tem-
poral QA benchmark covers time intervals from
days to months and its statistics and details are
presented in Table 2. Particularly, our final bench-
mark not only contains more temporal QAs than
LoCoMo, but also include unanswerable questions,
which are not covered in LoCoMo. We also include
examples of QAs for different temporal reasoning
types in Appendix §. B.

3 Methodology

3.1 Preliminary: Memory-Augmented
LLM-Agents

To address the limit of LLMs struggling in retaining
information from long input text, recent studies
turn to equip LLM agents with memory to support
long-turn conversations (Lu et al., 2023; Packer
etal.,2023; Zhong et al., 2024). Therefore, we base
our study on memory-augmented LL.M-agents.



The general pipeline of memory-augmented
LLM-agents comprises three stages: memorization,
retrieval, and response. In the memorization stage,
the model summarizes each dialogue session and
stores these summaries as memory. During the re-
trieval stage, the model retrieves the most relevant
memory for the current dialogue session. This re-
trieved memory is then concatenated with the ongo-
ing dialogue to generate the next response. Specifi-
cally, we build our framework based on MemoChat
(Lu et al., 2023), which realizes this three-stage
process through prompting and has demonstrated
effectiveness in handling long-range dialogues.

3.2 TReMu

Building on the memory-augmented LL.M-agent
pipeline, we introduce our framework called
TReMu as shown in Algorithm 1. The framework
consists of two key components: time-aware mem-
orization and neuro-symbolic temporal reasoning.

Algorithm 1 TReMu

Initialize:
Time-aware Memorization Model LLMmem
Memory Retrieval Model LLM etrieval
Neuro-symbolic Reasoning Model LLMcode
Symbolic Solver P
Memorization pool M <+ ()
{Time-aware Memorization}
for each dialogue session d; in dialogue D do
m; < LLMmem(d;)
M «— fo'rg (M7 m’b)
end for
{Neuro-symbolic Temporal Reasoning}
for each temporal question ¢ do
Myetrieved < LLMreI:ieval(Q, M)
C<— LLMcode((L m’l'et7'ieved)
0+ P(c)
final answer a < LLM(q, 0)
end for

3.2.1 Time-aware Memorization

Our time-aware memorization builds on timeline
summarization (Steen and Markert, 2019; Ra-
jaby Faghihi et al., 2022; Sojitra et al., 2024) and it
consists of two steps: Temporal Memory Writing
and Memory Organization. During Temporal Mem-
ory Writing (prompt in Appendix §.C), we instruct
LLM agents to generate memory pieces while also
extracting and associating mentioned events with
inferred dates. Unlike prior approaches that sum-
marize entire sessions holistically, our method pro-
duces fine-grained memory pieces linked to spe-
cific inferred time markers. As shown in Tables 3
and 4, our memorization outputs memory pieces
corresponding to events with inferred time steps
that facilitates to mitigate temporal ambiguity. For

example, the highlighted texts show that Michelle
cooked a meal and later referenced cooking it at
different dates. This enables finer temporal gran-
ularity, effectively distinguishing events based on
inferred time intervals.

Topic Summary

Catching Up Daniel and Michelle catch up on new
events in their lives including new
jobs, hobbies, and activities.

Daniel and Michelle discuss their
hobbies and rituals like running, bal-
let, playing guitar, meditation, and
cooking.

Both talk about their cooking experi-
ences and celebrate Daniel’s promo-
tion.

Michelle and Daniel discuss books
they’ve read and recommend some
to each other.

Michelle and Daniel talk about cam-
eras and a vintage motorcycle with
sentimental value.

Hobbies and Daily
Rituals

Cooking and Cele-
brations

Books and Recom-
mendations

Personal Items with
Sentimental Value

Table 3: Output memory from MemoChat based on one
dialogue session in LoCoMo.

Time

01/28/2020 Daniel and Michelle share updates on their
lives... including Michelle starting her Masters
in Psychology, Daniel starting a new job where
he learns to code and problem-solve, and
Michelle’s hobby of ballet, meditation, and
journaling... Michelle mentions she made an
Italian meal last Saturday and Daniel made
salsa for a taco night. Daniel also shared re-
ceiving a promotion ...

01/27/2020 Daniel received a promotion and celebrated
with a dinner at his favorite spot.

01/25/2020 Michelle cooked a delicious Italian meal for
her friends, including pasta, garlic bread, and
tiramisu.

01/24/2020 Daniel made a huge batch of salsa and hosted
a taco night with friends.

01/20/2020 Michelle started her Masters in Psychology.

Summary

Table 4: Output memory from Time-aware Memoriza-
tion based on the same dialogue session in LoCoMo.

Then, we perform Memory Organization on the
output memory pieces to maintain long-term mem-
ory. We structure memory in a timeline format,
grouping events that occur simultaneously and in-
dexing them based on inferred timesteps. This ap-
proach enhances the distinction between an event’s
occurrence and its mention, reducing temporal am-
biguity and improving time-based retrieval. These
enhancements mark a significant difference from
traditional memorization approaches, supporting
efficiency in temporal reasoning.



3.2.2 Neuro-symbolic Temporal Reasoning

Inspired by the recent progress in neuro-symbolic
reasoning for LLMs (Han et al., 2022; Pan et al.,
2023), we propose leveraging LLMs to translate
temporal reasoning questions into Python code
as intermediate rationales, which is executed as
the reasoning process to derive answers (prompts
shown in Appendix §.D). We tried different sym-
bolic languages and finally chose Python because
SOTA LLMs are better at generating Python code
and there exist Python libraries that support tem-
poral calculations, like datetime and dateutil. Par-
ticularly, dateutil provides a function relativedelta
supporting relative time calculation, for example
we can infer next Friday using TODAY + rela-
tivedelta(weekday=FR). Meanwhile, we provide
implemented functions to be directly called, such
as "weekRange(r)" returns the start date and the end
date of the week that ¢ lies in. Different from other
works in temporal reasoning based on code execu-
tion(Li et al., 2023), we enable our LLM agents
with function-calling abilities, ensuring correct-
ness and expanding the range of temporal reason-
ing tasks beyond simple precedence relations.

We provide demonstration via in-context learn-
ing to generate Python code with function calling,
given then question and retrieved memory. After
the generated code is executed, the output and code
serve as intermediate rationales, and the LLM is
prompted again to give the answer. Particularly, our
reasoning approach offers an alternative form of
CoT. While the original CoT (Wei et al., 2022) per-
forms step-by-step reasoning in natural language,
our neuro-symbolic approach conducts temporal
reasoning by executing generated code line-by-line
in a programming language. This neuro-symbolic
method retains the core concept of CoT’s step-by-
step reasoning while leveraging the precision and
additional support provided by Python code and
packages. However, prior works (Li et al., 2023)
rely solely on solver outputs without providing in-
termediate justifications.

4 Experiments

4.1 Experimental Setup

Models. We build our framework using various
black-box LLMs: GPT-40%, GPT-40-mini, and
GPT-3.5-Turbo®. Particularly, for GPT-3.5-Turbo,

2Specifically, gpt-40-2024-05-13.
3Specifically, gpt-4o-mini-2024-07-18.
4Specifically, gpt-3.5-turbo-0125.

many of LoCoMo dialogues are longer than its
input length, we then follow LoCoMo (Maharana
et al., 2024) which earlier dialogues are omitted.
Particularly, we have also tried different open-
source LLLMs but most of them cannot handle the
long dialogue inputs from LoCoMo, for example
only about 10% of dialogues can be fed into Llama-
3-70B. And even for those shorter dialogues that
can be fed into Llama-3-70B, we notice that the
model gets lost and fails to follow instructions, even
failing to generate in the desired format. Therefore,
we leave the adaptation to LLMs as future work.
Baselines. Since in our setting of multi-session
dialogues where the conversations exceed the input
limits of LLMs, we consider the memory mecha-
nism as a critical component of baselines in order
to feed complete dialogue information. Therefore,
we include the following baselines for comparison:

* Standard Prompting (SP): The entire dia-
logue is provided along with each temporal
question, with additional instructions for se-
lecting the correct answer.

* Chain-of-Thought (CoT) (Wei et al., 2022):
Similar to SP, but with additional instructions
for LLMs to solve questions step-by-step.

e MemoChat (Lu et al., 2023): Given that
multi-turn dialogues can exceed the model’s
input length, and since our approach builds
on memory-augmented LLM-agents, Memo-
Chat serves as a baseline where we modify the
response stage to answer temporal questions.

To better understand the effectiveness of each
component in our framework, we evaluate the fol-
lowing variants as baselines for the ablation study:

* MemoChat + CoT: This baseline applies CoT
in the response stage to answer temporal ques-
tions step-by-step using the retrieved memory.

* Timeline + CoT: Based on the framework of
memory-augmented LLM-agents, we modify
the original memorization with our proposed
timeline summarization and combine it with
CoT as a baseline.

Comparing MemoChat + CoT and Timeline +
CoT allows us to assess the impact of replacing the
standard memory mechanism in LLM agents with
our time-aware memorization. Additionally, com-
paring Timeline + CoT with TReMu highlights the



Methods Accuracy Unanswerable Questions
TA TP TI Overall Precision Recall F1

SP 18.18 58.82 30.34  29.83 46.88 13.39  20.84
CoT 67.80 7451 49.15  61.67 42.61 4375  43.18
MemoChat 3523 43.14 2521  32.67 24.30 77.68  37.02
Memochat + CoT  51.14 49.02 26.50  41.67 24.80 81.25 38.00
Timeline + CoT 83.33 7841 5855 7150 48.51 58.04  52.84
TReMu 8447 81.37 68.38  77.67 55.48 76.79  64.42

Table 5: Experimental results of various methods based on GPT-40. We use TA to represent Temporal Anchoring,

TP for Temporal Precedence and TI for Temporal Interval.

Methods Accuracy Unanswerable Questions
TA TP TI Overall Precision Recall F1
SP 20.08 50.00 2991  29.00 40.00 26.79  32.08
CoT 46.59 6275 37.18  45.67 33.96 4821  39.86
MemoChat 2121 39.22 23,50  25.17 21.11 74.11  32.88
Memochat + CoT  24.62 45.10 2436  28.00 21.11 75.00  32.94
Timeline + CoT 55.68 59.80 38.46  49.67 30.73 59.82  40.60
TReMu 64.02 46.08 38.89 51.17 29.21 92.86 44.44

Table 6: Experimental results of various methods based on GPT-40-mini.

effect of replacing CoT with our neuro-symbolic
reasoning approach.

Evaluation Metrics. We primarily use accuracy
to assess the overall performance of temporal rea-
soning. In addition, for unanswerable questions,
we calculate precision, recall, and the F1 score
to specifically measure performance on this subset
of questions. Specifically, precision is computed
as the accuracy of questions the model predicts
as "unanswerable," while recall is determined by
the accuracy of questions where the ground truth
answer is "unanswerable."

4.2 Experimental Results

The results are shown in Tables 5, 6, and 7 for GPT-
40, GPT-40-mini, and GPT-3.5-Turbo, respectively.
On the recent TRAM benchmark (Wang and Zhao,
2024), existing LLMs demonstrate strong perfor-
mance with direct prompting. For instance, GPT-4
achieves an accuracy of 82 using CoT, while GPT-
3.5 attains 71.40. In contrast, our benchmark is
significantly more challenging. GPT-40 achieves
only 61.67 with CoT and 29.83 with SP, whereas
GPT-3.5 performs even worse, scoring 25.83 with
CoT and 23.83 with SP. These performance gaps
likely stem from the complexity of multi-session di-
alogues and their temporal dependencies, which are
not explicitly addressed in previous benchmarks.
Our framework outperforms all baseline meth-
ods across all three LLMs in terms of both accuracy
and F1 scores, with a notable increase in accuracy
from 29.83 with SP to 77.67 with our framework us-
ing GPT-40. This demonstrates the effectiveness of
our approach in enhancing temporal reasoning for

multi-session dialogues. However, incorporating a
memory mechanism performs worse than CoT for
GPT-40 and GPT-40-mini. This may be because
these models have sufficient input lengths to pro-
cess LoCoMo dialogues, enabling them to identify
relevant temporal information without additional
memory augmentation. In contrast, for GPT-3.5,
which has a shorter input limit, the memory mecha-
nism generally improves performance by allowing
the model to retrieve information from memory
rather than truncated dialogues.

Furthermore, we find that incorporating CoT
generally improves performance, aligning with pre-
vious findings (Wang and Zhao, 2024; Xiong et al.,
2024). In particular, CoT encourages models to
search for relevant information within dialogues.
However, due to the dialogues’ length, the models
sometimes generate responses like "I cannot find
the mention of ...," which hinders their temporal
reasoning capabilities. This further underscores the
necessity of a memory mechanism to support long
dialogue settings.

4.3 Ablation Study

From Tables 5, 6, and 7, the comparison be-
tween MemoChat + CoT and Timeline + CoT
highlights the importance of memory representa-
tion. Time-aware memorization improves accu-
racy by instructing models to infer temporal infor-
mation—particularly relative time—during memo-
rization and mitigate temporal ambiguity. Further-
more, replacing CoT with symbolic reasoning, as
seen in the comparison between Timeline + CoT
and TReMu, leads to additional performance gains.



Accuracy

Unanswerable Questions

Methods
TA TP TI Overall Precision  Recall F1
SP 21.59 3137 23.08 23.83 22.91 46.43  30.68
CoT 23.86 38.24 22.65 25.83 20.97 50.00 29.56
MemoChat 17.42  45.10 23.50 24.50 21.93 66.96 33.04
Memochat + CoT 2045 53.92 26.50 28.50 21.79 50.00 30.36
Timeline + CoT 32.58 44.12  22.65 30.67 22.57 51.79 3144
TReMu 4242 3725 2222  33.67 23.33 75 35.60

Table 7: Experimental results of various methods based on GPT-3.5-Turbo.

14.16
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Percentage of Execution Failure
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GPT-40 GPT-40-mini GPT-3.5-Turbo

Figure 2: The percentage of execution failures.

This improvement stems from the models’ ability
to generate Python code while retaining the ben-
efits of step-by-step reasoning. This aligns with
recent research integrating LLMs with symbolic
reasoners for various reasoning tasks (Olausson
et al., 2023; Pan et al., 2023).

4.4 Execution Failure Study

We also measure the percentage of generated code
that fails to execute and, during inference, we re-
generate the code when such errors occur. The
results, shown in Figure 2, indicate that the percent-
ages of execution failure are generally low across
all three LLMs, demonstrating the reliability of our
Python-based symbolic reasoning approach. As
expected, GPT-40 exhibits the lowest rate of execu-
tion failure, while GPT-3.5-Turbo has the highest,
corresponding to the overall performance differ-
ences we demonstrate above in temporal reasoning
among these models. This likely reflects the inher-
ent performance gap between the LLMs.

4.5 Case Study

In this section, we demonstrate how the two key
components of our framework—time-aware mem-
orization and neuro-symbolic temporal reason-
ing—work in real cases. We compare the outputs
of CoT and our framework based on GPT-4o.

In Figure 3, with CoT, even though GPT-40
successfully identifies that the key temporal in-
formation is "Sharon’s survival course started on

12 March 2020," but it gets confused with "week-
long course" and infers the end date of the course,
incorrectly selecting "Unanswerable." In contrast,
with our framework’s time-aware memorization,
the model retrieves the event from memory along
with its properly inferred time. During the reason-
ing stage, the model utilizes this memory to dis-
tinguish between when the speaker, Sharon, men-
tioned the event (03/16/2020) and when the event
occurred (03/12/2020). Then the model defines the
corresponding variable in the generated code, i.e.,
t_start_course, to precisely capture the time.

Figure 4 illustrates another mistake made via
CoT. The model correctly infers that the "last
week" corresponds to the session time of 16 March
2020 but fails to match the week range with the cor-
rect answer—the week of 03/09/2020 is the week
of 03/11/2020 but the model does not realize this.
As for our framework, the model leverages the
Python dateutil package’s relativedelta function,
alongside our custom weekRange function, to ac-
curately infer the last week’s range. This neuro-
symbolic reasoning not only facilitates the model
to reason step-by-step but also enhances it by in-
corporating external temporal functions to support
more accurate temporal reasoning.

5 Related Work

Temporal Reasoning for LLMs. Recent ad-
vancements in large language models (LLMs) have
brought significant improvements in reasoning ca-
pabilities (Huang and Chang, 2023), leading to
growing interest in temporal reasoning (Chu et al.,
2024; Qiu et al., 2024). Existing approaches primar-
ily address this challenge through time-aware lan-
guage modeling. For example, Kanashiro Pereira;
Tan et al. propose fine-tuning strategies to enhance
temporal reasoning, while Zhou et al.; Yang et al.
introduce auxiliary objectives to incorporate exter-
nal temporal knowledge. However, studies such
as Chu et al.; Qiu et al. show that state-of-the-art
LLMs still exhibit suboptimal performance in tem-



Question: When did Sharon's first
survival course start?

Options:

A. 03/19/2020;

B. 03/16/2020;

C. 03/12/2020;

D. 03/13/2020;

E. Unanswerable

Selected Event:

Event Sharon started a week-
long survival course

( CoT )

Rationale: When did Sharon's survival
course start?

Answer: Sharon's survival course started
on Thursday, 12 March 2020.

Rationale: How long did Sharon's
survival course last?

Answer: Sharon mentioned that her
survival course is week-long, so it lasted
7 days.

Rationale: Based on the start date and

Person Sharon Gomes
Relative Time | last Thursday
Session Time | 16 March 2020

Text Span Oh, btw, you remember
when I said I'm doing a
week-long survival
course? It started on
Thursday and it's been
wild! It was my first
survival course

Figure 3: The first case study comparing CoT and our proposed framework, where CoT results in the wrong answer

duration of the survival course, when did
it end?

Answer: Starting on 12 March 2020 and
lasting for 7 days, Sharon's survival
course ended on 18 March 2020.

TReMu )

Retrieved Memory

Summary: “... Sharon then
shares her experience with a
week-long survival course that
started last Thursday,...”
Time: “03/16/2020”

Related Dialogue: “... Sharon
Gomes: Oh, btw, you
remember when I said I'm
doing a week-long survival
course? It started on Thursday

Summary: “Sharon's week-
long survival course began.”
Time: “03/12/2020”

Output Code

from datetime import date
from dateutil.relativedelta import *
from temporal_utils import weekRange

t_start_course = date(2020, 3, 12)

print(f\"The course started on: {t_start_course}\")

"E" but our approach selects the correct option "C". We highlight the key information in colors.

Question: When did Sharon Gomes
start keeping a dream journal?
Options:

A. During the week of 03/16/2020;
B. During the week of 03/05/2020;
C. During the week of 03/11/2020;
D. During the week of 03/25/2020;
E. Unanswerable

Selected Event:

( CoT ]

Rationale: Identify if the dialogue has
any mentions of Sharon starting a dream
Jjournal.

Answer: Yes, there is a mention in
session 4 where Sharon mentions starting
a dream journal last week.

Rationale: Determine the date of session
4 and use it to identify the week in which
Sharon d starting the dream

Event Sharon started keeping
a dream journal

Jjournal.

Answer: Session 4 was on 16 March,
2020. Therefore, 'last week' would refer to
the week of 03/09/2020.

Person Sharon Gomes
Relative Time | Last week

Session Time | 16 March 2020
Text Span Last week I started

keeping a dream

Confirm if any of the provided
answer options match the inferred date.
Answer: The week of 03/09/2020 is not
listed among the answer options.

[

TReMu ]

Retrieved Memory

Summary: “... Sharon shares
that she's keeping a dream
journal which she started last
week ...”

Time: “03/16/2020”

Related Dialogue: “...Sharon
Gomes: ...Last week I started
keeping a dream journal and

Output Code

from datetime import date
from dateutil.relativedelta import *
from temporal_utils import weekRange,

t_share_journal = date(2020, 3, 16)

t_journal_start =t_share_journal - relativedelta(weeks=1)

week_start, week_end = weekRange(t_journal_start)

it's fun to figure out what they
mean...” print(\"Is during the week of 03/05/2020? {week_start <=

journal and it's fun to
figure out what they
mean

print(f\"Is during the week of 03/16/2020? {week_start <=
date(2020,3,16) <= week_end}\")

date(2020,3,5) <= week_end}\")

print(f\"Is during the week of 03/11/2020? {week_start <=
date(2020,3,11) <= week_end}\")

print(\"Is during the week of 03/25/2020? {week_start <=
date(2020,3,25) <= week_end}\")

Figure 4: The second case study comparing CoT and our proposed framework, where CoT results in the wrong
answer "E" but our approach selects the correct option "C". We highlight the key information in colors.

poral reasoning with prompting techniques. Our
framework differs from these works by utilizing
memory-augmented LLM agents, enhancing mem-
orization through timeline summarization, and in-
tegrating neuro-symbolic reasoning as an interme-
diate step for answering temporal questions.

Multi-session Dialogues. Several studies have
developed multi-session dialogues benchmarks.
Xu et al. introduced MSC, the first multi-session
dataset incorporating time intervals between ses-
sions. Similarly, Bae et al. proposed a dynamic
memory management method to maintain up-to-
date user information and introduced a Korean
multi-session dialogue dataset. Jang et al. created
the CONVERSATION CHRONICLES dataset, de-
signed for long-term conversations that integrate
time intervals and detailed speaker relationships.
More recently, Maharana et al. introduced Lo-
CoMo, a dataset featuring long-term and multi-
modal dialogues. While our work is situated within
this context, it specifically targets temporal rea-

soning, addressing the temporal characteristics of
relative time and cross-session dependency, which
have not been explicitly explored in prior research.

6 Conclusion

In this paper, we address the critical challenge of
temporal reasoning in multi-session dialogues for
LLM-agents. We present a method to construct
a temporal reasoning evaluation benchmark by
augmenting dialogues from LoCoMo and cover-
ing the temporal characteristics of relative time
and cross-session dependency. Furthermore, we
introduce a novel framework which combines
time-aware memorization through timeline summa-
rization with neuro-symbolic temporal reasoning
by translating temporal questions into executable
Python code. Through extensive evaluations, we
demonstrate that our benchmark presents signifi-
cant challenges, and our framework substantially
outperforms baseline methods in improving tempo-
ral reasoning for multi-session dialogues.



7 Limitations

Our work has several limitations:

Assessment in QA settings. Our evaluation fol-
lows the standard practice of recent temporal rea-
soning benchmarks like (Zhou et al., 2019; Wang
and Zhao, 2024), using a multiple-choice format
for reliable assessment. A more ideal setting would
be evaluating in generative dialogue settings. How-
ever, generative QA evaluations pose significant
challenges due to variations in temporal expres-
sions (e.g., "January Ist" vs. "01/01"), making
exact match and F1 token score unreliable. Thus,
we prioritize benchmark reliability and accuracy
over a more ambitious generative QA setting. We
leave the extension of the current benchmark to
generative dialogue settings as future work
Open-sourced Models. Our current experiments
mainly focus on close-sourced models. However,
as we have pointed out in our Experiment section
§ 4.1, we found most open-source LLLMs cannot
handle the long dialogue inputs from LoCoMo,
for example only about 10% of dialogues can be
fed into Llama-3-70B. And even for those shorter
dialogues that can be fed into Llama-3-70B, we
notice that the model gets lost and fails to follow
instructions, even failing to generate in the desired
format. We therefore consider the adaptation of our
framework to open-sourced models as future work.
Note that we will release our code and dataset for
reproducibility.
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A Prompts for Benchmark Construction

We use GPT-40 to construct a temporal reason-
ing benchmark for multi-session dialogues. The
first step is the temporal event extraction using the
prompt shown in Figure 5. Then the prompt for
the second step, temporal event linking, is shown
in Figure 6. With the grouped temporal events, we
use the prompt in Figure 7 to create temporal QAs.



Let's extract events based on the dialogue between two speakers.

- The extracted events are represented in the form of a JSON list without comments.

- Each entry corresponds to an extracted event, and is a dictionary containing the following keys: "event", "person", "date", "relative
time", "id", "text span".

- The "event" field contains a short description of the event, and the description should be in sentences following the pattern: subject,
verb, object. An example can be: "John visited a cat café ".

- The "person" field contains the speaker who did the event.

- The "relative time" field contains the mentioned relative time expression in the corresponding original text span, such as "Last week"
and "two years ago". If there is no relative time mentioned, leave it as empty.

- The "date" field contains a date of the event in a format as "month/day/year". You should infer the exact date based on the mentioned
relative time. If the date can't be inferred, leave it as empty.

- The "id" field contains a unique numerical identifier for the event.

- The "text span" field contains the original text span in the given dialogue corresponding to the extracted event.

Figure 5: Prompt for Temporal Event Extraction.

Your goal is to find the relevant temporal events which correspond to cross-session dependencies across the multi-session dialogues
from given temporal events, and your identified relevant temporal events should reflect the situation where events in one session
influence or are contingent upon events in other sessions.

Instruction:
1. Read the extracted temporal events and the whole dialogues. The extracted events for each session are represented in the form of a

JSON list, and each entry corresponds to an extracted event containing the following keys: "event", "person", "date", "relative time",
"id", "text span". The "event" field contains a description of the event, the "person" field contains the speaker who did the event, the
"date" field contains a date of the event, the "relative time" field contains the mentioned relative time expression in the corresponding
original text span, the "id" field contains a unique numerical identifier for the event, and the "text span" field contains the original text
span in the given dialogue corresponding to the extracted event.

2. Identify all possible relevant temporal events corresponding to cross-session dependencies as many as you can. You should focus on
temporal events that contain same or relevant entities and reflect the attribute change of the entities. For example, a decision in one
session can affect a timeline in another session without clear linkage.

3. Output the all grouped temporal events in a JSON object and give each grouped events with a unique key name like "events 0".
Keep the same format for each temporal event, and include the session id and session time for each temporal event, i.e, adding
"session id" and "session time" fields to the entry for each temporal event. Do not include your explanation.

Figure 6: Prompt for Temporal Event Linking.

You are tasked with creating all possible challenging and complex questions with answers based on the given grouped temporal events. The given temporal
events have been grouped according to cross-session dependencies, where each group is a list of relevant temporal events referred to attribute change of same
or relevant entities across sessions.

Your designed questions should require temporal reasoning to answer, meaning that the answers need understanding the sequence of events across different
sessions and the time elapsed between them. Do not produce questions that are answerable with commonsense only and try to make as many as you can.
Meanwhile, you should design the questions can be answered in just a few words.

Step-by-step Instructions:
1. Consider Temporal Reasoning Types: Consider three temporal reasoning types for making questions: "Temporal Anchoring", "Temporal Interval" and
"Temporal Precedence". Specifically, "Temporal Anchoring" involves identifying a specific point in time when an event occurred, "Temporal Interval"
involves inferring the duration of between two events and "Temporal Precedence" involves determining which event occurred before another event.
2. Select Temporal Events: For each question, only select one or two relevant temporal events corresponding to the same person from the given grouped
temporal events to design QAs for testing temporal reasoning. Do not make up or extract new temporal events beyond the given grouped temporal events. To
ensure the complexity of questions, select events with relative time expression for "Temporal Anchoring", like "last Sunday" specified in the field "relative
time", and select two relevant events from one grouped event for "Temporal Interval" or "Temporal Precedence".
3. Create Temporal Reasoning QAs: Create QAs based on your determined temporal reasoning type and selected temporal events. Do not make QAs that are
answered based on sessions, like "how many sessions did it take...". Your answers should use accurate exact time instead of relative time. Also, you need to
make both answerable and unanswerable questions, and answerable QAs must be factually correct while unanswerable questions should be relevant but can't
be answered according to the dialogue.
4. Output QAs in a JSON list: Each entry should be a dictionary containing the following keys: "question", "answer", "selected events", "reasoning type" and
"explanation".

- The "reasoning type" field contains the reasoning type of the QA you are going to make, and it must be one of the three types, "Temporal Anchoring",
"Temporal Interval" and "Temporal Precedence".

- The "selected events" field contains a list of chosen temporal events for designing QAs, and you need to output their original metadata of events with their
corresponding session id from the provided grouped temporal events.

- The "question" and "answer" fields contain the QA designed for temporal reasoning. For unanswerable questions, leave "answer" as "unanswerable".

- The "explanation" field contains the explanation of why the answer is factually correct.

Output the QAs in a JSON list without any other text, and here is an example. Given the three relevant temporal events "John got injured", "John joined a yoga
class to help with injury", and "John felt better with the injury after doing yoga", one potential question would be "How long did it take for John to recover
from the injury?"

Figure 7: Prompt for Temporal QA Creation.
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B Examples of Temporal QAs in
Constructed Benchmark

We show examples of final temporal QAs for differ-
ent temporal reasoning types in Figure 8, 9 and 10.
In each example, we highlight the ground truth an-
swer as green and show the corresponding selected
temporal events for constructing the question below
the question.

C Prompt for Time-aware Memorization

We show the designed prompt for time-aware mem-
orization in Figure 11.

D Prompt for Neuro-symbolic Temporal
Reasoning

We show the designed prompts for neuro-symbolic
temporal reasoning here. Specifically, we first per-
form memory retrieval with the prompt in Figure
12. Then we prompt to generate Python code via in-
context learning as in Figure 13. With the generated
code and its execution result, we finally prompt the
LLM to select the answer, and the prompt is shown
in Figure 14.
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Question: When did Molly print out her camping trip photos?
Options: A. 04/27/2022; B. 05/06/2022; C. 05/15/2022; D. 04/25/2022; E. Unanswerable

Event Molly printed out her camping trip photos
Person Molly

Relative Time | last Wednesday

Session ID session_6

Session Time | 05/06/2022

Text Span

Last Wednesday, I printed out my camping trip photos and put them up in my art studio.

Figure 8: An example temporal QA for Temporal Anchoring

Question: Which event happened first, Grace teaching her first dance class or performing the lead role of her

hip hop piece?

Options: A. Grace performing the lead role of her hip hop piece; B. Grace teaching her first dance class;

C. Unanswerable

Event Grace taught her first dance class
Person Grace

Relative Time | last month

Session ID session_6

Session Time | 05/22/2022

Text Span Had my first dance teaching class last month, it was awesome!
Event Grace performed the lead role of her hip hop piece

Person Grace

Relative Time | last night

Session ID session_15

Session Time | 08/26/2022

Text Span

Joan, you won't believe it - I performed the lead role of my hip hop piece last night and it
rocked!

Figure 9: An example temporal QA for Temporal Precedence

Question: How many months after hiking with his dad did Sam take his friends on an epic hiking trip?
Options: A. About 7 months; B. About 8 months; C. About 6 months; D. About 10 months; E. Unanswerable

Event

Sam went hiking with his dad

Person

Sam

Relative Time

when I was ten

Session ID

session_0

Session Time

05/18/2023

Text Span 1 did this hike with my dad way back when I was ten.
Event Sam took his friends on a hiking trip

Person Sam

Relative Time | last Friday

Session ID session_21

Session Time 12/31/2023

Text Span

I’m really getting into this healthier lifestyle, just took my friends on an epic hiking trip
last Friday!

Figure 10: An example temporal QA for Temporal Interval
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You will be shown a <NUM>-line conversation between two speakers. Please read, memorize and understand the conversation, then
complete timeline summarization under the guidance of Task Introduction.

Task Introduction

1 - Generate a summary in a paragraph based on the whole conversation for the given timestamp. In the summary, you should focus on
all what speakers mentioned in the conversation and express in a way that what the speaker mentioned.

2 - For each mentioned event in the conversation that speakers did at different timestamps than the given timestamp, also generate a
summary about it from the perspective of its corresponding timestamps.

3 - Determine the chat range of each summary based on line numbers.

4 - For each generated summary, including the summary for the given conversation and all mentioned events, link them to their
corresponding inferred time. The timestamp should be in the format of month/day/year if the exact date can be obtained. If only rough
time can be inferred, such as "last week", give the inferred time range without expressing with relative time. For example, given the
current timestamp "08/03/2022" and a speaker mentioned a past event happened "last week", you should link its summary to "During
07/24/2022 to 07/30/2022". Another example is that given the timestamp "02/21/2022", a mentioned event for "next year" should be
linked to "During 2023”.

5 - Report time and summary in JSON format only with the assigned keys: "time", "summary". For example, assuming the
conversation at 08/03/2022 talks about Angela won another award for her cold cure last week from line 1 to line N. Thus, its task
result could be: [{"time": "During 07/24/2022 to 07/30/2022", "summary": "Angela won another award for her cold cure", "start": 1,
"end": N}, {"time": "08/03/2022", "summary": "Angela shares the exciting news that she won another award for her cold cure last
week", "start": 1, "end": N}].

Figure 11: Prompt for Time-aware Memorization.

You will be shown 1 Query Question and <NUM> Memory Options. Please read, memorize and understand given materials, then
complete the task under the guidance of Task Introduction.

Query Question:
<QUERY>
Memory Options:
<MEMORY>

Select one or more topics from Topic Options that relevant with Query Question and output in JSON format with a key: "selected
topics". Do not report the option content, but only report selected option numbers in a string separated with "#". For example, if
memory options N and M are chosen, then the output is {"selected topics": "N#M"}. For Query Question in the task, any chosen
option numbers should be larger than 0 but not exceed the total number of Memory Options <NUM>.

Figure 12: Prompt for memory retrieval.

Given related evidence and a question with answer options, your task is to parse them into python code based on python packages
'datetime' and 'dateutil'. Note that in 'dateutil', it defines abbreviations for days of weeks: MO (Monday), TU (Tuesday), WE
(Wednesday), TH (Thursday), FR (Friday), SA (Saturday) and SU (Sunday). Additionally, we have implemented some functions in
‘temporal_utils.py' to support you:

- 'weekRange(query date)' returns a tuple of dates, 'start date' and 'end date', which are the start date and the end date for the week
that 'query_date' is in.

- 'lastWeekendRange(query_date)' returns a tuple of dates, 'start_date' and 'end_date', which are the start date and the end date for the
last weekend of 'query_date’.

As the question is about temporal reasoning, your parsed code should cover defining variables for timestamps and calculations over
time values. Make sure to distinguish the timestamps for when a person mentioned an event and when the person did the event. And
you should define the timestamp of the event that time can't be inferred as None, and the question should be unanswerable. Your
output should be in JSON format with only one key 'program' with the generated code in String as the value, such as {'program": 'from
datetime import date'} Below are some examples:

<EXAMPLES>

Related Evidence:
<MEMORY>
Question:
<QUERY>
Answer Options:
<OPTIONS>

Figure 13: Prompt for generating Python code for temporal reasoning.
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You are an intelligent dialog bot. You will be shown Related Evidence supporting for Query Question and each turn in Related
Dialogue has been marked with its timestamp. Additionally, you are also given Rationales which are python code with its output for
supporting the reasoning and answering the question. Please read, memorize, and understand given materials, then select the most
suitable and factually correct options step by step from the given Answer Options. And you should consider the "Unanswerable"
option if the answer can't be obtained. Your output should be in JSON format with only one key "final answer" with values from the
five letters (A/B/C/D/E), such as {"final answer": "..."}.

Related Evidence:
<MEMORY>
Query Question:
<QUERY>
Answer Options:
<OPTIONS>
Rationales:
<CODE>

Figure 14: Prompt for temporal question answering.
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