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Abstract001

Temporal reasoning in multi-session dialogues002
presents a significant challenge which has been003
under-studied in previous temporal reasoning004
benchmarks. To bridge this gap, we propose005
a new evaluation task for temporal reason-006
ing in multi-session dialogues and introduce007
an approach to construct a new benchmark008
by augmenting dialogues from LoCoMo and009
creating multi-choice QAs. Furthermore, we010
present TReMu, a new framework aimed at en-011
hancing the temporal reasoning capabilities of012
LLM-agents in this context. Specifically, the013
framework employs time-aware memorization014
through timeline summarization, generating re-015
trievable memory by summarizing events in016
each dialogue session with their inferred dates.017
Additionally, we integrate neuro-symbolic tem-018
poral reasoning, where LLMs generate Python019
code to perform temporal calculations and se-020
lect answers. Experimental evaluations on pop-021
ular LLMs demonstrate that our benchmark is022
challenging, and the proposed framework sig-023
nificantly improves temporal reasoning perfor-024
mance compared to baseline methods, raising025
from 29.83 on GPT-4o via standard prompting026
to 77.67 via our approach and highlighting its027
effectiveness in addressing temporal reasoning028
in multi-session dialogues.1029

1 Introduction030

In the context of multi-session dialogues, tempo-031

ral reasoning is both critical and challenging for032

LLM-agents. As dialogue sessions proceed, storing033

and retrieving relevant information efficiently be-034

comes more difficult (Maharana et al., 2024), such035

as failing to retrieve specific temporal details from036

long history and dialogues exceed the input limit037

of LLMs. Additionally, research has shown that038

LLMs overlook important contextual information039

from long dialogue histories due to the accumu-040

lation of irrelevant historical data, referred to as041

1We will release our data and code upon paper acceptance
for reproducibility.

Figure 1: Examples from LoCoMo showing the two
temporal characteristics we focus on in this work.

"historical noise" (Wang et al., 2023). These chal- 042

lenges underscore the need for enhanced temporal 043

reasoning capabilities in LLM-agents for effective 044

handling of multi-session dialogues. 045

However, most existing temporal reasoning 046

benchmarks cannot be used directly for this study, 047

because they are usually built on shorter texts, such 048

as stories and Wikipedia articles, that contain clear 049

temporal information (Chen et al., 2021; Wang and 050

Zhao, 2024; Xiong et al., 2024). Even benchmarks 051

designed for dialogues, like TimeDial (Qin et al., 052

2021) and LoCoMo (Maharana et al., 2024), do not 053

explicitly consider the special temporal character- 054

istics in multi-session dialogues, such as relative 055

time and cross-session dependency. For instance, 056

speakers often use relative time expressions instead 057

of specific dates, requiring the model to infer exact 058

event times. Moreover, it is common for speakers 059

to recall past events from previous sessions, creat- 060

ing cross-session dependencies, where events from 061

different sessions involve the same or related en- 062

tities and reflect changes over time. This further 063
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requires LLMs to retain context effectively when064

reasoning about events across multiple sessions.065

In this work, we present TReMu (Temporal066

Reasoning for LLM-Agents in Multi-Session Di-067

alogues), a novel framework designed to enhance068

temporal reasoning in multi-session dialogues. Our069

framework introduces time-aware memorization,070

which uses timeline summarization to generate071

summaries for each dialogue session, identifying072

events and associating them with their inferred073

dates. These summaries, linked to specific times074

(either session times or inferred event dates), serve075

as retrievable memory. This effectively addresses076

events expressed in relative time by distinguishing077

when such an event occurred from when it was078

mentioned by the speaker.079

During reasoning, we propose a neuro-symbolic080

temporal reasoning approach inspired by recent081

work that integrates LLMs with symbolic reason-082

ing, translating questions into symbolic language083

before using a solver to find answers (Pan et al.,084

2023; Olausson et al., 2023). Specifically, given085

a temporal question, we retrieve relevant memory086

and instruct the LLMs to generate Python code.087

This approach leverages the LLMs’ strong Python088

coding capabilities and existing Python libraries for089

temporal calculations. The generated code serves090

as an intermediate rationale. By executing the code091

line-by-line, the model follows step-by-step reason-092

ing similar to CoT (Wei et al., 2022), leading the093

model to select the correct answer.094

Due to the absence of temporal reasoning eval-095

uation benchmarks specific to multi-session dia-096

logues, we propose a method to construct a new097

evaluation benchmark focusing on two key tempo-098

ral characteristics: relative time and cross-session099

dependency. By augmenting dialogues from Lo-100

CoMo (Maharana et al., 2024), we create multiple-101

choice temporal questions spanning three types of102

reasoning to evaluate the temporal reasoning capa-103

bilities of LLMs in this context.104

We evaluate our framework based on three pop-105

ular LLMs—GPT-4o, GPT-4o-mini, and GPT-3.5-106

Turbo—on our benchmark. The results show that107

our benchmark is challenging, revealing subopti-108

mal performance for LLMs. In contrast, our frame-109

work demonstrates superior performance compared110

to baseline methods, such as CoT, highlighting the111

effectiveness of our approach in improving tempo-112

ral reasoning in multi-session dialogues.113

Our contributions are as follows:114

• We propose a new framework for temporal rea- 115

soning in multi-session dialogues, integrating 116

time-aware memorization and neuro-symbolic 117

temporal reasoning. 118

• We propose a method to construct a tempo- 119

ral reasoning evaluation benchmark for multi- 120

session dialogues by augmenting an existing 121

dataset, explicitly covering the temporal char- 122

acteristics of relative time and cross-session 123

dependency. 124

• Through extensive experiments, we empiri- 125

cally show that temporal reasoning in multi- 126

session dialogues poses significant challenges 127

for LLMs, even with strategies like CoT. How- 128

ever, our framework significantly improves 129

LLMs’ temporal reasoning in this context. 130

2 Benchmark Construction 131

In this section, we introduce the construction 132

pipeline to build our temporal QA benchmark 133

for evaluating LLM-agents’ temporal reasoning 134

in multi-session dialogues. As mentioned earlier, 135

we mainly focus on the two temporal characteris- 136

tics in multi-session dialogues: relative time and 137

cross-session dependency. 138

2.1 Benchmark Design 139

We propose augmenting an existing dataset to cre- 140

ate a benchmark for evaluating LLM-agents’ tem- 141

poral reasoning in multi-session dialogues. After a 142

thorough examination, we selected LoCoMo (Ma- 143

harana et al., 2024), which comprises dialogues 144

averaging 600 turns and 16,000 tokens across up 145

to 32 sessions. In comparison to existing multi- 146

session dialogue datasets, LoCoMo features the 147

longest dialogues and the most sessions (as shown 148

in Table 1), thus presenting a greater challenge. 149

As mentioned earlier, our benchmark focuses on 150

two key temporal characteristics in multi-session 151

dialogues: relative time and cross-session depen- 152

dency. To achieve this, we follow previous bench- 153

marks (Chen et al., 2021; Xiong et al., 2024; Wang 154

and Zhao, 2024) by creating temporal QA pairs 155

based on temporal events in the dialogues. Specifi- 156

cally, we design each temporal QA based on either 157

a single event or a pair of events: 158

• Single Event: We select events expressed with 159

relative time and develop a temporal reasoning type 160

called Temporal Anchoring, which asks for the ex- 161

act time of the event. 162
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Dialogue Dataset Avg. Turns
Per Conv.

Avg. Sessions
Per Conv.

Avg. Tokens
Per Conv.

Time Interval Collection

MSC (Xu et al., 2022) 53.3 4 1,225.9 few days Crowdsourcing
Conversation Chronicles (Jang et al., 2023) 58.5 5 1,054.7 few hours - years LLM-generated
LoCoMo (Maharana et al., 2024) (Ours) 304.9 19.3 9,209.2 few months LLM-gen. + crowdsourcing

Table 1: Statistics of the chosen multi-session dialogue dataset, LoCoMo, compared to others.

Question Type Count # of Options # of Events Event Type

Temporal Anchoring 264 5 1 relative time
Temporal Precedence 102 3 2 cross session dependency (+ relative time)
Temporal Interval 234 5 2 cross session dependency (+ relative time)

Total 600 – – –
- Unanswerable 112 – – –

LoCoMo (Maharana et al., 2024) 321 – – –

Table 2: Dataset statistics and details of the constructed benchmark.# of Options refers to the number of options
for each temporal question. # of Events refers to the number of selected events to create each temporal question.
Event Type specifies the type of temporal events chosen for question creation, where (+ relative time) indicates that
relative time was an additional consideration in event selection. Note that our benchmark not only contains more
temporal QAs than LoCoMo, but also include unanswerable questions.

• Two Events: We choose pairs of relevant163

events from different sessions that exhibit cross-164

session dependency. We also consider relative time165

as an extra factor to increase the complexity of166

the questions. Two temporal reasoning types are167

applied: Temporal Precedence, which asks which168

event occurred first, and Temporal Interval, which169

asks for the duration between the two events.170

2.2 Construction Pipeline171

To construct our benchmark, we follow the design172

of our benchmark and utilize a systematic step-by-173

step approach with GPT-4o. The prompt for each174

step is shown in Appendix § A.175

Step 1: Temporal Event Extraction We begin by176

prompting GPT-4o to extract all temporal events177

from each dialogue session. In addition, we instruct178

GPT-4o to annotate the relative time expressions179

for these events, facilitating the selection process180

for creating temporal QAs.181

Step 2: Temporal Event Linking Next, we link182

the extracted events containing cross-session depen-183

dency within the dialogue. We prompt GPT-4o with184

the extracted events and instruct it to group those185

related to the same or relevant entities across differ-186

ent sessions, particularly those reflecting changes187

in attributes over time. For example, the event “De-188

bra Ryan told her mentor about her business idea”189

from an early session is linked to “Debra Ryan190

started her own business” from a later session.191

Step 3: Temporal QA Creation Once the tempo-192

ral events are processed, we prompt GPT-4o to se-193

lect those events that meet the criteria for different194

temporal reasoning types and generate multiple-195

choice temporal QAs. Additionally, we create 196

unanswerable questions, as in prior QA bench- 197

marks (Rajpurkar et al., 2018), to comprehensively 198

assess models’ temporal reasoning capabilities. 199

Step 4: Quality Control We observe various 200

noises in generated QAs, such as incorrect infer- 201

ences about exact times. To ensure the benchmark’s 202

quality, we follow recent temporal reasoning bench- 203

marks for LLMs, such as TGQA (Xiong et al., 204

2024), to perform quality control. We manually 205

review each question to verify that it aligns with 206

our design specifications and that the answers are 207

correctly grounded in the dialogue. We also revise 208

well-constructed questions with incorrect answers 209

and remove any unreasonable ones. The final tem- 210

poral QA benchmark covers time intervals from 211

days to months and its statistics and details are 212

presented in Table 2. Particularly, our final bench- 213

mark not only contains more temporal QAs than 214

LoCoMo, but also include unanswerable questions, 215

which are not covered in LoCoMo. We also include 216

examples of QAs for different temporal reasoning 217

types in Appendix §. B. 218

3 Methodology 219

3.1 Preliminary: Memory-Augmented 220

LLM-Agents 221

To address the limit of LLMs struggling in retaining 222

information from long input text, recent studies 223

turn to equip LLM agents with memory to support 224

long-turn conversations (Lu et al., 2023; Packer 225

et al., 2023; Zhong et al., 2024). Therefore, we base 226

our study on memory-augmented LLM-agents. 227
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The general pipeline of memory-augmented228

LLM-agents comprises three stages: memorization,229

retrieval, and response. In the memorization stage,230

the model summarizes each dialogue session and231

stores these summaries as memory. During the re-232

trieval stage, the model retrieves the most relevant233

memory for the current dialogue session. This re-234

trieved memory is then concatenated with the ongo-235

ing dialogue to generate the next response. Specifi-236

cally, we build our framework based on MemoChat237

(Lu et al., 2023), which realizes this three-stage238

process through prompting and has demonstrated239

effectiveness in handling long-range dialogues.240

3.2 TReMu241

Building on the memory-augmented LLM-agent242

pipeline, we introduce our framework called243

TReMu as shown in Algorithm 1. The framework244

consists of two key components: time-aware mem-245

orization and neuro-symbolic temporal reasoning.246

Algorithm 1 TReMu
Initialize:
Time-aware Memorization Model LLMmem
Memory Retrieval Model LLMretrieval
Neuro-symbolic Reasoning Model LLMcode
Symbolic Solver P
Memorization poolM← ∅
{Time-aware Memorization}
for each dialogue session di in dialogue D do

mi ← LLMmem(di)
M← forg(M,mi)

end for
{Neuro-symbolic Temporal Reasoning}
for each temporal question q do

mretrieved ← LLMretrieval(q,M)
c← LLMcode(q,mretrieved)
o← P(c)
final answer a← LLM(q, o)

end for

3.2.1 Time-aware Memorization247

Our time-aware memorization builds on timeline248

summarization (Steen and Markert, 2019; Ra-249

jaby Faghihi et al., 2022; Sojitra et al., 2024) and it250

consists of two steps: Temporal Memory Writing251

and Memory Organization. During Temporal Mem-252

ory Writing (prompt in Appendix §.C), we instruct253

LLM agents to generate memory pieces while also254

extracting and associating mentioned events with255

inferred dates. Unlike prior approaches that sum-256

marize entire sessions holistically, our method pro-257

duces fine-grained memory pieces linked to spe-258

cific inferred time markers. As shown in Tables 3259

and 4, our memorization outputs memory pieces260

corresponding to events with inferred time steps261

that facilitates to mitigate temporal ambiguity. For262

example, the highlighted texts show that Michelle 263

cooked a meal and later referenced cooking it at 264

different dates. This enables finer temporal gran- 265

ularity, effectively distinguishing events based on 266

inferred time intervals. 267

Topic Summary

Catching Up Daniel and Michelle catch up on new
events in their lives including new
jobs, hobbies, and activities.

Hobbies and Daily
Rituals

Daniel and Michelle discuss their
hobbies and rituals like running, bal-
let, playing guitar, meditation, and
cooking.

Cooking and Cele-
brations

Both talk about their cooking experi-
ences and celebrate Daniel’s promo-
tion.

Books and Recom-
mendations

Michelle and Daniel discuss books
they’ve read and recommend some
to each other.

Personal Items with
Sentimental Value

Michelle and Daniel talk about cam-
eras and a vintage motorcycle with
sentimental value.

Table 3: Output memory from MemoChat based on one
dialogue session in LoCoMo.

Time Summary

01/28/2020 Daniel and Michelle share updates on their
lives... including Michelle starting her Masters
in Psychology, Daniel starting a new job where
he learns to code and problem-solve, and
Michelle’s hobby of ballet, meditation, and
journaling... Michelle mentions she made an
Italian meal last Saturday and Daniel made
salsa for a taco night. Daniel also shared re-
ceiving a promotion ...

01/27/2020 Daniel received a promotion and celebrated
with a dinner at his favorite spot.

01/25/2020 Michelle cooked a delicious Italian meal for
her friends, including pasta, garlic bread, and
tiramisu.

01/24/2020 Daniel made a huge batch of salsa and hosted
a taco night with friends.

01/20/2020 Michelle started her Masters in Psychology.

Table 4: Output memory from Time-aware Memoriza-
tion based on the same dialogue session in LoCoMo.

Then, we perform Memory Organization on the 268

output memory pieces to maintain long-term mem- 269

ory. We structure memory in a timeline format, 270

grouping events that occur simultaneously and in- 271

dexing them based on inferred timesteps. This ap- 272

proach enhances the distinction between an event’s 273

occurrence and its mention, reducing temporal am- 274

biguity and improving time-based retrieval. These 275

enhancements mark a significant difference from 276

traditional memorization approaches, supporting 277

efficiency in temporal reasoning. 278
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3.2.2 Neuro-symbolic Temporal Reasoning279

Inspired by the recent progress in neuro-symbolic280

reasoning for LLMs (Han et al., 2022; Pan et al.,281

2023), we propose leveraging LLMs to translate282

temporal reasoning questions into Python code283

as intermediate rationales, which is executed as284

the reasoning process to derive answers (prompts285

shown in Appendix §.D). We tried different sym-286

bolic languages and finally chose Python because287

SOTA LLMs are better at generating Python code288

and there exist Python libraries that support tem-289

poral calculations, like datetime and dateutil. Par-290

ticularly, dateutil provides a function relativedelta291

supporting relative time calculation, for example292

we can infer next Friday using TODAY + rela-293

tivedelta(weekday=FR). Meanwhile, we provide294

implemented functions to be directly called, such295

as "weekRange(t)" returns the start date and the end296

date of the week that t lies in. Different from other297

works in temporal reasoning based on code execu-298

tion(Li et al., 2023), we enable our LLM agents299

with function-calling abilities, ensuring correct-300

ness and expanding the range of temporal reason-301

ing tasks beyond simple precedence relations.302

We provide demonstration via in-context learn-303

ing to generate Python code with function calling,304

given then question and retrieved memory. After305

the generated code is executed, the output and code306

serve as intermediate rationales, and the LLM is307

prompted again to give the answer. Particularly, our308

reasoning approach offers an alternative form of309

CoT. While the original CoT (Wei et al., 2022) per-310

forms step-by-step reasoning in natural language,311

our neuro-symbolic approach conducts temporal312

reasoning by executing generated code line-by-line313

in a programming language. This neuro-symbolic314

method retains the core concept of CoT’s step-by-315

step reasoning while leveraging the precision and316

additional support provided by Python code and317

packages. However, prior works (Li et al., 2023)318

rely solely on solver outputs without providing in-319

termediate justifications.320

4 Experiments321

4.1 Experimental Setup322

Models. We build our framework using various323

black-box LLMs: GPT-4o2, GPT-4o-mini3, and324

GPT-3.5-Turbo4. Particularly, for GPT-3.5-Turbo,325

2Specifically, gpt-4o-2024-05-13.
3Specifically, gpt-4o-mini-2024-07-18.
4Specifically, gpt-3.5-turbo-0125.

many of LoCoMo dialogues are longer than its 326

input length, we then follow LoCoMo (Maharana 327

et al., 2024) which earlier dialogues are omitted. 328

Particularly, we have also tried different open- 329

source LLMs but most of them cannot handle the 330

long dialogue inputs from LoCoMo, for example 331

only about 10% of dialogues can be fed into Llama- 332

3-70B. And even for those shorter dialogues that 333

can be fed into Llama-3-70B, we notice that the 334

model gets lost and fails to follow instructions, even 335

failing to generate in the desired format. Therefore, 336

we leave the adaptation to LLMs as future work. 337

Baselines. Since in our setting of multi-session 338

dialogues where the conversations exceed the input 339

limits of LLMs, we consider the memory mecha- 340

nism as a critical component of baselines in order 341

to feed complete dialogue information. Therefore, 342

we include the following baselines for comparison: 343

• Standard Prompting (SP): The entire dia- 344

logue is provided along with each temporal 345

question, with additional instructions for se- 346

lecting the correct answer. 347

• Chain-of-Thought (CoT) (Wei et al., 2022): 348

Similar to SP, but with additional instructions 349

for LLMs to solve questions step-by-step. 350

• MemoChat (Lu et al., 2023): Given that 351

multi-turn dialogues can exceed the model’s 352

input length, and since our approach builds 353

on memory-augmented LLM-agents, Memo- 354

Chat serves as a baseline where we modify the 355

response stage to answer temporal questions. 356

To better understand the effectiveness of each 357

component in our framework, we evaluate the fol- 358

lowing variants as baselines for the ablation study: 359

• MemoChat + CoT: This baseline applies CoT 360

in the response stage to answer temporal ques- 361

tions step-by-step using the retrieved memory. 362

• Timeline + CoT: Based on the framework of 363

memory-augmented LLM-agents, we modify 364

the original memorization with our proposed 365

timeline summarization and combine it with 366

CoT as a baseline. 367

Comparing MemoChat + CoT and Timeline + 368

CoT allows us to assess the impact of replacing the 369

standard memory mechanism in LLM agents with 370

our time-aware memorization. Additionally, com- 371

paring Timeline + CoT with TReMu highlights the 372
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Methods Accuracy Unanswerable Questions

TA TP TI Overall Precision Recall F1

SP 18.18 58.82 30.34 29.83 46.88 13.39 20.84
CoT 67.80 74.51 49.15 61.67 42.61 43.75 43.18
MemoChat 35.23 43.14 25.21 32.67 24.30 77.68 37.02
Memochat + CoT 51.14 49.02 26.50 41.67 24.80 81.25 38.00
Timeline + CoT 83.33 78.41 58.55 71.50 48.51 58.04 52.84
TReMu 84.47 81.37 68.38 77.67 55.48 76.79 64.42

Table 5: Experimental results of various methods based on GPT-4o. We use TA to represent Temporal Anchoring,
TP for Temporal Precedence and TI for Temporal Interval.

Methods Accuracy Unanswerable Questions

TA TP TI Overall Precision Recall F1

SP 20.08 50.00 29.91 29.00 40.00 26.79 32.08
CoT 46.59 62.75 37.18 45.67 33.96 48.21 39.86
MemoChat 21.21 39.22 23.50 25.17 21.11 74.11 32.88
Memochat + CoT 24.62 45.10 24.36 28.00 21.11 75.00 32.94
Timeline + CoT 55.68 59.80 38.46 49.67 30.73 59.82 40.60
TReMu 64.02 46.08 38.89 51.17 29.21 92.86 44.44

Table 6: Experimental results of various methods based on GPT-4o-mini.

effect of replacing CoT with our neuro-symbolic373

reasoning approach.374

Evaluation Metrics. We primarily use accuracy375

to assess the overall performance of temporal rea-376

soning. In addition, for unanswerable questions,377

we calculate precision, recall, and the F1 score378

to specifically measure performance on this subset379

of questions. Specifically, precision is computed380

as the accuracy of questions the model predicts381

as "unanswerable," while recall is determined by382

the accuracy of questions where the ground truth383

answer is "unanswerable."384

4.2 Experimental Results385

The results are shown in Tables 5, 6, and 7 for GPT-386

4o, GPT-4o-mini, and GPT-3.5-Turbo, respectively.387

On the recent TRAM benchmark (Wang and Zhao,388

2024), existing LLMs demonstrate strong perfor-389

mance with direct prompting. For instance, GPT-4390

achieves an accuracy of 82 using CoT, while GPT-391

3.5 attains 71.40. In contrast, our benchmark is392

significantly more challenging. GPT-4o achieves393

only 61.67 with CoT and 29.83 with SP, whereas394

GPT-3.5 performs even worse, scoring 25.83 with395

CoT and 23.83 with SP. These performance gaps396

likely stem from the complexity of multi-session di-397

alogues and their temporal dependencies, which are398

not explicitly addressed in previous benchmarks.399

Our framework outperforms all baseline meth-400

ods across all three LLMs in terms of both accuracy401

and F1 scores, with a notable increase in accuracy402

from 29.83 with SP to 77.67 with our framework us-403

ing GPT-4o. This demonstrates the effectiveness of404

our approach in enhancing temporal reasoning for405

multi-session dialogues. However, incorporating a 406

memory mechanism performs worse than CoT for 407

GPT-4o and GPT-4o-mini. This may be because 408

these models have sufficient input lengths to pro- 409

cess LoCoMo dialogues, enabling them to identify 410

relevant temporal information without additional 411

memory augmentation. In contrast, for GPT-3.5, 412

which has a shorter input limit, the memory mecha- 413

nism generally improves performance by allowing 414

the model to retrieve information from memory 415

rather than truncated dialogues. 416

Furthermore, we find that incorporating CoT 417

generally improves performance, aligning with pre- 418

vious findings (Wang and Zhao, 2024; Xiong et al., 419

2024). In particular, CoT encourages models to 420

search for relevant information within dialogues. 421

However, due to the dialogues’ length, the models 422

sometimes generate responses like "I cannot find 423

the mention of ...," which hinders their temporal 424

reasoning capabilities. This further underscores the 425

necessity of a memory mechanism to support long 426

dialogue settings. 427

4.3 Ablation Study 428

From Tables 5, 6, and 7, the comparison be- 429

tween MemoChat + CoT and Timeline + CoT 430

highlights the importance of memory representa- 431

tion. Time-aware memorization improves accu- 432

racy by instructing models to infer temporal infor- 433

mation—particularly relative time—during memo- 434

rization and mitigate temporal ambiguity. Further- 435

more, replacing CoT with symbolic reasoning, as 436

seen in the comparison between Timeline + CoT 437

and TReMu, leads to additional performance gains. 438
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Methods Accuracy Unanswerable Questions

TA TP TI Overall Precision Recall F1

SP 21.59 31.37 23.08 23.83 22.91 46.43 30.68
CoT 23.86 38.24 22.65 25.83 20.97 50.00 29.56
MemoChat 17.42 45.10 23.50 24.50 21.93 66.96 33.04
Memochat + CoT 20.45 53.92 26.50 28.50 21.79 50.00 30.36
Timeline + CoT 32.58 44.12 22.65 30.67 22.57 51.79 31.44
TReMu 42.42 37.25 22.22 33.67 23.33 75 35.60

Table 7: Experimental results of various methods based on GPT-3.5-Turbo.

Figure 2: The percentage of execution failures.

This improvement stems from the models’ ability439

to generate Python code while retaining the ben-440

efits of step-by-step reasoning. This aligns with441

recent research integrating LLMs with symbolic442

reasoners for various reasoning tasks (Olausson443

et al., 2023; Pan et al., 2023).444

4.4 Execution Failure Study445

We also measure the percentage of generated code446

that fails to execute and, during inference, we re-447

generate the code when such errors occur. The448

results, shown in Figure 2, indicate that the percent-449

ages of execution failure are generally low across450

all three LLMs, demonstrating the reliability of our451

Python-based symbolic reasoning approach. As452

expected, GPT-4o exhibits the lowest rate of execu-453

tion failure, while GPT-3.5-Turbo has the highest,454

corresponding to the overall performance differ-455

ences we demonstrate above in temporal reasoning456

among these models. This likely reflects the inher-457

ent performance gap between the LLMs.458

4.5 Case Study459

In this section, we demonstrate how the two key460

components of our framework—time-aware mem-461

orization and neuro-symbolic temporal reason-462

ing—work in real cases. We compare the outputs463

of CoT and our framework based on GPT-4o.464

In Figure 3, with CoT, even though GPT-4o465

successfully identifies that the key temporal in-466

formation is "Sharon’s survival course started on467

12 March 2020," but it gets confused with "week- 468

long course" and infers the end date of the course, 469

incorrectly selecting "Unanswerable." In contrast, 470

with our framework’s time-aware memorization, 471

the model retrieves the event from memory along 472

with its properly inferred time. During the reason- 473

ing stage, the model utilizes this memory to dis- 474

tinguish between when the speaker, Sharon, men- 475

tioned the event (03/16/2020) and when the event 476

occurred (03/12/2020). Then the model defines the 477

corresponding variable in the generated code, i.e., 478

t_start_course, to precisely capture the time. 479

Figure 4 illustrates another mistake made via 480

CoT. The model correctly infers that the "last 481

week" corresponds to the session time of 16 March 482

2020 but fails to match the week range with the cor- 483

rect answer—the week of 03/09/2020 is the week 484

of 03/11/2020 but the model does not realize this. 485

As for our framework, the model leverages the 486

Python dateutil package’s relativedelta function, 487

alongside our custom weekRange function, to ac- 488

curately infer the last week’s range. This neuro- 489

symbolic reasoning not only facilitates the model 490

to reason step-by-step but also enhances it by in- 491

corporating external temporal functions to support 492

more accurate temporal reasoning. 493

5 Related Work 494

Temporal Reasoning for LLMs. Recent ad- 495

vancements in large language models (LLMs) have 496

brought significant improvements in reasoning ca- 497

pabilities (Huang and Chang, 2023), leading to 498

growing interest in temporal reasoning (Chu et al., 499

2024; Qiu et al., 2024). Existing approaches primar- 500

ily address this challenge through time-aware lan- 501

guage modeling. For example, Kanashiro Pereira; 502

Tan et al. propose fine-tuning strategies to enhance 503

temporal reasoning, while Zhou et al.; Yang et al. 504

introduce auxiliary objectives to incorporate exter- 505

nal temporal knowledge. However, studies such 506

as Chu et al.; Qiu et al. show that state-of-the-art 507

LLMs still exhibit suboptimal performance in tem- 508
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Figure 3: The first case study comparing CoT and our proposed framework, where CoT results in the wrong answer
"E" but our approach selects the correct option "C". We highlight the key information in colors.

Figure 4: The second case study comparing CoT and our proposed framework, where CoT results in the wrong
answer "E" but our approach selects the correct option "C". We highlight the key information in colors.

poral reasoning with prompting techniques. Our509

framework differs from these works by utilizing510

memory-augmented LLM agents, enhancing mem-511

orization through timeline summarization, and in-512

tegrating neuro-symbolic reasoning as an interme-513

diate step for answering temporal questions.514

Multi-session Dialogues. Several studies have515

developed multi-session dialogues benchmarks.516

Xu et al. introduced MSC, the first multi-session517

dataset incorporating time intervals between ses-518

sions. Similarly, Bae et al. proposed a dynamic519

memory management method to maintain up-to-520

date user information and introduced a Korean521

multi-session dialogue dataset. Jang et al. created522

the CONVERSATION CHRONICLES dataset, de-523

signed for long-term conversations that integrate524

time intervals and detailed speaker relationships.525

More recently, Maharana et al. introduced Lo-526

CoMo, a dataset featuring long-term and multi-527

modal dialogues. While our work is situated within528

this context, it specifically targets temporal rea-529

soning, addressing the temporal characteristics of 530

relative time and cross-session dependency, which 531

have not been explicitly explored in prior research. 532

6 Conclusion 533

In this paper, we address the critical challenge of 534

temporal reasoning in multi-session dialogues for 535

LLM-agents. We present a method to construct 536

a temporal reasoning evaluation benchmark by 537

augmenting dialogues from LoCoMo and cover- 538

ing the temporal characteristics of relative time 539

and cross-session dependency. Furthermore, we 540

introduce a novel framework which combines 541

time-aware memorization through timeline summa- 542

rization with neuro-symbolic temporal reasoning 543

by translating temporal questions into executable 544

Python code. Through extensive evaluations, we 545

demonstrate that our benchmark presents signifi- 546

cant challenges, and our framework substantially 547

outperforms baseline methods in improving tempo- 548

ral reasoning for multi-session dialogues. 549
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7 Limitations550

Our work has several limitations:551

Assessment in QA settings. Our evaluation fol-552

lows the standard practice of recent temporal rea-553

soning benchmarks like (Zhou et al., 2019; Wang554

and Zhao, 2024), using a multiple-choice format555

for reliable assessment. A more ideal setting would556

be evaluating in generative dialogue settings. How-557

ever, generative QA evaluations pose significant558

challenges due to variations in temporal expres-559

sions (e.g., "January 1st" vs. "01/01"), making560

exact match and F1 token score unreliable. Thus,561

we prioritize benchmark reliability and accuracy562

over a more ambitious generative QA setting. We563

leave the extension of the current benchmark to564

generative dialogue settings as future work565

Open-sourced Models. Our current experiments566

mainly focus on close-sourced models. However,567

as we have pointed out in our Experiment section568

§ 4.1, we found most open-source LLMs cannot569

handle the long dialogue inputs from LoCoMo,570

for example only about 10% of dialogues can be571

fed into Llama-3-70B. And even for those shorter572

dialogues that can be fed into Llama-3-70B, we573

notice that the model gets lost and fails to follow574

instructions, even failing to generate in the desired575

format. We therefore consider the adaptation of our576

framework to open-sourced models as future work.577

Note that we will release our code and dataset for578

reproducibility.579

References580

Sanghwan Bae, Donghyun Kwak, Soyoung Kang,581
Min Young Lee, Sungdong Kim, Yuin Jeong, Hyeri582
Kim, Sang-Woo Lee, Woomyoung Park, and Nako583
Sung. 2022. Keep me updated! memory manage-584
ment in long-term conversations. In Findings of the585
Association for Computational Linguistics: EMNLP586
2022, Abu Dhabi, United Arab Emirates. Association587
for Computational Linguistics.588

Wenhu Chen, Xinyi Wang, and William Yang Wang.589
2021. A dataset for answering time-sensitive ques-590
tions. In Thirty-fifth Conference on Neural Informa-591
tion Processing Systems Datasets and Benchmarks592
Track (Round 2).593

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang594
Yu, Haotian Wang, Ming Liu, and Bing Qin. 2024.595
TimeBench: A comprehensive evaluation of tempo-596
ral reasoning abilities in large language models. In597
Proceedings of the 62nd Annual Meeting of the As-598
sociation for Computational Linguistics (Volume 1:599
Long Papers), Bangkok, Thailand. Association for600
Computational Linguistics.601

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting 602
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka- 603
terina Zubova, Yujie Qiao, Matthew Burtell, David 604
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal- 605
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, 606
Tao Yu, Rui Zhang, Shafiq Joty, Alexander R. Fab- 607
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming 608
Xiong, and Dragomir Radev. 2022. Folio: Natu- 609
ral language reasoning with first-order logic. arXiv 610
preprint arXiv:2209.00840. 611

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 612
wards reasoning in large language models: A survey. 613
In 61st Annual Meeting of the Association for Com- 614
putational Linguistics, ACL 2023, pages 1049–1065. 615
Association for Computational Linguistics (ACL). 616

Jihyoung Jang, Minseong Boo, and Hyounghun Kim. 617
2023. Conversation chronicles: Towards diverse tem- 618
poral and relational dynamics in multi-session con- 619
versations. In Proceedings of the 2023 Conference on 620
Empirical Methods in Natural Language Processing, 621
pages 13584–13606. 622

Lis Kanashiro Pereira. 2022. Attention-focused adver- 623
sarial training for robust temporal reasoning. In Pro- 624
ceedings of the Thirteenth Language Resources and 625
Evaluation Conference, Marseille, France. European 626
Language Resources Association. 627

Xingxuan Li, Liying Cheng, Qingyu Tan, Hwee Tou Ng, 628
Shafiq Joty, and Lidong Bing. 2023. Unlocking tem- 629
poral question answering for large language models 630
using code execution. arXiv e-prints, pages arXiv– 631
2305. 632

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yu- 633
lan He, Di Yin, Xing Sun, and Yunsheng Wu. 2023. 634
Memochat: Tuning llms to use memos for consis- 635
tent long-range open-domain conversation. arXiv 636
preprint arXiv:2308.08239. 637

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, 638
Mohit Bansal, Francesco Barbieri, and Yuwei Fang. 639
2024. Evaluating very long-term conversational 640
memory of LLM agents. In Proceedings of the 62nd 641
Annual Meeting of the Association for Computational 642
Linguistics (Volume 1: Long Papers), Bangkok, Thai- 643
land. Association for Computational Linguistics. 644

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, 645
Armando Solar-Lezama, Joshua Tenenbaum, and 646
Roger Levy. 2023. Linc: A neurosymbolic approach 647
for logical reasoning by combining language models 648
with first-order logic provers. In Proceedings of the 649
2023 Conference on Empirical Methods in Natural 650
Language Processing, pages 5153–5176. 651

Charles Packer, Vivian Fang, Shishir G Patil, Kevin 652
Lin, Sarah Wooders, and Joseph E Gonzalez. 2023. 653
Memgpt: Towards llms as operating systems. arXiv 654
preprint arXiv:2310.08560. 655

Liangming Pan, Alon Albalak, Xinyi Wang, and 656
William Wang. 2023. Logic-lm: Empowering large 657
language models with symbolic solvers for faithful 658

9



logical reasoning. In Findings of the Association659
for Computational Linguistics: EMNLP 2023, pages660
3806–3824.661

Lianhui Qin, Aditya Gupta, Shyam Upadhyay, Luheng662
He, Yejin Choi, and Manaal Faruqui. 2021. Time-663
dial: Temporal commonsense reasoning in dialog.664
In Proceedings of the 59th Annual Meeting of the665
Association for Computational Linguistics and the666
11th International Joint Conference on Natural Lan-667
guage Processing (Volume 1: Long Papers), pages668
7066–7076.669

Yifu Qiu, Zheng Zhao, Yftah Ziser, Anna Korhonen,670
Edoardo Ponti, and Shay B Cohen. 2024. Are large671
language model temporally grounded? In Proceed-672
ings of the 2024 Conference of the North American673
Chapter of the Association for Computational Lin-674
guistics: Human Language Technologies (Volume 1:675
Long Papers), pages 7057–7076.676

Hossein Rajaby Faghihi, Bashar Alhafni, Ke Zhang, Shi-677
hao Ran, Joel Tetreault, and Alejandro Jaimes. 2022.678
Crisisltlsum: A benchmark for local crisis event time-679
line extraction and summarization. In Findings of the680
Association for Computational Linguistics: EMNLP681
2022, Online and Abu Dhabi, United Arab Emirates.682
Association for Computational Linguistics.683

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.684
Know what you don’t know: Unanswerable ques-685
tions for squad. In Proceedings of the 56th Annual686
Meeting of the Association for Computational Lin-687
guistics (Volume 2: Short Papers), pages 784–789.688

Daivik Sojitra, Raghav Jain, Sriparna Saha, Adam Ja-689
towt, and Manish Gupta. 2024. Timeline summariza-690
tion in the era of llms. In Proceedings of the 47th691
International ACM SIGIR Conference on Research692
and Development in Information Retrieval, pages693
2657–2661.694

Julius Steen and Katja Markert. 2019. Abstractive695
timeline summarization. In Proceedings of the 2nd696
Workshop on New Frontiers in Summarization, Hong697
Kong, China. Association for Computational Linguis-698
tics.699

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. 2023.700
Towards benchmarking and improving the temporal701
reasoning capability of large language models. In702
Proceedings of the 61st Annual Meeting of the As-703
sociation for Computational Linguistics (Volume 1:704
Long Papers), pages 14820–14835.705

Bing Wang, Xinnian Liang, Jian Yang, Hui Huang,706
Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun Ma, and707
Zhoujun Li. 2023. Enhancing large language model708
with self-controlled memory framework. arXiv709
preprint arXiv:2304.13343.710

Yuqing Wang and Yun Zhao. 2024. TRAM: Benchmark-711
ing temporal reasoning for large language models. In712
Findings of the Association for Computational Lin-713
guistics ACL 2024, Bangkok, Thailand and virtual714
meeting. Association for Computational Linguistics.715

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 716
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 717
et al. 2022. Chain-of-thought prompting elicits rea- 718
soning in large language models. Advances in neural 719
information processing systems, 35:24824–24837. 720

Siheng Xiong, Ali Payani, Ramana Kompella, and Fara- 721
marz Fekri. 2024. Large language models can learn 722
temporal reasoning. In Proceedings of the 62nd An- 723
nual Meeting of the Association for Computational 724
Linguistics (Volume 1: Long Papers), Bangkok, Thai- 725
land. Association for Computational Linguistics. 726

Jing Xu, Arthur Szlam, and Jason Weston. 2022. Be- 727
yond goldfish memory: Long-term open-domain con- 728
versation. In Proceedings of the 60th Annual Meeting 729
of the Association for Computational Linguistics (Vol- 730
ume 1: Long Papers), Dublin, Ireland. Association 731
for Computational Linguistics. 732

Sen Yang, Xin Li, Lidong Bing, and Wai Lam. 2023. 733
Once upon a time in graph: Relative-time pretrain- 734
ing for complex temporal reasoning. In Proceedings 735
of the 2023 Conference on Empirical Methods in Nat- 736
ural Language Processing, Singapore. Association 737
for Computational Linguistics. 738

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and 739
Yanlin Wang. 2024. Memorybank: Enhancing large 740
language models with long-term memory. In Pro- 741
ceedings of the AAAI Conference on Artificial Intelli- 742
gence, volume 38, pages 19724–19731. 743

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth. 744
2019. “going on a vacation” takes longer than “go- 745
ing for a walk”: A study of temporal commonsense 746
understanding. In Proceedings of the 2019 Confer- 747
ence on Empirical Methods in Natural Language Pro- 748
cessing and the 9th International Joint Conference 749
on Natural Language Processing (EMNLP-IJCNLP), 750
pages 3363–3369. 751

Ben Zhou, Kyle Richardson, Qiang Ning, Tushar Khot, 752
Ashish Sabharwal, and Dan Roth. 2021. Temporal 753
reasoning on implicit events from distant supervision. 754
In Proceedings of the 2021 Conference of the North 755
American Chapter of the Association for Computa- 756
tional Linguistics: Human Language Technologies, 757
pages 1361–1371. 758

A Prompts for Benchmark Construction 759

We use GPT-4o to construct a temporal reason- 760

ing benchmark for multi-session dialogues. The 761

first step is the temporal event extraction using the 762

prompt shown in Figure 5. Then the prompt for 763

the second step, temporal event linking, is shown 764

in Figure 6. With the grouped temporal events, we 765

use the prompt in Figure 7 to create temporal QAs. 766
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Figure 5: Prompt for Temporal Event Extraction.

Figure 6: Prompt for Temporal Event Linking.

Figure 7: Prompt for Temporal QA Creation.

11



B Examples of Temporal QAs in767

Constructed Benchmark768

We show examples of final temporal QAs for differ-769

ent temporal reasoning types in Figure 8, 9 and 10.770

In each example, we highlight the ground truth an-771

swer as green and show the corresponding selected772

temporal events for constructing the question below773

the question.774

C Prompt for Time-aware Memorization775

We show the designed prompt for time-aware mem-776

orization in Figure 11.777

D Prompt for Neuro-symbolic Temporal778

Reasoning779

We show the designed prompts for neuro-symbolic780

temporal reasoning here. Specifically, we first per-781

form memory retrieval with the prompt in Figure782

12. Then we prompt to generate Python code via in-783

context learning as in Figure 13. With the generated784

code and its execution result, we finally prompt the785

LLM to select the answer, and the prompt is shown786

in Figure 14.787
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Figure 8: An example temporal QA for Temporal Anchoring

Figure 9: An example temporal QA for Temporal Precedence

Figure 10: An example temporal QA for Temporal Interval
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Figure 11: Prompt for Time-aware Memorization.

Figure 12: Prompt for memory retrieval.

Figure 13: Prompt for generating Python code for temporal reasoning.
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Figure 14: Prompt for temporal question answering.
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