
Model Stitching: Looking For Functional Similarity
Between Representations

Adriano Hernandez, Rumen Dangovski, Peter Y. Lu & Marin Soljacic
MIT EECS

Cambridge, MA 02139, USA
{adrianoh,rumenrd,lup,soljacic}@mit.edu

Abstract

Model stitching (Lenc & Vedaldi 2015) is a compelling methodology to compare
different neural network representations, because it allows us to measure to what
degree they may be interchanged. We expand on a previous work from Bansal,
Nakkiran & Barak which used model stitching to compare representations of the
same shapes learned by differently seeded and/or trained neural networks of the
same architecture. Our contribution enables us to compare the representations
learned by layers with different shapes from neural networks with different archi-
tectures. We subsequently reveal unexpected behavior of model stitching. Namely,
we find that stitching, based on convolutions, for small ResNets, can reach high
accuracy if those layers come later in the first (sender) network than in the second
(receiver), even if those layers are far apart.

This leads us to hypothesize that stitches are not in fact learning to match the
representations expected by receiver layers, but instead finding different repre-
sentations which nonetheless yield similar results. Thus, we suggest that model
stitching, naively implemented, may not necessarily always be an accurate measure
of similarity.

1 Introduction

The success of deep learning for visual recognition has been attributed to the ability of neural networks
to learn good representations of their training data Rumelhart et al. (1986). That is, intermediate
outputs (which we refer to as “representations”) of good neural networks are believed to encode
meaningful information about their inputs, which these neural networks use for classification and/or
other downstream machine learning tasks Goodfellow et al. (2016). However, our understanding of
these representations is somewhat limited. Though deep learning interpretability research, particularly
for computer vision, has helped us to intuitively grasp what deep neural networks are learning, we do
not know why good representations are learned, nor do we have a robust theory to characterize them.
For example, we do not know how to compare representations effectively.

Our goal is to improve the existing toolbox to find functional similarity between representations. It is
not obvious how to find functional similarity, nor is it obvious exactly what it precisely means even
though we (the authors) have some intuition of it, so before we continue we provide a sufficient defi-
nition for our purposes. For us, a representational similarity metric is good at measuring “functional
similarity” if we can easily use it to tell whether two representations of one or two models are used
by the model(s) for the same or similar purpose(s). We believe this is a useful lens because if two
representations can be used for similar purposes then in some sense they encode similar information.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



While we are interested in functional similarity, many papers Kornblith et al. (2019) Morcos et al.
(2018) Ding et al. (2021) look for measures of statistical or geometric similarity1 because they can
confirm known edge cases, like a pair of identical representations or a representation and a vector of
random noise.

These measures are a great starting point, but are not very informative in general, since different
neural networks could process and store information in ways which are analogous to eachother but
not numerically similar.

We believe that a previous work Bansal et al. (2021) provides us with such a measure. It uses,
learned transformations to translate representations from one layer into those for another layer. Their
technique measures functional similarity, because invariant to the type of transformations used, it
tests whether two representations can be interchanged, which is a strong indicator that the two
representations function similarly. However, their work can only compare representations with the
same shapes. We expand it to include all representations taking the form of ResNet tensors with
widths and heights that are multiples of each other.

2 Experimental Setup

2.1 Models and Dataset

We compare all different layers of all ResNets with a number of layers ranging from ten to eighteen.
These ResNets are trained on CIFAR-10 for comparable results with Bansal et. al. These small
ResNets we characterize with 4-tuples, where each element is either one or two, representing the
number of residual blocks per stage2. Since we use at most two blocks per stage, we can denote these
4-tuples unambiguously as R1111, R1112, and so on. There are 24 = 16 such ResNets. Note that
R2222 is equivalent to the well-known Resnet18 architecture, while R1111 is equivalent to Resnet10.

2.2 Experiment

We train each possible Small Resnet on CIFAR-10, yielding an accuracy above 90%. We also generate
a randomly initialized, untrained network for each Small Resnet architecture and confirm that these
have an accuracy of around 10%3. All these networks are frozen and cannot learn during stitching.

We stitch every ordered pair of Small Resnets. There are 16 · 16 = 256 such pairs. In every ordered
pair of networks being stitched, the former is called the sender, and the latter is the receiver. A
stitch is used to transform the output of the sender at an intermediate layer before inputing it into an
intermediate layer in the reciever. For any network A we can consider layer i as Ai, the first i layers
(assuming we start at zero) as A<i, and the layers after i as Ai<. If we wish to include layer i we can
always call such (partial) networks A≤i or Ai≤. For an input x, if we call the sender A, the reciever
B, and the stitch S, we call C = Bj<(S(A≤i(x))) the stitched network. Normally, we train S by
doing backpropagation on the stitched network with both A and B frozen. The resulting accuracy is
used to find the similarity4 between A≤i(x) and B≤j(x), the former of which is called the provided
representation and the latter of which is called the expected representation.

Unlike Bansal et al., which only compare corresponding blocks (i.e. i = j) of a sender and reciever
with the same architecture, we stitch from all residual blocks of the sender into all residual blocks
of the receiver even when they have different architectures, as long as they are Small Resnets. Also
unlike Bansal et al., we only vary our neural networks by their initialization weights, but our setup
is otherwise nearly identical. To be able to stitch between all blocks, we use strided convolutions
or upsampling when the dimensions are not the same. In our case the heights and widths vary by
powers of two so we can simple use 2x2, 4x4, or similarly-sized convolutions to downsample. For

1Here, we mean simply that the representations, given proper shifts and rescales, are numerically or geomet-
rically close by on average.

2Residual blocks are partitioned into four stages of consecutive blocks, within which they have the same
shape. At each stage, the width and height halve, while the width doubles He et al. (2016).

3There are ten classes in CIFAR-10.
4We use the downstream accuracy of the stitched network as our similarity measure for simplicity, since the

original networks’ accuracies were over 90%. Otherwise, a ratio or difference, as used in Bansal et. al. may be
more informative. In our case, no choice amongst these would change our qualitative result.

2



upsampling we use 2x, 4x, or similarly sized 2D nearest-upsampling (meaning that an element is
copied into a grid of equally-valued elements) before applying a 1x1 convolution in the stitch.

We use the randomly-initialized ResNets as controls. Our controls enable us to make sure that the
stitches are appropriately powerful. By powerful we mean how complex the functions are that stitches
can represent. If a stitch is very powerful, then even with random networks it should be able to yield
high downstream accuracy because it can learn any transformation. In this case our stitches would
always yield high “similarity” and therefore be uninformative. We can be sure this is not the case
by ensuring that the stitches never yield high similarity for random networks (where only overly
powerful stitches would).

Figure 1: On the left, a diagram exemplifying a stitch from the red (sender) network into the blue
(reciever) network comparing layer 3 from both. In this diagram, the blue layer 3 is the expected
representation. Unused layers in the stitched network are displayed as partially translucent. The
stitch is depicted in green. The arrows denote the flow of computation. The dashed arrows denote the
flow of computation in regular operation, absent of stitching. On the right, a diagram exemplifying
a 2x2 convolution (downsampling) from left (dotted) to right (solid). A 2x2 convolution such as
this one could be used to stitch from a representation with larger width and height to one of smaller
dimensions. The colors are chosen so as to elucidate which elements correspond. The blue lines
further highlight the correspondence for the blue elements. In the case of upsampling, the image can
be read from right (solid) to left (dotted), where the solid blue element is copied four times to the
dotted blue elements before it is used (later) for a 1x1 convolution.

3 Results

For every ordered pair of networks, we plot the accuracy of all the stitched networks on a grid, based
on the sender’s layer and the receiver’s layer. The layer is denoted by an integer which counts how
many residual blocks came before it5. The value in the grid element is the accuracy of the stitched
network after traning. Thus, this grid is a similarity matrix where entry i, j correspnds to the similarity
of A≤i(x) and B≤j .

3.1 Expectations

We hypothesized that for similarity matrices between networks of the same architecture we would see
a high similarity diagonal. For networks of different architectures we hoped for a shorter diagonal
(since the matrix isn’t square) or a diagonal with a different slope.

5The initial convolution is “0,” the first block of the first stage is “1,” and so on.

3



Generally, however, we assumed that there would exist some non-negligible number ε such that if
we mapped each sender layer’s representation to its most similar counterpart in the reciever, and
their similarity was s, the similarity between that layer’s representation in the sender and every other
layer’s in the reciever would be less than s− ε. Moreover, we assumed that such a mapping would
be injective. Intuitively, we thought that there would be a one-to-one correspondence between most
layers in the sender to most layers in the reciever. We did not expect any layers’ representation in the
sender to have high similarity to multiple layers’ representations in the reciever.

These hypotheses make sense because Bansal et. al.’s findings suggest that each layer in the sender
should have at least one similar layer in the reciever—at least in the cast of identical architectures,
where those two layers are the corresponding ones; and it is usually assumed that distant layers have
different information, and so they should not be similar. However, we found that every layer in the
sender was extremely similar to all layers before it in the reciever. That is to say, regardless of
the architecture, if j ≤ i then the similarity was high. Visually, this looks like a triangle in the lower
left-hand corner of the similarity matrix. This is visible in the figure below and quite perplexing.

For our controls we expected to see low stitching accuracy throughout the board since the networks
are random, and we did. With that said, some of the top left or bottom right elements have high
similarity depending on whether the sender or reciever was random. In the case of a random sender
and trained reciever, if i and j are small, it is easy for S to undo A≤i, and give Bj< something usable.
The opposite case is analogous.

Figure 2: Triangle similarity pattern between trained Small Resnets and (expected) low similarity
pattern for random ones. The plot is to be interpreted as a similarity matrix from sender to reciever.
This is indicative of the pattern we saw on all such Resnets. More examples and measurements are
available in the appendix.

4



3.2 Conclusion

The most interesting aspect of our results is the high accuracy of the stitching network for layers in
the lower left hand triangle. It is true that our findings do not contradict Bansal et. al.’s findings since
they only stitched on the diagonal which yielded the same high accuracy for them as it did for us.
However, we are still surprised. Given that we interpret the stitching network accuracy as a similarity,
our results suggest that each sender representation is similar with all the receiver representations
from a layer before it. We expected to see that each layer would be similar to a couple (nearby)
layers at most because the standard narrative has been that every layer loses some amount of granular
information, and so that information should not be reconstructable in an interchangeability test like
stitching.

We see two main explanations for the results. The first is that the common narrative could be wrong
and some neural networks may in fact be able to maintain most if not all of the granular information
of the image throughout their processing of it. The second is that the stitch may be able to give the
reciever a representation which, despite being different from that which is expected, nonetheless
yields high accuracy.

We bet that the latter option is the most likely. Intuitively, the stitch may be able to figure out how
to generate some generic, albeit unrealistic, set of the most salient features for the recieving layer
to classify in a given way. Perhaps it is generating the “average” human, for example. However, a
deeper analysis is required to ascertain whether that is the case. In the Appendix, we further discuss
sanity tests we explored and dub this hypothesis hacking.

Despite our difficulty generalizing model stitching, we still see it as an important step forward in
our ability to compare representations, since its focus on functional similarity makes its results
more salient than those from geometric closeness or statistical measures. Unlike existing measures
of similarity which tend to look for literal distance between representations, stitching follows a
process whereby we define what behaviors should be exhibited by similar representations (i.e. they
should be interchangeable up to a degree of flexibility determined by the function class of the stitch)
and then devise tasks/experiments that test these behaviors on the representations under question.
This approach is far better, because the research community understands tasks much better than the
numerical, geometric, or statistical properties of representations. Moreover, it is easier to interpret the
resulting similarity measurements in terms of accuracy or other such functional quantities, making
techniques like stitching more useful, even in practice. We hope to see more representational
comparison techniques following the high-level process outlined above in the future.

Acknowledgments and Disclosure of Funding

Thank you to MIT EECS for funding this project and MIT SuperUROP and the Soljacic Lab for
supporting it.

References
Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural representations.

In NeurIPS, 2021.

Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. Grounding representation similarity with statistical
testing. ArXiv, abs/2108.01661, 2021.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT Press,
2016.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton. Similarity of neural network
representations revisited. ArXiv, abs/1905.00414, 2019.

Ari S. Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural networks
with canonical correlation. In NeurIPS, 2018.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error
propagation. 1986.

5



Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
2018. doi: 10.48550/ARXIV.1803.03635. URL https://arxiv.org/abs/1803.03635.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

6

https://arxiv.org/abs/1803.03635


A Appendix

Here we provide additional information that may be helpful to readers, but which was beyond the scope of the
main paper. There are four subsections: further details on our testing procedures; results from larger Resnets
to support the idea that our surprising findings could generalize; numerical sanity testing to try and confirm
or disprove the hacking hypothesis; and image-generation to try and visualize the possibility of the hacking
hypothesis.

Experimental Details

We train our stitches for four epochs with momentum 0.9, batch size 256, weight decay 0.01, learning rate 0.01,
and a post-warmup cosine learning rate scheduler. We chose our hyperparameters because they were effective
for training the Small Resnets between which we stitched. Below is an example of a Small Resnet for clarity on
our architecture.

Figure 3: Resnet18 He et al. (2016), equivalent to R2222 using our nomenclature.

7



Extrapolation to Larger Resnets

Figure 4: Our results generalize to larger Resnets of a similar type (also on CIFAR-10). We were able
to yield the same triangular pattern between Resnet18 and Resnet34 in both directions, suggesting
that our results are the function of some general property of the Resnet architecture or of CIFAR-10.

Numerical Sanity Testing

When we found that our metric was finding high similarity between distant layers, we decided to sanity test
this result using numerical testing. We averaged the mean squared error between three pairs of values: the
expected representation with that generated by a vanilla stitch (trained with backpropagation on the CIFAR-10
classification task, as discussed in the body of this paper); the expected representation with that generated by a
similarity-trained stitch; and the representation generated by similarity-trained stitch with that generated by a
vanilla stitch. Respectively, we refer to these three pairs as EV, ES, and SV. The mean squared error is over
the elements in the representations’ tensors. For those mean squared errors, we found the minimum, mean,
maximum, and standard deviation over the (cartesian product of the) entire dataset of CIFAR-10 and all the pairs
of layers across all Small Resnets. We also measured the same statistics for only corresponding layers (i.e. layer
one with layer one) to get a baseline similar to what Bansal et. al.’s work may have yielded.

Unlike the vanilla stitch, the similarity-trained stitch was trained to minimize the mean squared error between
the expected representation of the reciever (at a layer) and the output of the corresponding stitch. For example,
consider the input x, sender A, reciever B, and stitch S. Consider the stitched network C = Bj<(S(A≤i)), and
recall that the expected representation is B≤j (that is, the computation up to, including, layer j of the reciever).
The vanilla stitch would be trained using backpropagation on C with all the weights of A and B frozen (only the
weights in S can change). However, the similarity-trained stitch would be trained on (S(A<i)−B≤j)

2. The
purpose of the similarity-trained stitch is to get a baseline for what a “low” mean squared error is. We include its
task accuracy at the end of this section as a curiosity.

Below we plot our results in two tables. We denote the highest difference with red, that with the second highest
difference with yellow, and that with the lowest difference with green. We expect, therefore, to see red in the

8



EV and SV columns and green in the ES column. That is because the similarity-trained stitch should be closer
to the expected representation (since the their difference is its loss function) than the vanilla stitch is to either.
If the vanilla stitch is learning to hack the reciever then we expect its difference to be larger by many orders
of magnitude than the similarity-trained stitch. While we do see that our prediction is typically correct, the
difference is not as large nor as decimatingly common as we had hoped, and so we cannot conclude, from these
results, that the stitch is likely hacking the reciever.

Table 1: Diagonals

Minimum Mean Maximum Standard Deviation
EV ES SV EV ES SV EV ES SV EV ES SV

2.0e-3 2.2e-5 1.2e-3 4.4e-2 1.5e-2 2.3e-2 2.8e-1 1.9e-1 1.1e-1 6.1e-2 3.7e-2 3.9e-2

1.3e-1 5.5e-2 2.7e-3 4.3e+5 7.6e+4 1.7e+5 4.2e+6 3.6e+5 3.7e+6 1.1e+6 1.3e+5 7.3e+5

1.5e-2 3.5e-5 7.9e-3 3.5e-1 1.1e-3 3.2e-1 5.3e-1 5.9e-3 5.3e-1 1.6e-1 2.0e-3 1.6e-1

1.6e-1 1.7e-2 1.2e-1 1.3e+2 4.9e+0 1.2e+2 1.4e3 6.0e+1 1.4e+3 2.9e+2 1.3e+1 2.9e+2

Table 2: All Stitches

Minimum Mean Maximum Standard Deviation
EV ES SV EV ES SV EV ES SV EV ES SV

1.6e-3 5.4e-6 7.8e-4 4.5e-2 1.6e-2 2.0e-2 3.6e+0 1.3e+0 5.9e-1 1.4e-1 5.9e-2 3.3e-2

1.6e-4 1.7e-7 1.5e-4 2.6e+5 1.1e+5 6.3e+4 1.8e+7 9.2e+6 5.8e+6 1.0e+6 4.3e+5 3.4e+5

1.4e-2 6.3e-6 7.9e-3 2.2e+0 2.1e-3 2.2e+0 2.3e+2 1.9e-2 2.3e+2 1.2e+1 4.3e-3 1.2e+1

1.3e-1 1.6e-2 9.4e-2 7.3e+4 4.2e+4 2.1e+4 1.2e+7 6.9e+6 4.8e+6 5.9e+5 3.4e+5 2.1e+5

9



Figure 5: We are unable to yield high task accuracy for stitched networks using similarity-trained
stitches. This makes sense, since having no task information, it does not know what subspaces
to prioritize. Most likely, only a few subspaces and/or weights truly matter for task accuracy, per
the Lottery-Ticket hypothesis Frankle & Carbin (2018). Thus, not knowing which those are, the
similarity-trained stitch cannot yield high task accuracy even when it is trained for thirty epochs to
the vanilla stitch’s four (the latter yielding a very high similarity near 90% for the lower left-side
triangle of the corresponding similarity matrix, per the previous figures in this paper).

10



Image Generation

Figure 6: Our results from generating images using stitches. We stitched the output of intermediate
layers (numbered on the left from zero through five to signify the number of blocks coming before
it—zero corresponding to the output of the first convolution, for example) into the very first layer,
thereby generating images. We hoped to understand whether the stitches were able to hack the
reciever. We did, however, not find a discernable pattern other than the loss of granularity as the
layers progressed. On the left side of each pair is the stitch-generated image, whereas on the right
side is the actual image.

11


	Introduction
	Experimental Setup
	Models and Dataset
	Experiment

	Results
	Expectations
	Conclusion

	Appendix

