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Abstract

Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity1

brought by unknown light. Existing solutions alleviate the ambiguity by either2

explicitly associating reflectance to light conditions or resolving light conditions in3

a supervised manner. This paper establishes an implicit relation between light clues4

and light estimation and solves UPS in an unsupervised manner. The key idea is to5

represent the reflectance as four neural intrinsics fields, i.e., position, light, specular,6

and shadow, based on which the neural light field is implicitly associated with7

light clues of specular reflectance and cast shadow. The unsupervised optimization8

of neural intrinsics fields can be free from training data bias and fully exploits9

all observed pixel values for UPS. Our method achieves a superior performance10

advantage over state-of-the-art UPS methods on public datasets and promising11

results under the challenging setting of sparse UPS. The code will be released12

soon.13

1 Introduction14

Photometric stereo (PS) [50] aims at recovering the surface normal from several light-varying images15

captured at a fixed viewpoint. As compared with other approaches (e.g., multi-view stereo [41], active16

sensor-based solutions [58]), photometric stereo is excellent at recovering fine-detailed surfaces and17

has been widely used for Hollywood movies [11], industrial quality inspection [49], and biometrics18

[55]. Calibrating accurate lighting directions is crucial to the performance of photometric stereo19

methods [54]. However, lighting calibration is often tedious, dramatically restricting the applicability20

in the real-world. To this end, researchers develop uncalibrated photometric stereo (UPS) methods21

that estimate surface normal with unknown lights.22

Uncalibrated photometric stereo suffers from General Bas-Relief (GBR) ambiguity [6] for an inte-23

grable surface. Early solutions address the ambiguity by explicitly associating reflectance to light,24

i.e., adopting analytic reflectance models (e.g., Lambertian reflectance [4], [37], parametric specular25

reflection [20], specular spikes [56], inter-reflection [12]) or imposing priors from reflectance proper-26

ties [3, 25, 24, 44]. Thus, due to the strong reliance on reflectance assumption, these methods can be27

less effective for unknown reflectance. Besides, these methods ignore the clue of cast shadow and28

even fail in shadow regions due to the shadow-free surface assumption. Further, most of them require29

the light intensity to be identical for robust estimation. Recently, deep learning-based approaches30

address the ambiguity by estimating light direction and intensity before recovering surface normal [13,31

15, 27, 40]. They train a light estimation network using a large-scale amount of rendered data in a32

supervised manner. However, the training data bias [33] can hardly be eliminated and can produce33

unexpected estimation for real-world data. Because rendered training data inevitably contains the34

domain gap from the real ones and scarcely cover all surfaces with different geometry and reflectance35

in the real-world. Besides, such a two-step solution can bring accumulating errors for surface normal36
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Figure 1: Illustration of our neural intrinsics fields. Left-top: the rendering equation. Left-bottom:
our four neural intrinsic fields, i.e., from left to right: shadow, position, specular, and light fields,
respectively. Each sub-figure in the left-bottom illustrates the mutual information across dimensions
of position-light, position, normal-light, and observed images, respectively. Left figure shows how
the neural intrinsics fields are imposed to render a pixel. Right: a summary of our intrinsics w.r.t. the
dependence on position or light. The definition of notations can be found from Eq. (2) and Eq. (4).

estimation. Further, all these methods assume the light intensity distributed in a pre-defined range37

(i.e., [0.2, 2]), restricting their applicability.38

To this end, we propose NeIF, representing general reflectance as Neural Intrinsics Fields for39

uncalibrated photometric stereo. Our method differs from previous methods in three aspects: 1)40

it fully considers clues of specular reflectance and cast shadow from each observed pixel for light41

estimation so that it is expected to produce accurate estimation for both light conditions and surface42

normal; 2) it does not make explicit assumptions about the reflectance or light so that it works with43

general surface reflectance and flexible light settings; 3) it infers light and surface normal in an44

unsupervised manner so that it is free from training data bias and achieves stable performance for45

data from different sources.46

Our key idea is to represent the general reflectance as four neural intrinsics fields (i.e., position,47

light, specular, and shadow, see Fig. 1), implemented by four multi-layer perceptrons (MLPs). These48

four fields are connected based on the implicit relation (or dependence) of these intrinsics so that49

no explicit assumption is imposed, e.g., we take the estimated light as the input to recover specular50

reflectance and cast shadow instead of explicitly exploiting them for light estimation. These intrinsics51

fields are optimized to reconstruct each pixel value from observed images, which fully exploit52

mutual information across different dimensions, as shown in Fig. 1. The reconstruction error is53

backpropagated to the neural light field through neural specular and shadow fields so that clues of54

specular and shadow can be implicitly and fully considered for light estimation. Our contributions55

are summarized as:56

• We represent general reflectance as four intrinsic neural fields to implicitly associate per-57

pixel reflectance to light, which solves uncalibrated photometric stereo by fully considering58

clues of specular reflectance and cast shadow for light estimation.59

• We propose the NeIF, an uncalibrated photometric stereo method trained in an unsupervised60

manner, which works with general surface reflectance and flexible light settings, and is free61

from training data bias.62

• We show that our method achieves superior performance over uncalibrated and unsupervised63

methods. We also demonstrate its excellent generalization capacity to data from different64

sources and promising performance with the challenging setup of sparse uncalibrated65

photometric stereo.66
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2 Related Work67

This section mainly reviews the latest works in neural reflectance representation, and related works68

on unsupervised PS methods and UPS methods. Readers may refer to [45] and [13] for a more69

comprehensive summary.70

2.1 Neural Reflectance Representation71

Neural Radiance Fields (NeRFs) [34] focus on the 3D geometries without explicitly modeling the72

interaction between light and objects via the image formation model. Many subsequent works73

explore its application in various computer vision problems, such as relighting [16, 46], photometric74

stereo [29], and multi-view stereo [7, 9, 60, 28, 61]. These works require known lighting conditions [7,75

46, 61, 29], adopt simple reflectance model [59], or leverage multi-view information [7, 9, 60, 28, 61].76

Different from these methods, our method considers general reflectance, cast-shadow effects, and77

unknown light conditions for uncalibrated photometric stereo by taking images captured at a single78

viewpoint.79

2.2 Unsupervised Photometric Stereo80

Classical methods solve the calibrated photometric stereo problem without knowing the ground81

truth surface normal. Therefore, we classify them as unsupervised methods. The least square-82

based algorithm [50] provides the simplest solution, which assumes the object to be Lambertian.83

It is generally served as a baseline method due to its stability, but its strong assumption on the84

reflectance model makes it fail for non-Lambertian surface. The following works either regard the85

non-Lambertian reflectance components as the outliers [5, 18, 36, 51, 26, 52] or apply analytic86

reflectance models including Torrance-Sparrow [20], the Ward model [18], a mixture of multiple87

Ward models [21], [1] etc. to consider the non-Lambertian effects. However, the performance of88

those methods can only deal with limited types of materials. There are also more advanced methods89

that utilize the general refletance features such as reciprocity, isotropy [2], and monotonicity [24].90

Those methods give a reliable estimation for objects with a broad range of materials.91

With the progress of deep learning, many learning-based frameworks have been proposed for cali-92

brated photometric stereo. Taniai et al. [47] proposed the first unsupervised learning-based photomet-93

ric stereo method through a rendering equation. However, their reflectance model does not separately94

consider shadow, specular highlights, and diffuse components.95

We also train our method in an unsupervised manner. Different from previous methods, we address96

the challenging problem of UPS and separately model cast shadow, specular reflectance, and diffuse97

reflectance.98

2.3 Uncalibrated Photometric Stereo99

Previous works hold the Lambertian assumption and address the ambiguity brought by a 3×3100

transformation matrix. Belhumeur et al. [6] reduce the dimension of the transformation to a three101

parameters GBR transformation by considering integrability constraints. Based on that, extra clues102

from reflectance, such as half-vector symmetry [31], albedo clustering [42], specular spikes [56], or103

assumptions of light source distribution, such as ring light [63], symmetry light [35], or uniform-104

distributed light sources [57, 4, 42, 53, 37, 31], are used to resolve the GBR ambiguity. However,105

all these methods require the light intensity to be identical, which is inapplicable in the real-world106

datasets such as DILIGENT [45], APPLE & GOURD [2], and LIGHT STAGE DATA GALLERY [11].107

Cho et al. [17] put up a semi-calibrated method to deal with non-uniform light intensity, but they108

assume the light directions to be known. Quéau et al. [39] address the photometric stereo problem109

under inaccurate lighting calibration, while the accuracy can significantly drop when non-Lambertian110

components become dominant.111

Recently, many deep learning methods have been proposed for uncalibrated photometric stereo.112

Chen et al. [13] propose a supervised uncalibrated framework, SDPS-Net, which can simultaneously113

estimate the light conditions (intensity and direction) and the surface normal. They suggest treating114

light estimation as a classification problem and separating the normal and light prediction to reduce115

the complexity. Their following work, GC-Net [15], improves the performance of SDPS-Net by116
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adding shading as an extra channel to the input of the light estimation network. However, as a117

common problem for all supervised methods, an over-fitting problem may occur due to the training118

data bias [33]. In contrast, unsupervised methods do not have such a concern. Another benefit is119

that there is no need to synthesize training sets for unsupervised network training. To utilize the120

advantage of unsupervised methods, Kaya et al. [27] propose a compromised method that trains the121

light estimation network in a supervised manner (similar to [13]), but estimate the surface normal in122

an unsupervised way (similar to [47]). However, they still suffer from training data bias during light123

estimation. Besides, all these methods make a strict assumption that the light intensity distributed in a124

pre-defined range (i.e., [0.2, 2]) and suffers from accumulating error due to their two-step frameworks.125

In contrast, our method neither makes a strict assumption on reflectance nor needs special light source126

distribution and jointly solves light conditions and surface normal in an unsupervised manner.127

3 Method128

3.1 Problem Formulation129

Given a set of observations I ≜ (I0, I1, ..., If ) of a static surface, illuminated by f unknown130

directional illuminations distributing on the upper-hemisphere, uncalibrated photometric stereo aims131

at recovering light directions L ≜ (l0, l1, ..., lf ), light intensities E ≜ (e0, e1, ..., ef ), and surface132

normal N ≜ {ni|i ∈ P}, P is the set of all positions on the surface. The solution is achieved by133

solving the optimization problem,134

argmin
L,E,N

∑#P
i=1

∑f
j=1 D(m̄ij ,mij), (1)

where m̄ij ∈ Ij is the observed pixel intensity at position i, #P is the number of elements in P1, mij135

is the corresponding rendered pixel intensity, D(·, ·) is a metric describing their difference. Under an136

orthographic camera with linear radiometric response, mij is formulated as (simplified in a per-pixel137

form),138

mij = ejρ(ni, lj ,v)max(n⊤
i lj , 0) = ejρij max(n⊤

i lj , 0), (2)
where v = [0, 0, 1] is the view direction pointing toward the viewer, ρij describes the general139

reflectance, max(n⊤
i lj , 0) represents the attach shadow.140

Unknown light brings two ambiguities when solving Eq. (1), i.e., shape-light ambiguity, which is141

denoted as an invertable matrix G ∈ R3×3, and reflectance-light ambiguity, which is denoted as a142

non-zero scalar cj ∈ R,143

mij = ej(cjc
−1
j )ρij max(n⊤

i (GG−1)lj , 0). (3)

3.2 Neural Intrinsics Fields144

General reflectance decomposition. To exploit clues of specular reflectance and cast shadow for145

light estimation, we decompose the general reflectance as the cast shadow term sij multiplying the146

bidirectional reflectance term,147

ρij = sij(k
d
i ρ

d
i + ksi ρ

s
ij), (4)

where subscript ‘i’ and ‘j’ indicate position- (or normal-) and light-dependent factors, respectively;148

the cast shadow term sij is either 0 or 1; ρdi , ρ
s
ij represent the diffuse and specular reflectance, and kdi149

and ksi are coefficients that balance out the effects of specular and diffuse reflectance2.150

Neural fields of specular reflectance and cast shadow. Previous methods identify specular features151

from specific pixels and associate an explicit relation to light for light estimation. However, this152

scheme fails for the surface where the specular features are invisible or the explicit relation is violated.153

Besides, leaving out the clue of cast shadow can obstruct producing competitive performance.154

In contrast, we leverage both clues of specular and shadow for light estimation, which is achieved by155

building the neural specular field and neural shadow field, and associating the fields to light conditions.156

1Without loss of generality, we put ‘#’ before a set symbol to represent its number of elements in this paper.
2We think these coefficients of a point will not change under different lights, while they can be different at

different positions.
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Figure 2: The framework of the proposed NeIF. PositionNet takes the input of positional code and
outputs diffuse reflectance ρdi , surface normal ni, and coefficients kdi , k

s
i . LightNet takes the observed

image Ij as the input and outputs light intensity ej and direction lj . SpecularNet takes v⊤
j hj and

n⊤hj as the input and outputs specular reflectance ρsij . ShadowNet takes inputs of positional code
and light direction lj and output shadow indicator sij . All the intrinsics are used to render the
observed pixel value mij using Eq. (2) and Eq. (4).

These neural fields make the utmost of all observed pixels, and exploit the mutual information across157

different normal-light (specular) and position-light (shadow) for light estimation. Two MLPs, namely158

SpecularNet and ShadowNet, implement these neural fields, respectively. we take the estimated159

light direction as the input of these networks to achieve their implicit association to light conditions.160

Since the specular reflectance and cast shadow are normal- and position-dependent, we also feed the161

estimated surface normal and the positional code to them, respectively. SpecularNet and ShadowNet162

output ρsij and sij , respectively, as shown in Fig. 2.163

Neural light field. There is mutual information across different observed images, i.e., observed164

images with similar appearances are expected to be illuminated by similar lights. To fully consider165

and exploit this mutual information, we build the neural light field by concatenating a CNN encoder166

to an MLP, namely LightNet. The encoder extracts a light code from each observed image3, and the167

LightNet infers the corresponding light conditions (i.e., ej , lj) from the light code, as shown in Fig. 2.168

Neural position field. There is mutual information across different positions on a surface, i.e., the169

consistency of shape and diffuse reflectance in the spatial domain. To fully consider and exploit this170

mutual information, we establish a neural position field, namely PositionNet, implemented by an MLP.171

The neural position field outputs position-dependent, light-independent factors4, i.e., ni, ρ
d
i , k

d
i , k

s
i .172

The PositionNet takes the positional code as the input, as shown in Fig. 2.173

3.3 Optimizing Neural Intrinsics Fields174

We adopt the reconstruction loss function with the ℓ1 metric to optimize our NeIF,175

Lrec =
1

#P× f

#P∑
i=1

f∑
j=1

|m̄ij − ejsij(k
d
i ρ

d
i + ksi ρ

s
ij)max(n⊤

i lj , 0)|, (5)

Silhouette constraint. Lrec cannot resolve the shape-light ambiguity in an unsupervised manner due176

to the inherently severe ill-posedness. Therefore, we introduce the silhouette constraint (similar to177

those in [23, 15]) to stabilize the training of PositionNet. To be specific, we use polynomial fitting178

with a moving window block to traverse and pre-compute the contour’s normal of the given objects,179

represented as N̂ si ≜ {n̂si
k ∈ R2×1, k ∈ S}, S is the point set of the contour. We consider N̂ si can180

3We use light code instead of positional code because we experimentally find that the light code contains
discriminative features of light intensity and direction.

4Since specular reflectance and cast shadow are both position-dependent and light-dependent, predicting
them requires the input of light conditions, which increases the complexity of the neural position field. Therefore,
we do not estimate them in the PositionNet, but predict them using SpecularNet and ShadowNet, respectively.
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guide the prediction of the azimuth of boundary normal (at the same positions) and introduce the181

silhouette loss function,182

Lsi =

#S∑
k=1

|Nor(C(nk))− n̂si
k |, (6)

where nk ∈ R1×3 represents the estimated surface normal at the positions of silhouette from183

PositionNet, C(·) cuts off the 3rd dimension of nk (i.e., C(nk) ∈ R1×2), and Nor(·) is the vector184

normalization operation.185

Warm-up loss functions. To avoid local minimum and achieve faster convergence, we warm up186

the NeIF in early-stage during training with three additional loss functions. We use the azimuth of187

lighting direction estimated by YS97 [57] to guide the training of LightNet,188

Laz =
1

f

f∑
j=1

|Nor(C(lj))− Nor(C(laz
j ))|2, (7)

where laz
j are estimated light directions by [57]. We adopt the gradient penalty [22] Lgp to stabilize189

the training of SpecularNet,190

Lgp =
1

#P× f

#P∑
i=1

f∑
j=1

|max(−∇n⊤
i hj

ρsij , 0)|2, (8)

The intuition is from Blinn-Phong model [8], where the specular reflectance is monotonically191

increasing w.r.t the n⊤
i hj , i.e., ∇n⊤

i hj
ρsij > 0. We also supervise the training of ShadowNet using192

pseudo shadow maps Ŝj , j = 1, 2, ..., f ,193

Lshadow =
1

#P
∑
j=1

f |Sj − Ŝj |2, (9)

The pseudo shadow maps are obtained by binarizing the observed images, i.e., considering an194

observed pixel to be cast shadow if its intensity value is smaller than 0.2× the mean intensity value of195

this image. After early-stage training, we discard these loss functions for a broad range of reflectance.196

NeIF training. We train NeIF with the warm-up loss function in first 10 epochs,197

Lwarmup = Lrec + λsiLsi + λazLaz + λgpLgp + λshadowLshadow, (10)

where λsi = 5, λaz = 0.1, λgp = 10, λshadow = 10. We then train NeIF until 500 epochs or converging198

with the loss function,199

LNeIF = Lrec + λsiLsi + λshadowLrecShadow. (11)

where LrecShadow is the another shadow map supervision loss to train the ShadowNet. The loss function200

is the same to Lshadow. The only difference is the calculation of Ŝj . For LrecShadow, we calculate Ŝj201

by rendering a depth map with the estimated lj . The depth map is reconstructed from the estimated202

surface normal map N by method [10]. LrecShadow is used to align outputs of ShadowNet to those of203

PositionNet.204

Implementation details. We generate the positional code from the coordinate (in the image plane)205

by the same method in [34]. With the assumption of isotropic reflectance, we simplify the input of206

SpecularNet from {v⊤lj ,v
⊤ni,n

⊤
i lj} to {v⊤hj ,n

⊤
i hj}5 [31] for easier training. Similar to the207

Cook-Torrance reflectance model [19], we assume kdi + ksi = 1 to reduce the number of unknowns.208

The CNN decoder with declining channels processes the down-sampled images with a dimension of209

256 × 256. The LightNet takes flatten features to predict lj , ej in two different branches. For the210

ShadowNet, we also generate the positional code for lj and concatenate it to the feature in the 9th211

layer. The output of ShadowNet is either 0 or 1, which is realized by a step function with a similar212

implementation in [38].213

5hj is the bisector of lj and v, hj =
lj+v

∥lj+v∥ .

6



Table 1: Quantitative comparison in terms of mean angular error for surface normal on DILIGENT
benchmark [45]. This table summarizes comparison methods. ’N.A.’ represents not applicable as
calibrated PS is with known ℓ and e. ‘Semi’ indicates certain method leverage partial information of
light. ‘✓’ (or ‘✗’) represents that certain methods (do not) adopt supervised learning for the estimation
of surface normal n, light direction l, or light intensity e. ‘Identical’ means certain methods require
the light intensity of different illuminating to be identical.

Method PS/
UPS

n
Supervision

l
Supervision

e
Supervision BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG

LS [50] PS ✗ N.A. N.A. 4.10 8.39 14.92 8.41 25.60 18.50 30.62 8.89 14.65 19.80 15.39
TM18 [47] PS ✗ N.A. N.A. 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83
YS97 [57] UPS ✗ ✗ Identical 39.12 41.30 43.02 39.10 47.18 42.25 79.56 42.94 41.88 41.06 45.74
AM07 [4] UPS ✗ ✗ Identical 7.27 16.81 32.81 31.45 54.72 46.54 61.70 18.37 49.16 53.65 37.25
SM10 [42] UPS ✗ ✗ Identical 8.90 11.98 15.54 19.84 22.73 48.79 73.86 16.68 50.68 26.93 29.59
WT13 [53] UPS ✗ ✗ Identical 4.39 6.42 13.19 36.55 19.75 20.57 55.51 9.39 14.52 58.96 23.93
LM13 [32] UPS ✗ ✗ Identical 22.43 15.44 25.76 25.01 22.53 29.16 34.45 32.82 20.57 48.16 27.63
PF14[37] UPS ✗ ✗ Identical 4.77 9.07 14.92 9.54 19.53 29.93 29.21 9.51 15.90 24.18 16.66
LC17 [31] UPS ✗ ✗ Identical 9.30 10.90 19.00 12.60 15.00 18.30 28.00 12.40 15.70 22.30 16.35
CH18 [14] Semi ✓ ✗ Known 3.96 7.19 13.06 12.16 11.84 18.07 27.22 11.13 11.11 20.46 13.62
CH19 [13] UPS ✓ ✓ ✓ 2.77 6.89 8.97 8.06 8.48 11.91 17.43 8.14 7.50 14.90 9.51
CW20 [15] UPS ✓ ✓ ✓ 2.50 5.60 8.60 7.90 7.80 9.60 16.20 7.20 7.10 14.90 8.71
CM20 [17] Semi ✗ Known ✗ 2.78 8.07 13.38 8.05 26.90 18.18 33.35 9.47 19.58 14.19 15.40
KK21 [27] UPS ✗ ✓ ✓ 3.78 5.96 13.14 7.91 10.85 11.94 25.49 8.75 10.17 18.22 11.62
SK22 [40] UPS ✓ ✓ ✓ 3.46 5.48 10.00 8.94 6.04 9.78 17.97 7.76 7.10 15.02 9.15

Ours UPS ✗ ✗ ✗ 1.15 4.41 8.78 5.08 6.14 9.49 17.68 7.94 6.12 11.82 7.86

4 Experiments214

Training details. Our main framework is implemented in PyTorch, while the pre-calculations215

(method [57] and silhouette fitting) are implemented in MATLAB. We use Adam as the optimizer216

with a learning rate α = 5×10−4 to train our framework in 500 epochs for each scene separately, and217

the warm-up stage takes up 10 epochs. The last 100 epochs use a lower learning rate α = 5× 10−5218

for fine-tunning. The batch size is 32 for lighting and 256 for spatially random sampling. After every219

epoch, the depth map is reconstructed according to the predicted normal map by method [10]. Each220

scene takes from 2 hours to 6 hours on one RTX 2080Ti 12GB GPU, depending on the resolution of221

the objects.222

Evaluation metrics. We adopt the same metric in [13], the scale-invariant relative error, to measure223

the accuracy of recovered light intensity as,224

Eint =
1

f

f∑
j=1

(
|ηej − ẽj |

ẽj

)
. (12)

where, η is calculated by solving argminη
∑f

j=1 (ηej − ẽj)
2 by least squares minimization. The225

metric to measure the accuracy of the predicted light directions and surface normal is the widely used226

mean angle error (MAE) in degree.227

4.1 Evaluation on Public Datasets228

Since the proposed NeIF is an unsupervised uncalibrated photometric stereo method, we compare its229

performance with state-of-the-art uncalibrated and unsupervised photometric stereo methods. Three230

real-world datasets, including the DILIGENT benchmark dataset [45], APPLE & GOURD dataset [2],231

and LIGHT STAGE DATA GALLERY dataset [11], are used for evaluation.232

Quantitative comparison for normal map. Table 1 lists relevant works for a comprehensive surface233

normal estimation comparison. As summarized in Table 1, our method is the only method that234

addresses UPS without the supervision of N , L, or E. However, our method achieves the best235

performance and maintains a considerable advantage over other competitors [13, 15] (e.g., 7.86 for236

NeIF vs. 8.71 for [15]). Handling the objects in DILIGENT dataset [45] with different shapes and237

reflectance, numbers from our method are either best or competitive (about 1◦ as compared with the238

best performing UPS method), which shows its good generalization capacity to general reflectance239

and various shapes. This is because our NeIF fully considers mutual information by building up240

intrinsics fields and the implicit modeling facilitates general reflectance modeling.241

Visual quality comparison for the normal map. Fig. 3 illustrates the visual quality comparison in242

terms of recovered surface normal maps and corresponding error maps on DILIGENT dataset [45].243
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Figure 3: Visual quality comparison in terms of normal map and error map on COW (left) and
READING (right) from DILIGENT [45]. For each subfig, from left to right: ground truth of normal
map or observed image, normal map / error map from our method, CW20 [15], CH19 [13], and
TM18 [47].
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Figure 4: From left to right: the reference image, estimated surface normal map from our method,
the lighting direction error, light intensity error, the estimated shadow map, diffuse reflectance map,
specular reflectance map, diffuse scaling coefficient map, and specular coefficient map. Top three
objects are APPLE, GOURD1, and GOURD2 from APPLE & GOURD dataset [2], and bottom two
objects are STANDING KNIGHT and HELMET from LIGHT STAGE DATA GALLERY dataset [11].

The comparison is conducted with two state-of-the-art UPS methods [13, 15] and a state-of-the-art244

unsupervised PS method [47]. Our method is less sensitive to spatially-varying albedo due to the245

per-pixel manner (red boxes in the left subfigure of Fig. 3). However, although the positional code246

considers the global shape effect, this per-pixel manner is less effective in modeling complex shape247

information as compared with the all-pixel one. It fails for regions with cast shadow (or overexposure)248

under most light directions (red boxes in the right subfigure of Fig. 3). We also show the visual249

quality results for APPLE & GOURD dataset [2] and the LIGHT STAGE DATA GALLERY dataset [11]250

in Fig. 4. Our method produces reliable estimation for most regions, thanks to the full exploitation of251

mutual information across different dimensions.252

Quantitative comparison for light directions and intensities. As can be observed in Table 2253

and Table 3, our method achieves a superior performance advantage over unsupervised methods254

(YS97 [57] and PF14 [37]) while maintaining competitive performance as compared with supervised255

methods (CH19 [13] and CW20 [15]). These supervised methods adopt two-step solutions and256

suffer from accumulating error. Therefore, even though they achieve similar performance in terms of257

light conditions accuracy, they are less effective on estimating surface normal as compared with our258

method (see Table 1).259
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Table 2: Quantitative comparison in terms of mean angluar error for light direction and scale-invariant
error for intensity on DILIGENT benchmark [45].

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG
Model dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int.

YS97 [57] 12.41 0.334 14.06 0.260 11.68 0.300 13.75 0.318 15.79 0.251 15.24 0.316 59.41 0.586 12.99 0.322 12.58 0.283 13.08 0.266 18.10 0.320
PF14 [37] 4.90 0.036 5.24 0.098 9.76 0.053 5.31 0.059 16.34 0.074 33.22 0.223 24.99 0.156 2.43 0.017 13.52 0.044 21.77 0.122 13.75 0.088
CH19 [13] 3.27 0.039 3.47 0.061 4.34 0.048 4.08 0.095 4.52 0.073 10.36 0.067 6.32 0.082 5.44 0.058 2.87 0.048 4.50 0.105 4.92 0.068
CW20 [15] 1.75 0.027 2.44 0.101 2.86 0.032 4.58 0.075 3.15 0.031 2.98 0.042 5.74 0.065 1.41 0.039 2.81 0.059 5.47 0.048 3.32 0.052

Ours 1.69 0.030 3.96 0.010 1.73 0.032 2.92 0.021 4.98 0.050 6.82 0.040 7.06 0.032 3.33 0.134 3.71 0.028 7.45 0.042 4.37 0.042

Table 3: Quantitative comparison in terms of mean angular error for light direction and scale-invariant
error for intensity on APPLE & GOURD [2] and LIGHT STAGE DATA GALLERY [11].

APPLE GOURD1 GOURD2 AVG STANDING
KNIGHT

HELMET AVG

Model dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int.
YS97 [57] 25.71 0.400 22.23 0.329 29.30 0.347 25.75 0.359 37.48 0.533 34.43 0.476 35.96 0.505
PF14 [37] 6.68 0.109 21.23 0.096 25.87 0.329 17.92 0.178 33.81 1.311 25.40 0.576 29.61 0.944
CH19 [13] 9.31 0.106 4.07 0.048 7.11 0.186 6.83 0.113 11.60 0.286 6.57 0.212 9.09 0.249
CW20 [15] 10.91 0.094 4.29 0.042 7.13 0.199 7.44 0.112 5.31 0.198 5.33 0.096 5.32 0.147

Ours 2.65 0.011 1.76 0.029 3.21 0.230 2.54 0.090 13.38 0.189 8.12 0.082 10.75 0.135

4.2 Evaluation on Sparse Uncalibrated Photometric Stereo260

As compared with other per-pixel PS methods (e.g., ZJ19 [62] and LL19 [30]), the proposed NeIF261

exploits much more constraints to estimate the normal at a point (i.e., #P × f vs. f ). Because it262

learns fields instead of regressing intensity profile [43] to surface normal. Therefore, we investigate263

the effectiveness of our method under the challenging setting of sparse UPS.264

We randomly select 10 or 16 images illuminated by different lights from DILIGENT dataset [45] and265

test our method using these images. We repeat this process 30 times, similar to [62]. We compare the266

performance with that from the classical UPS method PF14 [37], a deep learning based per-pixel267

approach ZJ19 [62], and an all-pixel approach CH18 [14]. Due to the fewer reconstruction terms to268

train our NeIF, we slightly increase the dimension of the positional encoding module from 4 to 6 that269

increases the frequency [48] to stabilize the training, i.e., strengthening the role of positional code to270

reduce the variance of estimated intrinsics. Besides, we drop Laz during early stage warm-up because271

YS97 [57] fails for the sparse inputs.272

We report the mean results over 30 trails in Table 4. As can be observed, our method achieves273

competitive performance on normal estimation as compared with state-of-the-art sparse PS methods274

with known light (i.e., 11.62 for NeIF vs. 9.82 for ZJ19 [62] under 10 lights, and 10.38 for NeIF vs.275

9.00 for CH18 [14] under 16 lights). Kindly note that we do not require any ground truth normal for276

supervision. As compared with the unsupervised UPS method (PF14 [37]), we achieve a superior277

performance advantage. The results validate the effectiveness of building up neural intrinsics fields278

that fully exploit the mutual information across different dimensions.279

5 Conclusion280

This paper proposes NeIF for UPS. By representing the general reflectance as four neural intrinsics281

fields, it implicitly imposes the light clues of specular reflectance and cast shadow for light estimation,282

which facilitates solving UPS with general reflectance. The proposed NeIF can fully exploit mutual283

information from all observed pixel values so that it produces stable estimation for PS and sparse PS.284

The unsupervised training manner of NeIF is beneficial to the generalization capacity of data from285

different sources.286

Limitations. Although our method produces promising results for light conditions and surface287

normal estimation, it has several limitations. First, the estimated intrinsics, such as shadow, specular288

and diffuse reflectance, and their balancing coefficients are less accurate for objects with complicated289

geometries, as shown in Fig. 4. Second, we need to balance the role of positional code and estimated290

intrinsics when applying our method for sparse UPS. However, how to find an optimal balancing291

strategy is unknown. Third, as shown in Fig. 3, our method is less effective on global effects,292

especially for regions with cast shadow (or overexposure) under most light directions due to our293
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Table 4: Quantitative comparison in terms of mean angular error for surface normal on DILIGENT
dataset [45]. We compare our method with supervised PS methods (CH18 [14] and ZJ19 [62]), and
unsupervised UPS methods (PF14 [37]) under different randomly selected lights. All of the selected
methods are retested under the same light setting with us. In the table, ‘(x)’ indicates x lights are
used in the certain methods; ‘✓’ (or ‘✗’) represents that certain methods (do not) adopt supervised
learning for the estimation of surface normal n (note that light information is known in CH18 [14]
and ZJ19 [62]). Bold font indicates the best performance under 10 lights and 16 lights, respectively.

Model PS/
UPS Supervision BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG

CH18 (10) [14] PS ✓ 3.87 6.35 9.20 8.47 9.95 10.68 18.40 9.01 8.97 15.29 10.02
ZJ19 (10) [62] PS ✓ 4.38 5.79 9.60 7.13 7.87 10.00 18.35 8.41 11.20 15.45 9.82
PF14 (10) [37] UPS ✗ 69.95 10.19 17.47 11.11 22.23 49.77 46.96 10.38 19.69 31.50 28.93

Ours (10) UPS ✗ 2.49 4.90 11.58 7.47 10.21 14.45 27.30 11.41 6.57 19.85 11.62
CH18 (16) [14] PS ✓ 3.27 5.98 8.48 7.21 8.58 9.48 17.04 8.06 8.15 13.73 9.00
PF14 (16) [37] UPS ✗ 63.76 9.15 15.24 9.13 20.30 41.52 33.58 9.78 17.08 26.40 24.60

Ours (16) UPS ✗ 2.34 4.52 10.33 7.87 7.68 11.23 25.07 8.00 6.35 20.42 10.38

per-pixel manner. Besides, the inference of our method is inefficient due to the unsupervised training294

manner and the per-pixel estimation, which is inapplicable for real-time applications.295
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