

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GRPO-MA: MULTI-ANSWER GENERATION IN GRPO FOR STABLE AND EFFICIENT CHAIN-OF-THOUGHT TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent progress, such as DeepSeek-R1, has shown that the GRPO algorithm, a Reinforcement Learning (RL) approach, can effectively train Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) and Vision-Language Models (VLMs). In this paper, we analyze three challenges of GRPO: gradient coupling between thoughts and answers, sparse reward signals caused by limited parallel sampling, and unstable advantage estimation. To mitigate these challenges, we propose GRPO-MA, a simple yet theoretically grounded method that leverages multi-answer generation from each thought process, enabling more robust and efficient optimization. Theoretically, we show that the variance of thought advantage decreases as the number of answers per thought increases. Empirically, our gradient analysis confirms this effect, showing that GRPO-MA reduces gradient spikes compared to GRPO. Experiments on math, code, and diverse multimodal tasks demonstrate that GRPO-MA substantially improves performance and training efficiency. Our ablation studies further reveal that increasing the number of answers per thought consistently enhances model performance.

1 INTRODUCTION

The DeepSeek-R1 model demonstrates that reinforcement learning (RL)—particularly Group Relative Policy Optimization (GRPO) Shao et al. (2024)—is effective for training Chain-of-Thought (CoT) reasoning. GRPO prompts the LLM to generate a reasoning trace before producing the final answer and then reinforces this process via verifiable rewards. Subsequent methods such as DAPO Yu et al. (2025), Dr.GRPO Liu et al. (2025), and GPG Chu et al. (2025) refine GRPO’s loss function from different perspectives, achieving more stable training and stronger mathematical reasoning. Beyond text-based tasks, the GRPO paradigm has also expanded to multi-modal domains Chen et al. (2025b); Shen et al. (2025); Huang et al. (2025b); Feng et al. (2025); Song et al. (2025); Kim et al. (2025). These works mainly adopt task-specific reward designs—e.g., temporal video rewards in Video-R1 Feng et al. (2025) or trajectory-distance rewards in ManipVLM-R1 Song et al. (2025)—to improve performance under their respective objectives. Collectively, they show that CoT coupled with verifiable RL rewards substantially enhances multi-modal reasoning. **Despite these advances, GRPO still faces several intrinsic limitations that hinder stability, efficiency, and overall effectiveness. These include gradient coupling between thoughts and answers, a sampling-reward trade-off where sparse rewards lead to advantage collapse unless sampling is increased, and unstable advantage estimation.**

A well-known issue is the mismatch between reasoning traces and final answers: the reasoning may be valid while the final answer is wrong, or conversely, a flawed reasoning may still yield a correct answer. This phenomenon can be observed in both pure textual reasoning tasks Simoni et al. (2025); Lin et al. (2025a); Paul et al. (2024); Turpin et al. (2023) and multi-modal tasks Chen et al. (2025b); Balasubramanian et al. (2025) including our experiments 5.6. Since the gradients of thoughts and answers are inherently coupled in GRPO, such inconsistencies can distort the gradient direction and consequently undermine training effectiveness. Although GRPO-CARE Chen et al. (2025b) introduces a consistency reward to alleviate this, it risks reward hacking and is difficult to apply when semantic consistency is ill-defined (*e.g.*, it is difficult to judge the consistency between a CoT and the numerical coordinates of a predicted bounding box).

054 The second challenge concerns the trade-off between reward richness and sampling cost in GRPO.
 055 When only a few CoT-answer samples are generated, the reward signal is often too sparse, increasing
 056 the likelihood that all rewards in a group are zero and causing advantage collapse, which eliminates
 057 meaningful gradients. Increasing the number of samples can reduce this collapse probability,
 058 but doing so substantially slows training due to the high cost of generating full CoT-answer pairs.
 059 Thus, we need an efficient mechanism that enriches reward signals and reduces advantage-collapse
 060 risk while introducing as little sampling overhead as possible.

061 The third challenge concerns the variance of advantage estimation. From a probabilistic perspective,
 062 a “good” thought is one that **reliably increases the likelihood of producing a good answer** — a
 063 **property that should be evaluated over the distribution of answers it induces**. However, GRPO
 064 estimates a thought’s advantage from only a single sampled answer, which—especially under high-
 065 temperature sampling—introduces substantial variance. More accurate advantage estimates not only
 066 reduce training instability but also better guide the model toward internalizing what constitutes a
 067 genuinely “good” thought, thereby improving answer quality.

068 In this paper, we propose **GRPO-MA (GRPO with Multi-Answer)**, a **simple yet principled extension of GRPO that arises naturally from examining GRPO-style RL under a unified perspective**.
 069 For each of K thoughts, we sample M answers. A thought’s value is the average reward of its
 070 M answers, which is then used to derive its advantage relative to other thoughts, while each of
 071 the $K \times M$ answers also receives its own advantage. These two advantages are used to update
 072 thought and answer tokens separately. Our theoretical analysis, based on the multivariate delta
 073 method Oehlert (1992), shows that K and M play fundamentally different roles in controlling the
 074 variance of thought-level advantage estimation. Increasing M monotonically drives the variance to-
 075 ward zero, whereas increasing K only reduces it to a non-zero constant. This provides a theoretical
 076 justification for why multi-answer sampling is not only effective but also necessary for stabilizing
 077 advantage estimation in GRPO-style algorithms. This design brings three benefits: (1) Averaging
 078 rewards across multiple answers reduces gradient coupling from noisy thought–answer mismatches.
 079 (2) Sharing K thoughts across M answers is computationally efficient, avoiding the cost of gener-
 080 ating $K \times M$ full trajectories while still providing diverse reward signals. (3) Lower-variance value
 081 estimates yield more stable advantages and fewer gradient spikes.

082 We evaluate the effectiveness of GRPO-MA on Code, Math, several distinct vision tasks (Object De-
 083 tection, Affordance Prediction, Trajectory Prediction, Demand Prediction, OCR-based VQA), and
 084 a simulator-based visual manipulation task. Across these diverse domains, GRPO-MA consistently
 085 outperforms a GRPO baseline with K responses while adding only marginal training overhead.
 086 Compared to a stronger baseline using $K \times M$ responses, GRPO-MA achieves similar or slightly
 087 better performance using only about 60% of the training time, highlighting improved sample ef-
 088 ficiency from more stable advantage estimation. On the visual manipulation task with extremely
 089 sparse rewards, GRPO-MA substantially outperforms standard GRPO. Ablation studies further show
 090 that increasing M generally improves performance and that variance reduction in thought-level ad-
 091 vantage estimation plays a critical role.

092 Contributions.

- 094 • We propose GRPO-MA, a simple but principled improvement over GRPO that is directly
 095 motivated by a unified view of challenges in GRPO-style reasoning RL.
- 096 • We provide, to the best of our knowledge, the first theoretical variance analysis of chain-
 097 of-thought advantage estimation in GRPO-style algorithms, showing that increasing M is
 098 necessary for reliably reducing variance.
- 099 • Across a wide range of tasks and model configurations, GRPO-MA improves over a GRPO
 100 baseline with K responses and slightly exceeds a stronger baseline with $K \times M$ responses
 101 using only about 60% of the training time, demonstrating better sample efficiency and
 102 greater training stability.

104 2 RELATED WORK

105 The GRPO algorithm has inspired several works to enhance its stability and efficiency by refin-
 106 ing its loss function and sampling strategies. DAPO Yu et al. (2025) introduces several “tricks” to

108 stabilize training, such as Clip-Higher for exploration, Dynamic Sampling to filter uninformative
 109 samples, and a Token-Level Policy Gradient Loss to properly weight complex reasoning chains.
 110 Dr. GRPO Liu et al. (2025) corrects inherent response length bias and question difficulty bias by
 111 removing specific normalization terms from the loss and advantage calculation, leading to more sta-
 112 ble training. Generative Policy Gradient (GPG) Chu et al. (2025) simplifies the GRPO objective
 113 and introduces a gradient rescaling method to counteract “zero-gradient” samples, ensuring more
 114 effective policy updates. Further research has focused on improving efficiency, with CPPO Lin et al.
 115 (2025b) pruning low-impact samples to reduce computational cost and Off-Policy GRPO Mroueh
 116 et al. (2025) using stale data to improve sample efficiency. Other works enhance stability, such as
 117 GSPO Zheng et al. (2025), which realigns importance sampling at the sequence level; GMPO Zhao
 118 et al. (2025), which uses a geometric mean to mitigate sensitivity to outliers ; and GTPO Simoni
 119 et al. (2025), which resolves gradient conflicts and prevents policy collapse through trajectory anal-
 120 ysis. Additionally, specialized solutions like Spectral Policy Optimization Chen et al. (2025a) create
 121 learning signals for “all-negative” sample groups using AI feedback. **The work most related to ours**
 122 **is VinePPO Kazemnejad et al. (2024)**, which performs multi-sample rollouts at every intermediate
 123 step in math reasoning. In contrast, we leverage GRPO’s structure and apply multi-sampling only
 124 at the answer level, producing richer reward signals with substantially less sampling time. We also
 125 provide theoretical justification for this design and show its effectiveness across both text reasoning
 126 and multimodal tasks.

3 PRELIMINARY: GRPO

130 GRPO Shao et al. (2024) is a PPO-style algorithm Schulman et al. (2017) that computes advantages
 131 by normalizing rewards from K sampled responses. For a prompt p , GRPO generates responses
 132 $\{o_i\}_{i=1}^K$ with rewards $\{R_i\}$ and computes $A(o_i) = \frac{R_i - \text{Mean}(\{R_k\})}{\text{Std}(\{R_k\})}$. The complete GRPO objective
 133 can be written as:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{\substack{(p,a) \sim \mathcal{D} \\ o \sim \pi_{\theta_{\text{old}}}}} \left[\frac{1}{K} \sum_{i=1}^K \frac{1}{T_i^o} \sum_{t=1}^{T_i^o} \min(r_t A(o_i), \text{clip}(r_t, 1 \pm \varepsilon) A(o_i)) \right] - \beta D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}), \quad (1)$$

140 where T_i^o denotes the length of the i -th output trajectory $o_i = (o_{i,1}, \dots, o_{i,T_i^o})$, and $\text{clip}(r_t, 1 \pm \varepsilon)$
 141 clips the likelihood ratio r_t into the interval $[1 - \varepsilon, 1 + \varepsilon]$ to stabilize policy updates. The term
 142 r_t is the per-token likelihood ratio, $r_t = \frac{\pi_{\theta}(o_{i,t} | p, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | p, o_{i,<t})}$, where π_{θ} and $\pi_{\theta_{\text{old}}}$ denote the current and
 143 behavior policies used for on-policy sampling.

144 As indicated by Equation 1, the advantage determines whether the probability of a certain token
 145 increases or decreases, as well as the magnitude of this change. Therefore, a more stable estimation
 146 of the advantage (with lower variance) is beneficial for a more stable model parameter update.

4 METHOD

150 In this section, we first describe the sampling and updating process of GRPO-MA, which builds
 151 upon the GRPO framework by introducing a multi-answer sampling strategy. We then analyze the
 152 variance change of the advantages via the delta method.

4.1 PIPELINE OF GRPO-MA

154 The core modification in GRPO-MA lies in its sampling pipeline, shown in Fig. 1. Given a prompt
 155 p , it first generates K thoughts $\{th_1, \dots, th_K\}$ identically to GRPO. Then, for each thought th_i ,
 156 GRPO-MA then generates M answers $\{ans_{i,1}, \dots, ans_{i,M}\}$, resulting in $K \times M$ total answers
 157 where every M answers share the same thought.

158 After obtaining rewards $\{R_{i,j}\}_{1 \leq i \leq K, 1 \leq j \leq M}$ from a reward function, we define the value of
 159 a thought as $V(th_i) = \frac{1}{M} \sum_{j=1}^M R_{i,j}$, and normalize it to compute the thought advantage

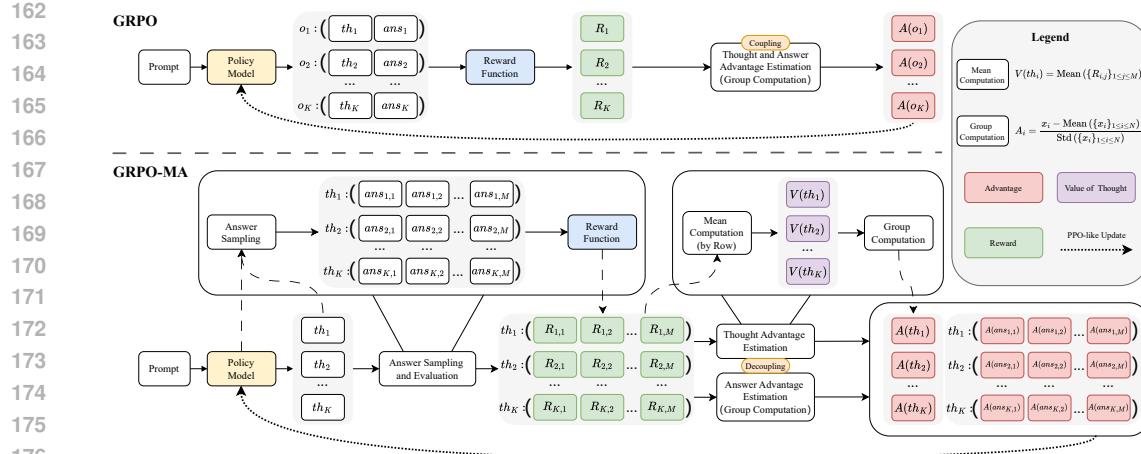


Figure 1: **The operational flow of advantage estimation in GRPO and GRPO-MA.** In the baseline GRPO framework (top), the advantage is computed from a single thought–answer pair, inherently coupling the estimation of thought and answer advantages to a single reward signal. In contrast, GRPO-MA (bottom) extends this setting by sampling multiple answers for each thought. This design decouples the estimation of thought and answer advantages and leverages aggregated information from multiple reward signals, thereby yielding richer supervision and enabling more robust and stable estimation of thought-level advantages.

$$A(th_i) = \frac{V(th_i) - \text{Mean}(\{V(th_k)\}_{1 \leq k \leq K})}{\text{Std}(\{V(th_k)\}_{1 \leq k \leq K})}. \text{ Similarly, the advantage of an answer is } A(ans_{i,j}) = \frac{R_{i,j} - \text{Mean}(\{R_{k,l}\}_{1 \leq k \leq K, 1 \leq l \leq M})}{\text{Std}(\{R_{k,l}\}_{1 \leq k \leq K, 1 \leq l \leq M})}.$$

The GRPO-MA objective then combines the two levels of advantages:

$$\begin{aligned} \mathcal{J}_{\text{GRPO-MA}}(\theta) = & \mathbb{E}_{\substack{(p,a) \sim \mathcal{D} \\ \text{th} \sim \pi_{\theta_{\text{old}}}}} \left[\frac{1}{K} \sum_i \frac{1}{T_i^{\text{th}}} \sum_{t=1}^{T_i^{\text{th}}} \min(r_t A(\text{th}_i), \text{clip}(r_t, 1 \pm \varepsilon) A(\text{th}_i)) \right] + \\ & \mathbb{E}_{\substack{\text{ans} \sim \pi_{\theta_{\text{old}}}} \left[\frac{1}{KM} \sum_{i,j} \frac{1}{T_{i,j}^{\text{ans}}} \sum_{t=1}^{T_{i,j}^{\text{ans}}} \min(r_t A(\text{ans}_{i,j}), \text{clip}(r_t, 1 \pm \varepsilon) A(\text{ans}_{i,j})) \right] - \beta D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}), \end{aligned} \quad (2)$$

where T_i^{th} and $T_{i,j}^{\text{ans}}$ denote the lengths of the thought trajectory th_i and the answer trajectory $\text{ans}_{i,j}$, respectively. The term $A(\text{th}_i)$ is the thought-level advantage computed over the M answers associated with th_i , while $A(\text{ans}_{i,j})$ denotes the advantage of an individual answer. The remaining notation (e.g., r_t and $\text{clip}(r_t, 1 \pm \varepsilon)$) follows the same definitions as in the GRPO objective.

4.2 VARIANCE OF THE THOUGHT ADVANTAGE

4.2.1 PRELIMINARIES

Fix a prompt p . Thoughts $\text{th}_1, \dots, \text{th}_K$ are sampled independently from a distribution $\pi_{\theta}(\cdot \mid p)$ conditioned on the prompt p .

For each thought th_i we generate M answers independently from the conditional policy, written as $\text{ans}_{i,j} \stackrel{\text{i.i.d.}}{\sim} \pi_{\theta}(\cdot \mid p, \text{th}_i)$, $j = 1, \dots, M$. Here the index j simply labels different samples, all drawn from the same distribution $\pi(\cdot \mid p, \text{th}_i)$.

Each answer $\text{ans}_{i,j}$ is evaluated by a reward function r . We denote the resulting reward as a random variable $R_{i,j} := r(\text{ans}_{i,j}, p)$. $R_{i,j}$ is random because the answer $\text{ans}_{i,j}$ itself is sampled.

216 Conditioned on a given thought th_i and prompt p , the rewards $R_{i,j}$ are i.i.d. with mean μ_{R_i} and vari-
 217 ance $\sigma_{R_i}^2$. The empirical value estimator of thought th_i is the sample mean $V(th_i) = \frac{1}{M} \sum_{j=1}^M R_{i,j}$,
 218 with $\mathbb{E}[V(th_i)] = \mu_{R_i}$ and $\text{Var}(V(th_i)) = \frac{\sigma_{R_i}^2}{M}$.

219 We assume the thought-value estimates $V(th_1), \dots, V(th_K)$ are independent, *i.e.*, the covariance
 220 matrix is diagonal. In practice, small correlations may exist since all thoughts are sampled from
 221 the same prompt. However, Appendix A.2.5 shows that the diagonal entries capture most of the
 222 covariance energy, suggesting this assumption is largely reasonable.

223 Finally, define the sample mean and standard deviation across thoughts as $\bar{V} = \frac{1}{K} \sum_{k=1}^K V(th_k)$,
 224 $S_V = \sqrt{\frac{1}{K-1} \sum_{k=1}^K (V(th_k) - \bar{V})^2}$, and the thought advantage as $A(th_i) = \frac{V(th_i) - \bar{V}}{S_V}$.

225 4.2.2 VARIANCE OF THE THOUGHT ADVANTAGE

226 Using the first-order multivariate delta method, and noting that under the independence assumption
 227 the covariance matrix of $\{V(th_k)\}$ is diagonal, the variance of the standardized thought advantage
 228 is approximated as

$$229 \text{Var}[A(th_i)] \approx \frac{1}{M \sigma_{\mu_R}^2} \sum_{k=1}^K \left(\delta_{ik} - \frac{1}{K} - \frac{\tilde{\mu}_i \tilde{\mu}_k}{K-1} \right)^2 \sigma_{R_k}^2 \quad (3)$$

230 where δ_{ik} is the Kronecker delta ($\delta_{ik} = 1$ if $i = k$, and 0 otherwise), $\mu_{\bar{R}} = \frac{1}{K} \sum_{k=1}^K \mu_{R_k}$ is the
 231 average true thought value, $\sigma_{\mu_R}^2 = \frac{1}{K-1} \sum_{k=1}^K (\mu_{R_k} - \mu_{\bar{R}})^2$ is the variance of the true thought
 232 values across thoughts, $\tilde{\mu}_i = \frac{\mu_{R_i} - \mu_{\bar{R}}}{\sigma_{\mu_R}}$ is the normalized (expected) advantage of thought th_i .

233 **For the full derivation on the variance of though advantages and answer advantages, please
 234 refer to Appendix A.2.**

235 4.2.3 ANALYSIS OF THE VARIANCE STRUCTURE

236 Combining the above results, we can now compare the effects of increasing K versus increasing M .

237 As $K \rightarrow \infty$, by the law of large numbers, the sample variance of the true thought values $\sigma_{\mu_R}^2 =$
 238 $\frac{1}{K-1} \sum_{k=1}^K (\mu_{R_k} - \mu_{\bar{R}})^2$ converges to the population variance $\sigma_{\pi}^2 = \text{Var}[\mu_{R_i}]$, which characterizes
 239 the variability of the true thought values μ_{R_i} across the population of thoughts sampled from the
 240 distribution $\pi_{\theta}(\cdot | p)$. Next, we analyze the sum by splitting it based on the Kronecker delta, δ_{ik} .
 241 The single term where $k = i$ converges to a non-zero constant, since expressions like $(\delta_{ik} - \frac{1}{K} - \dots)$
 242 approach 1. Conversely, the sum of the other $K - 1$ terms, where $k \neq i$, vanishes because each
 243 term is of order $O(1/K^2)$, making their total sum $O(1/K)$. This leads to the final result where the
 244 variance converges to a limit determined only by the properties of the thought th_i itself:

$$245 \lim_{K \rightarrow \infty} \text{Var}[A(th_i)] \approx \frac{\sigma_{R_i}^2}{M \sigma_{\pi}^2},$$

246 In contrast, increasing the number of answers M directly suppresses the variance of the estimated
 247 thought value. Since the variance scales inversely with M ,

$$248 \text{Var}[A(th_i)] \propto \frac{1}{M},$$

249 the estimator becomes increasingly accurate, and the total variance *provably approaches zero as*
 250 $M \rightarrow \infty$.

251 **Taken together, these results reveal a fundamental asymmetry in the variance structure of multi-step
 252 reasoning: increasing the number of thoughts K can only reduce variance down to a non-zero floor
 253 determined by the inherent variability of the thought population, whereas increasing the number of
 254 answers M continues to suppress variance without bound, driving it provably toward zero. This
 255 asymmetry highlights the inherent limitation of thought-level sampling and, conversely, establishes
 256 answer-level multi-sampling as a principled and quantitatively justified strategy for stabilizing ad-
 257 vantage estimation in GRPO-style reasoning algorithms.**

270 Table 1: Task settings and evaluation metrics.
271

272 Task	273 Input / Output Definition	274 Evaluation Metric
275 Math	276 Input: a math problem. 277 Output: the correct symbolic or numeric solution.	278 pass@10 / 279 pass@32 Chen et al. (2021b)
280 Code	281 Input: a programming problem. 282 Output: functional solution code.	283 pass@10 / pass@32
284 Object Detection	285 Input: an image and a target object name. 286 Output: bounding boxes of the specified object.	287 Accuracy: proportion of 288 predictions with IoU > 289 threshold.
290 Affordance Prediction	291 Input: an image and a target affordance (e.g., 292 <i>grasp</i> , <i>hold</i>). 293 Output: 2D affordance coordinates.	294 Accuracy: proportion of 295 correctly matched points.
296 Trajectory Prediction	297 Input: an image and a manipulation instruction. 298 Output: a 2D end-effector trajectory.	299 DFD Eiter et al. (1994), 300 HD Huttenlocher et al. (2002), RMSE, EndPoint 301 Dist.
302 Demand Prediction	303 Input: an image and a human demand instruction. 304 Output: the 2D coordinates of the demanded 305 object.	306 Accuracy: proportion of 307 correct points.
308 OCR-based VQA	309 Input: an image and a text-understanding question (e.g., documents, infographics). 310 Output: an answer string.	311 ANLS Biten et al. (2019)

292
293 5 EXPERIMENTS
294

295 We evaluate GRPO-MA on Math Yu et al. (2025), Code PrimeIntellect (2024); White et al. (2024),
296 several distinct vision tasks (Object Detection contributors (2024), Affordance Prediction Myers
297 et al. (2015); Luo et al. (2022), Trajectory Prediction Ji et al. (2025), Demand Prediction Wang
298 et al. (2024), OCR-based VQA Biten et al. (2019); Tito et al. (2021)) and a Simulator-based Visual
299 Manipulation task Li et al. (2024). Our experiments use Qwen2.5-VL-3B-Instruct Bai et al. (2025)
300 as the base model, with all training conducted on four H100 80G GPUs using LoRA Hu et al. (2022)
301 for parameter-efficient fine-tuning. For each task, we conduct a group of experiments separately.

302 We introduce the *TKAM* notation to unify the representation of the GRPO and GRPO-MA meth-
303 ods. In this notation, K represents the number of thoughts, and M denotes the number of answers
304 generated per thought. The notation corresponds to GRPO when $M = 1$ and to GRPO-MA when
305 $M > 1$. For instance, T4A4 signifies a process of generating 4 thoughts, with each thought produc-
306 ing 4 answers, resulting in a total of 16 responses.

307 **More details (datasets, hyperparameters, training settings) are in the appendix A.3 and A.4.**
308

309 5.1 TEXT AND VISION TASK
310311 5.1.1 TASK SETTING AND METRIC
312

313 Table 1 summarizes the input–output format and evaluation metrics for text and vision tasks. These
314 tasks collectively cover a wide range of modalities and reasoning types, enabling a comprehensive
315 evaluation of GRPO-MA.

316 For **Math**, we adopt a structured output format using `<analysis>`, `<process>`, and `<answer>`
317 tags. GRPO-MA applies multi-sampling on both `<process>` and `<answer>`. For all other tasks,
318 multi-sampling is applied only to `<answer>`.

319 We track the **Gradient Spike Score (GSS)** Huang et al. (2025a) to measure gradient stability, de-
320 fined as $GSS(g_i) = \frac{|g_i|}{\frac{1}{T+1} \sum_{j=0}^T |g_j|}$, where g_j represents the gradient at the j -th time step. We report
321 the number of spikes above 10 (GSS@10), where smaller is better. We supplement Appendix A.6.4
322 with the complete `grad_norm` and GSS curves for a more intuitive demonstration of training stabil-
323 ity. For all tasks, we also report the per-step training time (s) and supplement the wall-clock time

Figure 2: A case study comparing the baseline GRPO with our proposed GRPO-MA on a referring expression grounding task. The prompt is to locate the “purple bottled beverage”. The baseline model, GRPO (T4A1), recognizes the target’s existence but its reasoning is distracted by other salient objects (the snacks), leading to a failure in grounding. In contrast, our GRPO-MA (T4A4) correctly reasons about the scene’s context, focuses on the target object held by the robotic arm, and successfully provides the precise bounding box. This demonstrates the superior robustness of GRPO-MA in complex scene understanding and reasoning.

Table 2: Combined Results for Math and Code Generation Benchmarks. TN: The number of thoughts; AN: The number of answers per thought; S/S: Second/Step during training; Bold indicates the best performance among the GRPO variants.

Model	TN	AN	Math				Code			
			S/S	GSS	Pass@10	Pass@32	S/S	GSS	Pass@10	Pass@32
Qwen2.5-VL-3B-Ins					9.27	16.25			9.80	11.67
Qwen2.5-VL-7B-Ins					9.97	18.39			10.72	11.31
Qwen2.5-VL-72B-Ins					33.07	41.39			20.39	22.37
SFT					11.07	18.11			8.72	10.59
GRPO	4	1	111.24	5	11.78	20.32	76.21	6	11.56	13.70
GRPO	8	1	140.05	13	11.16	21.30	104.83	24	11.44	13.39
GRPO	16	1	225.43	15	12.89	21.72	186.91	25	11.92	14.12
GRPO-MA	4	4	132.87	5	14.70	27.60	93.45	10	11.69	14.70

curve to compare the training efficiency of GRPO-MA and the baseline from another perspective in Appendix A.6.3.

5.1.2 BASELINES

We adopt models from the Qwen2.5-VL-Instruct series (3B, 7B, and 72B) Bai et al. (2025) as baselines to evaluate the performance of general-purpose models on our tasks. In addition, we train Qwen2.5-VL-3B-Instruct with real labels using supervised fine-tuning (SFT) to compare against GRPO, denoted as **SFT** in the results. Finally, we compare our proposed GRPO-MA with GRPO under different numbers of responses to demonstrate the superiority of GRPO-MA in terms of training efficiency and performance.

5.1.3 MAIN RESULTS

The experimental results are presented in Tab. 2 (Math and Code Problem), Tab. 3 (Object Detection, Affordance Prediction and Demand Prediction), and Tab. 4 (OCR-based VQA and Trajectory Prediction). Across multiple visual tasks, our proposed GRPO-MA outperforms both the GRPO and SFT under various settings, demonstrating its excellent versatility across diverse tasks. Compared to T4A1, T4A4 achieves significant performance gains with only about a 15% increase in training time. Compared to T16A1, T4A4 achieves comparable or even slightly better performance with about a 40% reduction in training time, which demonstrates that GRPO-MA does not involve a trade-off between training efficiency and training performance, but rather enhances both simultaneously.

378 Table 3: Combined Results for Object Detection, Affordance, and Demand Prediction. TN: The
 379 number of thoughts; AN: The number of answers per thought; S/S: Second/Step during training;
 380 UMD: UMD Part Affordance Dataset; AGD20K: AGD20K Dataset; Bold indicates the best per-
 381 formance among models of the same size.

Model	TN	AN	Object Detection				Affordance Prediction			Demand Prediction					
			S/S	GSS@10	IoU@0.5	IoU@0.6	IoU@0.7	IoU@0.8	S/S	GSS@10	UMD	AGD20K	S/S	GSS	Accuracy
Qwen2.5-VL-3B					60.87	50.54	39.67	21.32		38.98	52.73			11.41	
Qwen2.5-VL-7B					70.11	60.23	48.02	25.89		34.65	43.29			19.95	
Qwen2.5-VL-72B					72.57	60.66	47.19	24.48		59.13	60.59			26.27	
SFT					64.63	54.73	42.43	22.96		66.35	53.18			36.97	
GRPO	4	1	13.86	5	65.11	56.16	43.88	23.02	14.34	11	78.91	55.60	13.74	5	38.13
GRPO	8	1	18.86	30	67.13	57.52	42.62	22.82	18.92	14	88.14	57.90	18.20	12	40.81
GRPO	16	1	26.99	16	69.03	60.29	45.16	24.04	24.27	22	89.32	57.24	25.42	37	42.47
GRPO-MA	4	4	15.77	1	69.71	61.32	46.77	25.64	15.86	5	89.96	58.40	14.33	6	42.63

389 Table 4: Combined Results for OCR-based VQA and Trajectory Prediction. TN: The number of
 390 thoughts; AN: The number of answers per thought; S/S: Second/Step during training. Bold indicates
 391 the best performance among models of the same size.

Model	TN	AN	OCR-based VQA				Trajectory Prediction						
			S/S	GSS@10	Infographics	St VQA	Doc VQA	S/S	GSS@10	DFD	HD	RMSE	EndPoint
Qwen2.5-VL-3B					73.10	67.63	91.33			571.60	537.63	404.40	429.93
Qwen2.5-VL-7B					78.94	74.03	93.51			496.44	451.19	340.33	354.03
Qwen2.5-VL-72B					79.72	74.27	93.26			386.83	352.18	263.61	300.77
SFT					74.77	69.68	92.94			277.68	261.86	196.55	228.62
GRPO	4	1	14.79	42	73.70	68.94	93.15	29.17	14	187.99	172.58	140.80	142.74
GRPO	8	1	19.62	88	76.33	71.56	93.98	34.51	18	172.41	157.09	130.09	137.29
GRPO	16	1	26.79	68	76.65	72.25	94.20	66.55	21	165.16	149.59	122.95	130.56
GRPO-MA	4	4	17.17	17	76.69	72.48	94.22	35.41	10	151.10	138.29	111.59	120.60

401 **Gradient Stability** In most experiments, T4A4 achieves the lowest GSS@10, indicating the best
 402 gradient stability during training, consistent with our theoretical analysis: as a crucial component
 403 of gradient magnitude, the more stable estimation of the advantage value also contributes to greater
 404 gradient stability.

405 **Case Study** As illustrated in Fig. 2, we present a case study to contrast the reasoning processes of
 406 T4A4 and T4A1 for the object detection task. T4A4 focuses on the general vicinity of the target
 407 object and its surrounding context. Conversely, T4A1 fails to detect the target, instead paying its
 408 attention on the central region of the image. Additional case studies are provided in the appendix A.5.

409 Please see Appendix A.6.6 for more Math and Code dataset evaluation results on [GSM8K Cobbe et al. \(2021\)](#) and [HumanEval Chen et al. \(2021a\)](#).

413 5.2 SIMULATOR-BASED MANIPULATION TASK

415 5.2.1 TASK SETTING

416 We adapt most of the experimental settings introduced in ManipLLM Li et al. (2024), which pro-
 417 vides a simulator-based framework for visual manipulation tasks. To increase the difficulty of the
 418 task, we introduce two modifications to the experimental setup. First, to ensure greater observational
 419 diversity, the camera is reconfigured to view the target object from a randomly sampled angle in each
 420 trial. Second, we adapt a stricter success criterion: an attempt is immediately deemed a failure if the
 421 predicted contact point does not lie on the surface of the target object. Following ManipLLM, when
 422 the model outputs a grasping point on the image, we execute a rule-based grasping strategy. Specif-
 423 ically, the sucker approaches along the surface normal at the predicted point, and the subsequent
 424 trajectory is adjusted depending on the object category. For evaluation, we report the proportion
 425 of predicted points that lead to successful manipulation. Through data collection and training, we
 426 observe that this task is highly reward-sparse, since solving it requires the model to reason about
 427 object-specific interaction dynamics.

428 5.2.2 BASELINES

429 We adapt some of the same baselines used in visual tasks and added several additional baselines:
 430 ManipLLM-7B, CoT-SFT, and GRPO-NoThink.

432 **ManipLLM-7B** They collects a large number of successful samples in the simulator and constructs
 433 multiple task-specific question-answer pairs, utilizing the SFT training approach. We have fine-
 434 tuned their weights in the new settings.

435 **CoT-SFT** We collect successful samples of GRPO-MA-T4A4 (including the chain of thoughts and
 436 answers), then fine-tune Qwen2.5-VL-3B using SFT.

438 **GRPO-NoThink** We employ GRPO to train the Qwen2.5-VL-3B, but we do not require the model
 439 to generate a thought process; instead, it directly produces the answers.

440 441 5.2.3 MAIN RESULTS

443 The experimental results are presented in Tab. 5. A direct
 444 comparison reveals that the performance of T4A4 is sig-
 445 nificantly superior to that of T4A1. This outcome demon-
 446 strates that in tasks with extremely sparse rewards, such
 447 as multi-modal manipulation, employing a multi-answer
 448 sampling strategy leads to a more stable training process
 449 and facilitate sampling of effective responses.

450 Furthermore, our experiments provide valuable insights
 451 into the indispensable role of the Chain of Thought (CoT)
 452 in this context. We observe that the GRPO-NoThink
 453 model, which ablates the CoT while sampling an equal
 454 number of answers as GRPO-MA-T4A4, suffers a sub-
 455 stantial degradation in performance. This result, along with the strong performance of the CoT-SFT
 456 model, clearly indicates that a high-quality CoT is a critical prerequisite for generating superior
 457 answers and effectively tackling such complex tasks.

458 459 5.3 MORE BASELINE COMPARISON

460 To present a more comprehensive empirical evaluation, we additionally include three recent GRPO-
 461 based variants—GRPO-CARE, DAPO, and Dr.GRPO—on the trajectory prediction task.

462 We follow each method’s original formulation: GRPO-
 463 CARE adds a consistency-reward term; DAPO incor-
 464 porates clip-higher, token-level policy-gradient optimiza-
 465 tion, and overlong reward shaping; and Dr.GRPO modi-
 466 fies both the advantage computation and the optimization
 467 objective. For trajectory prediction, which uses con-
 468 tinuous accuracy metrics (range (0,1)), DAPO’s Dynamic
 469 Sampling module is not applied.

470 Table 6 shows that all three variants offer modest improvements over vanilla GRPO, while GRPO-
 471 MA achieves substantially better performance across all metrics, demonstrating the effectiveness of
 472 multi-answer training.

473 474 5.4 SCALING ANALYSIS

475 To study how GRPO-MA behaves as model capacity in-
 476 creases, we conduct a scaling experiment on Qwen2.5-
 477 VL-7B-Instruct. We compare GRPO-MA with a matched
 478 GRPO baseline using identical training settings on the
 479 trajectory prediction task . Results are summarized in Ta-
 480 ble 7.

481 Notably, GRPO-MA still outperforms standard GRPO, indicating that the variance-reduction effect
 482 and richer reward signals of multi-answer sampling continue to benefit larger models.

483 Table 5: Manipulating Point Prediction.
 484 TN: The number of thoughts; AN: The
 485 number of answers per thought; S/S:
 486 Second/Step during training.

Model	TN	AN	Success Rate (%)	
			Seen	Unseen
Qwen2.5-VL-3B			4.73%	1.30%
ManipLLM-7B			22.80%	7.63%
SFT			9.17%	4.28%
CoT-SFT			28.18%	11.79%
GRPO	4	1	10.75%	3.94%
GRPO-NoThink	0	16	10.60%	2.40%
GRPO-MA	4	4	31.40%	16.00%

487 Furthermore, our experiments provide valuable insights
 488 into the indispensable role of the Chain of Thought (CoT)
 489 in this context. We observe that the GRPO-NoThink
 490 model, which ablates the CoT while sampling an equal
 491 number of answers as GRPO-MA-T4A4, suffers a sub-
 492 stantial degradation in performance. This result, along with the strong performance of the CoT-SFT
 493 model, clearly indicates that a high-quality CoT is a critical prerequisite for generating superior
 494 answers and effectively tackling such complex tasks.

495 Table 6: Trajectory Prediction with
 496 More Baselines.

Model	DFD	HD	RMSE	EP
GRPO	187.99	172.58	140.80	142.74
GRPO-CARE	188.23	170.82	139.83	144.85
DAPO	184.08	167.75	136.18	146.99
Dr.GRPO	180.56	165.95	135.86	140.05
GRPO-MA	151.10	138.29	111.59	120.60

497 Table 7: Scaling Results on Trajectory
 498 Prediction.

Model	DFD	HD	RMSE	EP
7B-T8A1	167.32	152.34	129.50	134.60
7B-MA-T8A4	134.67	121.89	103.64	103.27

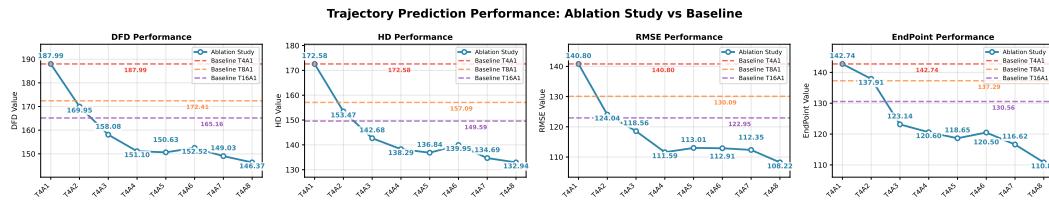


Figure 3: **Ablation Study on Trajectory Prediction** While maintaining the number of thoughts $K = 4$, we gradually increase the number of responses M per thought from 1 to 8 (i.e., the number of responses is 4, 8, 12...32).

5.5 ABLATION STUDY

We conduct a detailed ablation study on the trajectory prediction task to analyze the effect of the number of generated answers M per thought, as shown in Fig. 3. The results indicate that as M increases, all evaluation metrics decrease, although the rate of decline becomes progressively smaller.

Surprisingly, T4A3 features 4 thoughts and 12 answers, outperforming T16A1’s 16 thoughts and 16 answers across all metrics. One possible explanation for this finding is that the importance of reward signal richness (the number of answers) is less significant than the quality of thoughts; filtering out higher-quality thoughts has a greater impact on the overall training process. Specifically, our method assesses a thought’s quality by averaging the rewards of its M subsequent answers ($V(th_i) = \frac{1}{M} \sum_{j=1}^M R_{i,j}$). With $M = 3$, T4A3 obtains a more stable and reliable estimate of each thought’s value, effectively reducing the noise from any single-answer evaluation. In contrast, T16A1’s approach ($M = 1$) is far more susceptible to randomness, as a single, potentially noisy reward is used to judge the entire thought.

5.6 INCONSISTENCY ANALYSIS

We quantify the inconsistency between thoughts and answers during training. For a thought th_i with M answers, if $\text{sign}(A(th_i)) \neq \text{sign}(A(ans_{i,j}))$, we mark it as inconsistent. The inconsistency rate is defined as $\text{InconsistencyRate} = \frac{1}{KM} \sum_{i=1}^K \sum_{j=1}^M \mathbf{1}[A(th_i)A(ans_{i,j}) < 0]$, where $\mathbf{1}[\cdot]$ denotes the indicator function, which equals 1 if the condition inside holds and 0 otherwise.

Under the T4A4 setting, the inconsistency rate is **25.65%** for trajectory prediction and **24.83%** for object detection. Notably, this ratio is also indicative for GRPO baselines (T4A1, T8A1, T16A1), even though they do not explicitly generate multiple answers per thought and thus cannot directly compute it, since they share the same generation hyperparameters (e.g., temperature, top- k , and top- p sampling). This observation further supports our claim that inconsistency is common in GRPO’s training. Moreover, this inconsistency implicitly undermines model training.

Accuracy reward curves and richness of reward signal analysis are in the appendix A.6.

6 CONCLUSION

We present GRPO-MA, a simple yet theoretically grounded extension of GRPO that tackles three key challenges in training Chain-of-Thought models: unstable advantage estimation, gradient coupling between thoughts and answers, and sparse reward signals under limited sampling. By generating multiple answers per thought, GRPO-MA reduces the variance of advantage estimation, decouples the gradient between thoughts and answers, and densifies reward feedback. Our theoretical analysis further shows that increasing the number of answers per thought is a principled way to stabilize gradients, which is corroborated by experiments on math, code, and multimodal tasks. Together, these results demonstrate that GRPO-MA improves both the stability and efficiency of GRPO-based reinforcement learning.

Limitation Our study has several limitations. First, computational constraints prevent our experiments on larger-scale models. Second, our analysis relies on the simplifying assumption that thought values are independent, a condition that may not hold true in practice. Finally, the lack of a general-purpose reward model means that our testing is confined to tasks with verifiable rewards.

540 REFERENCES

542 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 543 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 544 2025.

545 Sriram Balasubramanian, Samyadeep Basu, and Soheil Feizi. A closer look at bias and chain-of-
 546 thought faithfulness of large (vision) language models. *arXiv preprint arXiv:2505.23945*, 2025.

547 Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis Gomez, Marçal Rusinol, Minesh Mathew,
 548 CV Jawahar, Ernest Valveny, and Dimosthenis Karatzas. Icdar 2019 competition on scene text
 549 visual question answering. In *2019 International Conference on Document Analysis and Recog-
 550 nition (ICDAR)*, pp. 1563–1570. IEEE, 2019.

551

552 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 553 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 554 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 555 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 556 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 557 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
 558 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 559 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
 560 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
 561 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
 562 language models trained on code. 2021a.

563

564 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 565 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 566 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021b.

567

568 Peter Chen, Xiaopeng Li, Ziniu Li, Xi Chen, and Tianyi Lin. Spectral policy optimization: Coloring
 569 your incorrect reasoning in grp. *arXiv preprint arXiv:2505.11595*, 2025a.

570

571 Yi Chen, Yuying Ge, Rui Wang, Yixiao Ge, Junhao Cheng, Ying Shan, and Xihui Liu. Grpo-
 572 care: Consistency-aware reinforcement learning for multimodal reasoning. *arXiv preprint
 573 arXiv:2506.16141*, 2025b.

574

575 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
 576 reinforcement learning baseline for model reasoning. *arXiv preprint arXiv:2504.02546*, 2025.

577

578 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 579 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 580 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 581 2021.

582

583 AgiBot World Colosseum contributors. Agibot world colosseum. [https://github.com/
 584 OpenDriveLab/AgiBot-World](https://github.com/OpenDriveLab/AgiBot-World), 2024.

585

586 Thomas Eiter, Heikki Mannila, et al. Computing discrete fréchet distance. 1994.

587

588 Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu,
 589 Xiaoying Zhang, Benyou Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in
 590 mllms. *arXiv preprint arXiv:2503.21776*, 2025.

591

592 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 593 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

594

595 Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
 596 aware adam with momentum reset for stable llm training. *arXiv preprint arXiv:2501.06842*,
 597 2025a.

598

599 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 600 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 601 *arXiv preprint arXiv:2503.06749*, 2025b.

594 Daniel P Huttenlocher, Gregory A. Klanderman, and William J Ruckridge. Comparing images using
 595 the hausdorff distance. *IEEE Transactions on pattern analysis and machine intelligence*, 15(9):
 596 850–863, 2002.

597

598 Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
 599 Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic manipu-
 600 lation from abstract to concrete. In *Proceedings of the Computer Vision and Pattern Recognition*
 601 Conference, pp. 1724–1734, 2025.

602 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 603 Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
 604 refined credit assignment. 2024.

605

606 Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra,
 607 Alexander Clegg, Eric Undersander, Angel X Chang, and Manolis Savva. Habitat synthetic scenes
 608 dataset (hssd-200): An analysis of 3d scene scale and realism tradeoffs for objectgoal navigation.
 609 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 610 16384–16393, 2024.

611 Dongyoung Kim, Sumin Park, Huiwon Jang, Jinwoo Shin, Jaehyung Kim, and Younggyo Seo.
 612 Robot-r1: Reinforcement learning for enhanced embodied reasoning in robotics. *arXiv preprint*
 613 *arXiv:2506.00070*, 2025.

614 Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang,
 615 Jiaming Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-
 616 centric robotic manipulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 617 and *Pattern Recognition*, pp. 18061–18070, 2024.

618

619 Zhenru Lin, Jiawen Tao, Yang Yuan, and Andrew Chi-Chih Yao. Existing llms are not self-consistent
 620 for simple tasks. *arXiv preprint arXiv:2506.18781*, 2025a.

621

622 Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
 623 relative policy optimization-based reasoning models. *arXiv preprint arXiv:2503.22342*, 2025b.

624

625 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 626 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 627 *arXiv:2503.20783*, 2025.

628

629 Hongchen Luo, Wei Zhai, Jing Zhang, Yang Cao, and Dacheng Tao. Learning affordance grounding
 630 from exocentric images. In *Proceedings of the IEEE/CVF conference on computer vision and*
 631 *pattern recognition*, pp. 2252–2261, 2022.

632

633 Maxwell-Jia. Aime2024. https://huggingface.co/datasets/Maxwell-Jia/AIME_2024, 2024.

634

635 Youssef Mroueh, Nicolas Dupuis, Brian Belgodere, Apoorva Nitsure, Mattia Rigotti, Kristjan Gree-
 636 newald, Jiri Navratil, Jerret Ross, and Jesus Rios. Revisiting group relative policy optimization:
 637 Insights into on-policy and off-policy training. *arXiv preprint arXiv:2505.22257*, 2025.

638

639 Austin Myers, Ching L. Teo, Cornelia Fermüller, and Yiannis Aloimonos. Affordance detection of
 640 tool parts from geometric features. In *ICRA*, 2015.

641

642 Gary W Oehlert. A note on the delta method. *The American Statistician*, 46(1):27–29, 1992.

643

644 Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measuring
 645 and improving faithfulness of chain-of-thought reasoning. In *Findings of the Association for*
 646 *Computational Linguistics: EMNLP 2024*, pp. 15012–15032, 2024.

647

648 PrimeIntellect. Synthetic-1: Scaling distributed synthetic data generation for verified reasoning.
 649 <https://www.primeintellect.ai/blog/synthetic-1>, 2024.

650

651 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 652 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

648 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 649 Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
 650 open language models. *arXiv preprint arXiv:2402.03300*, 2024.

651

652 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 653 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 654 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

655 Marco Simoni, Aleksandar Fontana, Giulio Rossolini, and Andrea Saracino. Gtpo: Trajectory-based
 656 policy optimization in large language models. *arXiv preprint arXiv:2508.03772*, 2025.

657

658 Zirui Song, Guangxian Ouyang, Mingzhe Li, Yuheng Ji, Chenxi Wang, Zixiang Xu, Zeyu Zhang,
 659 Xiaoqing Zhang, Qian Jiang, Zhenhao Chen, et al. Maniplvm-r1: Reinforcement learning
 660 for reasoning in embodied manipulation with large vision-language models. *arXiv preprint
 661 arXiv:2505.16517*, 2025.

662 Rubén Tito, Minesh Mathew, CV Jawahar, Ernest Valveny, and Dimosthenis Karatzas. Icdar 2021
 663 competition on document visual question answering. In *International Conference on Document
 664 Analysis and Recognition*, pp. 635–649. Springer, 2021.

665 Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always
 666 say what they think: Unfaithful explanations in chain-of-thought prompting. *Advances in Neural
 667 Information Processing Systems*, 36:74952–74965, 2023.

668

669 Hongcheng Wang, Peiqi Liu, Wenzhe Cai, Mingdong Wu, Zhengyu Qian, and Hao Dong. Mo-ddn:
 670 A coarse-to-fine attribute-based exploration agent for multi-object demand-driven navigation. *Ad-
 671 vances in Neural Information Processing Systems*, 37:64176–64214, 2024.

672 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 673 Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
 674 free llm benchmark. *arXiv preprint arXiv:2406.19314*, 4, 2024.

675

676 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
 677 Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
 678 simulated part-based interactive environment. In *The IEEE Conference on Computer Vision and
 679 Pattern Recognition (CVPR)*, June 2020.

680 Qiyang Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 681 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 682 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

683 Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shao-
 684 han Huang, Lei Cui, Qixiang Ye, et al. Geometric-mean policy optimization. *arXiv preprint
 685 arXiv:2507.20673*, 2025.

686

687 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 688 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint
 689 arXiv:2507.18071*, 2025.

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 Below is the table of contents for the appendix.
705

- 706 • More Related Work A.1
- 707 • Full Analysis of Variance A.2
 - 709 – The Multivariate Delta Method A.2.1
 - 710 – Asymptotic Normality of the Estimated Value Vector A.2.2
 - 711 – Application to the Thought Advantage Function A.2.3
 - 712 – Application to the Answer Advantage Function A.2.4
 - 713 – Diagonality Analysis of Matrices A.2.5
- 714 • Details in Task Settings A.3
 - 715 – Math A.3.1
 - 716 – Code A.3.2
 - 717 – Object Detection A.3.3
 - 718 – Affordance Prediction A.3.4
 - 719 – Trajectory Prediction A.3.5
 - 720 – Demand Prediction A.3.6
 - 721 – Ocr-based VQA A.3.7
 - 722 – Simulator-based Visual Manipulation A.3.8
- 723 • Details in Training A.4
 - 724 – Training Hyperparameters A.4.1
 - 725 – SFT Details A.4.2
 - 726 – Geneartion Configure A.4.3
- 727 • More Case Study and Visualization A.5
- 728 • More Experimental Analysis A.6
 - 729 – Accuracy Reward Curve A.6.1
 - 730 – Richness of Reward Signal A.6.2
 - 731 – [Wall-clock Time](#) A.6.3
 - 732 – [Grad-norm and GSS Curve](#) A.6.4
 - 733 – [Different Architectures Analysis](#) A.6.5
 - 734 – [More Results on Code and Math](#) A.6.6
- 735 • Usage of LLMs A.7

736 **A.1 MORE RELATED WORK: APPLICATIONS OF GRPO IN MULTIMODAL DOMAINS**
737

738 VLM-R1 Shen et al. (2025) applies a general GRPO pipeline to Vision-Language Models, enabling
739 smaller models to achieve competitive performance on complex visual reasoning tasks. Vision-R1
740 Huang et al. (2025b) generates high-quality multimodal Chain-of-Thought data and uses Progressive
741 Thinking Suppression Training (PTST) to prevent the model from creating overly long reasoning
742 paths. Video-R1 Feng et al. (2025) introduces Temporal-GRPO (T-GRPO), a novel reward scheme
743 that encourages the model to leverage temporal information in video sequences. ManipLVM-R1
744 Song et al. (2025) employs GRPO for robotic manipulation with new affordance-aware and
745 trajectory matching reward functions to improve the localization of interactive parts and the physical
746 plausibility of actions. Robot-R1 Kim et al. (2025) reframes robot learning as a multiple-choice
747 question answering task, using GRPO to optimize the reasoning for embodied manipulation.
748

749 **A.2 FULL ANALYSIS OF VARIANCE**
750

751 This document provides a full derivation of the approximate variance for the Thought Advantage,
752 $A(\theta_i)$, as presented in the main paper. We first review the multivariate Delta Method, establish the
753 asymptotic normality of our estimators via the Central Limit Theorem (CLT), and finally present the
754 detailed application and gradient calculation.
755

756 A.2.1 THE MULTIVARIATE DELTA METHOD
757

758 The Delta Method is a fundamental result in statistics used to approximate the moments of a function
759 of one or more random variables. The multivariate version is central to our analysis.

760 **General Formulation.** Let $\vec{V} = (V_1, V_2, \dots, V_K)$ be a K -dimensional random vector of estimators
761 with a true mean vector $\vec{\mu} = (\mu_1, \mu_2, \dots, \mu_K)$. Let M denote the sample size used to compute
762 each estimator V_k . To emphasize that these estimators are functions of the sample size, we denote
763 the vector as \vec{V}_M . The Delta Method provides the asymptotic distribution of $f(\vec{V}_M)$ as $M \rightarrow \infty$.
764 Specifically, if \vec{V}_M satisfies the condition for the Central Limit Theorem such that:

$$765 \sqrt{M}(\vec{V}_M - \vec{\mu}) \xrightarrow{d} N(0, \Sigma_{\text{asymptotic}}) \quad (4)$$

766 where \xrightarrow{d} denotes convergence in distribution, then the transformed variable $f(\vec{V}_M)$ also converges
767 in distribution:

$$768 \sqrt{M}(f(\vec{V}_M) - f(\vec{\mu})) \xrightarrow{d} N(0, \nabla f(\vec{\mu})^T \Sigma_{\text{asymptotic}} \nabla f(\vec{\mu})) \quad (5)$$

769 From this formal result, we derive the practical formula for approximating the variance of $f(\vec{V}_M)$
770 for a large but finite sample size M . The term \sqrt{M} acts as a scaling factor that ensures the limiting
771 distribution has a finite, non-zero variance. The variance of the estimator itself is given by:

$$772 \text{Var}(f(\vec{V}_M)) \approx \nabla f(\vec{\mu})^T \text{Var}(\vec{V}_M) \nabla f(\vec{\mu}) \quad (6)$$

773 where $\text{Var}(\vec{V}_M)$ is the actual covariance matrix of the estimator vector, which is related to the
774 asymptotic covariance by $\text{Var}(\vec{V}_M) \approx \Sigma_{\text{asymptotic}}/M$.

775 A.2.2 ASYMPTOTIC NORMALITY OF THE ESTIMATED VALUE VECTOR
776

777 Before applying the Delta Method, we must first establish that our core estimator, the vector of
778 estimated values $\vec{V}(th)$, satisfies the prerequisite of being asymptotically normal. This justification
779 comes from the Central Limit Theorem (CLT).

780 For each thought th_k , its estimated value $V(th_k)$ is the sample mean of M i.i.d. random variables,
781 the rewards $\{R_{k,j}\}_{j=1}^M$:

$$782 V(th_k) = \frac{1}{M} \sum_{j=1}^M R_{k,j} \quad (7)$$

783 The rewards have a finite true mean μ_{R_k} and a finite true variance $\sigma_{R_k}^2$. According to the CLT, as
784 the sample size $M \rightarrow \infty$, the distribution of the standardized sample mean converges to a normal
785 distribution. This is formally stated as:

$$786 \sqrt{M}(V(th_k) - \mu_{R_k}) \xrightarrow{d} N(0, \sigma_{R_k}^2) \quad (8)$$

787 We now extend this to the full K -dimensional vector of estimators, $\vec{V}(th) = (V(th_1), \dots, V(th_K))$. Since we have assumed that the estimated values for different thoughts are
788 mutually independent, the joint asymptotic distribution of the vector is also normal. The mean of
789 this limiting distribution is a zero vector, and the covariance matrix is diagonal, composed of the
790 individual variances. Therefore, the entire vector of estimators is asymptotically normal:

$$791 \sqrt{M}(\vec{V}(th) - \vec{\mu}) \xrightarrow{d} N(0, \Sigma_{\text{diag}}) \quad (9)$$

792 where $\vec{\mu} = (\mu_{R_1}, \dots, \mu_{R_K})$ is the vector of true means, and Σ_{diag} is the diagonal covariance matrix
793 of the limiting distribution:

$$794 \Sigma_{\text{diag}} = \begin{pmatrix} \sigma_{R_1}^2 & 0 & \dots & 0 \\ 0 & \sigma_{R_2}^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{R_K}^2 \end{pmatrix} \quad (10)$$

795 This result formally justifies the application of the Multivariate Delta Method to the thought advan-
796 tage function $A(th_i) = f_i(\vec{V}(th))$.

810 A.2.3 APPLICATION TO THE THOUGHT ADVANTAGE FUNCTION
811

812 **Verification of Assumptions.** The prerequisites for the Delta Method are satisfied. First, as estab-
813 lished above, our estimator vector $\overrightarrow{V}(\overrightarrow{th})$ is asymptotically normal. Second, the advantage function
814 $A(th_i) = (V(th_i) - \bar{V})/S_V$ is continuously differentiable everywhere except where the denomina-
815 tor $S_V = 0$, where $\bar{V} = \frac{1}{K} \sum_{k=1}^K V(th_k)$ and $S_V = \sqrt{\frac{1}{K-1} \sum_{k=1}^K (V(th_k) - \bar{V})^2}$. We evaluate the
816 gradient at $\overrightarrow{\mu}$, where the denominator's analogue is σ_{μ_R} . The approximation is thus valid assuming
817 $\sigma_{\mu_R} > 0$, i.e., not all thoughts have the same true value.
818

819 **Gradient Calculation.** Let $\overrightarrow{V}(\overrightarrow{th}) = V = (V_1, \dots, V_K)$ and define
820

$$821 \quad f_i(V) = A(th_i) = \frac{N_i(V)}{D(V)} = \frac{V_i - \bar{V}}{S_V}, \quad \bar{V} = \frac{1}{K} \sum_{j=1}^K V_j, \\ 822 \\ 823 \quad Q(V) = \frac{1}{K-1} \sum_{j=1}^K (V_j - \bar{V})^2, \quad D(V) = S_V = \sqrt{Q(V)}. \\ 824 \\ 825$$

826 We compute $\partial f_i / \partial V_k$ in steps.
827

828 First,

$$829 \quad \frac{\partial \bar{V}}{\partial V_k} = \frac{1}{K}, \quad \frac{\partial N_i}{\partial V_k} = \delta_{ik} - \frac{1}{K}. \quad (11) \\ 830 \\ 831$$

832 For Q we have, using $\partial(V_j - \bar{V}) / \partial V_k = \delta_{jk} - \frac{1}{K}$,

$$833 \quad \frac{\partial Q}{\partial V_k} = \frac{1}{K-1} \sum_{j=1}^K 2(V_j - \bar{V})(\delta_{jk} - \frac{1}{K}) \quad (12) \\ 834 \\ 835$$

$$836 \quad = \frac{2}{K-1} \left[(V_k - \bar{V}) - \frac{1}{K} \sum_{j=1}^K (V_j - \bar{V}) \right] = \frac{2}{K-1} (V_k - \bar{V}), \quad (13) \\ 837 \\ 838$$

839 because $\sum_j (V_j - \bar{V}) = 0$. Therefore
840

$$841 \quad \frac{\partial D}{\partial V_k} = \frac{1}{2D} \frac{\partial Q}{\partial V_k} = \frac{V_k - \bar{V}}{(K-1)D}. \quad (14) \\ 842 \\ 843$$

844 Applying the quotient rule yields, for arbitrary V ,

$$845 \quad \frac{\partial f_i}{\partial V_k} = \frac{(\delta_{ik} - \frac{1}{K})D - (V_i - \bar{V}) \cdot \frac{V_k - \bar{V}}{(K-1)D}}{D^2} = \frac{\delta_{ik} - \frac{1}{K}}{D} - \frac{(V_i - \bar{V})(V_k - \bar{V})}{(K-1)D^3}. \quad (15) \\ 846 \\ 847$$

848 Evaluate at $V = \overrightarrow{\mu}$ and denote

$$849 \quad \sigma_{\mu_R} := D|_{V=\mu} = \sqrt{\frac{1}{K-1} \sum_j (\mu_j - \bar{\mu})^2}, \quad \tilde{\mu}_j := \frac{\mu_j - \bar{\mu}}{\sigma_{\mu_R}}. \\ 850 \\ 851$$

852 Then

$$853 \quad \frac{\partial f_i}{\partial V_k} \Big|_{V=\mu} = \frac{1}{\sigma_{\mu_R}} \left(\delta_{ik} - \frac{1}{K} - \frac{\tilde{\mu}_i \tilde{\mu}_k}{K-1} \right). \quad (16) \\ 854 \\ 855$$

856 Finally, by the first-order multivariate Delta method, with $\text{Var}(\overrightarrow{V}) = \frac{1}{M} \Sigma_{\text{diag}}$ (and $\Sigma_{\text{diag}} =$
857 $\text{diag}(\sigma_{R_1}^2, \dots, \sigma_{R_K}^2)$),
858

$$859 \quad \text{Var}[A(th_i)] \approx \nabla_V f_i(\mu)^\top \text{Var}(\overrightarrow{V}) \nabla_V f_i(\mu) = \frac{1}{M \sigma_{\mu_R}^2} \sum_{k=1}^K \left(\delta_{ik} - \frac{1}{K} - \frac{\tilde{\mu}_i \tilde{\mu}_k}{K-1} \right)^2 \sigma_{R_k}^2. \quad (17) \\ 860 \\ 861$$

864 A.2.4 APPLICATION TO THE ANSWER ADVANTAGE FUNCTION
865866 For a single answer $ans_{i,j}$, the advantage is defined as
867

868
$$A(ans_{i,j}) = \frac{R_{i,j} - \bar{R}}{S_R}, \quad \bar{R} = \frac{1}{KM} \sum_{k=1}^K \sum_{m=1}^M R_{k,m}, \quad S_R = \sqrt{\frac{1}{KM-1} \sum_{k=1}^K \sum_{m=1}^M (R_{k,m} - \bar{R})^2}. \quad (18)$$

870

871 Using the first-order multivariate Delta method, the variance of $A(ans_{i,j})$ can be approximated as
872

873
$$\text{Var}[A(ans_{i,j})] \approx \nabla_{\mathbf{R}} g_{i,j}(\boldsymbol{\mu})^\top \text{diag}(\sigma_{R_1}^2, \dots, \sigma_{R_K}^2, \dots) \nabla_{\mathbf{R}} g_{i,j}(\boldsymbol{\mu}), \quad (19)$$

874

875 where $g_{i,j}(\mathbf{R}) = A(ans_{i,j})$ and $\boldsymbol{\mu}$ denotes the vector of reward means.
876877 Evaluating the gradient at $\mathbf{R} = \boldsymbol{\mu}$ and grouping by thought, we obtain
878

879
$$\text{Var}[A(ans_{i,j})] \approx \frac{KM-1}{M(K-1)\sigma_{\mu_R}^2} \sum_{k=1}^K \sum_{m=1}^M \left(\delta_{(k,m),(i,j)} - \frac{1}{KM} - \frac{\tilde{\mu}_i \tilde{\mu}_k}{M(K-1)} \right)^2 \sigma_{R_k}^2, \quad (20)$$

880

881 where $\delta_{(k,m),(i,j)}$ is the Kronecker delta, $\tilde{\mu}_k = (\mu_{R_k} - \mu_{\bar{R}})/\sigma_{\mu_R}$ is the expected advantage of
882 thought th_k , $\mu_{\bar{R}} = \frac{1}{K} \sum_{k=1}^K \mu_{R_k}$, and $\sigma_{\mu_R}^2 = \frac{1}{K-1} \sum_{k=1}^K (\mu_{R_k} - \mu_{\bar{R}})^2$.
883

884 A.2.5 DIAGONALITY ANALYSIS OF MATRICES

885 To examine whether the assumption of independence across thoughts (i.e., a diagonal covariance
886 matrix) holds in practice, we conducted numerical simulations and empirically estimated the covariance
887 structure of $\bar{V}(th) = (V_1, \dots, V_K)$. Specifically, we generated N independent replications
888 of the full K -dimensional estimator vector, denoted $V^{(n)}$ for $n = 1, \dots, N$, and computed the
889 empirical covariance matrix:
890

891
$$\hat{\Sigma} = \frac{1}{N-1} \sum_{n=1}^N (V^{(n)} - \bar{V})(V^{(n)} - \bar{V})^\top, \quad \bar{V} = \frac{1}{N} \sum_{n=1}^N V^{(n)}. \quad (21)$$

892

893 We then assessed the degree of diagonal dominance using Row-wise strict diagonal dominance and
894 Frobenius-norm based diagonal energy ratio.
895896 **Row-wise strict diagonal dominance.** For each row i , the covariance matrix is said to be strictly
897 diagonally dominant if
898

899
$$|\hat{\Sigma}_{ii}| > \sum_{j \neq i} |\hat{\Sigma}_{ij}|. \quad (22)$$

900

901 We summarize this property by the proportion of rows that satisfy the condition:
902

903
$$p_{\text{row_dom}} = \frac{1}{K} \sum_{i=1}^K \mathbf{1}\{|\hat{\Sigma}_{ii}| > \sum_{j \neq i} |\hat{\Sigma}_{ij}|\}, \quad (23)$$

904

905 where $\mathbf{1}\{\cdot\}$ denotes the indicator function. A value $p_{\text{row_dom}} \approx 1$ indicates strong diagonal domi-
906 nance.
907908 **Frobenius-norm based diagonal energy ratio.** We also consider the proportion of squared Frobe-
909 nius norm explained by the diagonal entries:
910

911
$$\rho_F = \frac{\sum_{i=1}^K \hat{\Sigma}_{ii}^2}{\sum_{i=1}^K \sum_{j=1}^K \hat{\Sigma}_{ij}^2}, \quad 0 \leq \rho_F \leq 1. \quad (24)$$

912

913 Higher values of ρ_F indicate that the diagonal terms dominate the overall covariance energy.
914915 We select 50 samples from the Trajectory Prediction task and, at the 1500-step checkpoint, compute
916 the covariance matrix of the thought-value estimates by performing $N = 10$ independent replica-
917 tions per sample. The empirical results yield $p_{\text{row_dom}} = 63.65\%$ and $\rho_F = 70.71\%$ averaged on 50
918 samples. Since our theoretical derivations rely on the assumption that the covariance matrix is di-
919 agonal, these diagnostics suggest that this assumption has a certain degree of validity in practice, as
920 the estimated covariance matrices exhibit a clear tendency toward diagonal dominance.
921

918 A.3 DETAILS IN TASK SETTINGS
919920 A.3.1 MATH
921922 We conduct our experiments using problems from the DAPO Yu et al. (2025) training set and evaluate
923 on the AIME2024 test set Maxwell-Jia (2024). The Math training set is constructed by randomly
924 sampling 1,000 problems from the DAPO training corpus. The model is trained for a single epoch
925 on these 1,000 training samples. We do not use a validation set; instead, we select the final model
926 parameters saved at the end of training (the last checkpoint) for testing.
927928 At test time, for each test problem from AIME2024 we generate $n = 100$ independent candidate outputs (“generations”). From these 100 generations we compute the *pass@k* metrics for $k \in \{10, 32\}$.
929930 The reward function is designed with two complementary components: a *format reward* and an
931 *accuracy reward*. The model is required to generate outputs in a predefined structured format:
932933 <analysis> xxx </analysis>
934 <process> xxx </process>
935 <answer> d </answer>936 where the answer is represented as a single integer d . The format reward assigns a value of 1 if and
937 only if the output strictly follows the required format, and 0 otherwise. The accuracy reward is +1 if
938 the predicted answer is identical to the true answer, and 0 otherwise.
939The full prompt template is shown below:
940

```

941 {Question} You MUST structure your response using exactly
942 three sections with XML-style tags in this exact order:
943 1) <analysis> ... </analysis>
944 2) <process> ... </process>
945 3) <answer> ... </answer>

946 Roles and constraints:
947 - <analysis>: State relevant concepts, theorems, formulas,
948 and solution plan. Do NOT perform numeric calculations or
949 write equations here.
950 - <process>: Perform ALL detailed computations and
951 step-by-step derivations based on the analysis. Show
952 equations and numeric work here.
953 - <answer>: Output ONLY the final integer (optional sign).
954 No words, units, punctuation (except the sign), or
955 explanations.

956 Hard requirements:
957 - All three tags must be present and appear in the exact
958 order <analysis> -> <process> -> <answer>.
959 - No calculations in <analysis>.
960 - All computations must be in <process>.
961 - <answer> must contain a single integer only.
962

```

963 **Implementation Note:** In our multi-sample framework, the sampled content encompasses both
964 <answer> and <process> elements.
965A.3.2 CODE
966967 We conduct our experiments using the Python-code portion of the SYNTHETIC-1 dataset PrimeIn-
968 tellect (2024) and evaluate on the LiveBench code test set White et al. (2024). The Code training set
969 is constructed by randomly sampling 1,000 problems from the SYNTHETIC-1 Python-code corpus.
970 The model is trained for a single epoch on these 1,000 training samples. We do not use a validation
971 set; instead, we select the final model parameters saved at the end of training (the last checkpoint)
for testing.
972

972 At test time, for each test problem from LiveBench we generate $n = 100$ independent candidate out-
 973 puts (“generations”). From these 100 generations we compute the $pass@k$ metrics for $k \in \{10, 32\}$
 974 as described below.

975 The reward function is designed with two complementary components: a *format reward* and a *func-*
 976 *tional (accuracy) reward*. The model is required to generate outputs in a predefined structured
 977 format:

979 <think> xxx </think>
 980 <answer> xxx </answer>

981 The format reward assigns a value of 1 if and only if the output strictly follows the required tag
 982 structure and the content within <answer> can be parsed as a syntactically valid Python program.
 983 Otherwise the format reward is 0.

984 The functional (accuracy) reward is +1 if the program inside <answer> executes successfully on
 985 the official hidden test inputs, terminates without runtime error, and produces outputs that exactly
 986 match the expected outputs for all test cases. Otherwise the accuracy reward is 0.

988 The prompt used to condition the model for each problem is exactly:

990 {Question} First output the thinking process
 991 in <think> </think> tags and then output the final code
 992 in <answer> </answer> tags. The answer should be a
 993 complete Python code solution that solves the given
 994 problem. Make sure your code handles all edge cases
 995 and follows the input/output format specified in the
 996 problem. DONOT OUTPUT ANY CODE OR SOLUTION IN THE
 997 THINK TAGS.

998 A.3.3 OBJECT DETECTION

1000 We conduct our experiments using the **Agibot World dataset** contributors (2024). The data is
 1001 partitioned into training, validation, and test sets based on specific task_ids from Agibot World
 1002 dataset. Specifically, the training set is constructed from task_ids 424, 480, and 507, comprising a
 1003 total of 3,000 images (randomly sampling). The validation and test sets are derived from task_id
 1004 582 and 1352, respectively. For all images, the ground-truth bounding boxes and corresponding
 1005 object labels are annotated through a crowdsourcing process. The object detection model is trained
 1006 for a single epoch on the 3,000-image training set.

1007 After training, we perform model selection by evaluating checkpoints on the designated validation
 1008 set. The model checkpoint that achieves the highest average IoU@0.5 (as defined below) on the
 1009 validation data is selected for the final evaluation. The performance of this selected model is then
 1010 reported on the test set.

1011 We evaluate the model’s performance using a **IoU rate** metric, which measures the proportion of
 1012 correctly localized objects based on the Intersection over Union (IoU). A detection is considered
 1013 positive if the IoU between the predicted bounding box (B_{pred}) and the ground-truth bounding box
 1014 (B_{gt}) exceeds a given threshold τ .

1015 The IoU rate at a specific threshold τ , denoted as $IoU@\tau$, is formulated as:

$$1017 IoU@\tau = \frac{\sum_{i=1}^N \mathbf{1}(IoU(B_{pred}^{(i)}, B_{gt}^{(i)}) > \tau)}{N} \quad (25)$$

1019 where N is the total number of samples in the test set, and $\mathbf{1}(\cdot)$ is the indicator function. To provide
 1020 a comprehensive assessment, we report the performance across four different IoU thresholds: $\tau \in$
 1021 $\{0.5, 0.6, 0.7, 0.8\}$.

1022 The reward function is designed with two complementary components: a *format reward* and an
 1023 *accuracy reward*. The model is required to generate outputs in a predefined structured format:

1025 <think> xxx </think>
 <answer> [d, d, d, d] </answer>

1026 where the bounding box is represented as a list of four integers $[d, d, d, d]$. The format reward
 1027 assigns a value of 1 if and only if the output strictly follows the required format, and 0 otherwise.
 1028 The accuracy reward is defined as the IoU between the predicted bounding box and the ground-truth
 1029 bounding box.

1030 The full prompt template is shown below:
 1031

```
1032 {Question} First output the thinking process in <think>
1033 </think> tags and then output the final answer in <answer>
1034 </answer> tags. Output the final answer in List format.
1035 Only output the bounding box using [x_min, y_min, x_max,
1036 y_max] format in the final answer. DO NOT OUTPUT ANY ANSWER
1037 OR CONCLUSION IN THE THINK TAGS.
```

1038 **A.3.4 AFFORDANCE PREDICTION**
 1039

1040 The task is defined as affordance prediction, where the model, given an image and a specified affordance (e.g., grasping, holding), is required to predict a pixel-wise mask indicating the corresponding region.
 1041

1042 We primarily use the UMD Part Affordance Dataset Myers et al. (2015). The official training split
 1043 of this dataset is used to construct our training and validation sets. Specifically, we use 3,000 images
 1044 for training and a held-out portion of the original training split for validation. For evaluation, we use
 1045 the official test split of the UMD dataset. To further assess the model’s generalization capabilities,
 1046 we also use the entire AGD20K dataset Luo et al. (2022) as an additional, challenging test set.
 1047

1048 The affordance prediction model is trained for a single epoch on the 3,000-image training set. After
 1049 training, we perform model selection by evaluating checkpoints on the designated validation set.
 1050 The model checkpoint that achieves the highest Success Rate (as defined below) on the validation
 1051 data is selected for the final evaluation. The performance of this selected model is then reported on
 1052 the test sets (UMD test and AGD20K).

1053 We evaluate the model’s performance using a Success Rate metric. This metric measures the proportion
 1054 of samples where the predicted point correctly falls within the ground-truth affordance mask.
 1055 A prediction is considered successful if the pixel value at the predicted 2D coordinate is 1 in the
 1056 ground-truth binary mask.

1057 The Success Rate is formulated as:
 1058

$$\text{Success Rate} = \frac{\sum_{i=1}^N \mathbf{1}(M_{\text{gt}}^{(i)}(C_{\text{pred}}^{(i)}) = 1)}{N} \quad (26)$$

1059 where N is the total number of samples in the test set, $C_{\text{pred}}^{(i)}$ is the predicted 2D coordinate (x, y)
 1060 for the i -th sample, and $M_{\text{gt}}^{(i)}$ is the corresponding ground-truth affordance mask. The notation
 1061 $M_{\text{gt}}^{(i)}(C_{\text{pred}}^{(i)})$ represents the value of the mask at the predicted coordinate. $\mathbf{1}(\cdot)$ is the indicator
 1062 function, which is 1 if the condition is true and 0 otherwise.
 1063

1064 The reward function consists of two complementary components: a *format reward* and an *accuracy
 1065 reward*.

1066 The model is required to generate outputs in the following structured format:
 1067

```
<think> xxx </think>
<answer> [d, d] </answer>
```

1068 where the final answer corresponds to a 2D coordinate $[d, d]$, with d denoting an integer. The format
 1069 reward assigns a value of 1 if and only if the output strictly adheres to this format; otherwise, it is
 1070 set to 0. The accuracy reward evaluates the correctness of the prediction by checking whether the
 1071 predicted 2D point lies within the ground-truth affordance mask (i.e., a region where the mask value
 1072 equals 1). If the prediction falls inside the valid region, +1 reward is given; otherwise, it is not.
 1073

1074 The full prompt template is shown below:
 1075

```
1076 {Question} First output the thinking process in <think>
1077 </think> tags and then output the final answer in <answer>
```

1080 </answer> tags. Only output one affordance point using [x,
 1081 y] format. DO NOT OUTPUT ANY ANSWER OR CONCLUSION IN THE
 1082 THINK TAGS.

1083

1084

A.3.5 TRAJECTORY PREDICTION

1085

1086

1087

1088

1089

1090

The task is defined as trajectory prediction, where the model, given an image and a manipulation instruction, is required to predict the two-dimensional trajectory of the robotic arm’s end-effector in the image’s pixel coordinate system. The trajectory is represented as a sequence of coordinates, and the predicted path should follow the ground-truth trajectory to successfully complete the instructed manipulation.

1091

1092

1093

1094

1095

1096

1097

We primarily use the trajectory subset of the BAAI ShareRobot dataset Ji et al. (2025). The original dataset is partitioned into training, validation, and test sets. Specifically, we use 3,000 images for training, a held-out portion of the training split for validation, and the test split for evaluation. The model is trained for a single epoch on the 3,000-image training set. After training, we perform model selection by evaluating checkpoints on the designated validation set. The checkpoint that achieves the highest reward value (as defined below) on the validation data is selected for the final evaluation. The performance of this selected model is then reported on the held-out test set.

1098

1099

1100

1101

1102

We evaluate the model’s performance using multiple geometric similarity metrics, following the design in ManipVLM-R1 Song et al. (2025). These metrics measure how well the predicted trajectory matches the ground truth from different perspectives. Specifically, we use Discrete Fréchet Distance (DFD), Hausdorff Distance (HD), Root Mean Square Error (RMSE), and Endpoint Distance as evaluation criteria.

1103

1104

The model is required to generate outputs in the following structured format:

1105

1106

1107

```
<think> xxx </think>
<answer> [[x1, y1], [x2, y2], ..., [xn, yn]] </answer>
```

1108

1109

where the final answer corresponds to a variable-length sequence of 2D coordinates $[x, y]$, with x and y denoting integers.

1110

1111

1112

1113

1114

1115

The reward function consists of two complementary components: a *format reward* and a *accuracy reward*. The format reward assigns a value of 1 if and only if the output strictly adheres to this format; otherwise, it is set to 0. To measure how well the predicted trajectory \hat{T} matches the ground-truth trajectory T^* , we adopt an accuracy reward following the design in ManipVLM-R1 Song et al. (2025). Specifically, the reward is defined as

1116

1117

1118

1119

$$R_{\text{acc}} = \exp(-k D_{\text{DFD}}(\hat{T}, T^*)) + \exp(-k D_{\text{HD}}(\hat{T}, T^*)) + \exp(-k D_{\text{RMSE}}(\hat{T}, T^*)) + \exp(-k \|\hat{p}_N - p_M^*\|^2), \quad (27)$$

1120

1121

1122

1123

where D_{DFD} , D_{HD} , and D_{RMSE} denote the Discrete Fréchet Distance, Hausdorff Distance, and Root Mean Square Error between the predicted trajectory \hat{T} and the ground-truth trajectory T^* . The final term enforces endpoint accuracy by penalizing the distance between the predicted endpoint \hat{p}_N and the ground-truth endpoint p_M^* .

1124

1125

The model is guided by a carefully designed prompt that specifies both the reasoning and the answer requirements. The full prompt template is shown below:

1126

```
{Question} First output the thinking process in <think></think> tags and then output the final answer in <answer></answer> tags. Output the final answer in the following JSON format: [[x1, y1], [x2, y2], ..., [xn, yn]]. Where each coordinate pair represents a point in the image’s pixel space and the center of the end effector needs to follow the coordinates to complete the task. Each hand trajectory includes unknown number of [x, y] coordinate pairs. DO NOT OUTPUT ANY ANSWER OR CONCLUSION IN THE THINK TAGS.
```

1134 A.3.6 DEMAND PREDICTION
1135

1136 The task is defined as demand prediction, where the model, given an image and a human demand
1137 instruction (e.g., “I am thirsty”), is required to output a two-dimensional coordinate corresponding
1138 to an object in the image that fulfills the demand (e.g., a water bottle or a juice box). A prediction
1139 is considered correct if the predicted point lies inside the ground-truth segmentation mask of the
1140 demanded object.

1141 We construct the dataset for this task based on MO-DDN Wang et al. (2024), which requires robots
1142 to ground a natural demand instruction to objects in the environment. MO-DDN itself is built upon
1143 the HSSD scene dataset Khanna et al. (2024), together with a custom demand–object dataset. To
1144 build our data, we randomly sample a demand instruction and pair it with a scene containing a
1145 target object that satisfies the demand. We then crop and store the corresponding image, resulting in
1146 instruction–image pairs.

1147 Following the original MO-DDN splits, we collect data separately from the training and testing
1148 tasks. Specifically, we use 3,000 instruction–image pairs as the training set and 1,000 pairs as the
1149 validation set, both sampled from the training tasks. For evaluation, we construct a test set of 5,000
1150 instruction–image pairs sampled from the testing tasks.

1151 We train the model for a single epoch on the training set and perform model selection based on
1152 validation accuracy. The checkpoint achieving the highest validation performance is then used for
1153 testing, and we report results on the test set.

1154 We evaluate the model’s performance using a *Success Rate* metric, defined as the proportion of
1155 samples where the predicted coordinate falls within the ground-truth mask of the demanded object.
1156 Formally:

$$1158 \quad \text{Success Rate} = \frac{\sum_{i=1}^N \mathbf{1}(M_{\text{gt}}^{(i)}(C_{\text{pred}}^{(i)}) = 1)}{N}, \quad (28)$$

1163 where N is the number of samples in the test set, $C_{\text{pred}}^{(i)}$ denotes the predicted 2D coordinate (x, y)
1164 for the i -th sample, and $M_{\text{gt}}^{(i)}$ is the ground-truth binary mask of the demanded object. The notation
1165 $M_{\text{gt}}^{(i)}(C_{\text{pred}}^{(i)})$ indicates the mask value at the predicted location. $\mathbf{1}(\cdot)$ is the indicator function that
1166 equals 1 if the condition holds and 0 otherwise.

1168 The reward function for training consists of two complementary components: a *format reward* and
1169 an *accuracy reward*. The model must output predictions in the following structured format:
1170

1171 <think> xxx </think>
1172 <answer> [d, d] </answer>

1174 where the final answer corresponds to a 2D coordinate $[d, d]$, with d denoting an integer. The format
1175 reward is assigned 1 if the output strictly follows this structure, and 0 otherwise. The accuracy
1176 reward is assigned if and only if the predicted coordinate lies within the ground-truth object mask.
1177 These two rewards jointly ensure syntactically valid outputs and semantic correctness.

1179 The model is guided by a prompt template that specifies both the thinking process and the final
1180 answer format. The full prompt is given below:

1181

1182 You are completing a navigation task where you need to
1183 detect objects from the image that fulfill a user’s demand.
1184 The user’s demand is {Question}. First output the thinking
1185 process in <think> </think> tags and then output the final
1186 answer in <answer> </answer> tags. Only output one point
1187 using [x, y] format that represents the target demanded
1188 object. DO NOT OUTPUT ANY ANSWER OR CONCLUSION IN THE THINK
1189 TAGS.

1188 A.3.7 OCR-BASED VQA
1189

1190 The task is defined as OCR-based Visual Question Answering (VQA), where the model, given an
1191 image containing textual information and a natural language question, is required to output a short
1192 natural language answer. The answer must be grounded in the image content and can involve both
1193 text extraction and reasoning over visual elements.

1194 We construct the dataset by combining three OCR-based VQA benchmarks: *Document VQA* Tito
1195 et al. (2021), *Infographics VQA* Tito et al. (2021), and *Scene Text VQA* Biten et al. (2019). Document
1196 VQA focuses on answering questions asked over document images, which may contain printed,
1197 typewritten, and handwritten content (e.g., letters, memos, reports). The answers are typically text
1198 spans taken verbatim from the document. Infographics VQA considers questions over infographic
1199 images containing charts, diagrams, or other structured visual data, where answers are not always
1200 explicitly extracted text but can include inferred information. Scene Text VQA consists of natural
1201 scene images with embedded text (e.g., storefronts, street signs). The model must jointly leverage
1202 OCR reading and visual understanding to answer the questions.

1203 From each of the three training sets, we randomly select 3,000 samples, resulting in a combined
1204 training set of 9,000 samples. Additionally, we construct a validation set of 1,500 samples (also
1205 drawn from the training splits), while the official validation sets of each benchmark are used as our
1206 test set.

1207 The model is trained for a single epoch on the 9,000-sample mixed training set. Model selection
1208 is performed based on validation performance, and the checkpoint achieving the highest validation
1209 score is reported on the test sets.

1210 The evaluation metric is the *Average Normalized Levenshtein Similarity* (ANLS), which measures
1211 the string-level similarity between the predicted and ground-truth answers. ANLS accounts for
1212 OCR errors by softly penalizing recognition mistakes. A threshold $\tau = 0.5$ is applied to determine
1213 whether a predicted answer is considered valid. Formally, ANLS is defined as:

$$1215 \text{ANLS} = \frac{1}{N} \sum_{i=0}^N \left(\max_j s(a_{ij}, o_{q_i}) \right), \quad (29)$$

$$1219 s(a_{ij}, o_{q_i}) = \begin{cases} 1 - NL(a_{ij}, o_{q_i}), & \text{if } NL(a_{ij}, o_{q_i}) < \tau, \\ 0, & \text{if } NL(a_{ij}, o_{q_i}) \geq \tau, \end{cases} \quad (30)$$

1221 where N is the number of questions, M is the number of ground-truth answers per question, a_{ij} is
1222 the j -th ground-truth answer for the i -th question q_i , and o_{q_i} is the predicted answer. $NL(\cdot)$ denotes
1223 the normalized Levenshtein distance.

1224 The reward function consists of a *format reward* and an *accuracy reward*. The model must output
1225 answers in the following structured format:

1227 <think> xxx </think>
1228 <answer> xxx </answer>
1229

1230 The format reward is 1 if the output strictly follows this structure, and 0 otherwise. The accuracy
1231 reward corresponds to the ANLS score of the predicted answer for the current question.

1232 The model is guided by the following prompt template:

1234 {Question} First output the thinking process in <think>
1235 </think> tags and then output the final answer in <answer>
1236 </answer> tags. The answer should be a natural language
1237 text. The answer should be found in the image. DO NOT
1238 OUTPUT ANY ANSWER OR CONCLUSION IN THE THINK TAGS.

1239 A.3.8 SIMULATOR-BASED VISUAL MANIPULATION
1240

1241 The task is defined as a simulator-based visual manipulation problem where, given a single RGB
observation of a manipulation scene, the model must specify a contact point (x, y) on the object at

1242 which a sucker should attempt to manipulate. The model's output must be grounded in the visual
 1243 observation and may require reasoning about object geometry, affordances, and reachable contact
 1244 locations.

1245 We construct the dataset and evaluation splits based on the PartNet Mobility dataset Xiang et al.
 1246 (2020) and the ManipLLM experimental setup (**A crucial point is that we have followed their**
 1247 **setting by using suckers as the end effectors for the robotic arms.**). For training, we adopt the
 1248 same 20 training categories as ManipLLM, consisting of 1,043 object instances. Training scenes are
 1249 generated following the SAPIEN simulator Xiang et al. (2020) setup and ManipLLM scene config-
 1250urations. For testing, we use the open-sourced ManipLLM test set, which contains approximately
 1251 1,830 successful test samples spanning both Seen and Unseen objects. To better evaluate model
 1252 generalization to novel viewpoints, we further construct a camera-perturbed test set by modifying
 1253 each test sample: the camera orientation vector $[0, 0, 0]$ is replaced by $[x, y, z]$ where each of x, y, z
 1254 is sampled uniformly from the signed interval $\pm[0.2, 0.6]$. This perturbation preserves other scene
 1255 properties while intentionally stressing viewpoint robustness. In order to simplify control and isolate
 1256 contact selection, the sucker approach direction in all experiments is fixed to be the surface normal
 1257 at the chosen manipulation point (x, y) .

1258 The required output must follow a strict format consisting of a reasoning trace and a final contact
 1259 point, written as:

1260 `<think> xxxx </think>`
 1261 `<answer> (d, d) </answer>`

1262 The evaluation metric is Success Rate, following ManipLLM's criterion based on the manipulated
 1263 object's displacement after the scripted sucker motion. Formally, given N trials,

1264
$$\text{SuccessRate} = \frac{1}{N} \sum_{i=1}^N \mathbf{1}\{\text{trial}_i \text{ is successful according to ManipLLM's displacement criterion}\},$$

1265 where $\mathbf{1}\{\cdot\}$ is the indicator function. We report Success Rate on the camera-perturbed test sets, and
 1266 further provide breakdowns by Seen vs. Unseen objects.

1267 The reward function during GRPO training consists of a format reward and a task reward. The
 1268 format reward is 1 if the output strictly follows the required structure and 0 otherwise. The task
 1269 reward is 1 if the manipulation attempt succeeds according to ManipLLM's displacement criterion
 1270 and 0 otherwise. The overall reward is defined as

1271
$$R_{\text{total}} = R_{\text{format}} + R_{\text{task}},$$

1272 so that only properly formatted and successful outputs receive credit. This ensures that malformed
 1273 answers cannot be rewarded even if the manipulation itself succeeds.

1274 All experiments are conducted with Qwen2.5-VL-3B as the base model. We train using GRPO for
 1275 4,000 optimization steps, selecting checkpoints based on validation success rate. The validation set
 1276 is constructed by sampling held-out scenes from the same 20 training categories without overlap
 1277 with the test split. The prompt used in training is as follows:

```
1278
1279 "system": "You are an intelligent manipulator. A
1280 conversation between User and Assistant. The user
1281 asks a question, and the Assistant solves it. The
1282 assistant first thinks about the reasoning process
1283 in the mind and then provides the user with the
1284 answer. The reasoning process and answer are enclosed
1285 within <think> </think> and <answer> </answer> tags,
1286 respectively, i.e. <think> reasoning process here
1287 </think><answer> answer here </answer>."
1288
1289 "user": "Specify the contact point (x, y) of
1290 manipulating the object. The camera resolution
1291 is:'width': 336, 'height': 336, Output
1292 format: <think>your thinking process</think>
1293 <answer> (x, y)</answer>"
```

1296 Table 8: Hyperparameters for GRPO training.
1297

1298	Hyperparameter Group	Parameter	Value	
1299	<i>Training Configuration</i>			
1300		Model	Qwen2.5-VL-3B-Instruct	
1301		Optimizer	AdamW	
1302		Learning Rate (η)	1×10^{-5}	
1303		Batch Size	1	
1304		Gradient Accumulation Steps	1	
1305		Total Training Epochs	1	
1306		Max Completion Length	4096	
1307		Data Seed	42	
1308		Floating Point Precision	bfloat16	
1309		Gradient Checkpointing	true	
		Flash Attention 2	true	
1310	<i>PEFT (LoRA) Configuration</i>			
1311		LoRA Rank (r)	64	
1312		LoRA Alpha (α)	128	
		LoRA Dropout	0.05	
1313	<i>GRPO-specific Configuration</i>			
1314		Beta (β)	0.04	
1315		Epsilon High (ϵ_H)	0.28	
1316		Epsilon Low (ϵ_L)	0.2	
1317	<i>Model Specific Configuration</i>			
1318		Freeze Vision Modules	true	

1320

A.4 DETAILS IN TRAINING

1321

A.4.1 TRAINING HYPERPARAMETERS

1324 We summarize the key hyperparameters used in our GRPO training experiments in Tab. 8. The
1325 settings are organized into general, training, and LoRA-related categories for clarity.
13261327

A.4.2 SFT DETAILS

1329 For all Supervised Fine-Tuning (SFT) baselines, we train for 5 epochs. All other settings are kept
1330 consistent with GRPO, including the dataset, model selection criteria, and metric calculation.
13311332

A.4.3 GENERATION CONFIGURE

1334 Our model is trained using the Hugging Face `transformers` library (version 4.51.3). During in-
1335 ference, we customize the decoding strategy via the `GenerationConfig` class. Specifically, we
1336 set `temperature=1.0` and `do_sample=True` to enable stochastic sampling. We also define
1337 `stop_strings=["</think>", "</analysis>"]` only when generating thoughts. The re-
1338 maining parameters are maintained at their default settings.
13391340

A.5 MORE CASE STUDY AND VISUALIZATION

1342 To provide a more intuitive and in-depth analysis of our model’s performance, this section presents
1343 a series of curated case studies and visualizations. These examples encompass a range of key tasks,
1344 including object detection (Fig. 4) and trajectory prediction (Fig. 5 and Fig. 6). Our aim is to
1345 leverage these concrete scenarios to delve into the model’s behavior, decision-making logic, and
1346 inherent strengths and limitations.
13471348 Specifically, in the simulator-based visual manipulation task, we visualize the distribution of the
1349 target operation points over multiple sampling attempts in Fig. 7. Green points indicate successful
manipulations, while red points represent failures. This visualization demonstrates the robustness of
our model.

1350 A.6 MORE EXPERIMENTAL ANALYSIS
13511352 In this section, we further present some experimental results, including the accuracy reward curves
1353 during training, and an analysis of the richness of reward signal.
13541355 A.6.1 ACCURACY REWARD CURVE
13561357 We present the accuracy reward curves for five visual tasks in Object Detection (Fig. 8), Affordance
1358 Prediction (Fig. 9), Demand Prediction (Fig. 10), OCR-based VQA (Fig. 11) and Trajectory Pre-
1359 diction (Fig. 12). During the curve plotting process, we smooth the curve using a moving average
1360 method with a window size of 200. The curves demonstrate that T4A4 (red) exhibits performance
1361 comparable to that of T16A1 (blue) in the majority of cases, at times showing a marginal advantage.
13621363 A.6.2 RICHNESS OF REWARD SIGNALS
13641365 For tasks with binary (0-1) rewards, such as Code, Math, Affordance Prediction, Demand Prediction
1366 and Simulator-based Visual Manipulation, we compute the proportion of samples whose total reward
1367 is positive, which we refer to as the *NoZeroRate*. Formally, it is defined as
1368

1369
$$\text{NoZeroRate} = \frac{1}{T} \sum_{t=1}^T \mathbf{1} \left\{ \left(\sum_{i=1}^K \sum_{j=1}^M \text{AccR}_{i,j}^t \right) > 0 \right\}, \quad (31)$$

1370

1371 where $\mathbf{1}\{\cdot\}$ denotes the indicator function, which equals 1 if the condition inside holds and 0 otherwise.
1372 Here, T is the total number of time steps, t indexes a specific time step, K is the number of
1373 thoughts, M is the number of answers per thought, and $\text{AccR}_{i,j}^t$ denotes the accuracy reward asso-
1374 ciated with the j -th answer under the i -th thought at time step t . A higher NoZeroRate indicates a
1375 lower proportion of advantage collapses (where collapse means all advantage values become zero),
1376 and a higher proportion of effective gradient information contribution.
13771378 The statistical results are presented in Tab. 10. We observe that T4A4 achieves the second-highest
1379 proportion of non-zero accuracy rewards across all tasks, only behind T16A1. On the one hand, this
1380 indicates that under the T4A4 setting, the answers generated by each thought are largely different.
1381 On the other hand, it suggests that the diversity of generated answers can be substantially improved
1382 by generating additional answers per thought, as shown by the comparison between T4A4 and T4A1.
1383

Table 9: Math and code reasoning results on Qwen3-4B-Instruct.

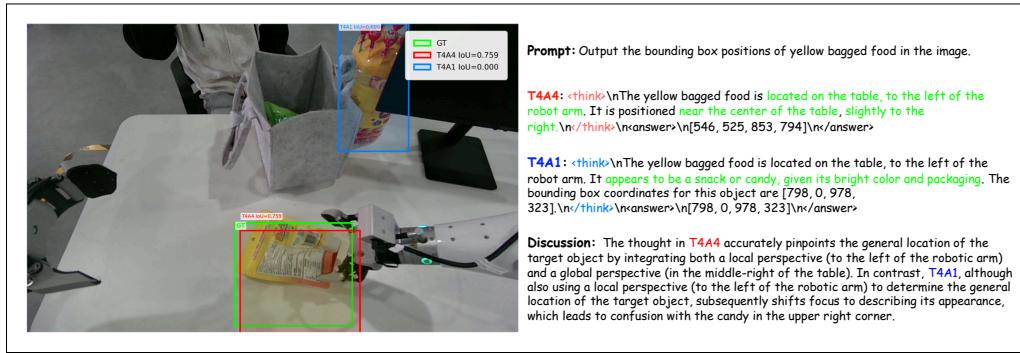
Model	Pass@1 (Math)	Pass@1 (Code)
GRPO-T4A1	17.53	4.22
GRPO-MA-T4A4	18.07	6.25

1389 A.6.3 WALL-CLOCK TIME
13901391 We provide wall-clock time to further demonstrate the improvement in training efficiency achieved
1392 by the GRPO-MA algorithm. We pick two multimodal tasks and one text reasoning task as exam-
1393 ples. The results are shown in Fig. 13, Fig. 14, and Fig. 15. As shown in the figure, GRPO-MA
1394 achieves the peak performance of various baselines in a shorter time.
13951396 Table 10: NoZeroRate on Different Task. TN: The number of thoughts; AN: The number of answers
1397 per thought. **Bold** indicates the best performance and *italics* indicate the second-best performance.
1398

	TN	AN	Code	Math	Affordance	Demand	Sim Manip
GRPO	4	1	26.71%	19.14%	85.10%	46.37%	38.20%
GRPO	8	1	36.57%	27.71%	94.37%	62.07%	/
GRPO	16	1	43.71%	43.29%	97.17%	70.20%	/
GRPO-MA	4	4	41.86%	34.71%	96.70%	66.47%	85.05%

1404 Table 11: Additional Results on GSM8K (Math) and HumanEval (Code). TN: Number of thoughts;
 1405 AN: Number of answers per thought. **Bold** indicates the best performance among GRPO variants.
 1406

Model	GSM8K (Math)			HumanEval (Code)	
	TN	AN	Pass@1	Pass@1	Pass@5
GRPO	4	1	62.54	56.10	82.93
GRPO	8	1	64.67	56.83	82.93
GRPO	16	1	65.13	57.80	85.37
GRPO-MA	4	4	70.58	58.66	87.20



1429
 1430 Figure 4: **Case Study on Object Detection** Green text indicates key reasoning content.
 1431
 1432

1433 A.6.4 GRAD-NORM AND GSS CURVE

1434 We provide complete Grad Norm and GSS curves, shown in Fig. 16, Fig. 17 and Fig 18. Smaller
 1435 fluctuations in the Grad Norm curve and lower GSS values indicate fewer gradient spikes during
 1436 training, resulting in more stable training. The grad norm curve and GSS curve corresponding to
 1437 GRPO-MA both exhibit smaller fluctuations and GSS values.
 1438

1439 A.6.5 DIFFERENT ARCHITECTURES ANALYSIS

1440 We also evaluate GRPO-MA on a pure-text language model with a different architecture—Qwen3-
 1441 4B-Instruct—to assess whether our method applies beyond VLM architectures. We use math word
 1442 problems and programming tasks as representative reasoning benchmarks.
 1443

1444 The results are presented in Table 9. GRPO-MA consistently improves Pass@1 accuracy on both
 1445 math and code reasoning, suggesting that the advantages of multi-answer sampling extend beyond
 1446 vision-language models and apply to pure-text autoregressive architectures as well.
 1447

1448 A.6.6 MORE RESULTS ON CODE AND MATH

1449 To further examine the generality of our variance-reduction mechanism, we additionally evaluate
 1450 GRPO-MA on two widely used mathematical and coding benchmarks: GSM8K Cobbe et al. (2021)
 1451 for math reasoning and HumanEval Chen et al. (2021a) for code generation. These experiments use
 1452 the same training configuration as our main results, with models trained on the DAPO dataset. For
 1453 GSM8K, we report the Pass@1 accuracy obtained by running the checkpoint trained for mathematical
 1454 reasoning. For HumanEval, we report Pass@1 and Pass@5 to assess both direct correctness and
 1455 sampling-based performance. These findings reinforce our claim that answer-level multi-sampling
 1456 provides a simple, general, and effective variance-reduction strategy that benefits both mathematical
 1457 reasoning and code generation tasks. The consolidated results are presented in Table 11.
 1458

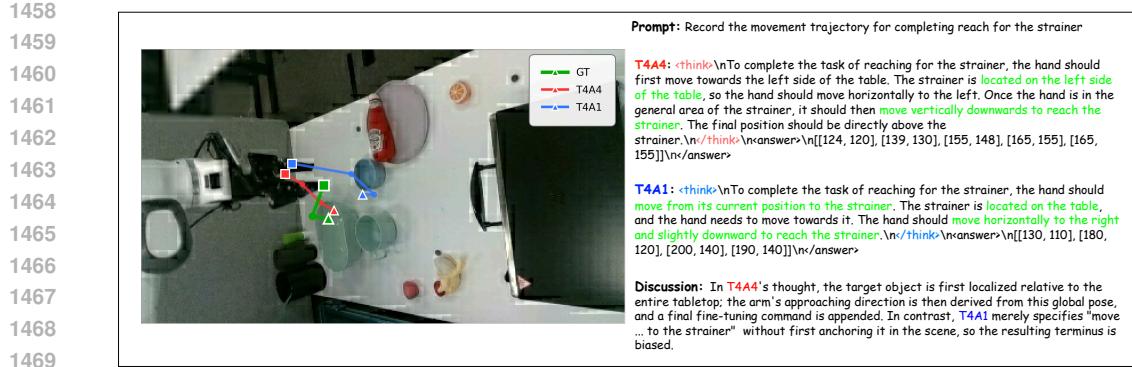


Figure 5: Case Study on Trajectory Prediction Green text indicates key reasoning content.

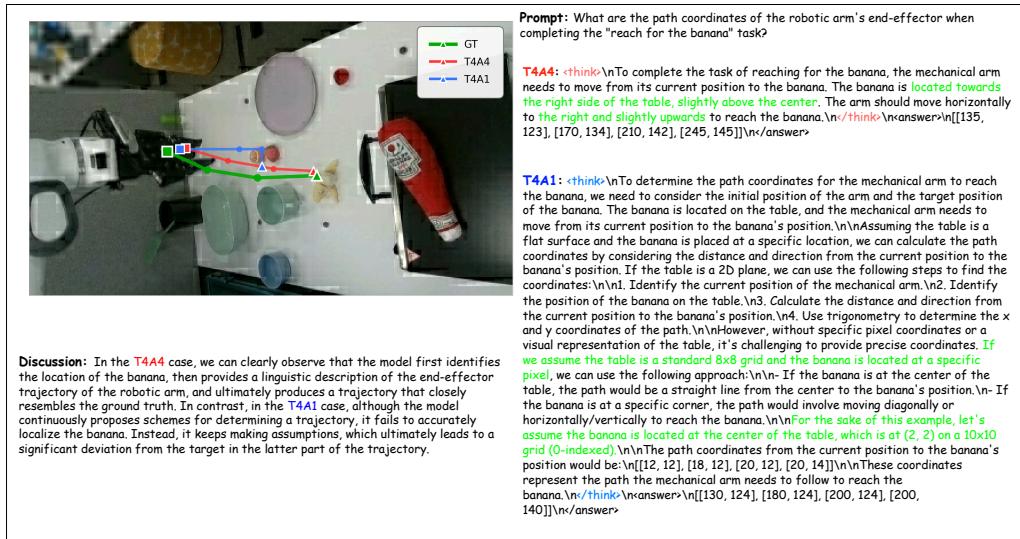


Figure 6: Case Study on Trajectory Prediction Green text indicates key reasoning content.

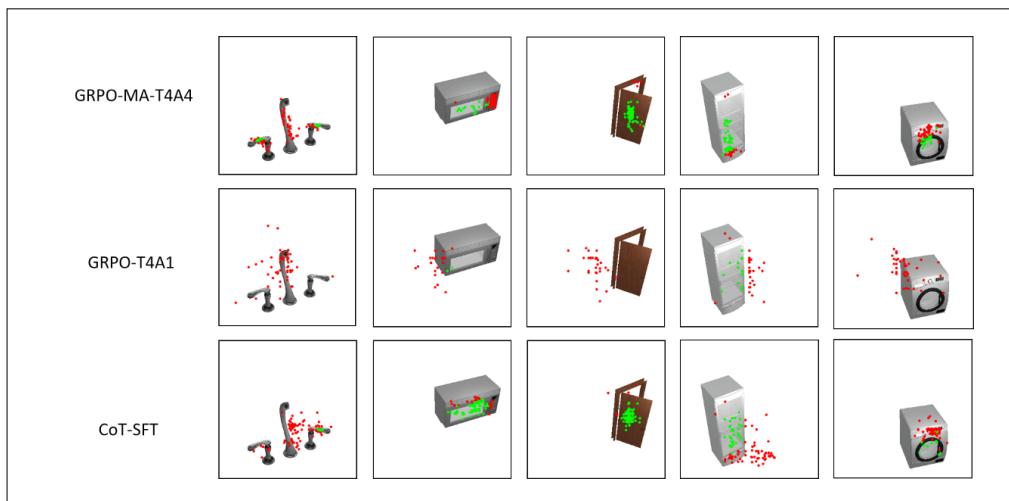


Figure 7: Visualization on Simulator-based Visual Manipulation Red dots indicate failures, while green dots represent successes. We can observe that most GRPO-MA-T4A4 points are located on the object. In contrast, GRPO-T4A1 frequently misses the object, resulting in a lower success rate.

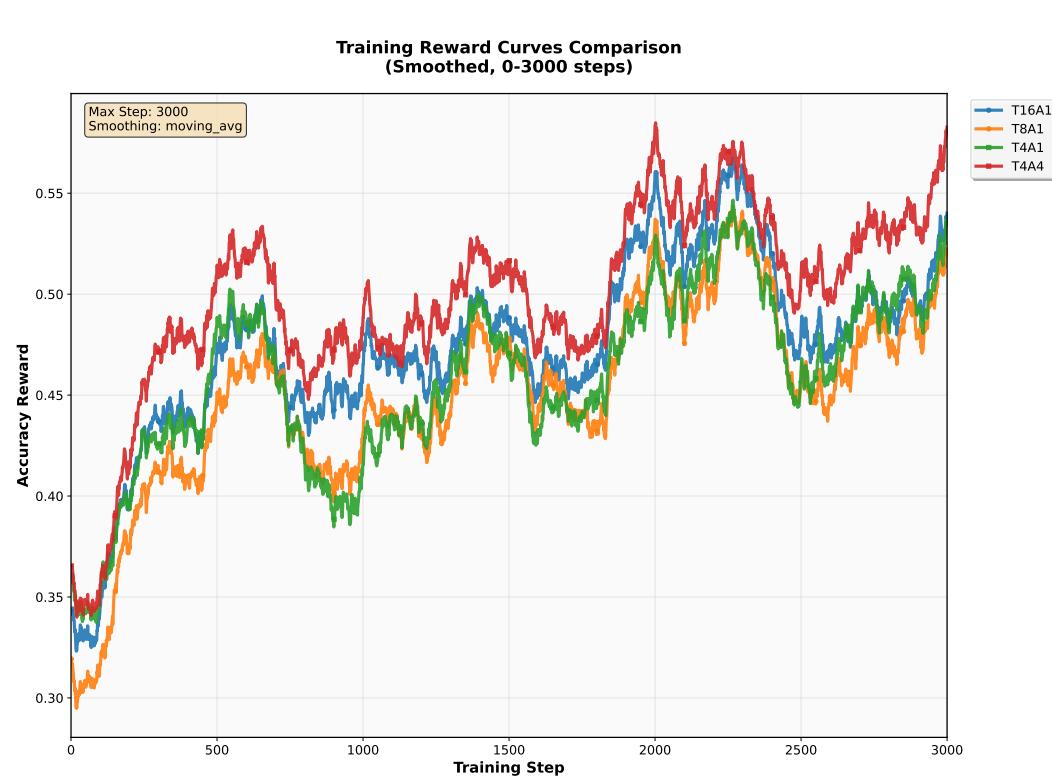


Figure 8: Accuracy Reward Curve on Object Detection

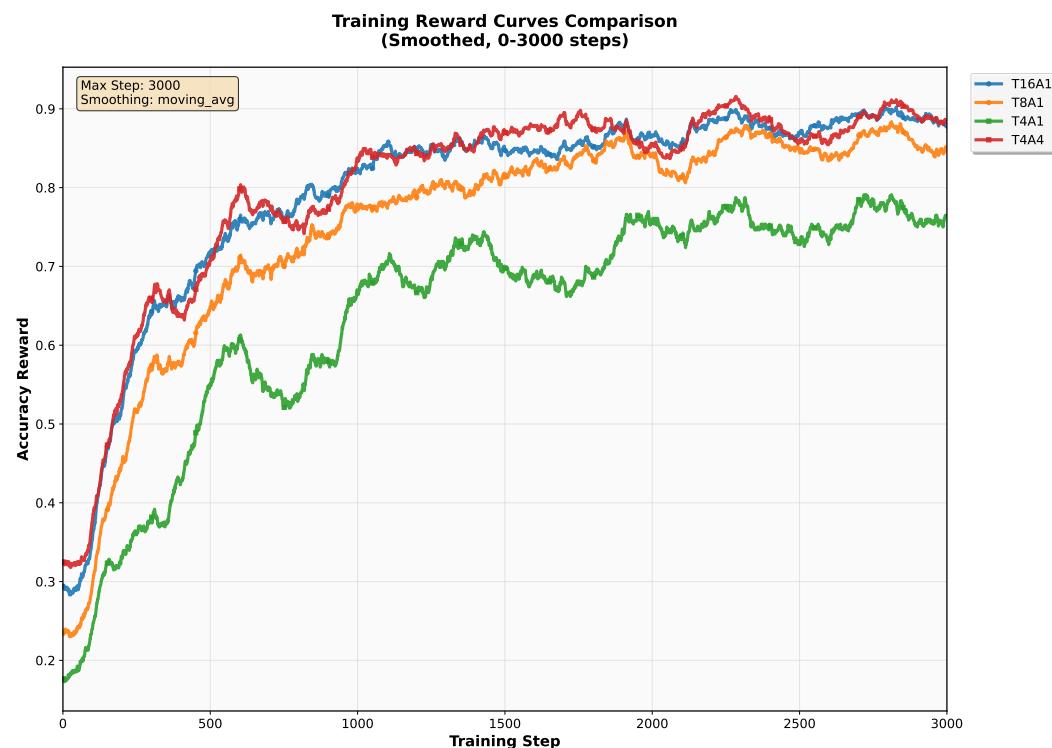


Figure 9: Accuracy Reward Curve on Affordance Prediction

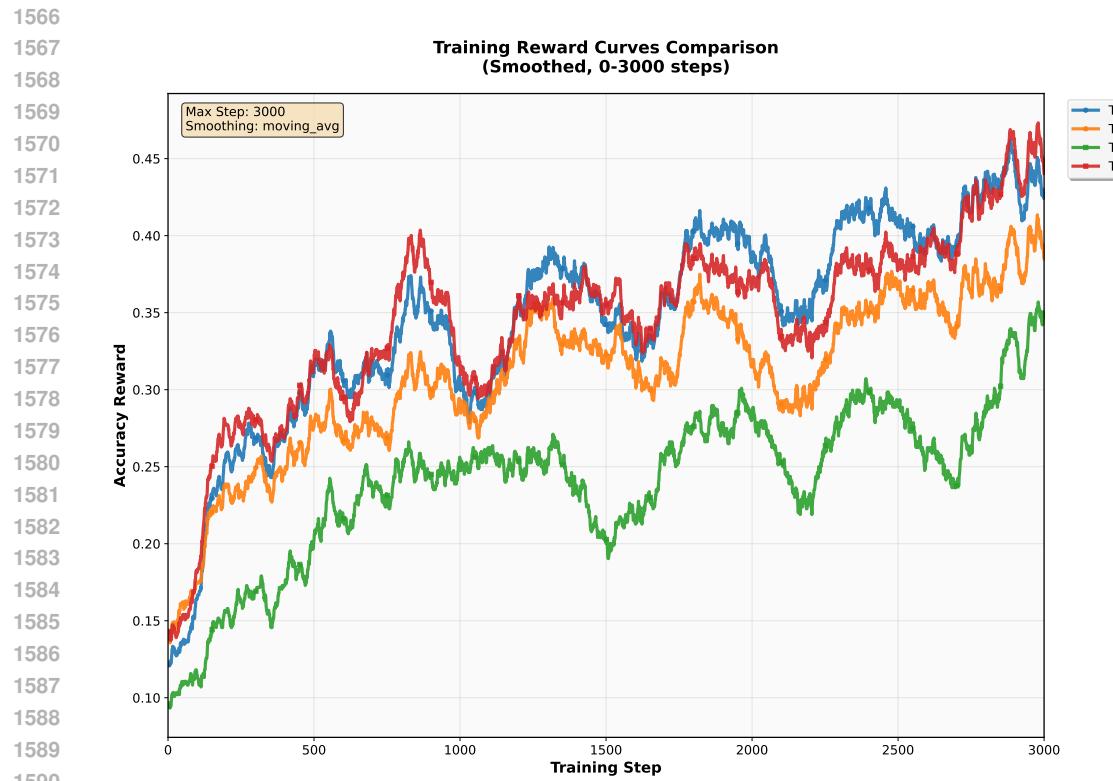


Figure 10: Accuracy Reward Curve on Demand Prediction

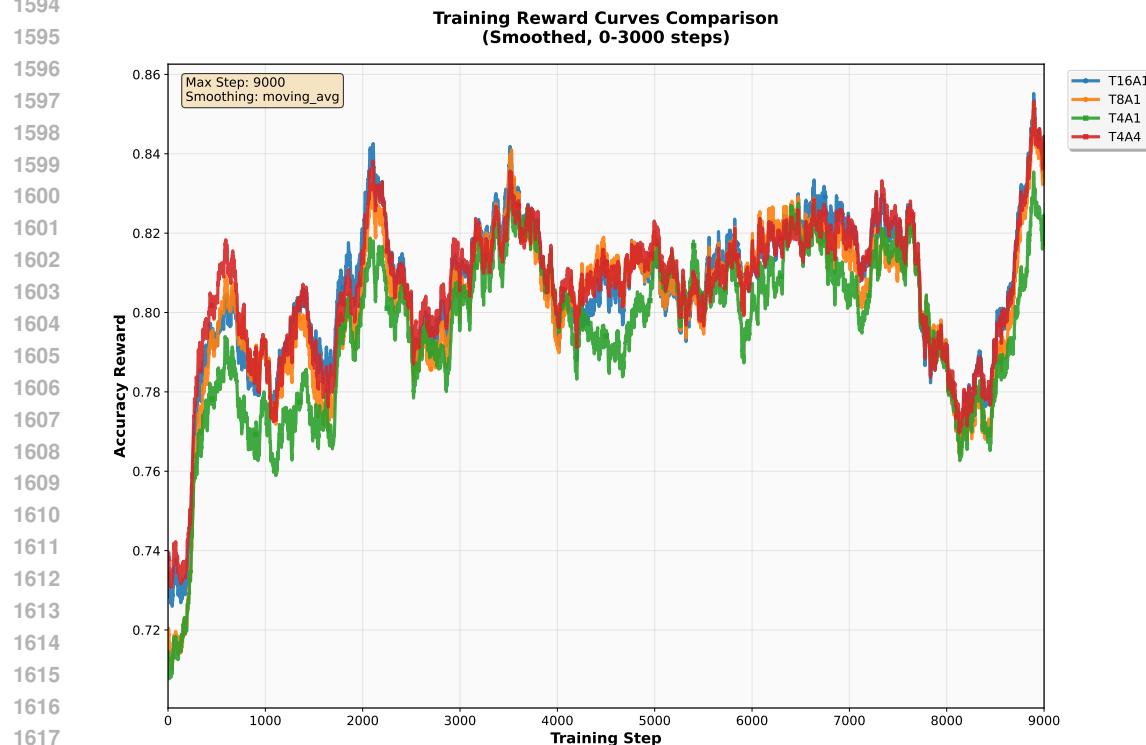


Figure 11: Accuracy Reward Curve on OCR-based VQA

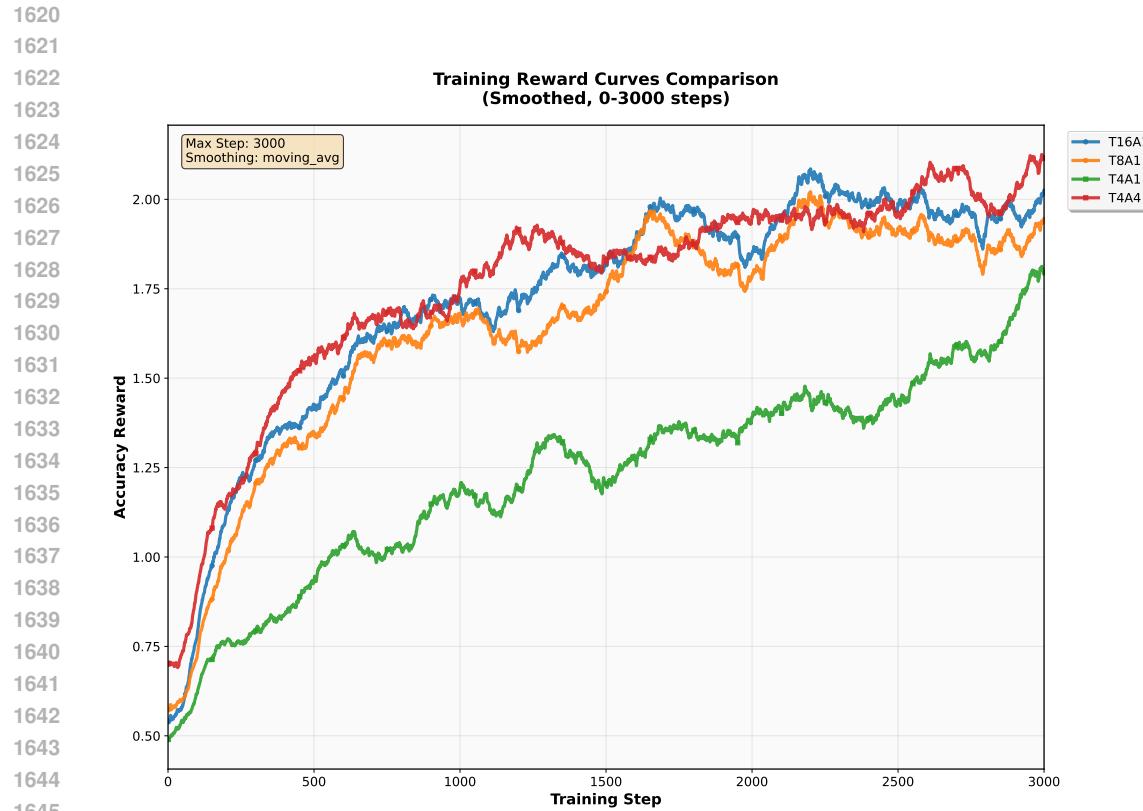


Figure 12: Accuracy Reward Curve on Trajectory Prediction

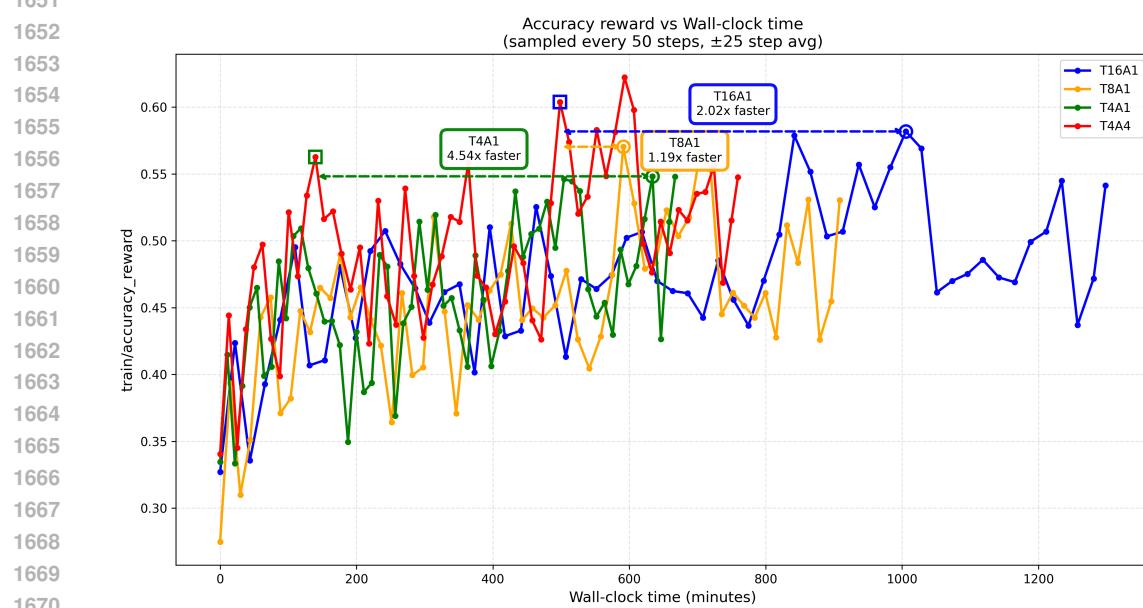


Figure 13: Wall-clock Time on Object Detection

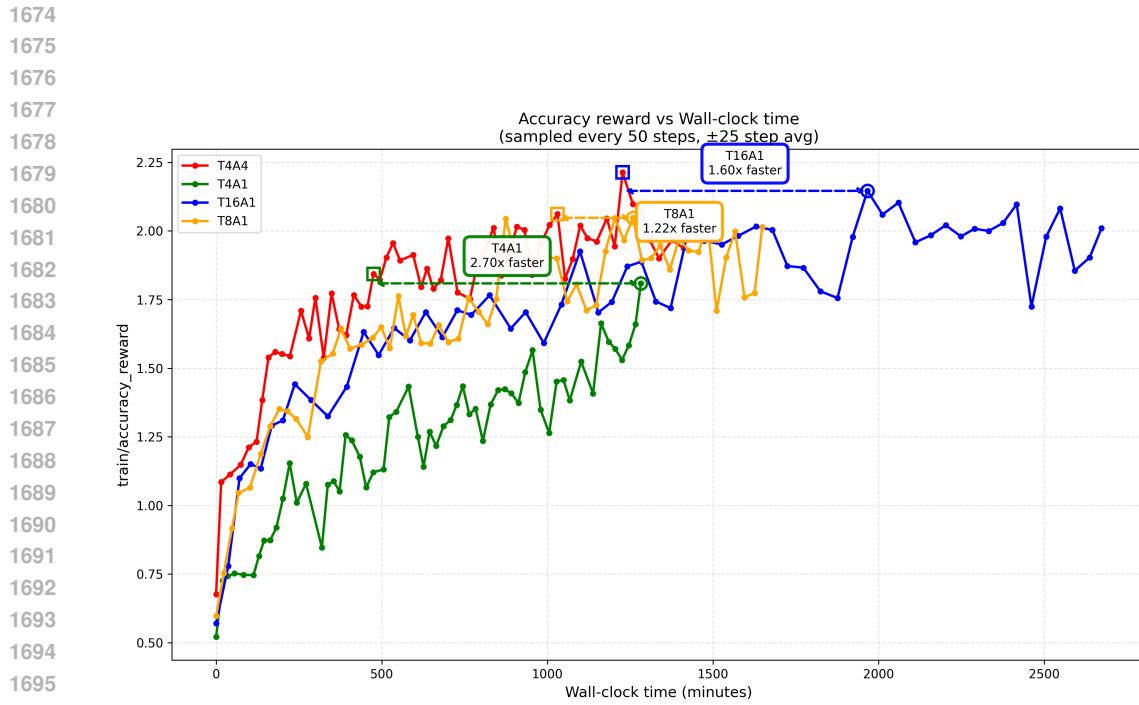


Figure 14: Wall-clock Time on Trajectory Prediction

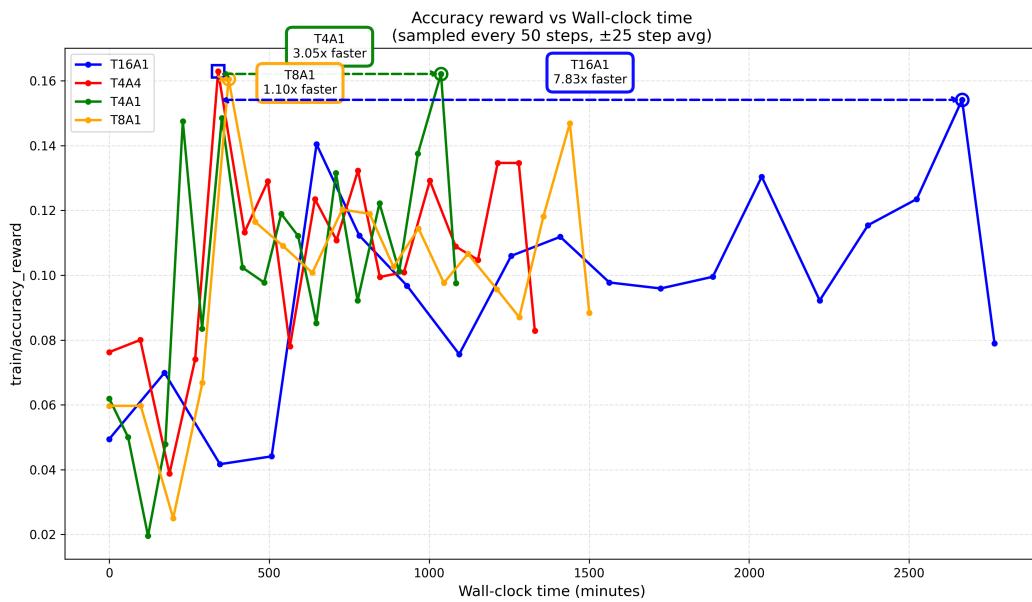
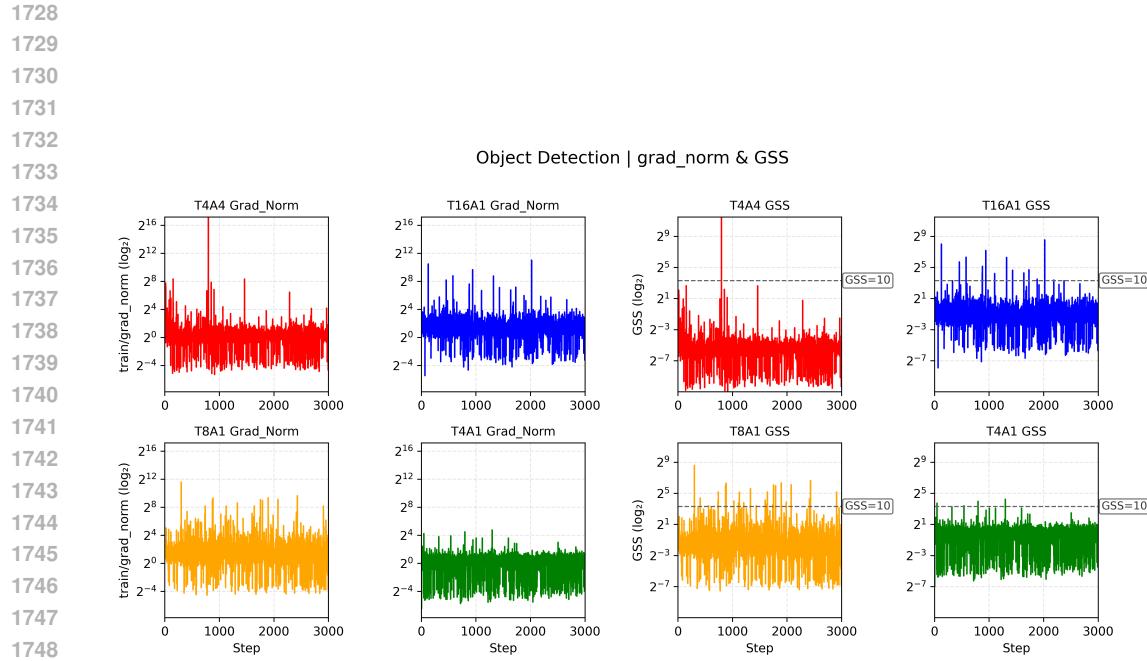
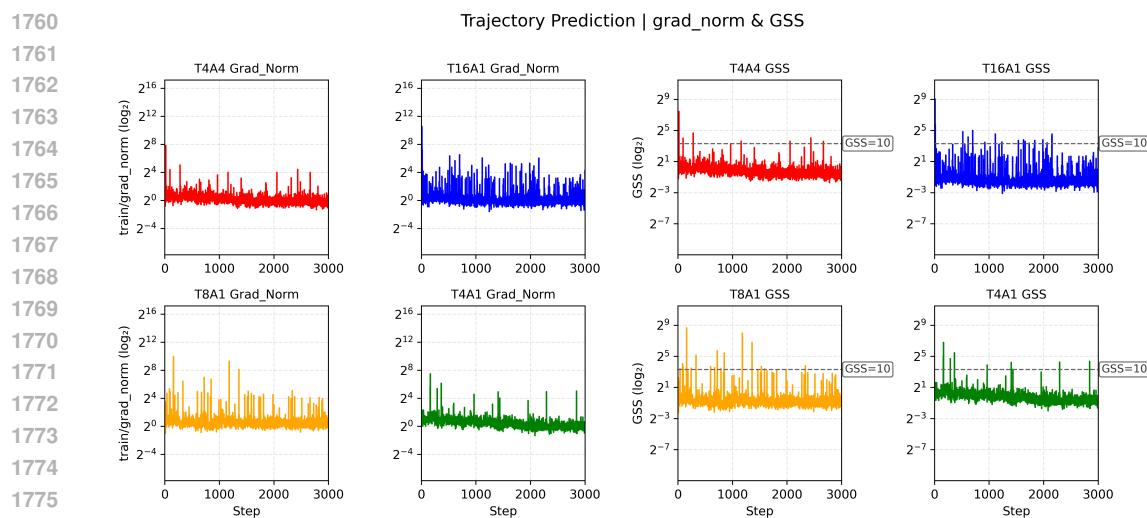
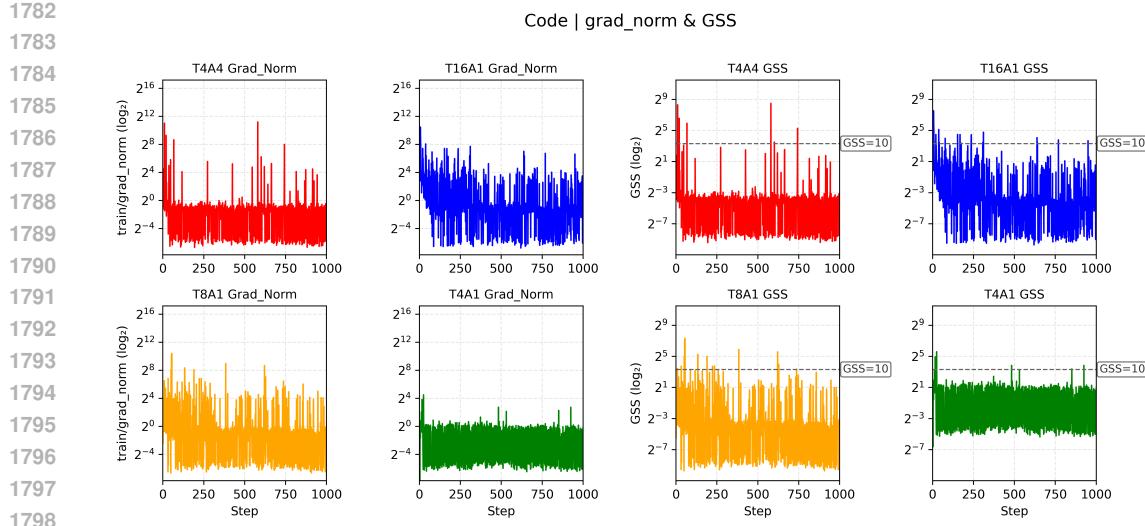


Figure 15: Wall-clock Time on Code

Figure 17: **Grad Norm and GSS on Trajectory Prediction**

Figure 18: **Grad Norm and GSS on Code**

A.7 USAGE OF LLMs

We employ a Large Language Model (LLM) to refine the manuscript, with a focus on correcting grammatical errors and enhancing overall readability.