
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRPO-MA: MULTI-ANSWER GENERATION IN GRPO
FOR STABLE AND EFFICIENT CHAIN-OF-THOUGHT
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress, such as DeepSeek-R1, has shown that the GRPO algorithm, a
Reinforcement Learning (RL) approach, can effectively train Chain-of-Thought
(CoT) reasoning in Large Language Models (LLMs) and Vision-Language Mod-
els (VLMs). In this paper, we analyze three challenges of GRPO: gradient cou-
pling between thoughts and answers, sparse reward signals caused by limited par-
allel sampling, and unstable advantage estimation. To mitigate these challenges,
we propose GRPO-MA, a simple yet theoretically grounded method that leverages
multi-answer generation from each thought process, enabling more robust and ef-
ficient optimization. Theoretically, we show that the variance of thought advan-
tage decreases as the number of answers per thought increases. Empirically, our
gradient analysis confirms this effect, showing that GRPO-MA reduces gradient
spikes compared to GRPO. Experiments on math, code, and diverse multimodal
tasks demonstrate that GRPO-MA substantially improves performance and train-
ing efficiency. Our ablation studies further reveal that increasing the number of
answers per thought consistently enhances model performance.

1 INTRODUCTION

The DeepSeek-R1 model demonstrates that reinforcement learning (RL)—particularly Group Rel-
ative Policy Optimization (GRPO) Shao et al. (2024)—is effective for training Chain-of-Thought
(CoT) reasoning. GRPO prompts the LLM to generate a reasoning trace before producing the fi-
nal answer and then reinforces this process via verifiable rewards. Subsequent methods such as
DAPO Yu et al. (2025), Dr.GRPO Liu et al. (2025), and GPG Chu et al. (2025) refine GRPO’s
loss function from different perspectives, achieving more stable training and stronger mathematical
reasoning. Beyond text-based tasks, the GRPO paradigm has also expanded to multi-modal do-
mains Chen et al. (2025b); Shen et al. (2025); Huang et al. (2025b); Feng et al. (2025); Song et al.
(2025); Kim et al. (2025). These works mainly adopt task-specific reward designs—e.g., temporal
video rewards in Video-R1 Feng et al. (2025) or trajectory-distance rewards in ManipVLM-R1 Song
et al. (2025)—to improve performance under their respective objectives. Collectively, they show
that CoT coupled with verifiable RL rewards substantially enhances multi-modal reasoning. De-
spite these advances, GRPO still faces several intrinsic limitations that hinder stability, efficiency,
and overall effectiveness. These include gradient coupling between thoughts and answers, a sam-
pling–reward trade-off where sparse rewards lead to advantage collapse unless sampling is increased,
and unstable advantage estimation.

A well-known issue is the mismatch between reasoning traces and final answers: the reasoning may
be valid while the final answer is wrong, or conversely, a flawed reasoning may still yield a correct
answer. This phenomenon can be observed in both pure textual reasoning tasks Simoni et al. (2025);
Lin et al. (2025a); Paul et al. (2024); Turpin et al. (2023) and multi-modal tasks Chen et al. (2025b);
Balasubramanian et al. (2025) including our experiments 5.6. Since the gradients of thoughts and
answers are inherently coupled in GRPO, such inconsistencies can distort the gradient direction
and consequently undermine training effectiveness. Although GRPO-CARE Chen et al. (2025b)
introduces a consistency reward to alleviate this, it risks reward hacking and is difficult to apply
when semantic consistency is ill-defined (e.g., it is difficult to judge the consistency between a CoT
and the numerical coordinates of a predicted bounding box).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The second challenge concerns the trade-off between reward richness and sampling cost in GRPO.
When only a few CoT–answer samples are generated, the reward signal is often too sparse, increas-
ing the likelihood that all rewards in a group are zero and causing advantage collapse, which elimi-
nates meaningful gradients. Increasing the number of samples can reduce this collapse probability,
but doing so substantially slows training due to the high cost of generating full CoT–answer pairs.
Thus, we need an efficient mechanism that enriches reward signals and reduces advantage-collapse
risk while introducing as little sampling overhead as possible.

The third challenge concerns the variance of advantage estimation. From a probabilistic perspective,
a “good” thought is one that reliably increases the likelihood of producing a good answer — a
property that should be evaluated over the distribution of answers it induces. However, GRPO
estimates a thought’s advantage from only a single sampled answer, which—especially under high-
temperature sampling—introduces substantial variance. More accurate advantage estimates not only
reduce training instability but also better guide the model toward internalizing what constitutes a
genuinely “good” thought, thereby improving answer quality.

In this paper, we propose GRPO-MA (GRPO with Multi-Answer), a simple yet principled ex-
tension of GRPO that arises naturally from examining GRPO-style RL under a unified perspective.
For each of K thoughts, we sample M answers. A thought’s value is the average reward of its
M answers, which is then used to derive its advantage relative to other thoughts, while each of
the K × M answers also receives its own advantage. These two advantages are used to update
thought and answer tokens separately. Our theoretical analysis, based on the multivariate delta
method Oehlert (1992), shows that K and M play fundamentally different roles in controlling the
variance of thought-level advantage estimation. Increasing M monotonically drives the variance to-
ward zero, whereas increasing K only reduces it to a non-zero constant. This provides a theoretical
justification for why multi-answer sampling is not only effective but also necessary for stabilizing
advantage estimation in GRPO-style algorithms. This design brings three benefits: (1) Averaging
rewards across multiple answers reduces gradient coupling from noisy thought–answer mismatches.
(2) Sharing K thoughts across M answers is computationally efficient, avoiding the cost of gener-
ating K ×M full trajectories while still providing diverse reward signals. (3) Lower-variance value
estimates yield more stable advantages and fewer gradient spikes.

We evaluate the effectiveness of GRPO-MA on Code, Math, several distinct vision tasks (Object De-
tection, Affordance Prediction, Trajectory Prediction, Demand Prediction, OCR-based VQA), and
a simulator-based visual manipulation task. Across these diverse domains, GRPO-MA consistently
outperforms a GRPO baseline with K responses while adding only marginal training overhead.
Compared to a stronger baseline using K × M responses, GRPO-MA achieves similar or slightly
better performance using only about 60% of the training time, highlighting improved sample ef-
ficiency from more stable advantage estimation. On the visual manipulation task with extremely
sparse rewards, GRPO-MA substantially outperforms standard GRPO. Ablation studies further show
that increasing M generally improves performance and that variance reduction in thought-level ad-
vantage estimation plays a critical role.

Contributions.

• We propose GRPO-MA, a simple but principled improvement over GRPO that is directly
motivated by a unified view of challenges in GRPO-style reasoning RL.

• We provide, to the best of our knowledge, the first theoretical variance analysis of chain-
of-thought advantage estimation in GRPO-style algorithms, showing that increasing M is
necessary for reliably reducing variance.

• Across a wide range of tasks and model configurations, GRPO-MA improves over a GRPO
baseline with K responses and slightly exceeds a stronger baseline with K ×M responses
using only about 60% of the training time, demonstrating better sample efficiency and
greater training stability.

2 RELATED WORK

The GRPO algorithm has inspired several works to enhance its stability and efficiency by refin-
ing its loss function and sampling strategies. DAPO Yu et al. (2025) introduces several “tricks” to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

stabilize training, such as Clip-Higher for exploration, Dynamic Sampling to filter uninformative
samples, and a Token-Level Policy Gradient Loss to properly weight complex reasoning chains.
Dr. GRPO Liu et al. (2025) corrects inherent response length bias and question difficulty bias by
removing specific normalization terms from the loss and advantage calculation, leading to more sta-
ble training. Generative Policy Gradient (GPG) Chu et al. (2025) simplifies the GRPO objective
and introduces a gradient rescaling method to counteract “zero-gradient” samples, ensuring more
effective policy updates. Further research has focused on improving efficiency, with CPPO Lin et al.
(2025b) pruning low-impact samples to reduce computational cost and Off-Policy GRPO Mroueh
et al. (2025) using stale data to improve sample efficiency. Other works enhance stability, such as
GSPO Zheng et al. (2025), which realigns importance sampling at the sequence level; GMPO Zhao
et al. (2025), which uses a geometric mean to mitigate sensitivity to outliers ; and GTPO Simoni
et al. (2025), which resolves gradient conflicts and prevents policy collapse through trajectory anal-
ysis. Additionally, specialized solutions like Spectral Policy Optimization Chen et al. (2025a) create
learning signals for “all-negative” sample groups using AI feedback. The work most related to ours
is VinePPO Kazemnejad et al. (2024), which performs multi-sample rollouts at every intermediate
step in math reasoning. In contrast, we leverage GRPO’s structure and apply multi-sampling only
at the answer level, producing richer reward signals with substantially less sampling time. We also
provide theoretical justification for this design and show its effectiveness across both text reasoning
and multimodal tasks.

3 PRELIMINARY: GRPO

GRPO Shao et al. (2024) is a PPO-style algorithm Schulman et al. (2017) that computes advantages
by normalizing rewards from K sampled responses. For a prompt p, GRPO generates responses
{oi}Ki=1 with rewards {Ri} and computes A(oi) =

Ri−Mean({Rk})
Std({Rk}) . The complete GRPO objective

can be written as:

JGRPO(θ) = E
(p,a)∼D
o∼πθold

[
1

K

K∑
i=1

1

T o
i

T o
i∑

t=1

min(rtA(oi), clip(rt, 1±ε)A(oi))

]
− β DKL(πθ∥πref),

(1)

where T o
i denotes the length of the i-th output trajectory oi = (oi,1, . . . , oi,T o

i
), and clip(rt, 1±ε)

clips the likelihood ratio rt into the interval [1 − ε, 1 + ε] to stabilize policy updates. The term
rt is the per-token likelihood ratio, rt =

πθ(oi,t|p,oi,<t)
πθold (oi,t|p,oi,<t)

, where πθ and πθold denote the current and
behavior policies used for on-policy sampling.

As indicated by Equation 1, the advantage determines whether the probability of a certain token
increases or decreases, as well as the magnitude of this change. Therefore, a more stable estimation
of the advantage (with lower variance) is beneficial for a more stable model parameter update.

4 METHOD

In this section, we first describe the sampling and updating process of GRPO-MA, which builds
upon the GRPO framework by introducing a multi-answer sampling strategy. We then analyze the
variance change of the advantages via the delta method.

4.1 PIPELINE OF GRPO-MA

The core modification in GRPO-MA lies in its sampling pipeline, shown in Fig. 1. Given a prompt
p, it first generates K thoughts {th1, . . . , thK} identically to GRPO. Then, for each thought thi,
GRPO-MA then generates M answers {ansi,1, . . . , ansi,M}, resulting in K × M total answers
where every M answers share the same thought.

After obtaining rewards {Ri,j}1≤i≤K, 1≤j≤M from a reward function, we define the value of
a thought as V (thi) = 1

M

∑M
j=1 Ri,j , and normalize it to compute the thought advantage

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Policy
Model

Reward
Function

Prompt

Policy
Model

Group
Computation

Prompt

Mean
Computation

(by Row)

GRPO

GRPO-MA

Reward
Function

Answer Sampling
and Evaluation...

...
Answer

Sampling

Answer Advantage
Estimation

（Group Computation）

...

Thought and Answer
Advantage Estimation
（Group Computation）

）

）

）

（

（

（

...

...

（

（

）

）（

）

Thought Advantage
Estimation

...

）

）

）

...

...

...

...

（

（

（

...

...

Legend

Decoupling

Coupling

Advantage

Reward

Value of Thought

PPO-like Update

Mean
Computation

Group
Computation

... ...

）

）

）

...

...

...

...

（

（

（

Figure 1: The operational flow of advantage estimation in GRPO and GRPO-MA. In the base-
line GRPO framework (top), the advantage is computed from a single thought–answer pair, in-
herently coupling the estimation of thought and answer advantages to a single reward signal. In
contrast, GRPO-MA (bottom) extends this setting by sampling multiple answers for each thought.
This design decouples the estimation of thought and answer advantages and leverages aggregated
information from multiple reward signals, thereby yielding richer supervision and enabling more
robust and stable estimation of thought-level advantages.

A(thi) =
V (thi)−Mean({V (thk)}1≤k≤K)

Std({V (thk)}1≤k≤K) . Similarly, the advantage of an answer is A(ansi,j) =
Ri,j−Mean({Rk,l}1≤k≤K, 1≤l≤M)

Std({Rk,l}1≤k≤K, 1≤l≤M) .

The GRPO-MA objective then combines the two levels of advantages:

JGRPO-MA(θ) = E
(p,a)∼D
th∼πθold

[
1

K

∑
i

1

T th
i

T th
i∑

t=1

min (rtA(thi), clip(rt, 1±ε)A(thi))

]
+

E
ans∼πθold

[
1

KM

∑
i,j

1

T ans
i,j

T ans
i,j∑
t=1

min (rtA(ansi,j), clip(rt, 1±ε)A(ansi,j))

]
− β DKL(πθ∥πref),

(2)

where T th
i and T ans

i,j denote the lengths of the thought trajectory thi and the answer trajectory ansi,j ,
respectively. The term A(thi) is the thought-level advantage computed over the M answers asso-
ciated with thi, while A(ansi,j) denotes the advantage of an individual answer. The remaining
notation (e.g., rt and clip(rt, 1±ε)) follows the same definitions as in the GRPO objective.

4.2 VARIANCE OF THE THOUGHT ADVANTAGE

4.2.1 PRELIMINARIES

Fix a prompt p. Thoughts th1, . . . , thK are sampled independently from a distribution πθ(· | p)
conditioned on the prompt p.

For each thought thi we generate M answers independently from the conditional policy, written as
ansi,j

i.i.d.∼ πθ(· | p, thi), j = 1, . . . ,M . Here the index j simply labels different samples, all drawn
from the same distribution π(· | p, thi).

Each answer ansi,j is evaluated by a reward function r. We denote the resulting reward as a random
variable Ri,j := r(ansi,j , p). Ri,j is random because the answer ansi,j itself is sampled.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Conditioned on a given thought thi and prompt p, the rewards Ri,j are i.i.d. with mean µRi
and vari-

ance σ2
Ri

. The empirical value estimator of thought thi is the sample mean V (thi) =
1
M

∑M
j=1 Ri,j ,

with E[V (thi)] = µRi
and Var(V (thi)) =

σ2
Ri

M .

We assume the thought-value estimates V (th1), . . . , V (thK) are independent, i.e., the covariance
matrix is diagonal. In practice, small correlations may exist since all thoughts are sampled from
the same prompt. However, Appendix A.2.5 shows that the diagonal entries capture most of the
covariance energy, suggesting this assumption is largely reasonable.

Finally, define the sample mean and standard deviation across thoughts as V̄ = 1
K

∑K
k=1 V (thk),

SV =
√

1
K−1

∑K
k=1(V (thk)− V̄)2, and the thought advantage as A(thi) =

V (thi)−V̄
SV

.

4.2.2 VARIANCE OF THE THOUGHT ADVANTAGE

Using the first-order multivariate delta method, and noting that under the independence assumption
the covariance matrix of {V (thk)} is diagonal, the variance of the standardized thought advantage
is approximated as

Var[A(thi)] ≈ 1

M σ2
µR

K∑
k=1

(
δik − 1

K − µ̃i µ̃k

K−1

)2

σ2
Rk

(3)

where δik is the Kronecker delta (δik = 1 if i = k, and 0 otherwise), µR̄ = 1
K

∑K
k=1 µRk

is the
average true thought value, σ2

µR
= 1

K−1

∑K
k=1(µRk

− µR̄)
2 is the variance of the true thought

values across thoughts, µ̃i =
µRi

−µR̄

σµR
is the normalized (expected) advantage of thought thi.

For the full derivation on the variance of though advantages and answer advantages, please
refer to Appendix A.2.

4.2.3 ANALYSIS OF THE VARIANCE STRUCTURE

Combining the above results, we can now compare the effects of increasing K versus increasing M .

As K → ∞, by the law of large numbers, the sample variance of the true thought values σ2
µR

=
1

K−1

∑K
k=1(µRk

− µR̄)
2 converges to the population variance σ2

π = Var[µRi
], which characterizes

the variability of the true thought values µRi across the population of thoughts sampled from the
distribution πθ(· | p). Next, we analyze the sum by splitting it based on the Kronecker delta, δik.
The single term where k = i converges to a non-zero constant, since expressions like (δik− 1

K −. . .)
approach 1. Conversely, the sum of the other K − 1 terms, where k ̸= i, vanishes because each
term is of order O(1/K2), making their total sum O(1/K). This leads to the final result where the
variance converges to a limit determined only by the properties of the thought thi itself:

lim
K→∞

Var[A(thi)] ≈
σ2
Ri

M σ2
π

,

In contrast, increasing the number of answers M directly suppresses the variance of the estimated
thought value. Since the variance scales inversely with M ,

Var[A(thi)] ∝
1

M
,

the estimator becomes increasingly accurate, and the total variance provably approaches zero as
M → ∞.

Taken together, these results reveal a fundamental asymmetry in the variance structure of multi-step
reasoning: increasing the number of thoughts K can only reduce variance down to a non-zero floor
determined by the inherent variability of the thought population, whereas increasing the number of
answers M continues to suppress variance without bound, driving it provably toward zero. This
asymmetry highlights the inherent limitation of thought-level sampling and, conversely, establishes
answer-level multi-sampling as a principled and quantitatively justified strategy for stabilizing ad-
vantage estimation in GRPO-style reasoning algorithms.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Task settings and evaluation metrics.

Task Input / Output Definition Evaluation Metric
Math Input: a math problem.

Output: the correct symbolic or numeric solution.
pass@10 /
pass@32 Chen et al.
(2021b)

Code Input: a programming problem.
Output: functional solution code.

pass@10 / pass@32

Object Detection Input: an image and a target object name.
Output: bounding boxes of the specified object.

Accuracy: proportion of
predictions with IoU >
threshold.

Affordance Prediction Input: an image and a target affordance (e.g.,
grasp, hold).
Output: 2D affordance coordinates.

Accuracy: proportion of
correctly matched points.

Trajectory Prediction Input: an image and a manipulation instruction.
Output: a 2D end-effector trajectory.

DFD Eiter et al. (1994),
HD Huttenlocher et al.
(2002), RMSE, EndPoint
Dist.

Demand Prediction Input: an image and a human demand instruction.
Output: the 2D coordinates of the demanded
object.

Accuracy: proportion of
correct points.

OCR-based VQA Input: an image and a text-understanding question
(e.g., documents, infographics).
Output: an answer string.

ANLS Biten et al. (2019)

5 EXPERIMENTS

We evaluate GRPO-MA on Math Yu et al. (2025), Code PrimeIntellect (2024); White et al. (2024),
several distinct vision tasks (Object Detection contributors (2024), Affordance Prediction Myers
et al. (2015); Luo et al. (2022), Trajectory Prediction Ji et al. (2025), Demand Prediction Wang
et al. (2024), OCR-based VQA Biten et al. (2019); Tito et al. (2021)) and a Simulator-based Visual
Manipulation task Li et al. (2024). Our experiments use Qwen2.5-VL-3B-Instruct Bai et al. (2025)
as the base model, with all training conducted on four H100 80G GPUs using LoRA Hu et al. (2022)
for parameter-efficient fine-tuning. For each task, we conduct a group of experiments separately.

We introduce the TKAM notation to unify the representation of the GRPO and GRPO-MA meth-
ods. In this notation, K represents the number of thoughts, and M denotes the number of answers
generated per thought. The notation corresponds to GRPO when M = 1 and to GRPO-MA when
M > 1. For instance, T4A4 signifies a process of generating 4 thoughts, with each thought produc-
ing 4 answers, resulting in a total of 16 responses.

More details (datasets, hyperparameters, training settings) are in the appendix A.3 and A.4.

5.1 TEXT AND VISION TASK

5.1.1 TASK SETTING AND METRIC

Table 1 summarizes the input–output format and evaluation metrics for text and vision tasks. These
tasks collectively cover a wide range of modalities and reasoning types, enabling a comprehensive
evaluation of GRPO-MA.

For Math, we adopt a structured output format using <analysis>, <process>, and <answer>
tags. GRPO-MA applies multi-sampling on both <process> and <answer>. For all other tasks,
multi-sampling is applied only to <answer>.

We track the Gradient Spike Score (GSS) Huang et al. (2025a) to measure gradient stability, de-
fined as GSS(gi) =

|gi|
1

T+1
∑T

j=0 |gj |
, where gj represents the gradient at the j-th time step. We report

the number of spikes above 10 (GSS@10), where smaller is better. We supplement Appendix A.6.4
with the complete grad norm and GSS curves for a more intuitive demonstration of training stabil-
ity. For all tasks, we also report the per-step training time (s) and supplement the wall-clock time

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Prompt: Please provide the coordinates of the detection box of purple bottled
beverage in the image.

T4A4: <think>\nThe image shows a robotic arm interacting with objects on a table. The
robotic arm is holding a purple bottle, which appears to be a beverage. The bottle is
positioned near a green bag and a yellow box. The purple bottle is the only object that
matches the description of a purple bottled beverage.\n</think>\n<answer>\n[233, 0,
360, 235]\n</answer>

T4A1: <think>\nThe image shows a robotic arm interacting with objects on a table.
There is a purple bottled beverage visible in the image, but it is not the main focus.
The main objects of interest are the green and yellow packages, which appear to be
snacks or food items. The purple bottled beverage is not clearly identifiable in the
bounding box coordinates provided.\n</think>\n<answer>\n[232, 0, 853,
240]\n</answer>

Discussion: Overall, both T4A4 and T4A1 descriptions are accurate. However,
T4A4's description includes more location information about the target object—the
purple bottled beverage—while T4A1, though recognizing the target object, mistakenly
identified the centrally located object as the main objects.

Figure 2: A case study comparing the baseline GRPO with our proposed GRPO-MA on a referring
expression grounding task. The prompt is to locate the “purple bottled beverage”. The baseline
model, GRPO (T4A1), recognizes the target’s existence but its reasoning is distracted by other
salient objects (the snacks), leading to a failure in grounding. In contrast, our GRPO-MA (T4A4)
correctly reasons about the scene’s context, focuses on the target object held by the robotic arm,
and successfully provides the precise bounding box. This demonstrates the superior robustness of
GRPO-MA in complex scene understanding and reasoning.

Table 2: Combined Results for Math and Code Generation Benchmarks. TN: The number of
thoughts; AN: The number of answers per thought; S/S: Second/Step during training; Bold indi-
cates the best performance among the GRPO variants.

Math Code

Model TN AN S/S GSS Pass@10 Pass@32 S/S GSS Pass@10 Pass@32

Qwen2.5-VL-3B-Ins 9.27 16.25 9.80 11.67
Qwen2.5-VL-7B-Ins 9.97 18.39 10.72 11.31
Qwen2.5-VL-72B-Ins 33.07 41.39 20.39 22.37

SFT 11.07 18.11 8.72 10.59
GRPO 4 1 111.24 5 11.78 20.32 76.21 6 11.56 13.70
GRPO 8 1 140.05 13 11.16 21.30 104.83 24 11.44 13.39
GRPO 16 1 225.43 15 12.89 21.72 186.91 25 11.92 14.12
GRPO-MA 4 4 132.87 5 14.70 27.60 93.45 10 11.69 14.70

curve to compare the training efficiency of GRPO-MA and the baseline from another perspective in
Appendix A.6.3.

5.1.2 BASELINES

We adopt models from the Qwen2.5-VL-Instruct series (3B, 7B, and 72B) Bai et al. (2025) as base-
lines to evaluate the performance of general-purpose models on our tasks. In addition, we train
Qwen2.5-VL-3B-Instruct with real labels using supervised fine-tuning (SFT) to compare against
GRPO, denoted as SFT in the results. Finally, we compare our proposed GRPO-MA with GRPO
under different numbers of responses to demonstrate the superiority of GRPO-MA in terms of train-
ing efficiency and performance.

5.1.3 MAIN RESULTS

The experimental results are presented in Tab. 2 (Math and Code Problem), Tab. 3 (Object Detec-
tion, Affordance Prediction and Demand Prediction), and Tab. 4 (OCR-based VQA and Trajectory
Prediction). Across multiple visual tasks, our proposed GRPO-MA outperforms both the GRPO and
SFT under various settings, demonstrating its excellent versatility across diverse tasks. Compared to
T4A1, T4A4 achieves significant performance gains with only about a 15% increase in training time.
Compared to T16A1, T4A4 achieves comparable or even slightly better performance with about a
40% reduction in training time, which demonstrates that GRPO-MA does not involve a trade-off
between training efficiency and training performance, but rather enhances both simultaneously.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Combined Results for Object Detection, Affordance, and Demand Prediction. TN: The
number of thoughts; AN: The number of answers per thought; S/S: Second/Step during training;
UMD: UMD Part Afforance Dataset; AGD20K: AGD20K Dataset; Bold indicates the best perfor-
mance among models of the same size.

Object Detection Affordance Prediction Demand Prediction

Model TN AN S/S GSS@10 IoU@0.5 IoU@0.6 IoU@0.7 IoU@0.8 S/S GSS@10 UMD AGD20K S/S GSS Accuracy

Qwen2.5-VL-3B 60.87 50.54 39.67 21.32 38.98 52.73 11.41
Qwen2.5-VL-7B 70.11 60.23 48.02 25.89 34.65 43.29 19.95
Qwen2.5-VL-72B 72.57 60.66 47.19 24.48 59.13 60.59 26.27

SFT 64.63 54.73 42.43 22.96 66.35 53.18 36.97
GRPO 4 1 13.86 5 65.11 56.16 43.88 23.02 14.34 11 78.91 55.60 13.74 5 38.13
GRPO 8 1 18.86 30 67.13 57.52 42.62 22.82 18.92 14 88.14 57.90 18.20 12 40.81
GRPO 16 1 26.99 16 69.03 60.29 45.16 24.04 24.27 22 89.32 57.24 25.42 37 42.47
GRPO-MA 4 4 15.77 1 69.71 61.32 46.77 25.64 15.86 5 89.96 58.40 14.33 6 42.63

Table 4: Combined Results for OCR-based VQA and Trajectory Prediction. TN: The number of
thoughts; AN: The number of answers per thought; S/S: Second/Step during training. Bold indicates
the best performance among models of the same size.

OCR-based VQA Trajectory Prediction

Model TN AN S/S GSS@10 Infographics St VQA Doc VQA S/S GSS@10 DFD HD RMSE EndPoint

Qwen2.5-VL-3B 73.10 67.63 91.33 571.60 537.63 404.40 429.93
Qwen2.5-VL-7B 78.94 74.03 93.51 496.44 451.19 340.33 354.03
Qwen2.5-VL-72B 79.72 74.27 93.26 386.83 352.18 263.61 300.77

SFT 74.77 69.68 92.94 277.68 261.86 196.55 228.62
GRPO 4 1 14.79 42 73.70 68.94 93.15 29.17 14 187.99 172.58 140.80 142.74
GRPO 8 1 19.62 88 76.33 71.56 93.98 34.51 18 172.41 157.09 130.09 137.29
GRPO 16 1 26.79 68 76.65 72.25 94.20 66.55 21 165.16 149.59 122.95 130.56
GRPO-MA 4 4 17.17 17 76.69 72.48 94.22 35.41 10 151.10 138.29 111.59 120.60

Gradient Stability In most experiments, T4A4 achieves the lowest GSS@10, indicating the best
gradient stability during training, consistent with our theoretical analysis: as a crucial component
of gradient magnitude, the more stable estimation of the advantage value also contributes to greater
gradient stability.

Case Study As illustrated in Fig. 2, we present a case study to contrast the reasoning processes of
T4A4 and T4A1 for the object detection task. T4A4 focuses on the general vicinity of the target
object and its surrounding context. Conversely, T4A1 fails to detect the target, instead paying its at-
tention on the central region of the image. Additional case studies are provided in the appendix A.5.

Please see Appendix A.6.6 for more Math and Code dataset evaluation results on GSM8K Cobbe
et al. (2021) and HumanEval Chen et al. (2021a).

5.2 SIMULATOR-BASED MANIPULATION TASK

5.2.1 TASK SETTING

We adapt most of the experimental settings introduced in ManipLLM Li et al. (2024), which pro-
vides a simulator-based framework for visual manipulation tasks. To increase the difficulty of the
task, we introduce two modifications to the experimental setup. First, to ensure greater observational
diversity, the camera is reconfigured to view the target object from a randomly sampled angle in each
trial. Second, we adapt a stricter success criterion: an attempt is immediately deemed a failure if the
predicted contact point does not lie on the surface of the target object. Following ManipLLM, when
the model outputs a grasping point on the image, we execute a rule-based grasping strategy. Specif-
ically, the sucker approaches along the surface normal at the predicted point, and the subsequent
trajectory is adjusted depending on the object category. For evaluation, we report the proportion
of predicted points that lead to successful manipulation. Through data collection and training, we
observe that this task is highly reward-sparse, since solving it requires the model to reason about
object-specific interaction dynamics.

5.2.2 BASELINES

We adapt some of the same baselines used in visual tasks and added several additional baselines:
ManipLLM-7B, CoT-SFT, and GRPO-NoThink.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ManipLLM-7B They collects a large number of successful samples in the simulator and constructs
multiple task-specific question-answer pairs, utilizing the SFT training approach. We have fine-
tuned their weights in the new settings.

CoT-SFT We collect successful samples of GRPO-MA-T4A4 (including the chain of thoughts and
answers), then fine-tune Qwen2.5-VL-3B using SFT.

GRPO-NoThink We employ GRPO to train the Qwen2.5-VL-3B, but we do not require the model
to generate a thought process; instead, it directly produces the answers.

5.2.3 MAIN RESULTS

Table 5: Manipulating Point Prediction.
TN: The number of thoughts; AN: The
number of answers per thought; S/S:
Second/Step during training.

Success Rate (%)

Model TN AN Seen Unseen

Qwen2.5-VL-3B 4.73% 1.30%
ManipLLM-7B 22.80% 7.63%
SFT 9.17% 4.28%
CoT-SFT 28.18% 11.79%
GRPO 4 1 10.75% 3.94%
GRPO-NoThink 0 16 10.60% 2.40%
GRPO-MA 4 4 31.40% 16.00%

The experimental results are presented in Tab. 5. A direct
comparison reveals that the performance of T4A4 is sig-
nificantly superior to that of T4A1. This outcome demon-
strates that in tasks with extremely sparse rewards, such
as multi-modal manipulation, employing a multi-answer
sampling strategy leads to a more stable training process
and facilitate sampling of effective responses.

Furthermore, our experiments provide valuable insights
into the indispensable role of the Chain of Thought (CoT)
in this context. We observe that the GRPO-NoThink
model, which ablates the CoT while sampling an equal
number of answers as GRPO-MA-T4A4, suffers a sub-
stantial degradation in performance. This result, along with the strong performance of the CoT-SFT
model, clearly indicates that a high-quality CoT is a critical prerequisite for generating superior
answers and effectively tackling such complex tasks.

5.3 MORE BASELINE COMPARISON

To present a more comprehensive empirical evaluation, we additionally include three recent GRPO-
based variants—GRPO-CARE, DAPO, and Dr.GRPO—on the trajectory prediction task.

Table 6: Trajectory Prediction with
More Baselines.

Model DFD HD RMSE EP

GRPO 187.99 172.58 140.80 142.74
GRPO-CARE 188.23 170.82 139.83 144.85
DAPO 184.08 167.75 136.18 146.99
Dr.GRPO 180.56 165.95 135.86 140.05
GRPO-MA 151.10 138.29 111.59 120.60

We follow each method’s original formulation: GRPO-
CARE adds a consistency-reward term; DAPO incorpo-
rates clip-higher, token-level policy-gradient optimiza-
tion, and overlong reward shaping; and Dr.GRPO modi-
fies both the advantage computation and the optimization
objective. For trajectory prediction, which uses contin-
uous accuracy metrics (range (0,1)), DAPO’s Dynamic
Sampling module is not applied.

Table 6 shows that all three variants offer modest improvements over vanilla GRPO, while GRPO-
MA achieves substantially better performance across all metrics, demonstrating the effectiveness of
multi-answer training.

5.4 SCALING ANALYSIS

Table 7: Scaling Results on Trajectory
Prediction.

Model DFD HD RMSE EP

7B-T8A1 167.32 152.34 129.50 134.60
7B-MA-T8A4 134.67 121.89 103.64 103.27

To study how GRPO-MA behaves as model capacity in-
creases, we conduct a scaling experiment on Qwen2.5-
VL-7B-Instruct. We compare GRPO-MA with a matched
GRPO baseline using identical training settings on the
trajectory prediction task . Results are summarized in Ta-
ble 7.

Notably, GRPO-MA still outperforms standard GRPO, indicating that the variance-reduction effect
and richer reward signals of multi-answer sampling continue to benefit larger models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

T4
A1

T4
A2

T4
A3

T4
A4

T4
A5

T4
A6

T4
A7

T4
A8

150

160

170

180

190

DF
D

Va
lu

e

187.99

169.95

158.08

151.10

150.63
152.52 149.03

146.37

187.99

172.41

165.16

DFD Performance
Ablation Study
Baseline T4A1
Baseline T8A1
Baseline T16A1

T4
A1

T4
A2

T4
A3

T4
A4

T4
A5

T4
A6

T4
A7

T4
A8

130

140

150

160

170

180

HD
 V

al
ue

172.58

153.47

142.68

138.29
136.84 139.95 134.69

132.94

172.58

157.09

149.59

HD Performance
Ablation Study
Baseline T4A1
Baseline T8A1
Baseline T16A1

T4
A1

T4
A2

T4
A3

T4
A4

T4
A5

T4
A6

T4
A7

T4
A8

110

120

130

140

RM
SE

 V
al

ue

140.80

124.04 118.56

111.59

113.01

112.91

112.35

108.22

140.80

130.09

122.95

RMSE Performance
Ablation Study
Baseline T4A1
Baseline T8A1
Baseline T16A1

T4
A1

T4
A2

T4
A3

T4
A4

T4
A5

T4
A6

T4
A7

T4
A8

110

120

130

140

En
dP

oi
nt

 V
al

ue

142.74

137.91

123.14

120.60
118.65

120.50
116.62

110.81

142.74

137.29

130.56

EndPoint Performance
Ablation Study
Baseline T4A1
Baseline T8A1
Baseline T16A1

Trajectory Prediction Performance: Ablation Study vs Baseline

Figure 3: Ablation Study on Trajectory Prediction While maintaining the number of thoughts
K = 4, we gradually increase the number of responses M per thought from 1 to 8 (i.e., the number
of responses is 4, 8, 12...32).

5.5 ABLATION STUDY

We conduct a detailed ablation study on the trajectory prediction task to analyze the effect of the
number of generated answers M per thought, as shown in Fig. 3. The results indicate that as M in-
creases, all evaluation metrics decrease, although the rate of decline becomes progressively smaller.

Surprisingly, T4A3 features 4 thoughts and 12 answers, outperforming T16A1’s 16 thoughts and
16 answers across all metrics. One possible explanation for this finding is that the importance
of reward signal richness (the number of answers) is less significant than the quality of thoughts;
filtering out higher-quality thoughts has a greater impact on the overall training process. Specifically,
our method assesses a thought’s quality by averaging the rewards of its M subsequent answers
(V (thi) = 1

M

∑M
j=1 Ri,j). With M = 3, T4A3 obtains a more stable and reliable estimate of

each thought’s value, effectively reducing the noise from any single-answer evaluation. In contrast,
T16A1’s approach (M = 1) is far more susceptible to randomness, as a single, potentially noisy
reward is used to judge the entire thought.

5.6 INCONSISTENCY ANALYSIS

We quantify the inconsistency between thoughts and answers during training. For a thought thi with
M answers, if sign(A(thi)) ̸= sign(A(ansi,j)), we mark it as inconsistent. The inconsistency rate
is defined as InconsistencyRate = 1

KM

∑K
i=1

∑M
j=1 1[A(thi)A(ansi,j) < 0], where 1[·] denotes

the indicator function, which equals 1 if the condition inside holds and 0 otherwise.

Under the T4A4 setting, the inconsistency rate is 25.65% for trajectory prediction and 24.83% for
object detection. Notably, this ratio is also indicative for GRPO baselines (T4A1, T8A1, T16A1),
even though they do not explicitly generate multiple answers per thought and thus cannot directly
compute it, since they share the same generation hyperparameters (e.g., temperature, top-k, and top-
p sampling). This observation further supports our claim that inconsistency is common in GRPO’s
training. Moreover, this inconsistency implicitly undermines model training.

Accuracy reward curves and richness of reward signal analysis are in the appendix A.6.

6 CONCLUSION

We present GRPO-MA, a simple yet theoretically grounded extension of GRPO that tackles three
key challenges in training Chain-of-Thought models: unstable advantage estimation, gradient cou-
pling between thoughts and answers, and sparse reward signals under limited sampling. By gen-
erating multiple answers per thought, GRPO-MA reduces the variance of advantage estimation,
decouples the gradient between thoughts and answers, and densifies reward feedback. Our theoret-
ical analysis further shows that increasing the number of answers per thought is a principled way
to stabilize gradients, which is corroborated by experiments on math, code, and multimodal tasks.
Together, these results demonstrate that GRPO-MA improves both the stability and efficiency of
GRPO-based reinforcement learning.

Limitation Our study has several limitations. First, computational constraints prevent our experi-
ments on larger-scale models. Second, our analysis relies on the simplifying assumption that thought
values are independent, a condition that may not hold true in practice. Finally, the lack of a general-
purpose reward model means that our testing is confined to tasks with verifiable rewards.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Sriram Balasubramanian, Samyadeep Basu, and Soheil Feizi. A closer look at bias and chain-of-
thought faithfulness of large (vision) language models. arXiv preprint arXiv:2505.23945, 2025.

Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis Gomez, Marçal Rusinol, Minesh Mathew,
CV Jawahar, Ernest Valveny, and Dimosthenis Karatzas. Icdar 2019 competition on scene text
visual question answering. In 2019 International Conference on Document Analysis and Recog-
nition (ICDAR), pp. 1563–1570. IEEE, 2019.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Peter Chen, Xiaopeng Li, Ziniu Li, Xi Chen, and Tianyi Lin. Spectral policy optimization: Coloring
your incorrect reasoning in grpo. arXiv preprint arXiv:2505.11595, 2025a.

Yi Chen, Yuying Ge, Rui Wang, Yixiao Ge, Junhao Cheng, Ying Shan, and Xihui Liu. Grpo-
care: Consistency-aware reinforcement learning for multimodal reasoning. arXiv preprint
arXiv:2506.16141, 2025b.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
reinforcement learning baseline for model reasoning. arXiv preprint arXiv:2504.02546, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

AgiBot World Colosseum contributors. Agibot world colosseum. https://github.com/
OpenDriveLab/AgiBot-World, 2024.

Thomas Eiter, Heikki Mannila, et al. Computing discrete fréchet distance. 1994.

Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu,
Xiaoying Zhang, Benyou Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in
mllms. arXiv preprint arXiv:2503.21776, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
aware adam with momentum reset for stable llm training. arXiv preprint arXiv:2501.06842,
2025a.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025b.

11

https://github.com/OpenDriveLab/AgiBot-World
https://github.com/OpenDriveLab/AgiBot-World

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Comparing images using
the hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence, 15(9):
850–863, 2002.

Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic manipu-
lation from abstract to concrete. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 1724–1734, 2025.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. 2024.

Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra,
Alexander Clegg, Eric Undersander, Angel X Chang, and Manolis Savva. Habitat synthetic scenes
dataset (hssd-200): An analysis of 3d scene scale and realism tradeoffs for objectgoal navigation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16384–16393, 2024.

Dongyoung Kim, Sumin Park, Huiwon Jang, Jinwoo Shin, Jaehyung Kim, and Younggyo Seo.
Robot-r1: Reinforcement learning for enhanced embodied reasoning in robotics. arXiv preprint
arXiv:2506.00070, 2025.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang,
Jiaming Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-
centric robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18061–18070, 2024.

Zhenru Lin, Jiawen Tao, Yang Yuan, and Andrew Chi-Chih Yao. Existing llms are not self-consistent
for simple tasks. arXiv preprint arXiv:2506.18781, 2025a.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
relative policy optimization-based reasoning models. arXiv preprint arXiv:2503.22342, 2025b.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Hongchen Luo, Wei Zhai, Jing Zhang, Yang Cao, and Dacheng Tao. Learning affordance grounding
from exocentric images. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2252–2261, 2022.

Maxwell-Jia. Aime2024. https://huggingface.co/datasets/Maxwell-Jia/AIME_
2024, 2024.

Youssef Mroueh, Nicolas Dupuis, Brian Belgodere, Apoorva Nitsure, Mattia Rigotti, Kristjan Gree-
newald, Jiri Navratil, Jerret Ross, and Jesus Rios. Revisiting group relative policy optimization:
Insights into on-policy and off-policy training. arXiv preprint arXiv:2505.22257, 2025.

Austin Myers, Ching L. Teo, Cornelia Fermüller, and Yiannis Aloimonos. Affordance detection of
tool parts from geometric features. In ICRA, 2015.

Gary W Oehlert. A note on the delta method. The American Statistician, 46(1):27–29, 1992.

Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measuring
and improving faithfulness of chain-of-thought reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 15012–15032, 2024.

PrimeIntellect. Synthetic-1: Scaling distributed synthetic data generation for verified reasoning.
https://www.primeintellect.ai/blog/synthetic-1, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://www.primeintellect.ai/blog/synthetic-1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Marco Simoni, Aleksandar Fontana, Giulio Rossolini, and Andrea Saracino. Gtpo: Trajectory-based
policy optimization in large language models. arXiv preprint arXiv:2508.03772, 2025.

Zirui Song, Guangxian Ouyang, Mingzhe Li, Yuheng Ji, Chenxi Wang, Zixiang Xu, Zeyu Zhang,
Xiaoqing Zhang, Qian Jiang, Zhenhao Chen, et al. Maniplvm-r1: Reinforcement learning
for reasoning in embodied manipulation with large vision-language models. arXiv preprint
arXiv:2505.16517, 2025.

Rubèn Tito, Minesh Mathew, CV Jawahar, Ernest Valveny, and Dimosthenis Karatzas. Icdar 2021
competition on document visual question answering. In International Conference on Document
Analysis and Recognition, pp. 635–649. Springer, 2021.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952–74965, 2023.

Hongcheng Wang, Peiqi Liu, Wenzhe Cai, Mingdong Wu, Zhengyu Qian, and Hao Dong. Mo-ddn:
A coarse-to-fine attribute-based exploration agent for multi-object demand-driven navigation. Ad-
vances in Neural Information Processing Systems, 37:64176–64214, 2024.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 4, 2024.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
simulated part-based interactive environment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shao-
han Huang, Lei Cui, Qixiang Ye, et al. Geometric-mean policy optimization. arXiv preprint
arXiv:2507.20673, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

Below is the table of contents for the appendix.

• More Related Work A.1
• Full Analysis of Variance A.2

– The Multivariate Delta Method A.2.1
– Asymptotic Normality of the Estimated Value Vector A.2.2
– Application to the Thought Advantage Function A.2.3
– Application to the Answer Advantage Function A.2.4
– Diagonality Analysis of Matrices A.2.5

• Details in Task Settings A.3
– Math A.3.1
– Code A.3.2
– Object Detection A.3.3
– Affordance Prediction A.3.4
– Trajectory Prediction A.3.5
– Demand Prediction A.3.6
– Ocr-based VQA A.3.7
– Simulator-based Visual Manipulation A.3.8

• Details in Training A.4
– Training Hyperparameters A.4.1
– SFT Details A.4.2
– Geneartion Configure A.4.3

• More Case Study and Visualization A.5
• More Experimental Analysis A.6

– Accuracy Reward Curve A.6.1
– Richness of Reward Signal A.6.2
– Wall-clock Time A.6.3
– Grad-norm and GSS Curve A.6.4
– Different Architectures Analysis A.6.5
– More Results on Code and Math A.6.6

• Usage of LLMs A.7

A.1 MORE RELATED WORK: APPLICATIONS OF GRPO IN MULTIMODAL DOMAINS

VLM-R1 Shen et al. (2025) applies a general GRPO pipeline to Vision-Language Models, enabling
smaller models to achieve competitive performance on complex visual reasoning tasks. Vision-R1
Huang et al. (2025b) generates high-quality multimodal Chain-of-Thought data and uses Progressive
Thinking Suppression Training (PTST) to prevent the model from creating overly long reasoning
paths. Video-R1 Feng et al. (2025) introduces Temporal-GRPO (T-GRPO), a novel reward scheme
that encourages the model to leverage temporal information in video sequences. ManipLVM-R1
Song et al. (2025) employs GRPO for robotic manipulation with new affordance-aware and tra-
jectory matching reward functions to improve the localization of interactive parts and the physical
plausibility of actions. Robot-R1 Kim et al. (2025) reframes robot learning as a multiple-choice
question answering task, using GRPO to optimize the reasoning for embodied manipulation.

A.2 FULL ANALYSIS OF VARIANCE

This document provides a full derivation of the approximate variance for the Thought Advantage,
A(thi), as presented in the main paper. We first review the multivariate Delta Method, establish the
asymptotic normality of our estimators via the Central Limit Theorem (CLT), and finally present the
detailed application and gradient calculation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2.1 THE MULTIVARIATE DELTA METHOD

The Delta Method is a fundamental result in statistics used to approximate the moments of a function
of one or more random variables. The multivariate version is central to our analysis.

General Formulation. Let
−→
V = (V1, V2, . . . , VK) be a K-dimensional random vector of estima-

tors with a true mean vector −→µ = (µ1, µ2, . . . , µK). Let M denote the sample size used to compute
each estimator Vk. To emphasize that these estimators are functions of the sample size, we denote
the vector as

−→
V M . The Delta Method provides the asymptotic distribution of f(

−→
V M) as M → ∞.

Specifically, if
−→
V M satisfies the condition for the Central Limit Theorem such that:

√
M(

−→
V M −−→µ)

d−→ N(0,Σasymptotic) (4)

where d−→ denotes convergence in distribution, then the transformed variable f(
−→
V M) also converges

in distribution:
√
M(f(

−→
V M)− f(−→µ))

d−→ N(0,∇f(−→µ)TΣasymptotic∇f(−→µ)) (5)

From this formal result, we derive the practical formula for approximating the variance of f(
−→
V M)

for a large but finite sample size M . The term
√
M acts as a scaling factor that ensures the limiting

distribution has a finite, non-zero variance. The variance of the estimator itself is given by:

Var(f(
−→
V M)) ≈ ∇f(−→µ)TVar(

−→
V M)∇f(−→µ) (6)

where Var(
−→
V M) is the actual covariance matrix of the estimator vector, which is related to the

asymptotic covariance by Var(
−→
V M) ≈ Σasymptotic/M .

A.2.2 ASYMPTOTIC NORMALITY OF THE ESTIMATED VALUE VECTOR

Before applying the Delta Method, we must first establish that our core estimator, the vector of
estimated values

−−−→
V (th), satisfies the prerequisite of being asymptotically normal. This justification

comes from the Central Limit Theorem (CLT).

For each thought thk, its estimated value V (thk) is the sample mean of M i.i.d. random variables,
the rewards {Rk,j}Mj=1:

V (thk) =
1

M

M∑
j=1

Rk,j (7)

The rewards have a finite true mean µRk
and a finite true variance σ2

Rk
. According to the CLT, as

the sample size M → ∞, the distribution of the standardized sample mean converges to a normal
distribution. This is formally stated as:

√
M(V (thk)− µRk

)
d−→ N(0, σ2

Rk
) (8)

We now extend this to the full K-dimensional vector of estimators,
−−−→
V (th) =

(V (th1), . . . , V (thK)). Since we have assumed that the estimated values for different thoughts are
mutually independent, the joint asymptotic distribution of the vector is also normal. The mean of
this limiting distribution is a zero vector, and the covariance matrix is diagonal, composed of the
individual variances. Therefore, the entire vector of estimators is asymptotically normal:

√
M(

−−−→
V (th)−−→µ)

d−→ N(0,Σdiag) (9)
where −→µ = (µR1

, . . . , µRK
) is the vector of true means, and Σdiag is the diagonal covariance matrix

of the limiting distribution:

Σdiag =


σ2
R1

0 · · · 0
0 σ2

R2
· · · 0

...
...

. . .
...

0 0 · · · σ2
RK

 (10)

This result formally justifies the application of the Multivariate Delta Method to the thought advan-
tage function A(thi) = fi(

−−−→
V (th)).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.3 APPLICATION TO THE THOUGHT ADVANTAGE FUNCTION

Verification of Assumptions. The prerequisites for the Delta Method are satisfied. First, as estab-
lished above, our estimator vector

−−−→
V (th) is asymptotically normal. Second, the advantage function

A(thi) = (V (thi)− V̄)/SV is continuously differentiable everywhere except where the denomina-

tor SV = 0, where V̄ = 1
K

∑K
k=1 V (thk) and SV =

√
1

K−1

∑K
k=1(V (thk)− V̄)2. We evaluate the

gradient at −→µ , where the denominator’s analogue is σµR
. The approximation is thus valid assuming

σµR
> 0, i.e., not all thoughts have the same true value.

Gradient Calculation. Let
−−−→
V (th) = V = (V1, . . . , VK) and define

fi(V) = A(thi) =
Ni(V)

D(V)
=

Vi − V̄

SV
, V̄ =

1

K

K∑
j=1

Vj ,

Q(V) =
1

K − 1

K∑
j=1

(Vj − V̄)2, D(V) = SV =
√
Q(V).

We compute ∂fi/∂Vk in steps.

First,
∂V̄

∂Vk
=

1

K
,

∂Ni

∂Vk
= δik − 1

K
. (11)

For Q we have, using ∂(Vj − V̄)/∂Vk = δjk − 1
K ,

∂Q

∂Vk
=

1

K − 1

K∑
j=1

2(Vj − V̄)
(
δjk − 1

K

)
(12)

=
2

K − 1

(Vk − V̄)− 1

K

K∑
j=1

(Vj − V̄)

 =
2

K − 1
(Vk − V̄), (13)

because
∑

j(Vj − V̄) = 0. Therefore

∂D

∂Vk
=

1

2D

∂Q

∂Vk
=

Vk − V̄

(K − 1)D
. (14)

Applying the quotient rule yields, for arbitrary V ,

∂fi
∂Vk

=
(δik − 1

K)D − (Vi − V̄) · Vk−V̄
(K−1)D

D2
=

δik − 1
K

D
− (Vi − V̄)(Vk − V̄)

(K − 1)D3
. (15)

Evaluate at V = −→µ and denote

σµR
:= D

∣∣
V=µ

=

√
1

K − 1

∑
j

(µj − µ̄)2, µ̃j :=
µj − µ̄

σµR

.

Then
∂fi
∂Vk

∣∣∣∣
V=µ

=
1

σµR

(
δik − 1

K
− µ̃iµ̃k

K − 1

)
. (16)

Finally, by the first-order multivariate Delta method, with Var(
−→
V) = 1

MΣdiag (and Σdiag =

diag(σ2
R1

, . . . , σ2
RK

)),

Var[A(thi)] ≈ ∇V fi(µ)
⊤Var(

−→
V)∇V fi(µ) =

1

Mσ2
µR

K∑
k=1

(
δik − 1

K
− µ̃iµ̃k

K − 1

)2
σ2
Rk

. (17)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2.4 APPLICATION TO THE ANSWER ADVANTAGE FUNCTION

For a single answer ansi,j , the advantage is defined as

A(ansi,j) =
Ri,j −R

SR
, R =

1

KM

K∑
k=1

M∑
m=1

Rk,m, SR =

√√√√ 1

KM − 1

K∑
k=1

M∑
m=1

(Rk,m −R)2.

(18)

Using the first-order multivariate Delta method, the variance of A(ansi,j) can be approximated as

Var
[
A(ansi,j)

]
≈ ∇Rgi,j(µ)

⊤ diag(σ2
R1

, . . . , σ2
RK

, . . .)∇Rgi,j(µ), (19)
where gi,j(R) = A(ansi,j) and µ denotes the vector of reward means.

Evaluating the gradient at R = µ and grouping by thought, we obtain

Var
[
A(ansi,j)

]
≈ KM − 1

M(K − 1)σ2
µR

K∑
k=1

M∑
m=1

(
δ(k,m),(i,j) −

1

KM
− µ̃iµ̃k

M(K − 1)

)2

σ2
Rk

, (20)

where δ(k,m),(i,j) is the Kronecker delta, µ̃k = (µRk
− µR̄)/σµR

is the expected advantage of
thought thk, µR̄ = 1

K

∑K
k=1 µRk

, and σ2
µR

= 1
K−1

∑K
k=1(µRk

− µR̄)
2.

A.2.5 DIAGONALITY ANALYSIS OF MATRICES

To examine whether the assumption of independence across thoughts (i.e., a diagonal covariance
matrix) holds in practice, we conducted numerical simulations and empirically estimated the covari-
ance structure of

−→
V (th) = (V1, . . . , VK). Specifically, we generated N independent replications

of the full K-dimensional estimator vector, denoted V (n) for n = 1, . . . , N , and computed the
empirical covariance matrix:

Σ̂ =
1

N − 1

N∑
n=1

(
V (n) − V

)(
V (n) − V

)⊤
, V =

1

N

N∑
n=1

V (n). (21)

We then assessed the degree of diagonal dominance using Row-wise strict diagonal dominance and
Frobenius-norm based diagonal energy ratio.

Row-wise strict diagonal dominance. For each row i, the covariance matrix is said to be strictly
diagonally dominant if

|Σ̂ii| >
∑
j ̸=i

|Σ̂ij |. (22)

We summarize this property by the proportion of rows that satisfy the condition:

prow dom =
1

K

K∑
i=1

1
{
|Σ̂ii| >

∑
j ̸=i

|Σ̂ij |
}
, (23)

where 1{·} denotes the indicator function. A value prow dom ≈ 1 indicates strong diagonal domi-
nance.

Frobenius-norm based diagonal energy ratio. We also consider the proportion of squared Frobe-
nius norm explained by the diagonal entries:

ρF =

∑K
i=1 Σ̂

2
ii∑K

i=1

∑K
j=1 Σ̂

2
ij

, 0 ≤ ρF ≤ 1. (24)

Higher values of ρF indicate that the diagonal terms dominate the overall covariance energy.

We select 50 samples from the Trajectory Prediction task and, at the 1500-step checkpoint, compute
the covariance matrix of the thought-value estimates by performing N = 10 independent replica-
tions per sample. The empirical results yield prow dom=63.65% and ρF = 70.71% averaged on 50
samples. Since our theoretical derivations rely on the assumption that the covariance matrix is di-
agonal, these diagnostics suggest that this assumption has a certain degree of validity in practice, as
the estimated covariance matrices exhibit a clear tendency toward diagonal dominance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 DETAILS IN TASK SETTINGS

A.3.1 MATH

We conduct our experiments using problems from the DAPO Yu et al. (2025) training set and evalu-
ate on the AIME2024 test set Maxwell-Jia (2024). The Math training set is constructed by randomly
sampling 1,000 problems from the DAPO training corpus. The model is trained for a single epoch
on these 1,000 training samples. We do not use a validation set; instead, we select the final model
parameters saved at the end of training (the last checkpoint) for testing.

At test time, for each test problem from AIME2024 we generate n = 100 independent candidate out-
puts (“generations”). From these 100 generations we compute the pass@k metrics for k ∈ {10, 32}.

The reward function is designed with two complementary components: a format reward and an
accuracy reward. The model is required to generate outputs in a predefined structured format:

<analysis> xxx </analysis>
<process> xxx </process>
<answer> d </answer>

where the answer is represented as a single integes d. The format reward assigns a value of 1 if and
only if the output strictly follows the required format, and 0 otherwise. The accuracy reward is +1 if
the predicted answer is identical to the true answer, and 0 otherwise.

The full prompt template is shown below:

{Question} You MUST structure your response using exactly
threesections with XML-style tags in this exact order:
1) <analysis> ... </analysis>
2) <process> ... </process>
3) <answer> ... </answer>

Roles and constraints:
- <analysis>: State relevant concepts, theorems, formulas,
and solution plan. Do NOT perform numeric calculations or
write equations here.
- <process>: Perform ALL detailed computations and
step-by-step derivations based on the analysis. Show
equations and numeric work here.
- <answer>: Output ONLY the final integer (optional sign).
No words, units, punctuation (except the sign), or
explanations.

Hard requirements:
- All three tags must be present and appear in the exact
order <analysis> -> <process> -> <answer>.
- No calculations in <analysis>.
- All computations must be in <process>.
- <answer> must contain a single integer only.

Implementation Note: In our multi-sample framework, the sampled content encompasses both
< answer > and < process > elements.

A.3.2 CODE

We conduct our experiments using the Python-code portion of the SYNTHETIC-1 dataset PrimeIn-
tellect (2024) and evaluate on the LiveBench code test set White et al. (2024). The Code training set
is constructed by randomly sampling 1,000 problems from the SYNTHETIC-1 Python-code corpus.
The model is trained for a single epoch on these 1,000 training samples. We do not use a validation
set; instead, we select the final model parameters saved at the end of training (the last checkpoint)
for testing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

At test time, for each test problem from LiveBench we generate n = 100 independent candidate out-
puts (“generations”). From these 100 generations we compute the pass@k metrics for k ∈ {10, 32}
as described below.

The reward function is designed with two complementary components: a format reward and a func-
tional (accuracy) reward. The model is required to generate outputs in a predefined structured
format:

<think> xxx </think>
<answer> xxx </answer>

The format reward assigns a value of 1 if and only if the output strictly follows the required tag
structure and the content within <answer> can be parsed as a syntactically valid Python program.
Otherwise the format reward is 0.

The functional (accuracy) reward is +1 if the program inside <answer> executes successfully on
the official hidden test inputs, terminates without runtime error, and produces outputs that exactly
match the expected outputs for all test cases. Otherwise the accuracy reward is 0.

The prompt used to condition the model for each problem is exactly:

{Question} First output the thinking process
in<think> </think> tags and then output the final code
in <answer> </answer> tags. The answer should be a
complete Python code solution that solves the given
problem. Make sure your code handles all edge cases
and follows the input/output format specified in the
problem. DONOT OUTPUT ANY CODE OR SOLUTION IN THE
THINK TAGS.

A.3.3 OBJECT DETECTION

We conduct our experiments using the Agibot World dataset contributors (2024). The data is
partitioned into training, validation, and test sets based on specific task ids from Agibot World
dataset. Specifically, the training set is constructed from task ids 424, 480, and 507, comprising a
total of 3,000 images (randomly sampling). The validation and test sets are derived from task id
582 and 1352, respectively. For all images, the ground-truth bounding boxes and corresponding
object labels are annotated through a crowdsourcing process. The object detection model is trained
for a single epoch on the 3,000-image training set.

After training, we perform model selection by evaluating checkpoints on the designated validation
set. The model checkpoint that achieves the highest average IoU@0.5 (as defined below) on the
validation data is selected for the final evaluation. The performance of this selected model is then
reported on the test set.

We evaluate the model’s performance using a IoU rate metric, which measures the proportion of
correctly localized objects based on the Intersection over Union (IoU). A detection is considered
positive if the IoU between the predicted bounding box (Bpred) and the ground-truth bounding box
(Bgt) exceeds a given threshold τ .

The IoU rate at a specific threshold τ , denoted as IoU@τ , is formulated as:

IoU@τ =

∑N
i=1 1(IoU(B

(i)
pred, B

(i)
gt) > τ)

N
(25)

where N is the total number of samples in the test set, and 1(·) is the indicator function. To provide
a comprehensive assessment, we report the performance across four different IoU thresholds: τ ∈
{0.5, 0.6, 0.7, 0.8}.

The reward function is designed with two complementary components: a format reward and an
accuracy reward. The model is required to generate outputs in a predefined structured format:

<think> xxx </think>
<answer> [d, d, d, d] </answer>

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where the bounding box is represented as a list of four integers [d, d, d, d]. The format reward
assigns a value of 1 if and only if the output strictly follows the required format, and 0 otherwise.
The accuracy reward is defined as the IoU between the predicted bounding box and the ground-truth
bounding box.

The full prompt template is shown below:

{Question} First output the thinking process in <think>
</think> tags and then output the final answer in <answer>
</answer> tags. Output the final answer in List format.
Only output the bounding box using [x min, y min, x max,
y max] format in the final answer. DO NOT OUTPUT ANY ANSWER
OR CONCLUSION IN THE THINK TAGS.

A.3.4 AFFORDANCE PREDICTION

The task is defined as affordance prediction, where the model, given an image and a specified affor-
dance (e.g., grasping, holding), is required to predict a pixel-wise mask indicating the corresponding
region.

We primarily use the UMD Part Affordance Dataset Myers et al. (2015). The official training split
of this dataset is used to construct our training and validation sets. Specifically, we use 3,000 images
for training and a held-out portion of the original training split for validation. For evaluation, we use
the official test split of the UMD dataset. To further assess the model’s generalization capabilities,
we also use the entire AGD20K dataset Luo et al. (2022) as an additional, challenging test set.

The affordance prediction model is trained for a single epoch on the 3,000-image training set. After
training, we perform model selection by evaluating checkpoints on the designated validation set.
The model checkpoint that achieves the highest Success Rate (as defined below) on the validation
data is selected for the final evaluation. The performance of this selected model is then reported on
the test sets (UMD test and AGD20K).

We evaluate the model’s performance using a Success Rate metric. This metric measures the propor-
tion of samples where the predicted point correctly falls within the ground-truth affordance mask.
A prediction is considered successful if the pixel value at the predicted 2D coordinate is 1 in the
ground-truth binary mask.

The Success Rate is formulated as:

Success Rate =

∑N
i=1 1(M

(i)
gt (C

(i)
pred) = 1)

N
(26)

where N is the total number of samples in the test set, C(i)
pred is the predicted 2D coordinate (x, y)

for the i-th sample, and M
(i)
gt is the corresponding ground-truth affordance mask. The notation

M
(i)
gt (C

(i)
pred) represents the value of the mask at the predicted coordinate. 1(·) is the indicator func-

tion, which is 1 if the condition is true and 0 otherwise.

The reward function consists of two complementary components: a format reward and an accuracy
reward.

The model is required to generate outputs in the following structured format:

<think> xxx </think>
<answer> [d, d] </answer>

where the final answer corresponds to a 2D coordinate [d, d], with d denoting an integer. The format
reward assigns a value of 1 if and only if the output strictly adheres to this format; otherwise, it is
set to 0. The accuracy reward evaluates the correctness of the prediction by checking whether the
predicted 2D point lies within the ground-truth affordance mask (i.e., a region where the mask value
equals 1). If the prediction falls inside the valid region, +1 reward is given; otherwise, it is not.

The full prompt template is shown below:

{Question} First output the thinking process in <think>
</think> tags and then output the final answer in <answer>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

</answer> tags. Only output one affordance point using [x,
y] format. DO NOT OUTPUT ANY ANSWER OR CONCLUSION IN THE
THINK TAGS.

A.3.5 TRAJECTORY PREDICTION

The task is defined as trajectory prediction, where the model, given an image and a manipulation
instruction, is required to predict the two-dimensional trajectory of the robotic arm’s end-effector in
the image’s pixel coordinate system. The trajectory is represented as a sequence of coordinates, and
the predicted path should follow the ground-truth trajectory to successfully complete the instructed
manipulation.

We primarily use the trajectory subset of the BAAI ShareRobot dataset Ji et al. (2025). The original
dataset is partitioned into training, validation, and test sets. Specifically, we use 3,000 images for
training, a held-out portion of the training split for validation, and the test split for evaluation. The
model is trained for a single epoch on the 3,000-image training set. After training, we perform model
selection by evaluating checkpoints on the designated validation set. The checkpoint that achieves
the highest reward value (as defined below) on the validation data is selected for the final evaluation.
The performance of this selected model is then reported on the held-out test set.

We evaluate the model’s performance using multiple geometric similarity metrics, following the de-
sign in ManipVLM-R1 Song et al. (2025). These metrics measure how well the predicted trajectory
matches the ground truth from different perspectives. Specifically, we use Discrete Fréchet Dis-
tance (DFD), Hausdorff Distance (HD), Root Mean Square Error (RMSE), and Endpoint Distance
as evaluation criteria.

The model is required to generate outputs in the following structured format:

<think> xxx </think>
<answer> [[x1, y1], [x2, y2], ..., [xn, yn]] </answer>

where the final answer corresponds to a variable-length sequence of 2D coordinates [x, y], with x
and y denoting integers.

The reward function consists of two complementary components: a format rewardand a accuracy
reward. The format reward assigns a value of 1 if and only if the output strictly adheres to this
format; otherwise, it is set to 0. To measure how well the predicted trajectory T̂ matches the ground-
truth trajectory T ∗, we adopt an accuracy reward following the design in ManipVLM-R1 Song et al.
(2025). Specifically, the reward is defined as

Racc = exp
(
− kDDFD(T̂ , T

∗)
)
+ exp

(
− kDHD(T̂ , T

∗)
)

+ exp
(
− kDRMSE(T̂ , T

∗)
)
+ exp

(
− k ∥p̂N − p∗M∥2

)
,

(27)

where DDFD, DHD, and DRMSE denote the Discrete Fréchet Distance, Hausdorff Distance, and Root
Mean Square Error between the predicted trajectory T̂ and the ground-truth trajectory T ∗. The final
term enforces endpoint accuracy by penalizing the distance between the predicted endpoint p̂N and
the ground-truth endpoint p∗M .

The model is guided by a carefully designed prompt that specifies both the reasoning and the answer
requirements. The full prompt template is shown below:

{Question} First output the thinking process in <think>
</think> tags and then output the final answer in <answer>
</answer> tags. Output the final answer in the following
JSON format: [[x1, y1], [x2, y2], ..., [xn, yn]]. Where
each coordinate pair represents a point in the image’s pixel
space and the center of the end effector needs to follow
the coordinates to complete the task. Each hand trajectory
includes unknown number of [x, y] coordinate pairs.DO NOT
OUTPUT ANY ANSWER OR CONCLUSION IN THE THINK TAGS.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.3.6 DEMAND PREDICTION

The task is defined as demand prediction, where the model, given an image and a human demand
instruction (e.g., “I am thirsty”), is required to output a two-dimensional coordinate corresponding
to an object in the image that fulfills the demand (e.g., a water bottle or a juice box). A prediction
is considered correct if the predicted point lies inside the ground-truth segmentation mask of the
demanded object.

We construct the dataset for this task based on MO-DDN Wang et al. (2024), which requires robots
to ground a natural demand instruction to objects in the environment. MO-DDN itself is built upon
the HSSD scene dataset Khanna et al. (2024), together with a custom demand–object dataset. To
build our data, we randomly sample a demand instruction and pair it with a scene containing a
target object that satisfies the demand. We then crop and store the corresponding image, resulting in
instruction–image pairs.

Following the original MO-DDN splits, we collect data separately from the training and testing
tasks. Specifically, we use 3,000 instruction–image pairs as the training set and 1,000 pairs as the
validation set, both sampled from the training tasks. For evaluation, we construct a test set of 5,000
instruction–image pairs sampled from thetesting tasks.

We train the model for a single epoch on the training set and perform model selection based on
validation accuracy. The checkpoint achieving the highest validation performance is then used for
testing, and we report results on the test set.

We evaluate the model’s performance using a Success Rate metric, defined as the proportion of
samples where the predicted coordinate falls within the ground-truth mask of the demanded object.
Formally:

Success Rate =

∑N
i=1 1(M

(i)
gt (C

(i)
pred) = 1)

N
, (28)

where N is the number of samples in the test set, C(i)
pred denotes the predicted 2D coordinate (x, y)

for the i-th sample, and M
(i)
gt is the ground-truth binary mask of the demanded object. The notation

M
(i)
gt (C

(i)
pred) indicates the mask value at the predicted location. 1(·) is the indicator function that

equals 1 if the condition holds and 0 otherwise.

The reward function for training consists of two complementary components: a format reward and
an accuracy reward. The model must output predictions in the following structured format:

<think> xxx </think>
<answer> [d, d] </answer>

where the final answer corresponds to a 2D coordinate [d, d], with d denoting an integer. The format
reward is assigned 1 if the output strictly follows this structure, and 0 otherwise. The accuracy
reward is assigned if and only if the predicted coordinate lies within the ground-truth object mask.
These two rewards jointly ensure syntactically valid outputs and semantic correctness.

The model is guided by a prompt template that specifies both the thinking process and the final
answer format. The full prompt is given below:

You are completing a navigation task where you need to
detect objects from the image that fulfill a user’s demand.
The user’s demand is {Question}. First output the thinking
process in <think> </think> tags and then output the final
answer in <answer> </answer> tags. Only output one point
using [x, y] format that represents the target demanded
object. DO NOT OUTPUT ANY ANSWER OR CONCLUSION IN THE THINK
TAGS.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.3.7 OCR-BASED VQA

The task is defined as OCR-based Visual Question Answering (VQA), where the model, given an
image containing textual information and a natural language question, is required to output a short
natural language answer. The answer must be grounded in the image content and can involve both
text extraction and reasoning over visual elements.

We construct the dataset by combining three OCR-based VQA benchmarks: Document VQA Tito
et al. (2021), Infographics VQA Tito et al. (2021), and Scene Text VQA Biten et al. (2019). Document
VQA focuses on answering questions asked over document images, which may contain printed,
typewritten, and handwritten content (e.g., letters, memos, reports). The answers are typically text
spans taken verbatim from the document. Infographics VQA considers questions over infographic
images containing charts, diagrams, or other structured visual data, where answers are not always
explicitly extracted text but can include inferred information. Scene Text VQA consists of natural
scene images with embedded text (e.g., storefronts, street signs). The model must jointly leverage
OCR reading and visual understanding to answer the questions.

From each of the three training sets, we randomly select 3,000 samples, resulting in a combined
training set of 9,000 samples. Additionally, we construct a validation set of 1,500 samples (also
drawn from the training splits), while the official validation sets of each benchmark are used as our
test set.

The model is trained for a single epoch on the 9,000-sample mixed training set. Model selection
is performed based on validation performance, and the checkpoint achieving the highest validation
score is reported on the test sets.

The evaluation metric is the Average Normalized Levenshtein Similarity (ANLS), which measures
the string-level similarity between the predicted and ground-truth answers. ANLS accounts for
OCR errors by softly penalizing recognition mistakes. A threshold τ = 0.5 is applied to determine
whether a predicted answer is considered valid. Formally, ANLS is defined as:

ANLS =
1

N

N∑
i=0

(
max

j
s(aij , oqi)

)
, (29)

s(aij , oqi) =

{
1−NL(aij , oqi), if NL(aij , oqi) < τ,

0, if NL(aij , oqi) ≥ τ,
(30)

where N is the number of questions, M is the number of ground-truth answers per question, aij is
the j-th ground-truth answer for the i-th question qi, and oqi is the predicted answer. NL(·) denotes
the normalized Levenshtein distance.

The reward function consists of a format reward and an accuracy reward. The model must output
answers in the following structured format:

<think> xxx </think>
<answer> xxx </answer>

The format reward is 1 if the output strictly follows this structure, and 0 otherwise. The accuracy
reward corresponds to the ANLS score of the predicted answer for the current question.

The model is guided by the following prompt template:

{Question} First output the thinking process in <think>
</think> tags and then output the final answer in <answer>
</answer> tags. The answer should be a natural language
text. The answer should be found in the image. DO NOT
OUTPUT ANY ANSWER OR CONCLUSION IN THE THINK TAGS.

A.3.8 SIMULATOR-BASED VISUAL MANIPULATION

The task is defined as a simulator-based visual manipulation problem where, given a single RGB
observation of a manipulation scene, the model must specify a contact point (x, y) on the object at

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

which a sucker should attempt to manipulate. The model’s output must be grounded in the visual
observation and may require reasoning about object geometry, affordances, and reachable contact
locations.

We construct the dataset and evaluation splits based on the PartNet Mobility dataset Xiang et al.
(2020) and the ManipLLM experimental setup (A crucial point is that we have followed their
setting by using suckers as the end effectors for the robotic arms.). For training, we adopt the
same 20 training categories as ManipLLM, consisting of 1,043 object instances. Training scenes are
generated following the SAPIEN simulator Xiang et al. (2020) setup and ManipLLM scene config-
urations. For testing, we use the open-sourced ManipLLM test set, which contains approximately
1,830 successful test samples spanning both Seen and Unseen objects. To better evaluate model
generalization to novel viewpoints, we further construct a camera-perturbed test set by modifying
each test sample: the camera orientation vector [0, 0, 0] is replaced by [x, y, z] where each of x, y, z
is sampled uniformly from the signed interval ±[0.2, 0.6]. This perturbation preserves other scene
properties while intentionally stressing viewpoint robustness. In order to simplify control and isolate
contact selection, the sucker approach direction in all experiments is fixed to be the surface normal
at the chosen manipulation point (x, y).

The required output must follow a strict format consisting of a reasoning trace and a final contact
point, written as:

<think> xxxx </think>
<answer> (d,d) </answer>

The evaluation metric is Success Rate, following ManipLLM’s criterion based on the manipulated
object’s displacement after the scripted sucker motion. Formally, given N trials,

SuccessRate =
1

N

N∑
i=1

1{triali is successful according to ManipLLM’s displacement criterion},

where 1{·} is the indicator function. We report Success Rate on the camera-perturbed test sets, and
further provide breakdowns by Seen vs. Unseen objects.

The reward function during GRPO training consists of a format reward and a task reward. The
format reward is 1 if the output strictly follows the required structure and 0 otherwise. The task
reward is 1 if the manipulation attempt succeeds according to ManipLLM’s displacement criterion
and 0 otherwise. The overall reward is defined as

Rtotal = Rformat +Rtask,

so that only properly formatted and successful outputs receive credit. This ensures that malformed
answers cannot be rewarded even if the manipulation itself succeeds.

All experiments are conducted with Qwen2.5-VL-3B as the base model. We train using GRPO for
4,000 optimization steps, selecting checkpoints based on validation success rate. The validation set
is constructed by sampling held-out scenes from the same 20 training categories without overlap
with the test split. The prompt used in training is as follows:

"system": "You are an intelligent manipulator. A
conversation between User and Assistant. The user
asks a question, and the Assistant solves it. The
assistant first thinks about the reasoning process
in the mind and then provides the user with the
answer. The reasoning process and answer are enclosed
within <think> </think> and <answer> </answer> tags,
respectively, i.e. <think> reasoning process here
</think><answer> answer here </answer>."

"user": "Specify the contact point (x, y) of
manipulating the object. The camera resolution
is:’width’: 336, ’height’: 336, Output
format: <think>your thinking process</think>
<answer>(x,y)</answer>"

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters for GRPO training.

Hyperparameter Group Parameter Value
Training Configuration

Model Qwen2.5-VL-3B-Instruct
Optimizer AdamW
Learning Rate (η) 1× 10−5

Batch Size 1
Gradient Accumulation Steps 1
Total Training Epochs 1
Max Completion Length 4096
Data Seed 42
Floating Point Precision bfloat16
Gradient Checkpointing true
Flash Attention 2 true

PEFT (LoRA) Configuration
LoRA Rank (r) 64
LoRA Alpha (α) 128
LoRA Dropout 0.05

GRPO-specific Configuration
Beta (β) 0.04
Epsilon High (ϵH) 0.28
Epsilon Low (ϵL) 0.2

Model Specific Configuration
Freeze Vision Modules true

A.4 DETAILS IN TRAINING

A.4.1 TRAINING HYPERPARAMETERS

We summarize the key hyperparameters used in our GRPO training experiments in Tab. 8. The
settings are organized into general, training, and LoRA-related categories for clarity.

A.4.2 SFT DETAILS

For all Supervised Fine-Tuning (SFT) baselines, we train for 5 epochs. All other settings are kept
consistent with GRPO, including the dataset, model selection criteria, and metric calculation.

A.4.3 GENERATION CONFIGURE

Our model is trained using the Hugging Face transformers library (version 4.51.3). During in-
ference, we customize the decoding strategy via the GenerationConfig class. Specifically, we
set temperature=1.0 and do sample=True to enable stochastic sampling. We also define
stop strings=["</think>", "</analysis>"] only when generating thoughts. The re-
maining parameters are maintained at their default settings.

A.5 MORE CASE STUDY AND VISUALIZATION

To provide a more intuitive and in-depth analysis of our model’s performance, this section presents
a series of curated case studies and visualizations. These examples encompass a range of key tasks,
including object detection (Fig. 4) and trajectory prediction (Fig. 5 and Fig. 6). Our aim is to
leverage these concrete scenarios to delve into the model’s behavior, decision-making logic, and
inherent strengths and limitations.

Specifically, in the simulator-based visual manipulation task, we visualize the distribution of the
target operation points over multiple sampling attempts in Fig. 7. Green points indicate successful
manipulations, while red points represent failures. This visualization demonstrates the robustness of
our model.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.6 MORE EXPERIMENTAL ANALYSIS

In this section, we further present some experimental results, including the accuracy reward curves
during training, and an analysis of the richness of reward signal.

A.6.1 ACCURACY REWARD CURVE

We present the accuracy reward curves for five visual tasks in Object Detection (Fig. 8), Affordance
Prediction (Fig. 9), Demand Prediction (Fig. 10), OCR-based VQA (Fig. 11) and Trajectory Pre-
diction (Fig. 12). During the curve plotting process, we smooth the curve using a moving average
method with a window size of 200. The curves demonstrate that T4A4 (red) exhibits performance
comparable to that of T16A1 (blue) in the majority of cases, at times showing a marginal advantage.

A.6.2 RICHNESS OF REWARD SIGNALS

For tasks with binary (0-1) rewards, such as Code, Math, Affordance Prediction, Demand Prediction
and Simulator-based Visual Manipulation, we compute the proportion of samples whose total reward
is positive, which we refer to as the NoZeroRate. Formally, it is defined as

NoZeroRate =
1

T

T∑
t=1

1


 K∑

i=1

M∑
j=1

AccRt
i,j

 > 0

 , (31)

where 1{·} denotes the indicator function, which equals 1 if the condition inside holds and 0 other-
wise. Here, T is the total number of time steps, t indexes a specific time step, K is the number of
thoughts, M is the number of answers per thought, and AccRt

i,j denotes the accuracy reward asso-
ciated with the j-th answer under the i-th thought at time step t. A higher NoZeroRate indicates a
lower proportion of advantage collapses (where collapse means all advantage values become zero),
and a higher proportion of effective gradient information contribution.

The statistical results are presented in Tab. 10. We observe that T4A4 achieves the second-highest
proportion of non-zero accuracy rewards across all tasks, only behind T16A1. On the one hand, this
indicates that under the T4A4 setting, the answers generated by each thought are largely different.
On the other hand, it suggests that the diversity of generated answers can be substantially improved
by generating additional answers per thought, as shown by the comparison between T4A4 and T4A1.

Table 9: Math and code reasoning results on Qwen3-4B-Instruct.

Model Pass@1 (Math) Pass@1 (Code)

GRPO-T4A1 17.53 4.22
GRPO-MA-T4A4 18.07 6.25

A.6.3 WALL-CLOCK TIME

We provide wall-clock time to further demonstrate the improvement in training efficiency achieved
by the GRPO-MA algorithm. We pick two multimodal tasks and one text reasoning task as exam-
ples. The results are shown in Fig. 13, Fig. 14, and Fig. 15. As shown in the figure, GRPO-MA
achieves the peak performance of various baselines in a shorter time.

Table 10: NoZeroRate on Different Task. TN: The number of thoughts; AN: The number of answers
per thought. Bold indicates the best performance and italics indicate the second-best performance.

TN AN Code Math Affordance Demand Sim Manip

GRPO 4 1 26.71% 19.14% 85.10% 46.37% 38.20%
GRPO 8 1 36.57% 27.71% 94.37% 62.07% /
GRPO 16 1 43.71% 43.29% 97.17% 70.20% /
GRPO-MA 4 4 41.86% 34.71% 96.70% 66.47% 85.05%

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Additional Results on GSM8K (Math) and HumanEval (Code). TN: Number of thoughts;
AN: Number of answers per thought. Bold indicates the best performance among GRPO variants.

GSM8K (Math) HumanEval (Code)

Model TN AN Pass@1 Pass@1 Pass@5

GRPO 4 1 62.54 56.10 82.93
GRPO 8 1 64.67 56.83 82.93
GRPO 16 1 65.13 57.80 85.37
GRPO-MA 4 4 70.58 58.66 87.20

Prompt: Output the bounding box positions of yellow bagged food in the image.

T4A4: <think>\nThe yellow bagged food is located on the table, to the left of the
robot arm. It is positioned near the center of the table, slightly to the
right.\n</think>\n<answer>\n[546, 525, 853, 794]\n</answer>

T4A1: <think>\nThe yellow bagged food is located on the table, to the left of the
robot arm. It appears to be a snack or candy, given its bright color and packaging. The
bounding box coordinates for this object are [798, 0, 978,
323].\n</think>\n<answer>\n[798, 0, 978, 323]\n</answer>

Discussion: The thought in T4A4 accurately pinpoints the general location of the
target object by integrating both a local perspective (to the left of the robotic arm)
and a global perspective (in the middle-right of the table). In contrast, T4A1, although
also using a local perspective (to the left of the robotic arm) to determine the general
location of the target object, subsequently shifts focus to describing its appearance,
which leads to confusion with the candy in the upper right corner.

Figure 4: Case Study on Object Detection Green text indicates key reasoning content.

A.6.4 GRAD-NORM AND GSS CURVE

We provide complete Grad Norm and GSS curves, shown in Fig. 16, Fig. 17 and Fig 18. Smaller
fluctuations in the Grad Norm curve and lower GSS values indicate fewer gradient spikes during
training, resulting in more stable training. The grad norm curve and GSS curve corresponding to
GRPO-MA both exhibit smaller fluctuations and GSS values.

A.6.5 DIFFERENT ARCHITECTURES ANALYSIS

We also evaluate GRPO-MA on a pure-text language model with a different architecture—Qwen3-
4B-Instruct—to assess whether our method applies beyond VLM architectures. We use math word
problems and programming tasks as representative reasoning benchmarks.

The results are presented in Table 9. GRPO-MA consistently improves Pass@1 accuracy on both
math and code reasoning, suggesting that the advantages of multi-answer sampling extend beyond
vision–language models and apply to pure-text autoregressive architectures as well.

A.6.6 MORE RESULTS ON CODE AND MATH

To further examine the generality of our variance-reduction mechanism, we additionally evaluate
GRPO-MA on two widely used mathematical and coding benchmarks: GSM8K Cobbe et al. (2021)
for math reasoning and HumanEval Chen et al. (2021a) for code generation. These experiments use
the same training configuration as our main results, with models trained on the DAPO dataset. For
GSM8K, we report the Pass@1 accuracy obtained by running the checkpoint trained for mathemati-
cal reasoning. For HumanEval, we report Pass@1 and Pass@5 to assess both direct correctness and
sampling-based performance. These findings reinforce our claim that answer-level multi-sampling
provides a simple, general, and effective variance-reduction strategy that benefits both mathematical
reasoning and code generation tasks. The consolidated results are presented in Table 11.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Prompt: Record the movement trajectory for completing reach for the strainer

T4A4: <think>\nTo complete the task of reaching for the strainer, the hand should
first move towards the left side of the table. The strainer is located on the left side
of the table, so the hand should move horizontally to the left. Once the hand is in the
general area of the strainer, it should then move vertically downwards to reach the
strainer. The final position should be directly above the
strainer.\n</think>\n<answer>\n[[124, 120], [139, 130], [155, 148], [165, 155], [165,
155]]\n</answer>

T4A1: <think>\nTo complete the task of reaching for the strainer, the hand should
move from its current position to the strainer. The strainer is located on the table,
and the hand needs to move towards it. The hand should move horizontally to the right
and slightly downward to reach the strainer.\n</think>\n<answer>\n[[130, 110], [180,
120], [200, 140], [190, 140]]\n</answer>

Discussion: In T4A4's thought, the target object is first localized relative to the
entire tabletop; the arm's approaching direction is then derived from this global pose,
and a final fine-tuning command is appended. In contrast, T4A1 merely specifies "move
... to the strainer" without first anchoring it in the scene, so the resulting terminus is
biased.

Figure 5: Case Study on Trajectory Prediction Green text indicates key reasoning content.

Prompt: What are the path coordinates of the robotic arm's end-effector when
completing the "reach for the banana" task?

T4A4: <think>\nTo complete the task of reaching for the banana, the mechanical arm
needs to move from its current position to the banana. The banana is located towards
the right side of the table, slightly above the center. The arm should move horizontally
to the right and slightly upwards to reach the banana.\n</think>\n<answer>\n[[135,
123], [170, 134], [210, 142], [245, 145]]\n</answer>

T4A1: <think>\nTo determine the path coordinates for the mechanical arm to reach
the banana, we need to consider the initial position of the arm and the target position
of the banana. The banana is located on the table, and the mechanical arm needs to
move from its current position to the banana's position.\n\nAssuming the table is a
flat surface and the banana is placed at a specific location, we can calculate the path
coordinates by considering the distance and direction from the current position to the
banana's position. If the table is a 2D plane, we can use the following steps to find the
coordinates:\n\n1. Identify the current position of the mechanical arm.\n2. Identify
the position of the banana on the table.\n3. Calculate the distance and direction from
the current position to the banana's position.\n4. Use trigonometry to determine the x
and y coordinates of the path.\n\nHowever, without specific pixel coordinates or a
visual representation of the table, it's challenging to provide precise coordinates. If
we assume the table is a standard 8x8 grid and the banana is located at a specific
pixel, we can use the following approach:\n\n- If the banana is at the center of the
table, the path would be a straight line from the center to the banana's position.\n- If
the banana is at a specific corner, the path would involve moving diagonally or
horizontally/vertically to reach the banana.\n\nFor the sake of this example, let's
assume the banana is located at the center of the table, which is at (2, 2) on a 10x10
grid (0-indexed).\n\nThe path coordinates from the current position to the banana's
position would be:\n[[12, 12], [18, 12], [20, 12], [20, 14]]\n\nThese coordinates
represent the path the mechanical arm needs to follow to reach the
banana.\n</think>\n<answer>\n[[130, 124], [180, 124], [200, 124], [200,
140]]\n</answer>

Discussion: In the T4A4 case, we can clearly observe that the model first identifies
the location of the banana, then provides a linguistic description of the end-effector
trajectory of the robotic arm, and ultimately produces a trajectory that closely
resembles the ground truth. In contrast, in the T4A1 case, although the model
continuously proposes schemes for determining a trajectory, it fails to accurately
localize the banana. Instead, it keeps making assumptions, which ultimately leads to a
significant deviation from the target in the latter part of the trajectory.

Figure 6: Case Study on Trajectory Prediction Green text indicates key reasoning content.

Figure 7: Visualization on Simulator-based Visual Manipulation Red dots indicate failures, while
green dots represent successes. We can observe that most GRPO-MA-T4A4 points are located on
the object. In contrast, GRPO-T4A1 frequently misses the object, resulting in a lower success rate.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Training Step

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

 R
ew

ar
d

Max Step: 3000
Smoothing: moving_avg

Training Reward Curves Comparison
(Smoothed, 0-3000 steps)

T16A1
T8A1
T4A1
T4A4

Figure 8: Accuracy Reward Curve on Object Detection

0 500 1000 1500 2000 2500 3000
Training Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 R
ew

ar
d

Max Step: 3000
Smoothing: moving_avg

Training Reward Curves Comparison
(Smoothed, 0-3000 steps)

T16A1
T8A1
T4A1
T4A4

Figure 9: Accuracy Reward Curve on Affordance Prediction

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Training Step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ac
cu

ra
cy

 R
ew

ar
d

Max Step: 3000
Smoothing: moving_avg

Training Reward Curves Comparison
(Smoothed, 0-3000 steps)

T16A1
T8A1
T4A1
T4A4

Figure 10: Accuracy Reward Curve on Demand Prediction

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Step

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

 R
ew

ar
d

Max Step: 9000
Smoothing: moving_avg

Training Reward Curves Comparison
(Smoothed, 0-3000 steps)

T16A1
T8A1
T4A1
T4A4

Figure 11: Accuracy Reward Curve on OCR-based VQA

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Training Step

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ac
cu

ra
cy

 R
ew

ar
d

Max Step: 3000
Smoothing: moving_avg

Training Reward Curves Comparison
(Smoothed, 0-3000 steps)

T16A1
T8A1
T4A1
T4A4

Figure 12: Accuracy Reward Curve on Trajectory Prediction

Figure 13: Wall-clock Time on Object Detection

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 14: Wall-clock Time on Trajectory Prediction

Figure 15: Wall-clock Time on Code

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 16: Grad Norm and GSS on Object Detection

Figure 17: Grad Norm and GSS on Trajectory Prediction

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 18: Grad Norm and GSS on Code

A.7 USAGE OF LLMS

We employ a Large Language Model (LLM) to refine the manuscript, with a focus on correcting
grammatical errors and enhancing overall readability.

34

	Introduction
	Related Work
	Preliminary: GRPO
	Method
	Pipeline of GRPO-MA
	Variance of the Thought Advantage
	Preliminaries
	Variance of the Thought Advantage
	Analysis of the Variance Structure

	Experiments
	Text and Vision Task
	Task Setting and Metric
	Baselines
	Main Results

	Simulator-based Manipulation Task
	Task Setting
	Baselines
	Main Results

	More Baseline Comparison
	Scaling Analysis
	Ablation Study
	Inconsistency Analysis

	Conclusion
	Appendix
	More Related Work: Applications of GRPO in Multimodal Domains
	Full Analysis of Variance
	The Multivariate Delta Method
	Asymptotic Normality of the Estimated Value Vector
	Application to the Thought Advantage Function
	Application to the Answer Advantage Function
	Diagonality Analysis of Matrices

	Details in Task Settings
	Math
	Code
	Object Detection
	Affordance Prediction
	Trajectory Prediction
	Demand Prediction
	OCR-based VQA
	Simulator-based Visual Manipulation

	Details in Training
	Training Hyperparameters
	SFT Details
	Generation Configure

	More Case Study and Visualization
	More Experimental Analysis
	Accuracy Reward Curve
	Richness of Reward Signals
	Wall-clock Time
	Grad-norm and GSS Curve
	Different Architectures Analysis
	More Results on Code and Math

	Usage of LLMs

