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Abstract

Underwater instance segmentation is a challenging task due to adverse visual conditions
such as light attenuation, scattering, and color distortion, which severely degrade im-
age quality and hinder model performance. In this work, we propose BARD-ERA, a
unified framework that integrates three novel components to address these challenges.
First, the Boundary-Aware Refinement Decoder (BARDecoder) improves mask
quality through progressive feature refinement and lightweight upsampling using a Multi-
Stage Gated Refinement Network and Depthwise Separable Upsampling. Second, the
Environment-Robust Adapter (ERA) enables efficient adaptation to underwater degra-
dations by injecting environment-specific priors with over 90% fewer trainable parameters
than full fine-tuning. Third, the Boundary-Aware Cross-Entropy (BACE) loss en-
hances boundary supervision by leveraging range-null space decomposition. Together, these
modules achieve state-of-the-art performance on the UIIS dataset, surpassing Mask R-
CNN by 3.4 mAP with Swin-B and 3.8 mAP with ConvNeXt V2-B, while maintaining a
compact model size. Our results demonstrate that BARD-ERA enables robust, accurate,
and efficient segmentation in complex underwater scenes. The source code is available at
https://github.com/PANpinchi/BARD-ERA.

Keywords: Underwater Instance Segmentation; Environment-Robust Adapter Tuning;
Boundary-Aware Refinement; Boundary-Aware Cross-Entropy

1. Introduction

Instance segmentation is a fundamental task in computer vision, with applications in au-
tonomous robotics, medical imaging, remote sensing, and environmental monitoring Liu
et al. (2020). While substantial progress has been made in terrestrial environments, un-
derwater instance segmentation remains highly challenging due to various visual distortions
such as light attenuation, scattering, and wavelength-dependent color shifts Akkaynak et al.
(2017). These degradations obscure object boundaries and vary dynamically with depth
and lighting. Additionally, suspended particles (marine snow) and surface reflections fur-
ther complicate the scene, leading to misclassifications and the loss of fine-grained details.
As a result, segmentation models designed for terrestrial datasets often fail to generalize
well to underwater scenes due to differences in texture, lighting, and water clarity.

Existing approaches rely on multi-scale feature fusion Lian et al. (2023) or adapter-based
tuning Lian and others. (2024), enhancing segmentation performance. Techniques such as
RefineMask Zhang et al. (2021) and WaterMask Lian et al. (2023) exploit multi-scale fea-
tures for improved contextual representation. However, RefineMask’s multi-branch design
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Figure 1: Comparison of our approach with state-of-the-art methods on the UIIS dataset.
USIS-SAM Lian and others. (2024) uses a ViT-H backbone, while all other methods adopt
Swin-B. Our BARD-ERA method achieves the best performance across all AP metrics.

is parameter-heavy, and WaterMask aggregates features from limited pyramid levels with-
out stage-wise refinement. Both lack mechanisms for progressive refinement and efficient
upsampling, which can hinder boundary precision and detail recovery in cluttered scenes.
In contrast, USIS-SAM Lian and others. (2024) utilizes a salient feature prompt generator
to generate prompts via multi-scale fusion. While this guides saliency-aware segmentation,
it does not explicitly refine mask boundaries or perform stage-wise feature enhancement.

To address these challenges, we introduce the Boundary-Aware Refinement Decoder
(BARDecoder), aimed at enhancing instance segmentation through progressive feature
refinement and boundary enhancement. Unlike conventional feature pyramid networks,
BARDecoder incorporates a Multi-Stage Gated Refinement Network (MSGRN) for hierar-
chical refinement and Depthwise Separable Upsampling (DSU) for efficient multi-scale fea-
ture fusion, leading to more precise mask delineation with fewer parameters. In addition, we
propose the Environment-Robust Adapter (ERA), a plug-and-play adapter tuning strategy
tailored for underwater imagery. As illustrated in Fig. 2, ERA is inserted after each trans-
former or convolutional block, using lightweight modules to capture environment-specific
priors. This design effectively mitigates underwater degradations such as scattering and
color shifts, while reducing trainable parameters by over 90% compared to full fine-tuning.
To further improve boundary localization, we propose the Boundary-Aware Cross-Entropy
(BACE) loss, which explicitly enhances mask quality by refining object contours. By inte-
grating BARDecoder, ERA, and BACE loss, our full model BARD-ERA achieves robust
and efficient underwater instance segmentation, dynamically adapting to challenging visual
conditions without incurring excessive inference overhead.

As shown in Fig. 1, BARD-ERA achieves consistent improvements over existing methods
in both qualitative and quantitative evaluations on the UIIS dataset. Integrating BARD-
ERA into Mask R-CNN achieves AP gains of 3.4, 1.5, and 5.4 in mAP, AP75, and AP50,
respectively, over the baseline Mask R-CNN He et al. (2017) with Swin-B backbone. These
results highlight the effectiveness of our approach in addressing underwater imaging chal-
lenges. In summary, the main contributions of this work are summarized as follows:
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Figure 2: The Environment-Robust Adapter (ERA) integrated into a Swin Transformer
block. This design enables efficient adaptation to underwater distortions without modifying
the core model architecture.

• To enhance mask precision and boundary quality, we introduce Boundary-Aware Re-
finement Decoder (BARDecoder), which refines multi-scale features progressively us-
ing a gated refinement network and depthwise separable upsampling.

• To enable efficient adaptation to underwater distortions, Environment-Robust Adapter
(ERA) is designed as a lightweight tuning strategy that captures environment-specific
priors with over 90% fewer trainable parameters than full fine-tuning.

• In order to improve mask quality, Boundary-Aware Cross-Entropy (BACE) loss in-
troduces boundary supervision to sharpen object contours and reduce ambiguity.

• Extensive experiments validate the effectiveness of BARD-ERA, establishing it as a
state-of-the-art approach for underwater instance segmentation.

2. Related Work

2.1. Underwater Image Segmentation

Underwater image segmentation remains challenging due to environmental distortions such
as light attenuation, scattering, and color degradation, which obscure object boundaries and
diminish feature contrast. Early benchmarks like EUVP Islam et al. (2020) and SAUD Jiang
et al. (2022) focus on image enhancement and color correction, while datasets such as
USIS10K Lian and others. (2024), UIIS Lian et al. (2023), and DeepFish Garcia-D’Urso
et al. (2022) emphasize biodiversity and fine-grained segmentation.

Recent methods explore multi-scale feature refinement to boost segmentation accuracy
under underwater conditions. WaterMask Lian et al. (2023) fuses features across pyramid
levels to improve context, but lacks stage-wise refinement, limiting its ability to capture fine
details. Such approaches improve segmentation but struggle with boundary preservation in
degraded scenes. USIS-SAM Lian and others. (2024) integrates semantic priors via prompt-
based learning in a transformer framework. Although effective, its reliance on high-level
semantic information and large backbones (e.g., ViT-H) results in high computational cost
and slower inference, limiting real-time applicability. Thus, achieving accurate and efficient
segmentation across diverse underwater environments remains an open challenge.
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2.2. Adapter-Tuning

Adapter-tuning is an efficient transfer learning technique that introduces small, trainable
modules into frozen pretrained networks, reducing the need for full fine-tuning. Originally
developed for natural language processing Houlsby et al. (2019); Tinn et al. (2023), this
approach has gained traction in vision tasks through methods like AdaptFormer Chen et al.
(2022), Polyhistor Liu et al. (2022a), and Mona-tuning Yin et al. (2023). These techniques
have demonstrated success in classification and dense prediction tasks by enabling models
to adapt to new domains with fewer trainable parameters. In underwater segmentation,
USIS-SAM Lian and others. (2024) incorporates adapter-based tuning to integrate domain-
specific priors. However, existing adapter methods primarily focus on feature modulation
and do not explicitly counteract underwater-specific distortions, such as scattering and
wavelength-dependent attenuation. While adapter-tuning efficiently reduces training costs,
its effectiveness in handling complex underwater degradations and segmentation challenges
remains an area requiring further exploration.

3. Method

This section introduces our method with three components: BARDecoder (Section 3.1),
ERA-Tuning (Section 3.2), and Boundary-Aware Cross-Entropy Loss (Section 3.3).
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Figure 3: The architecture of the proposed BARDecoder for underwater instance segmen-
tation. BARDecoder consists of (a) Multi-Stage Gated Refinement Network (defined in
Section 3.1.1) and (b) Depthwise Separable Upsample (defined in Section 3.1.2).
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3.1. BARDecoder

The BARDecoder (Fig. 3) refines instance segmentation masks by progressively fusing multi-
scale features using gated attention and efficient upsampling. While prior works such as
RefineMask Zhang et al. (2021) and WaterMask Lian et al. (2023) leverage multi-level fea-
tures, they either rely on parameter-heavy branches or limited pyramid aggregation without
stage-wise refinement. BARDecoder overcomes these limitations by introducing two novel
components: 1) the Multi-Stage Gated Refinement Network (MSGRN) for selective multi-
scale fusion and 2) the Depthwise Separable Upsample (DSU) module for high-resolution
mask reconstruction. These design choices lead to improved boundary precision and seg-
mentation accuracy while maintaining computational efficiency. Given multi-scale features
{F1,F2,F3,F4} from the backbone, the final segmentation mask Mout is produced as:

Mout = Conv1×1(Φ(F1,F2,F3,F4)), (1)

where Φ(·) represents BARDecoder, which processes multi-scale features using sequential
refinement blocks. Each block applies MSGRN and DSU to refine feature quality:

F̂ i
4 = Mi

MSGRN (F1,F2,F3,F
i
4),

F i+1
4 = Mi

DSU (F̂
i
4), (2)

where F i
4 are the features from the i-th refinement stage.

3.1.1. Multi-Stage Gated Refinement Network

The Multi-Stage Gated Refinement Network (MSGRN) progressively refines multi-scale
features to enhance spatial details, as illustrated in Fig.3 (a). Unlike conventional fusion
methods, it uses Multi-Scale Gated Attention (MSGAttention) to selectively emphasize
informative regions and suppress redundancy, improving boundary precision.

Inspired by High-Order Spatial Attention (HSA) from SegAdapter Peng and Kameyama
(2024), which modulates global features via self-gating, MSGAttention adaptively adjusts
feature weights at multiple scales to refine object boundaries. The process begins with
depthwise separable convolutions (DSConv) for multi-scale feature extraction:

Xn = DSConv3×3(Fn), n ∈ {1, 2, 3, 4},
X ′

n = ROIAlign(Xn), n ∈ {1, 2, 3},
X = Concat(X4, {X ′

n}3n=1) (3)

We then apply MSGAttention to enhance the fused features:

X̂ = Conv1×1(X),

Y = LN(Conv3×3(X̂)),

V = Linear(X̂),

W = DSConv3×3(X
′
1),

Ẑ = MSGAttention(X,X ′
1) = σsig(W )⊙ (Y ⊙ V ),

Z = FFN(Ẑ) = MLP (LN(Ẑ)) + Ẑ (4)
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Here, σsig represents the sigmoid activation, ⊙ denotes the Hadamard product, and LN
denotes layer normalization Xu et al. (2019). While SegAdapter’s HSA globally adjusts
features using high-level semantic priors, MSGAttention locally refines multi-scale features
to enhance spatial details. To stabilize the refinement and preserve previously learned
representations, we integrate a residual connection:

F̂ i
4 = Z +X4, (5)

This refinement strategy enhances boundary accuracy while maintaining model compactness
and efficiency, which is well suited for resource-constrained underwater applications.

3.1.2. Depthwise Separable Upsample

The Depthwise Separable Upsample (DSU) module, shown in Fig. 3 (b), enhances spatial
resolution while preserving feature integrity. Unlike bilinear interpolation, DSU combines
multi-scale depthwise convolutions with pixel shuffle, capturing fine-grained details effi-
ciently. This approach enables effective multi-level feature fusion (F1 to F4) while reducing
computational overhead. We first extract multi-scale features from F̂ i

4:

F̂ i,j
4 = DWConvj×j(F̂

i
4), j ∈ {3, 5, 7}. (6)

Then, aggregated features are passed through upsampling:

F i+1
4 = PS(Conv1×1(Average({F̂ i,j

4 }j∈{3,5,7}))), (7)

Here, PS denotes pixel shuffle. This design enables efficient detail recovery and supports
progressive refinement, improving underwater mask quality with minimal overhead.

Together, MSGRN and DSU enable BARDecoder to progressively refine features with
high spatial fidelity, which is crucial for accurate and detail-preserving segmentation in
underwater scenes with complex degradations. This design achieves strong performance
with significantly fewer parameters than prior multi-branch decoders, as demonstrated in
our ablation study (Section 4.4).

Environment-Robust Adapter (ERA)

L
in

ea
r

S
o

ft
m

ax

L
N

× S1

× S2

(a) Environmental Adaptation

M
S

F
E

D
o

w
n

 P
ro

je
ct

io
n

Z
er

o
 U

p

 P
ro

je
ct

io
n

𝐹
𝐻 ×𝑊 × 𝐶

𝐹𝑝
𝐻 ×𝑊 × 𝐶’

𝐸

𝐹𝑎
𝐻 ×𝑊 × 𝐶

𝐹𝑒
𝐻 ×𝑊 × 𝐶’

Element-wise Sum

Hadamard Product Sigmoid

Dot product

E
n

v
ir

o
n
m

en
ta

l

A
d

ap
ta

ti
o
n𝐹𝑐

𝐻 ×𝑊 × 𝐶’

G
E

L
U

𝐹𝑐 𝐹𝑒

3
×

1
D

W
 C

o
n

v

1
×

3
D

W
 C

o
n

v

5
×

1
D

W
 C

o
n

v

1
×

5
D

W
 C

o
n

v

7
×

1
D

W
 C

o
n

v

1
×

7
D

W
 C

o
n

v

3
×

3
M

ax
 P

o
o

l

1
×

1
C

o
n

v

G
lo
b
al
A
v
g
P
o
o
li
n
g

1
×

1
 C

o
n

v

R
E
L
U

1
×

1
 C

o
n

v

Channel Attention

(b) Multi-Scale Feature Extraction (MSFE)

A𝐹𝑝

𝐻 × 𝑊 × 𝐶’

𝐹𝑐

𝐻 × 𝑊 × 𝐶’

𝐹𝑠
𝐻 × 𝑊 × 𝐶’

Figure 4: The architecture of the Environment-Robust Adapter (ERA). ERA enhances fea-
ture representations through multi-scale feature extraction and environmental adaptation.

3.2. ERA-Tuning

ERA-tuning extends the adapter-based paradigm to address underwater degradation, in-
spired by Mona-Tuning Yin et al. (2023) and recent prompt-based techniques like USIS-
SAM Lian and others. (2024). Unlike USIS-SAM, which integrates general semantic priors,
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ERA learns environmental embeddings to capture underwater degradation patterns. As
shown in Fig. 4, the input features first pass through a normalization layer, followed by
two learnable scaling factors, S1 and S2, which adaptively modulate the feature representa-
tion. ERA then applies a down-projection, mapping features from RH×W×C to RH×W×C′

,
where C ′ = C/γ. The ratio γ controls feature compression and influences adaptability,
as further analyzed in the supplementary material. Beyond environmental adaptation, ef-
fective feature extraction is crucial for robust segmentation. To further enhance spatial
representations, we introduce the Multi-Scale Feature Extraction (MSFE) module.

3.2.1. Multi-Scale Feature Extraction

The Multi-Scale Feature Extraction (MSFE) enhances spatial representations by capturing
information at multiple receptive fields. Inspired by iFormer Si et al. (2022), where diverse
kernel sizes enable robust feature learning. Fig. 4 (b) illustrates the architecture of MSFE,
showcasing the combination of multi-scale depthwise convolutions, max pooling, and chan-
nel attention for robust feature learning. Specifically, MSFE applies multiple depthwise
separable convolutions and max-pooling layers to improve feature discrimination:

Fs,max = Conv1×1(MaxPooling(Fp)),

F j
s,conv = DWConv1×j(DWConvj×1(Fp)), j ∈ {3, 5, 7},
Fs =Average(Fs,max, {F j

s,conv}j∈{3,5,7}) + Fp, (8)

To further enhance feature representation, MSFE integrates a Channel Attention (CA)
mechanism following USIS-SAM Lian and others. (2024). The CA module dynamically
reweights feature channels to emphasize discriminative spectral information:

S = Conv1×1(δ(Conv1×1(GAP (Fs)))),

Fc = CA(F̂s) = F̂s ⊙ σsig(S), (9)

where δ is the RELU activation, σsig is the sigmoid function, and ⊙ denotes element-wise
multiplication. CA improves feature discriminability by emphasizing informative channels,
which is beneficial in underwater conditions with spectral distortion.

3.2.2. Environmental Adaptation

Fig. 4 (a) illustrates the Environmental Adaptation module, which leverages learned en-
vironmental priors to modulate features based on underwater conditions. The environ-
mental adaptation module employs learnable embeddings E ∈ RN×C , where N represents
predefined underwater conditions, to model degradation variations. By learning distinct
embeddings, the module dynamically modulates features based on the observed scene. A
per-pixel environmental descriptor is first computed by projecting feature maps Fc into the
environmental embedding space:

Eadapted = σsoft(Linear(Fc))⊗E, (10)

where σsoft is the Softmax function, ensuring each pixel receives a probabilistic weighting
over environmental types. This allows the model to emphasize features relevant to specific
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conditions, such as light absorption, scattering, and turbidity. The computed priors then
modulate feature representations through a weighted gating mechanism:

Fe = ϕ(Fc ⊙ σsig(Eadapted)), (11)

where σsig denotes the Sigmoid function and ϕ is the GELU activation. This formulation
enhances relevant features while mitigating underwater degradations like light attenuation
and color distortion. Finally, a zero-initialized up-projection step follows Zhang et al. (2023)
to stabilize early training while preserving environmental priors:

Fa = F + Z(Fe), (12)

where Z is a projection initialized to zero. This stabilizes early training while preserving
adaptation priors. Combining environment-specific modulation with efficient parameter
tuning, ERA enables adaptation to underwater scenes without retraining the backbone.

3.3. Boundary-Aware Cross-Entropy Loss

Boundary-Aware Cross-Entropy (BACE) loss improves segmentation quality by guiding
the model to better focus on learning accurate boundary information. BACE loss leverages
range-null space decomposition, a fundamental concept in linear algebra widely applied in
inverse problems Wang et al. (2023a,b). We observe that when applied to segmentation,
this decomposition effectively preserves non-boundary structures while refining ambiguous
edges, facilitating clearer and more accurate boundary representations.

3.3.1. Range-Null Space Decomposition

Given a transformation matrix A ∈ Rd×D, its pseudo-inverse A† ∈ RD×d satisfies:

AA†A = A. (13)

Any vector x ∈ RD can be decomposed into range-space and null-space components:

x = A†Ax+ (I −A†A)x. (14)

The first term projects x onto the range space of A, preserving coarse structural content,
while the second captures residual information in the null space, often associated with high-
frequency boundary information. This decomposition allows us to selectively emphasize
different components of the learning signal during training.

3.3.2. Application in Instance Segmentation

To apply this to segmentation, construct a boundary-aware target Γ by combining structural
guidance from ground truth Mgt and boundary emphasis from model predictions Mθ:

Γ(Mθ,Mgt) = A†AMgt + (I −A†A)Mθ. (15)

Here, A†AMgt emphasizes stable non-boundary regions, while (I −A†A)Mθ encourages
the model to refine focus on more ambiguous boundary areas. This blended supervision leads
the model to sharpen object contours without relying on explicit boundary annotations.

In practice, A is implemented as a max-pooling operator that extracts dominant fea-
tures, whileA† is a nearest-neighbor upsampling that restores spatial resolution. This design
induces the model to learn boundary-aware representations through structured supervision.
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3.3.3. Final Loss Function

The BACE loss is defined as:

LBACE(Mθ,Mgt) =
1

N

N∑
i=1

BCE(M i
gt,Γ(Mθ,Mgt)

i), (16)

and integrated into the total training objective:

LTotal(Mθ,Mgt) = LCE(Mθ,Mgt) + λ · LBACE(Mθ,Mgt), (17)

where λ = 1 balances the contribution of standard cross-entropy and BACE loss. This
formulation helps better localize object boundaries, improving segmentation precision.

4. Experiments

We conduct extensive experiments to evaluate the effectiveness of BARDecoder, ERA-
tuning, and BACE loss across multiple instance segmentation benchmarks. Section 4.1
details the experimental setup, including datasets, baselines, and metrics. Section 4.2 com-
pares with state-of-the-art methods, and Section 4.3 analyzes ERA-tuning efficiency and
adaptability. Section 4.4 presents ablation studies on individual modules, boundary-aware
losses, and refinement strategies. Supplementary material includes extended ablations, de-
tailed ERA analyses, and comparisons of boundary-aware loss variants such as Laplacian
filtering and range-null space decomposition.

4.1. Implementation Details

We evaluate our approach on the Underwater Image Instance Segmentation (UIIS) dataset
Lian et al. (2023) and the Underwater Salient Instance Segmentation (USIS10K) dataset
Lian and others. (2024). The UIIS dataset consists of 3,937 training images and 691 valida-
tion images, covering diverse underwater visibility conditions. USIS10K, a larger dataset,
includes 10,632 images with more complex underwater environments.

We compare BARD-ERA against leading instance segmentation frameworks, includ-
ing Mask R-CNN He et al. (2017), Cascade Mask R-CNN Cai and Vasconcelos (2018),
PointRend Kirillov et al. (2020), SOLOv2 Wang et al. (2020), Mask2Former Cheng et al.
(2022), WaterMask Lian et al. (2023), and USIS-SAM Lian and others. (2024). Addi-
tionally, we evaluate ERA-tuning against mainstream parameter-efficient tuning methods,
including BitFit Zaken et al. (2021); Cai et al. (2020), NormTuning Giannou et al. (2023),
PARTIAL-1 Yosinski et al. (2014), Adapter Houlsby et al. (2019), LoRA Hu et al. (2021),
AdapterFormer Chen et al. (2022), and MONA Yin et al. (2023). To ensure a fair compar-
ison, all methods use either the Swin Transformer Liu et al. (2021) or ConvNeXt V2 Liu
et al. (2022b) backbone, both pre-trained on ImageNet-22k Deng et al. (2009), with the
exception of USIS-SAM, which employs a ViT-H backbone. All models are implemented
in PyTorch Paszke et al. (2017) using the OpenMMLab framework Chen et al. (2019), and
training is conducted on an NVIDIA Titan RTX GPU. For evaluation, we report mask
AP Lin et al. (2014) metrics, including mAP, AP50, AP75, APS , APM , and APL, to ensure
a comprehensive assessment across various IoU thresholds and object sizes.
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Underwater Image Instance Segmentation (UIIS)

Method Backbone mAP AP50 AP75 Params Backbone mAP AP50 AP75 Params

Mask R-CNN Swin-B 28.2 46.6 32.1 106.75 M ConvNeXt V2-B 28.5 46.0 32.3 107.70 M

Cascade Mask R-CNN Swin-B 29.4 48.0 32.7 139.79 M ConvNeXt V2-B 28.2 45.2 32.4 140.74 M

Point Rend Swin-B 29.7 47.7 32.2 118.84 M ConvNeXt V2-B 30.0 47.7 32.3 119.79 M

SOLOv2 Swin-B 28.6 45.4 30.6 109.00 M ConvNeXt V2-B 30.8 47.7 33.9 109.95 M

Mask2Former Swin-B 30.3 45.6 32.4 106.75 M ConvNeXt V2-B 25.1 38.9 26.7 107.70 M

WaterMask Swin-B 30.1 49.0 33.5 110.40 M ConvNeXt V2-B 30.1 48.3 34.4 111.35 M

USIS-SAM ViT-H 29.4 45.0 32.3 698.12 M - - - - -

BARD-ERA (Ours) Swin-B 31.6 52.0 33.6 114.44 M ConvNeXt V2-B 32.3 51.4 36.3 112.46 M

Table 1: Quantitative comparison with state-of-the-art methods on the UIIS dataset. USIS-
SAM Lian and others. (2024) uses a ViT-H backbone, while all other methods adopt Swin-B
and ConvNeXt V2-B backbones. Red indicates the best, blue indicates the second-best.

4.2. Comparison with State-of-the-Art Methods

We evaluate BARD-ERA on the UIIS and USIS10K datasets, comparing its performance
against leading instance segmentation methods. As shown in Table 1, BARD-ERA con-
sistently outperforms prior methods on the UIIS dataset. With the Swin-B backbone, our
method improves mAP by 3.4, 1.3, and 1.5 over Mask R-CNN He et al. (2017), Mask2Former
Cheng et al. (2022), and WaterMask Lian et al. (2023), respectively. With ConvNeXt V2-B,
it surpasses Mask R-CNN, Mask2Former, and SOLOv2 Wang et al. (2020) by 3.8, 7.2, and
1.5 mAP. Table 2 further validates our method on the USIS10K dataset, where BARD-
ERA outperforms WaterMask by 3.1 mAP and USIS-SAM Lian and others. (2024), which
employs a ViT-H backbone, by 4.2 mAP. These results confirm the effectiveness of our
approach across diverse underwater segmentation scenarios.

Underwater Salient Instance Segmentation (USIS10K)

Method Backbone
Multi-Class

mAP AP50 AP75

WaterMask ResNet-101 38.7 54.9 43.2

WaterMask Swin-B 44.2 61.5 49.6

RSPrompter ViT-H 40.2 55.3 44.8

USIS-SAM ViT-H 43.1 59.0 48.5

BARD-ERA (Ours) Swin-B 47.3 65.1 53.7

Table 2: Quantitative comparisons with state-of-the-arts methods on the USIS10K datasets.
BARD-ERA follows the same hyperparameters and settings as in Table 1. Bold: best.

Figure 5 compares BARD-ERA with underwater-specific methods on the UIIS dataset.
WaterMask sometimes fails to segment occluded objects, while USIS-SAM can produce
fragmented masks. Our method preserves object structures and successfully recovers miss-
ing regions, even under turbidity. Figure 6 shows comparisons with terrestrial models such
as SOLOv2 and Mask2Former. These models may produce coarse or misaligned masks on
underwater images, whereas BARD-ERA yields cleaner and more accurate segmentations.
Figure 8 visualizes predictions on USIS10K dataset, showing that BARD-ERA performs re-
liably across diverse underwater scenes, including marine life, divers, and artificial objects.
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Inputs WaterMask USIS-SAM Ours

Figure 5: Qualitative comparison with state-of-the-art underwater-specific methods on
the UIIS dataset, using Swin Transformer (top) and ConvNeXt V2 (bottom) backbones.

Inputs SOLOv2 Mask2Former Ours

Figure 6: Qualitative comparison with ter-
restrial methods on the UIIS dataset.

Inputs

Full

Fine-Tuning MONA Ours

Figure 7: Qualitative comparison with differ-
ent fine-tuning methods on the UIIS dataset.

4.3. Comparison with Fine-Tuning Methods

We evaluated ERA against various fine-tuning techniques using Swin Transformer back-
bones on the UIIS dataset. To ensure a fair comparison, we adjust the number of ERA
parameters by modifying the compression ratio γ so that its trainable parameter count
closely matches that of MONA. This adjustment ensures that the observed improvements
come from the effectiveness of the ERA rather than differences in the parameter budget,
highlighting the efficiency of our approach. As shown in Table 3, ERA achieves the highest
mAP of 29.9, surpassing full fine-tuning by 1.7 mAP while using only 4.67% of the trainable
parameters. Compared to MONA Yin et al. (2023), which achieves 28.9 mAP, ERA further
improves performance by 1.0 mAP.

Fig. 7 qualitatively compares ERA with full fine-tuning and MONA. ERA better pre-
serves boundaries and reduces segmentation errors, especially under challenging conditions
with turbidity and lighting variations. Compared to others, ERA yields more complete
segmentations and finer details, reinforcing its robustness in underwater instance segmen-
tation.
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Method
Trained

Params*
%

Extra

Structure
mAP AP50 AP75 APS APM APL

Swin Transformer

Full Fine-Tuning 86.75 M 100.00 % ✘ 28.2 46.6 32.1 9.5 23.4 39.6

BitFit 0.20 M 0.23 % ✘ 26.0 46.8 25.5 8.4 21.9 36.9

NormTuning 0.06 M 0.07 % ✘ 25.5 45.8 26.0 8.5 21.3 35.0

PARTIAL-1 12.60 M 14.53 % ✘ 25.3 47.3 24.5 9.1 20.4 35.2

Adapter 3.11 M 3.46 % ✓ 24.3 43.9 23.9 8.7 20.4 33.8

LoRA 3.08 M 3.43 % ✓ 25.9 46.8 26.8 9.2 21.2 36.0

AdapterFormer 1.55 M 1.76 % ✓ 27.7 49.0 29.6 9.5 22.6 38.8

MONA 3.67 M 4.06 % ✓ 28.9 48.7 32.5 10.0 22.5 41.4

ERA (Ours) 4.25 M 4.67 % ✓ 29.9 50.5 32.5 10.1 23.5 42.2

Table 3: Quantitative comparison with different fine-tuning methods on UIIS dataset using
Swin Transformer backbones. Red indicates the best, and blue indicates the second-best.
* denotes the trainable parameters in backbones.

Method mAP AP50 AP75 APS APM APL Params

Mask R-CNN 28.2 46.6 32.1 9.5 23.4 39.6 106.75 M

w/ BARDecoder 30.0 49.2 32.1 9.5 23.7 42.8 105.14 M

w/ ERA 30.2 51.6 32.0 10.8 23.6 41.9 116.06 M

w/ BACE Loss 29.3 48.4 32.4 10.6 23.5 39.7 106.75 M

Full model (Ours) 31.6 52.0 33.6 10.7 24.0 45.0 114.44 M

Table 4: Effectiveness of each component. Swin-Transformer backbone and 1× training
schedule is adopted. Bold: best.

4.4. Ablation Studies

Effectiveness of Each Component. We analyze the contribution of each component in
BARD-ERA using the Swin Transformer backbone, as shown in Table 4. The Mask R-CNN
achieves an mAP of 28.2, serving as the baseline. Incorporating the BARDecoder improves
mAP to 30.0, enhancing feature boundaries, refining details, and strengthening multi-scale
fusion. ERA-tuning further increases mAP to 30.2, demonstrating its effectiveness in mit-
igating underwater degradations and improving feature adaptability. BACE Loss boosts
boundary refinement, achieving 29.3 mAP. The full model, integrating all components, at-
tains the highest mAP of 31.6, confirming their complementary benefits for underwater
instance segmentation.

Effectiveness of Refinement Method. To justify the design of BARDecoder, we com-
pare it with existing refinement modules, including RefineMask Zhang et al. (2021) and
WaterMask Lian et al. (2023), as shown in Table 5. While all methods leverage multi-
scale feature fusion, BARDecoder introduces a gated refinement mechanism that selectively
enhances informative features while preserving structural details. Notably, BARDecoder
achieves the highest mAP while maintaining the lowest parameter count among the com-
pared methods. This demonstrates its superior trade-off between accuracy and efficiency,
validating its effectiveness in refining object boundaries and improving feature aggregation
under resource constraints.
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Figure 8: Visualization of prediction results on samples from the USIS10K dataset, using
our BARD-ERA method with Swin Transformer backbones.

Method mAPAP50 AP75 Params

Mask R-CNN 28.2 46.6 32.1 106.75 M

w/ RefineMask 29.7 47.8 32.8 110.35 M

w/ WaterMask 29.3 46.7 32.5 110.40 M

w/ BARDecoder (Ours) 30.0 49.2 32.1 105.14 M

Table 5: Effectiveness of refinement method.
Bold: best.

Method mAP AP50 AP75

Cross Entropy Loss (CE) 28.2 46.6 32.1

CE + b-awareness Loss 28.9 47.3 32.0

CE + AB Loss 28.5 47.5 32.3

CE + BACE Loss (Ours) 29.3 48.4 32.4

Table 6: Effectiveness of boundary-aware
loss. Bold: best.

Effectiveness of Different Boundary-Aware Loss. Table 6 compares BACE Loss
with other boundary-aware losses. Unlike b-awareness Loss from PIDNet, which applies
weighted cross-entropy to emphasize edges, and Active Boundary Loss (ABL), which opti-
mizes local boundary alignment, BACE Loss uses range-null space decomposition to refine
boundary consistency while preserving global structure. It achieves an mAP of 29.3, out-
performing prior losses and demonstrating effectiveness in challenging segmentation tasks.

5. Conclusion

In this work, we present BARD-ERA, a boundary-aware and environment-adaptive frame-
work for underwater instance segmentation. The proposed BARDecoder refines multi-scale
features through a Multi-Stage Gated Refinement Network (MSGRN) and Depthwise Sepa-
rable Upsampling (DSU), achieving accurate and detail-preserving segmentation with fewer
parameters than prior refinement designs. To address underwater degradation, we introduce
the Environment-Robust Adapter (ERA), a lightweight tuning module that captures envi-
ronmental priors with over 90% fewer trainable parameters compared to full fine-tuning.
Additionally, the Boundary-Aware Cross-Entropy (BACE) loss guides the model to bet-
ter learn boundary representations via range-null space decomposition. Extensive exper-
iments on UIIS and USIS10K benchmarks validate the effectiveness of each component,
with BARD-ERA achieving state-of-the-art performance in both accuracy and efficiency.
In future work, we plan to further improve robustness under severe turbidity and lighting
distortions, and extend our framework to broader underwater vision tasks and real-time
deployment scenarios.
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