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ABSTRACT

In this work, we study the challenge of providing human-understandable descrip-
tions for failure modes in trained image classification models. Existing works
address this problem by first identifying clusters (or directions) of incorrectly clas-
sified samples in a latent space and then aiming to provide human-understandable
text descriptions for them. We observe that in some cases, describing text does
not match well with identified failure modes, partially owing to the fact that
shared interpretable attributes of failure modes may not be captured using clus-
tering in the feature space. To improve on these shortcomings, we propose a
novel approach that prioritizes interpretability in this problem: we start by ob-
taining human-understandable concepts (tags) of images in the dataset and then
analyze the model’s behavior based on the presence or absence of combinations
of these tags. Our method also ensures that the tags describing a failure mode
form a minimal set, avoiding redundant and noisy descriptions. Through several
experiments on different datasets, we show that our method successfully iden-
tifies failure modes and generates high-quality text descriptions associated with
them. These results highlight the importance of prioritizing interpretability in un-
derstanding model failures.

1 INTRODUCTION

A plethora of reasons (spurious correlations, imbalanced data, corrupted inputs, etc.) may lead a
model to underperform on a specific subpopulation; we term this a failure mode. Failure modes
are challenging to identify due to the black-box nature of deep models, and further, they are often
obfuscated by common metrics like overall accuracy, leading to a false sense of security. However,
these failures can have significant real-world consequences, such as perpetuating algorithmic bias
(Buolamwini & Gebru, 2018) or unexpected catastrophic failure under distribution shift. Thus, the
discovery and description of failure modes is crucial in building reliable AI, as we cannot fix a
problem without first diagnosing it.

Detection of failure modes or biases within trained models has been studied in the literature. Prior
work (Tsipras et al., 2020; Vasudevan et al., 2022) requires humans in the loop to get a sense of biases
or subpopulations on which a model underperforms. Some other methods (Sohoni et al., 2020b;
Nam et al., 2020; Kim et al., 2019; Liu et al., 2021) do the process of capturing and intervening in
hard inputs without providing human-understandable descriptions for challenging subpopulations.
Providing human-understandable and interpretable descriptions for failure modes not only enables
humans to easily understand hard subpopulations, but enables the use of text-to-image methods
(Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022; Kattakinda et al., 2022) to generate
relevant images corresponding to failure modes to improve model’s accuracy over them.

Recent work (Eyuboglu et al., 2022; Jain et al., 2022; Kim et al., 2023; d’Eon et al., 2021) takes
an important step in improving failure mode diagnosis by additionally finding natural language de-
scriptions of detected failure modes, namely via leveraging modern vision-language models. These
methodologies leverage the shared vision-language latent space, discerning intricate clusters or di-
rections within this space, and subsequently attributing human-comprehensible descriptions to them.

∗Equal contribution.
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fox (81.96%)

fox + white + zoo (35.29%) fox + grass + stand + field + dry (47.83%)

Figure 1: Visualization of two detected failure modes of class “fox” on a model trained on Living17.
Overall accuracy for images of class “fox” is 81.96%. However, we identify two coherent subsets
of images with significant accuracy drops: foxes standing in dry grass fields (47.83% accuracy)
and foxes in a zoo where a white object (fox or other objects) is detected (35.29% accuracy). See
Appendix A.4 for more examples.

However, questions have been raised regarding the quality of the generated descriptions, i.e., there
is a need to ascertain whether the captions produced genuinely correspond to the images within
the identified subpopulation. Additionally, it is essential to determine whether these images convey
shared semantic attributes that can be effectively articulated through textual descriptions.

In this work, we investigate whether or not the latent representation space is a good proxy for seman-
tic space. In fact, we consider two attributed datasets: CelebA(Liu et al., 2015) and CUB-200(Wah
et al., 2011) and observe that two samples sharing many semantic attributes may indeed lie far away
in latent space, while nearby instances may not share any semantics (see Section 5.2). Hence, exist-
ing methods may suffer from relying on representation space as clusters and directions found in this
space may contain images with different semantic attributes leading to less coherent descriptions.

Inspired by this observation and the significance of faithful descriptions, we propose PRIME. In
this method, we suggest to reverse the prevailing paradigm in failure mode diagnosis. That is,
we put interpretability first. In our method, we start by obtaining human-understandable con-
cepts (tags) of images using a pre-trained tagging model and examine model’s behavior condi-
tioning on the presence or absence of a combination of those tags. In particular, we consider
different groups of tags and check whether (1) there is a significant drop in model’s accuracy
over images that represent all tags in the group and (2) that group is minimal, i.e., images hav-
ing only some of those tags are easier images for the model. When a group of tags satisfies
both of these conditions, we identify it as a failure mode which can be effectively described by
these tags. Figure 2 shows the overview of our approach and compares it with existing methods.

Existing Methods

(I) Extracting Failure
Modes

(II) Interpreting
Failure Modes

vision-language latent space

image-text similarity score

(I) Extracting
Interpretable Tags

(II) Extracting Failure
Modes

Figure 2: PRIME illustration.

As an example, by running PRIME on a trained model over
Living17, we realize that images where a black ape is hang-
ing from a tree branch identify a hard subpopulation such that
model’s accuracy drops from 86.23% to 41.88%. Crucially,
presence of all 3 of these tags is necessary, i.e., when we con-
sider images that have 1 or 2 of these 3 tags, the accuracy of
model is higher. Figure 3 illustrates these failure modes. We
further study the effect of number of tags in Section 5.1.

To further validate our method, we examine data unseen during
the computation of our failure mode descriptions. We observe
that the images that match a failure mode lead the model to
similarly struggle. That is, we demonstrate generalizability of our failure modes, crucially, directly
from the succinct text descriptions. While reflecting the quality of our descriptions, this allows for
bringing in generative models. We validate this claim by generating hard images using some of the
failure mode’s descriptions and compare the accuracy of model on them with some other generated
images that correspond to easier subpopulations.
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ape + hang (70.09%) ape + black (73.21%) ape + branch (69.23%)

ape + hang + branch + black (41.88%)

ape  (86.23%)

All 3 Tags

Figure 3: Although appearance of tags “hang”, “black”, and “branch” individually lowers model’s
accuracy, when all of them appear in the images, model’s accuracy drops from 86.23% to 41.88%.

Finally, we show that PRIME produces better descriptions for detected failure modes in terms of
similarity, coherency, and specificity of descriptions, compared to prior work that does not prior-
itize interpretability. Evaluating description quality is challenging and typically requires human
assessment, which can be impractical for extensive studies. To mitigate that, inspired by CLIPScore
(Hessel et al., 2021), we present a suite of three automated metrics that harness vision-language
models to evaluate the quality. These metrics quantify both the intra-group image-description simi-
larity and coherency, while also assessing the specificity of descriptions to ensure they are confined
to the designated image groups. We mainly observe that due to putting interpretability first and
considering different combinations of tags (concepts), we observe improvements in the quality of
generated descriptions. We discuss PRIME’s limitations in Appendix A.1.

Summary of Contribution.

1. We propose PRIME to extract and explain failure modes of a model in human-
understandable terms by prioritizing interpretability.

2. Using a suite of three automated metrics to evaluate the quality of generated descriptions,
we observe improvements in our method compared to strong baselines such as Eyuboglu
et al. (2022) and Jain et al. (2022) on various datasets.

3. We advocate for the concept of putting interpretability first by providing empirical evidence
derived from latent space analysis, suggesting that distance in latent space may at times be
a misleading measure of semantic similarity for explaining model failure modes.

2 LITERATURE REVIEW

Failure mode discovery. The exploration of biases or challenging subpopulations within datasets,
where a model’s performance significantly declines, has been the subject of research in the field.
Some recent methods for detecting such biases rely on human intervention, which can be time-
consuming and impractical for routine usage. For instance, recent works (Tsipras et al., 2020; Va-
sudevan et al., 2022) depend on manual data exploration to identify failure modes in widely used
datasets like ImageNet. Another line of work uses crowdsourcing (Nushi et al., 2018; Idrissi et al.,
2022; Plumb et al., 2021) or simulators (Leclerc et al., 2022) to label visual features, but these
methods are expensive and not universally applicable. Some researchers utilize feature visualization
(Engstrom et al., 2019; Olah et al., 2017) or saliency maps (Selvaraju et al., 2017; Adebayo et al.,
2018) to gain insights into the model’s failure, but these techniques provide information specific to
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individual samples and lack aggregated knowledge across the entire dataset. Some other approaches
(Sohoni et al., 2020a; Nam et al., 2020; Liu et al., 2021; Hashimoto et al., 2018) automatically
identify failure modes of a model but do not provide human-understandable descriptions for them.

Recent efforts have been made to identify difficult subpopulations and assign human-understandable
descriptions to them (Eyuboglu et al., 2022; Jain et al., 2022; Kim et al., 2023). DOMINO (Eyuboglu
et al., 2022) uses the latent representation of images in a vision-language model to cluster difficult
images and then assigns human-understandable descriptions to these clusters. Jain et al. (2022)
identifies a failure direction in the latent space and assigns description to images aligned with that
direction. Hoffmann et al. (2021) shows that there is a semantic gap between similarity in latent
space and similarity in input space, which can corrupt the output of methods that rely on assigning
descriptions to latent embeddings. In (Kim et al., 2023), concepts are identified whose presence in
images leads to a substantial decrease in the model’s accuracy. Recent studies (Johnson et al., 2023;
Gao et al., 2023) highlight the challenge of producing high-quality descriptions in the context of
failure mode detection.

Vision-Language and Tagging models. Vision-language models have achieved remarkable success
through pre-training on large-scale image-text pairs (Radford et al., 2021). These models can be
utilized to incorporate vision-language space and evaluate captions generated to describe images.
Recently Moayeri et al. (2023); Li et al. (2023) bridge the modality gap and enable off-the-shelf
vision encoders to access shared vision-language space. Furthermore, in our method, we utilize
models capable of generating tags for input images (Huang et al., 2023; Zhang et al., 2023).

3 EXTRACTING FAILURE MODES BY CONDITIONING ON
HUMAN-UNDERSTANDABLE TAGS

Undesirable patterns or spurious correlations within the training dataset can lead to performance
discrepancies in the learned models. For instance, in the Waterbirds dataset (Sagawa et al., 2019),
images of landbirds are predominantly captured in terrestrial environments such as forests or grass-
lands. Consequently, a model can heavily rely on the background and make a prediction based on
that. Conversely, the model may also rely on cues such as the presence of the ocean, sea, or boats
to identify the input as waterbirds. This can result in performance drops for images where a water-
bird is photographed on land or a landbird is photographed at sea. Detecting failure modes involves
identifying groups of inputs where the model’s performance significantly declines. While locating
failure inputs is straightforward, categorizing them into distinct groups characterized by human-
understandable concepts is a challenging task. To explain failure modes, we propose PRIME. Our
method consists of two steps: (I) obtaining relevant tags for the images, and (II) identifying failure
modes based on extracted tags.

3.1 OBTAINING RELEVANT TAGS

We start our method by collecting concepts (tags) over the images in the dataset. For example,
for a photo of a fox sampled from ImageNet (Deng et al., 2009), we may collect tags “orange”,
“grass”, “trees”, “walking”, “zoo”, and others. To generate these tags for each image in our dataset,
we employ the state-of-the-art Recognize Anything Model (RAM) (Zhang et al., 2023; Huang et al.,
2023), which is a model trained on image-caption pairs to generate tags for the input images. RAM
makes a substantial step for large models in computer vision, demonstrating the zero-shot ability to
recognize any common category with high accuracy.

Let D be the set of all images. We obtain tags over all images of D. Then, we analyze the effect
of tags on prediction in a class-wise manner. In fact, the effect of tags and patterns on the model’s
prediction depends on the main object in the images, e.g., presence of water in the background
improves performance on images labeled as waterbird while degrading performance on landbird
images. For each class c in the dataset, we take the union of tags generated by the model over
images of class c. Subsequently, we eliminate tags that occur less frequently than a predetermined
threshold. This threshold varies depending on the dataset size, specifically set at 50, 100, and 200 in
our experimental scenarios. In fact, we remove rare (irrelevant) tags and obtain a set of tags Tc for
each class c in the dataset, e.g., Tc = {“red”, “orange”, “snow”, “grass”, ...}.
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3.2 DETECTING FAILURE MODES

After obtaining tags, we mainly focus on tags whose presence in the image leads to a performance
drop in the model. Indeed, for each class c, we pick a subset Sc ⊆ Tc of tags and evaluate the
model’s performance on the images of class c including all tags in Sc. We denote this set of images
by ISc . ISC

is a coherent image set in the sense that those images share at least the tags in Sc.

For ISc
, to be a failure mode, we require that the model’s accuracy over images of ISc

significantly
drops, i.e., denoting the model’s accuracy over images of ISc

by ASc
and the model’s overall ac-

curacy over the images of class c by Ac, then ASc
≤ Ac − a. Parameter a plays a pivotal role in

determining the severity of the failure modes we aim to detect. Importantly, we want the tags in Sc

to be minimal, i.e., none of them should be redundant. In order to ensure that, we expect that the
removal of any of tags in Sc determines a relatively easier subpopulation. In essence, presence of
all tags in Sc is deemed essential to obtain that hard subpopulation.

More precisely, Let n to be the cardinality of Sc, i.e., n = |Sc|. We require all tags t ∈ Sc to be
necessary. i.e., if we remove a tag t from Sc, then the resulting group of images should become an
easier subpopulation. More formally, for all t ∈ Sc, ASc\t ≥ ASc

+ bn where b2, b3, b4, ... are some
hyperparameters that determine the degree of necessity of appearance of all tags in a group. We
generally pick b2 = 10%, b3 = 5% and b4 = 2.5% in our experiments. These values help us fine-
tune the sensitivity to tag necessity and identify meaningful failure modes. Furthermore, we require
a minimum of s samples in ISc for reliability and generalization. This ensures a sufficient number of
instances where the model’s performance drops, allowing us to confidently identify failure modes.
Figure 1 shows some of the obtained failure modes.

How to obtain failure modes. We generally use Exhaustive Search to obtain failure modes. In
exhaustive search, we systematically evaluate various combinations of tags to identify failure modes,
employing a brute-force approach that covers all possible combinations of tags up to l ones. More
precisely, we consider all subsets Sc ⊆ Tc such that |Sc| ≤ l and evaluate the model’s performance
on ISc . As mentioned above, we detect Sc as a failure mode if (1) |ISc | ≥ s, (2) model’s accuracy
over ISc is at most Ac−a, and (3) Sc is minimal, i.e., for all t ∈ Sc, ASc\t ≥ ASc +b|Sc|. It is worth
noting that the final output of the method is all sets ISc that satisfy those conditions and description
for this group consist of class name (c) and all tags in Sc.

We note that the aforementioned method runs with a complexity of O
(
|Tc|l|D|

)
. However, l is

generally small, i.e., for a failure mode to be generalizable, we mainly consider cases where l ≤ 4.
Furthermore, in our experiments over different datasets |Tc| ≈ 100, thus, the exhaustive search is
relatively efficient. For instance, running exhaustive search (l = 4, s = 30, a = 30%) on Liv-
ing17 dataset having 17 classes with 88400 images results in obtaining 132 failure modes within a
time frame of under 5 minutes. We refer to Appendix A.6 for more efficient algorithms and Ap-
pendix A.15 for more detailed explanation of PRIME’s hyperparameters.

Experiments and Comparison to Existing Work. We run experiments on models trained on Liv-
ing17, NonLiving26, Entity13 (Santurkar et al., 2020), Waterbirds (Sagawa et al., 2019), and CelebA
(Liu et al., 2015) (for age classification). We refer to Appendix A.2 for model training details and
the different hyperparameters we used for failure mode detection. We refer to Appendix A.3 for
the full results of our method on different datasets. We engage two of the most recent failure mode
detection approaches DOMINO(Eyuboglu et al., 2022) and Distilling Failure Directions(Jain et al.,
2022) as strong baselines and compare our approach with them.

4 EVALUATION

Let D be the dataset on which we detect failure modes of a trained model. The result of
a human-understandable failure mode extractor on this dataset consists of sets of images, denoted
as I1, I2, ..., Im, along with corresponding descriptions, labeled as T1, T2, ..., Tm. Each set Ij com-
prises images that share similar attributes, leading to a noticeable drop in model accuracy. Number
of detected failure modes, m, is influenced by various hyperparameters, e.g., in our method, mini-
mum accuracy drop (a), values for b2, b3, ..., and the minimum group size (s) are these parameters.

One of the main goals of detecting failure modes in human-understandable terms is to generate
high-quality captions for hard subpopulations. We note that these methods should also be evaluated
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photo of a gray bear in water

photo of a bear cub climbing a tree photo of a white parrot on a grass field

close-up photo of a blue parrot
gray + water

cub + climbing + tree

close-up + blue

white + grass field
photo of a fox in a zoo behind fence

zoo + fence

photo of a red fox laying and staring at the camera
red + lay + stareEasy

Hard

Figure 4: Accuracy of model over 50 generated images corresponding to one of the success modes
and failure modes for classes “bear”, “ parrot”, and “fox” from Living17. Accuracy gap shows that
our method can identify hard and easy subpopulations. Images show that extracted tags are capable
of describing detailed images.

in terms of coverage, i.e., what portion of failure inputs are covered along with the performance
gap in detected failure modes. All these methods extract hard subpopulations on which the model’s
accuracy significantly drops, and coverage depends on the dataset and the hyperparameters of the
method, thus, we mainly focus on generalizability of our approach and quality of descriptions.

4.1 GENERALIZATION ON UNSEEN DATA

In order to evaluate generalizability of the resulted descriptions, we take dataset D′ including un-
seen images and recover relevant images in that to each of captions T1, T2, ..., Tm, thus, obtaining
I ′1, I

′
2, ..., I

′
m. Indeed, I ′j includes images in D′ that are relevant to Tj . If captions can describe hard

subpopulations, then we expect hard subpopulations in I ′1, I
′
2, ..., I

′
m. Additionally, since D and D′

share the same distribution, we anticipate the accuracy drop in Ij to closely resemble that in I ′j .

In our method, for a detected failure mode ISc , we obtain I ′Sc
by collecting images of D′ that have

all tags in Sc. For example, if appearance of tags “black”, “snowing”, and “forest” is detected
as a failure mode for class “bear”, we evaluate model’s performance on images of “bear” in D′

that include those three tags, expecting a significant accuracy drop for model on those images.
As seen in Figure 9, PRIME shows a good level of generalizability. We refer to Appendix A.5
for generalization on other datasets with respect to different hyperparameters (s and a). While
all our detected failure modes generalize well, we observe stronger generalization when using more
stringent hyperparameter values (high s and a), though it comes at the cost of detecting fewer modes.

In contrast, existing methods (Eyuboglu et al., 2022; Jain et al., 2022) do not provide a direct way
to assess generalization from text descriptions alone. See Appendix A.9 for more details.

4.2 GENERALIZATION ON GENERATED DATA

In this section we validate PRIME on synthetic images. To utilize image generation models, we
employ language models to create descriptive captions for objects and tags associated with failure
modes in images. We note that use of language models is just for validation on synthetic images,
it is not a part of PRIME framework. We discuss about limitations of using language models in
Appendix A.1. These captions serve as prompts for text-to-image generative models, enabling
the creation of artificial images that correspond to the identified failure modes. To achieve this, we
adopt the methodology outlined in Vendrow et al. (2023), which leverages a denoising diffusion
model (Ho et al., 2020; Rombach et al., 2022). We fine-tune the generative model on the Living17
dataset to generate images that match the distribution of the data that the classifiers is trained on.
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For each class in Living17 dataset, we apply our approach to identify two failure modes (hard sub-
populations) and two success modes (easy subpopulations). We then employ ChatGPT1 to generate
descriptive captions for these groups. Subsequently, we generate 50 images for each caption and
assess the model’s accuracy on these newly generated images. We refer to Appendix A.10 for more
details on this experiment and average discrepancy in accuracy between the success modes and fail-
ure modes which further validates PRIME. Figure 4 provides both accuracy metrics and sample
images for three hard and three easy subpopulations.

4.3 QUALITY OF DESCRIPTIONS

Within this section, our aim is to evaluate the quality of the descriptions for the identified failure
modes. In contrast to Section 4.2, where language models were employed to create sentence de-
scriptions using the tags associated with each failure mode, here we combine tags and class labels
in a bag-of-words manner. For instance, when constructing the description for a failure mode in the
“ape” class with the tags “black” + “branch,” we formulate it as ”a photo of ape black branch”. We
discuss more about it in Appendix A.1.

In order to evaluate the quality of descriptions, we propose a suite of three complementary auto-
mated metrics that utilize vision-language models (such as CLIP) as a proxy to obtain image-text
similarity (Hessel et al., 2021). Let t be the failure mode’s description, ftext(t) denote the normal-
ized embedding of text prompt t and fvision(x) denote the normalized embedding of an image x.
The similarity of image x to this failure mode’s description t is the dot product of image and text
representation in shared vision-language space. More precisely, sim(x, t) := ⟨fvision(x), ftext(t)⟩.
For a high-quality failure mode Ij and its description Tj , we wish Tj to be similar to images in Ij ,
thus, we consider the average similarity of images in Ij and Tj . we further expect a high level of
coherency among all images in Ij , i.e., these images should all share multiple semantic attributes
described by text, thus, we wish the standard deviation of similarity scores between images in Ij and
Tj to be low. Lastly, we expect generated captions to be specific, capturing the essence of the failure
mode, without including distracting irrelevant information. That is, caption Tj should only describe
images in Ij and not images outside of that. As a result, we consider the AUROC between the
similarity score of images inside the failure mode (Ij) and some randomly sampled images outside
of that. We note that in existing methods as well as our method, all images in a failure mode have
the same label, so we sample from images outside of the group but with the same label.

In Figure 5, we show (1) the average similarity score, i.e., for all Ij and x ∈ Ij , we take the mean of
sim(x, Tj), (2) the standard deviation of similarity score, i.e., the standard deviation of sim(x, Tj)
for all Ij and x ∈ Ij , and (3) the AUROC between the similarity scores of images inside failure
modes to their corresponding description and some randomly sampled images outside of the failure
mode to that. As shown in Figure 5, PRIME improves over DOMINO (Eyuboglu et al., 2022) in
terms of all AUROC, average similarity, and standard deviation on different datasets. It is worth
noting that this improvement comes even though DOMINO chooses a text caption for the failure
mode to maximize the similarity score in latent space. We use hyperparameters for DOMINO
to obtain fairly the same number of failure modes detected by PRIME. Results in Figure 5 show
that PRIME is better than DOMINO in the descriptions it provides for detected failure modes. In
Appendix A.8 we provide more details on these experiments. Due to the limitations of Jain et al.
(2022) for automatically generating captions, we cannot conduct extensive experiments on various
datasets. More details and results on that can be found in Appendix A.11.

5 ON COMPLEXITY OF FAILURE MODE EXPLANATIONS

We note that the main advantage of our method is its more faithful interpretation of failure modes.
This comes due to (1) putting interpretability first, i.e., we start by assigning interpretable tags to
images and then recognize hard subpopulations and (2) considering combination of several tags
which leads to a higher number of attributes (tags) in the description of the group.

1ChatGPT 3.5, August 3 version
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Figure 5: The mean and standard deviation of similarity scores between images in failure modes
and their respective descriptions, along with the AUROC measuring the similarity score between
descriptions and images inside and outside of failure modes, demonstrate that our method outper-
forms DOMINO in descriptions it generates for detected failure modes across various datasets.

5.1 DO WE NEED TO CONSIDER COMBINATION OF TAGS?

We shed light on the number of tags in the failure modes detected by our approach. We note that
unlike Bias2Text (Kim et al., 2023) that finds biased concepts on which model’s behavior changes,
we observe that sometimes appearance of several tags (concepts) all together leads to a severe failure
mode. As an example, we refer to Table 1 where we observe that appearance of all 3 tags together
leads to a significant drop while single tags and pairs of them show relatively better performance.

Table 1: Accuracy on unseen images (D′) for
class “ape” when given tags appear in the in-
puts (see Table 5 for visualization).

# of Tags Tags Accuracy
3 hang; branch; black; 41.18%

2
hang; branch; 56.33%
hang; black; 56.25%

branch; black; 54.67%

1
hang; 70.09%

branch; 69.23%
black; 73.21%

Table 2: Average accuracy drop over unseen
images (D′) on failure modes with 3 tags and
images have at least 2 of those tags or at least
one of them.

Dataset 3 Tags 2 Tags 1 Tag
Entity13 34.75% 25.29% 14.86%
Living17 26.82% 17.13% 8.18%

Waterbirds 23.35% 14.43% 7.19%
CelebA 23.25% 16.84% 9.02%

In PRIME, we emphasize the necessity of tags. Specifically, for any detected failure mode, the re-
moval of any tag would result in an easier subpopulation. Consequently, failure modes with more
tags not only provide more detailed description of their images but also characterize more chal-
lenging subpopulations. Table 2 presents the average accuracy drop on unseen images for groups
identified by three tags, compared to the average accuracy drop on groups identified by subsets
of two tags or even a single tag from those failure modes. These results clearly demonstrate that
involving more tags leads to the detection of more challenging subpopulations.
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5.2 CLUSTERING-BASED METHODS MAY STRUGGLE IN GENERATING COHERENT OUTPUT

Table 3: Statistics of the distance between two
points in CelebA conditioned on number of shared
tags. Distances are reported using CLIP ViT-B/16
representation space. The last column shows the
probability that the distance between two sampled
images with at least d common tags be more than
that of two randomly sampled images.

# of shared tags ≥ d mean standard deviation Probability

d = 0 9.49 0.98 0.50
d = 1 9.47 1.00 0.49
d = 3 9.23 1.00 0.42
d = 5 8.89 1.21 0.34
d = 7 8.32 1.80 0.25

We empirically analyze the reverse direction of
detecting human-understandable failure modes.
We note that in recent work where the goal
is to obtain interpretable failure modes, those
groups are found by clustering images in the la-
tent space. Then, when a group of images or
a direction in the latent space is found, these
methods leverage the shared space of vision-
language to find the text that best describes the
images inside the group.

We argue that these approaches, based on
distance-based clusters in the representation
space, may produce less detailed descriptions.
This is because the representation space doesn’t
always align perfectly with the semantic space.
Even points close to each other in the feature space may differ in certain attributes, and conversely,
points sharing human-understandable attributes may not be proximate in the feature space. Hence,
these approaches cannot generate high-quality descriptions as their detected clusters in the represen-
tation space may contain images with other semantic attributes.

To empirically test this idea, we use two attribute-rich datasets: CelebA (Liu et al., 2015) and CUB-
200 (Wah et al., 2011). CelebA features 40 human-understandable tags per image, while CUB-200,
a dataset of birds, includes 312 tags per image, all referring to semantic attributes. We use CLIP
ViT-B/16 (Radford et al., 2021) and examine its representation space in terms of datasets’ tags.
Table 3 shows the statistics of the distance between the points conditioned on the number of shared
tags. As seen in the Table 3, although the average of distance between points with more common
tags slightly decreases, the standard deviation of distance between points is high. In fact, points
with many common tags can still be far away from each other. Last column in Table 3 shows
the probability that the distance between two points with at least d shared tags be larger than the
distance of two randomly sampled points. Even when at least 5 tags are shared between two points,
with the probability of 0.34, the distance can be larger than two random points. Thus, if we plant a
failure mode on a group of images sharing a subset of tags, these clustering-based methods cannot
find a group consisting of only those images; they will inevitably include other irrelevant images,
leading to an incoherent failure mode set and, consequently, a low-quality description. This can be
observed in Appendix A.7 where we include DOMINO’s output.

We also run another experiment to foster our hypothesis that distance-based clustering methods
cannot fully capture semantic similarities. We randomly pick an image x and find N closest images
to x in the feature space. Let C be the set of these images. We inspect this set in terms of the
number of tags that commonly appear in its images as recent methods (Eyuboglu et al., 2022; d’Eon
et al., 2021; Jain et al., 2022), take the average embedding of images in C and then assign a text to
describe images of C. Table 6 shows the average number of tags that appear in at least αN images
of set C (we sample many different points x). If representation space is a good proxy for semantic
space, then we expect a large number of shared tags in close proximity to point x. At the same time,
for the point x, we find the maximum number of tags that appear in x and at least N other images.
This is the number of shared tags in close proximity of point x but in semantic space. As shown
in Table 6, average number of shared tags in semantic space is significantly larger than the average
number of shared tags in representation space.

6 CONCLUSIONS

In this study, drawing from the observation that current techniques in human-comprehensible failure
mode detection sometimes produce incoherent descriptions, along with empirical findings related to
the latent space of vision-language models, we introduced PRIME, a novel approach that prioritizes
interpretability in failure mode detection. Our results demonstrate that it generates descriptions that
are more similar, coherent, and specific compared to existing methods for the detected failure modes.
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A APPENDIX

A.1 LIMITATIONS

Utilizing pre-trained tagging models We note that in this work, we used RAM (Zhang et al.,
2023) to extract tags from images and then used those tags to identify hard subpopulations. Ac-
curacy of RAM which is the state-of-the-art tagging model is well studied in (Zhang et al., 2023).
Authors observe high-quality performance of their method on different common datasets over dif-
ferent tasks. We also conducted a small-scale human validation study to measure the accuracy of
RAM on Living17 dataset (see Appendix A.14 for more details) and observe strong performance.
However, we acknowledge that PRIME, like other existing methods, utilizes an auxiliary model to
bridge the gap between vision and language modalities. Thus, its performance is affected and lim-
ited by the auxiliary method. Notably, our use of the auxiliary model (tagging models) is closely
aligned to the task they are optimized for. That is, these models are trained to efficiently detect
various objects and concepts in images, assigning tags accordingly. As tagging models advance,
PRIME’s effectiveness is expected to be enhanced.

PRIME for specific domains We note that PRIME relies on tagging model to extract informative
tags from image, making it less effective on specific domains for which the tagging model is not
optimally suited. However, we believe it is highly likely that tagging models like RAM that are
finetuned on specific domains will arise very soon, similar to how ConVIRT (CLIP for medical
data) (Zhang et al., 2022) came about soon after CLIP. Leveraging finetuned tagging models, PRIME
remains effective for failure mode extraction on specific domains such as medical images.

Tag interpretation Acknowledging potential challenges in interpreting certain tags within
PRIME, particularly adjectives, is imperative. For instance, the tag “white” may not consistently
align with the primary object in the image, as its detection could be influenced by background el-
ements or other objects present. Despite this, the utility of PRIME persists, serving as a valuable
tool to highlight instances where model failures occur at the convergence of specific tags, even if
not exclusively tied to the main object in the image. We note that, due to this limitation, we do not
use language models to generate descriptions from tags (except for validating PRIME with image
generation) because language models may associate tags with class labels, which is not necessarily
correct. Therefore, in evaluating the quality of descriptions, we used a bag-of-word manner to obtain
PRIME’s results.

A.2 TRAINING MODELS

We train a model on each dataset we are considering.

• For ImageNet, we use the standard pretrained ResNet50 model (He et al., 2015).

• For Living17, Entity13, and NonLiving26, we utilize a DINO self-supervised model (Caron
et al., 2021) with ResNet50 backbone and fine-tune it over Living17. we used SGD with
following hyperparameters to finetune the model for 5 epochs.

– lr = 0.001

– momentum = 0.9

• For CelebA (age classification), we used a pretrained ResNet18 model (He et al., 2015)
which is finetuned for 5 epochs using SGD the following hyperparameters.

– lr = 0.001

– momentum = 0.9

– weight decay = 5e− 4

We note that classifier is trained in a way that it is biased toward images of young women
and old men.

• For Waterbirds, we fine-tuned a pretrained ResNet18 model (He et al., 2015) for 20 epoch
using SGD the following hyperparameters.

– lr = 0.001
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– momentum = 0.9

– weight decay = 5e− 4

A.3 DETAILED RESULTS OF DETECTED FAILURE MODES

Our method on Living17:
Results: 36 failure modes with 1 tag, 68 failure modes with 2 tags, 24 failure modes with 3 tags,
and 4 failure modes with 4 tags.
Hyperparameters: s = 30, a = 30, b2 = 10%, b3 = 5%, and b4 = 2.5%.

• class “wolf” (Accuracy: 83.69%):
hide (54.86%); —- floor + hide (38.71%); —- floor + hide (38.71%); —- den (49.06%);
—- den + hide (22.22%); —- lay + red (41.86%); —- den + lay (29.27%); —- hide + lay
(41.51%); —- night (44.44%); —- floor + cub (48.48%); —- floor + den + cub (22.22%);
—- grass + stare + hide + red (66.67%); —- log + red (62.86%); —- grass + tree + brown
(63.64%);

• class “cat” (Accuracy: 89.58%): enclosure (52.63%); —- zoo (50.00%); —- habitat
(34.09%); —- grassy (63.64%); —- tiger + walk (28.57%); —- tiger + grass (58.54%);
—- bengal tiger + walk (28.57%); —- bengal tiger + grass (60.00%); —- floor + tree
(57.14%); —- log (56.76%); —- white + grass (63.64%); —- tiger + tree (37.50%); —-
hide + stand (82.50%);

Our method on Entity13:
Results: 45 failure modes with 1 tag, 45 failure modes with 2 tags, and 18 failure modes with 3 tags.
Hyperparameters: s = 100, a = 30, b2 = 10%, b3 = 5%, and b4 = 2.5%.

• class “wheeled vehicle” (Accuracy: 88.05%):
shopping cart (53.03%); —- floor + cart (54.17%); —- sit + shopping cart (43.90%); —-
cage (44.20%); —- basket (50.45%); —- man + pole (65.79%);

• class “produce, green goods, green groceries, garden truck” (Accuracy: 92.91%): floor +
food (74.77%);

• class “accessory, accoutrement, accouterment” (Accuracy: 63.98%): swimwear + pose
(18.18%); —- stand + pose + black (31.15%); —- brunette (19.23%); —- swimwear +
brunette (4.20%); —- person + graduation (33.92%);

Our method on CelebA (Young vs. Old classification):
Results: 45 failure modes with 1 tag, 27 failure modes with 2 tags, and 11 failure modes with 3 tags.
Hyperparameters: s = 100, a = 30, b2 = 10%, b3 = 5%, and b4 = 2.5%.

• class “young” (Accuracy: 80%):
beard (32.34%); —- man + laugh (41.21%); —- smile + tie + stand (58.27%); —- man +
goggles (41.04%); —- man + sunglasses (36.11%); —- man + white + stand (69.32%); —-
man + sing (33.78%); —- man + microphone (40.00%); —- business suit + smile + stand
(51.11%); —- black + goggles (42.65%);

Our method on CelebA (Young vs Old classification):
Results: 45 failure modes with 1 tag, 27 failure modes with 2 tags, and 11 failure modes with 3 tags.
Hyperparameters: s = 100, a = 30, b2 = 10%, b3 = 5%, and b4 = 2.5%.

• class “young” (Accuracy: 80%):
beard (32.34%); —- man + laugh (41.21%); —- smile + tie + stand (58.27%); —- man +
goggles (41.04%); —- man + sunglasses (36.11%); —- man + white + stand (69.32%); —-
man + sing (33.78%); —- man + microphone (40.00%); —- business suit + smile + stand
(51.11%); —- black + goggles (42.65%);

Our method on Waterbirds:
Results: 4 failure modes with 1 tag, 8 failure modes with 2 tags, and 9 failure modes with 3 tags.
Hyperparameters: s = 100, a = 30, b2 = 10%, b3 = 5%, and b4 = 2.5%.
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bear (91.69%) → fence; cage; (69.49%)

bear (91.69%) → black; climb; tree branch; (51.85%)

snake (92.31%) → woman; (56.25%)

snake (92.31%) → catch; stand; (12.50%)

parrot (93.85%) → lush; grass; grassy; field; (40.74%)

parrot (93.85%) → pigeon; (51.28%)

fox (81.96%) → white; zoo; (35.29%)

fox (81.96%) → grass; stand; field; dry; (47.83%)

Figure 6: Some visualization of detected failure modes on Living17.

• class “landbird” (Accuracy: 87.41%):
black + sea (62.50%); —- crow + water (64.58%); —- water + person (69.86%); —- black
+ water + beak (71.43%); —- water + man (71.93%); —- stand + sea + blue (65.71%); —-
sea + sit + boat (75.68%); —- black + ledge + sea (58.82%);

• class “waterbird” (Accuracy: 33.00%): wood (10.47%); —- stem (6.67%); —- stand + tree
+ pole (16.67%);

A.4 VISUALIZATION ON SOME OF THE DETECTED FAILURE MODES

We refer to Figures 6, 7, and 8 for more visualization of failure modes detected in our approach on
Living17, ImageNet, and Waterbirds.

A.5 RUNNING THE METHOD USING DIFFERENT VALUES OF (s, a)

In this section, we inspect the effect of different hyperparameters (s, a) on the result of our method.
By increasing a, we aim to detect harder subpopulations, thus, the number of detected failure modes
will decrease. By increasing s, we detect a group of images associated with a set of tags as a failure
mode, if there are a significant number of images within that group. This brings more generalization
over detected failure modes while a fewer number of them will be detected by the method. Figure 10
shows the generalization plot over different datasets with respect to different hyperparameters.

In Table 4, we also report correlation coefficien between train drop and test drop of failure modes
over different datasets and values of s and a.

A.6 GREEDY SEARCH

We note that in our experiments, exhaustive search was efficient enough so that we do not need to
consider any other approaches. We used some heuristic approaches to improve the efficiency of
exhaustive search such as eliminating combination of tags that a few images represent them, etc.
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smooth newt (73.85%) → forest floor; (57.41%)

smooth newt (73.85%) → stone; black; (47.83%)

great white shark (91.23%) → sea; reef; (63.89%)

great white shark (91.23%) → diver; underwater; aquarium; (70.00%)

tailed frog (78.62%) → green; swamp; (57.50%)

tailed frog (78.62%) → sit; leaf; hide; plant; (57.69%)

Figure 7: Some visualization of detected failure modes on ImageNet.

landbird (87.41%) → black; water; (69.09%)

landbird (87.41%) → water; person; (69.86%)

Figure 8: Some visualization of detected failure modes on Waterbirds.
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Figure 9: Evaluating detected failure modes on unseen data. (Left): we extract failure modes on
Living17 dataset using s = 30 and a = 30%. 132 failure groups (over 17 classes) are detected and
it is observed that around 86.01% of detected failure modes exhibit at least 25% drop in accuracy
over unseen data that shows a significant degree of generalization. (Right): same results for CelebA
dataset where the parameters for failure mode detection is s = 50 and a = 30%. Around 79.31% of
failure modes show the drop of at least 20%. The trend of y = x is seen in these plots.

Dataset s a corrcoef

Living17
25 25 0.70
50 30 0.73
30 30 0.72

Entity13
100 30 0.73
200 30 0.73
200 25 0.85

CelebA
50 30 0.60
100 30 0.83
100 25 0.81

Table 4: Correlation coefficien between train drop and test drop.
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Figure 10: Evaluating detected failure modes on unseen (test) dataset. We extract failure modes on
different datasets using different values of (s, a).

However, we developed another greedy search algorithm where at each stage, we pick top tags that
condition on them, significantly dropping model accuracy. By running this approach, the space of
different choices shrinks and the algorithm becomes faster while missing some of the failure modes.

A.7 DOMINO’S OUTPUT DESCRIPTIONS

To compare the results of DOMINO with PRIME, we picked DOMINO’s hyperparameters in a way
that generates relatively the same number of failure modes. Some of the outputs on Living17 dataset
are as follows:

• class “salamander”:
– a photo of the bullet wound.
– a photo of a lizard.
– a photo of trout fishing.
– a photo of a frog.
– a photo of a hippo.
– a photo of the ventral fin.
– ...

• class “fox”:
– a photo of a gorillas.
– a photo of the titanic sinking.
– a photo of the tract.
– a photo of a coyote.
– a photo of oil shale.
– a photo of the desert.
– a photo of the antarctic.
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Figure 11: Some of the detected failure modes along with descriptions using DOMINO.

– a photo of the arctic.
– ...

• class “cat”:
– a photo of the zoological garden.
– a photo of stray dogs.
– a photo of two dogs.
– a photo of the gardener.
– a photo of the tehsil leader.
– ...

Figure 11 shows some visualization of these failure modes. Lack of coherency among images in
some of the groups as well as low-quality descriptions can be seen in detected failure modes.

A.8 QUALITY OF DESCRIPTION

We note that failure modes detected by PRIME and DOMINO might be different. However, our
metrics only evaluate how well failure modes are described with their corresponding captions and
do not consider what images are assigned as failure modes. This enables us to compare different
methods with each other. Notably, hyperparameters of different methods play a role in the number
of failure modes that a method detects. In order to ensure a fair comparison, we carefully set the
hyperparameters for both of methods to yield a similar number of detected failure modes.

Furthermore, it is worth noting that as the similarity score is normalized, comparing this score over
different failure modes and different methods is possible. This is why we aggregate similarity score,
standard deviation, auroc over all failure modes.

A.9 DOMINO’S GENERALIZATION

To compare our results with DOMINO (Eyuboglu et al., 2022), we note that this method also outputs
some groups as well as descriptions for them. For a failure mode Ij with Tj as its description, we
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Figure 12: Evaluating detected failure modes by DOMINO on unseen (test) dataset.

use the same vision-language model that DOMINO uses to collect highly similar images to caption
Tj in D′ and obtain I ′j . We then evaluate model’s accuracy on images of I ′j and expect a hard
subpopulation, it should be as hard as Ij . Figure 12 shows the generalization of this method. We
see a lower degree of generalization in this approach than our method. We observe that generated
captions cannot fully describe as hard subpopulations as subpopulations detected on D.

We note that the other method (Jain et al., 2022), only detects a single failure mode for each class
in the input and reports around 10 images for that, thus, comparing this method with DOMINO and
ours is a bit unfair as those methods detect multiple failure modes with significantly more coverage.

A.10 IMAGE GENERATION

In this section, we elaborate more on the way we generate hard and easy images. To detect easy
subpopulations, we randomly pick 2 subset of tags in a way that the model’s accuracy on images
representing those tags is 100%. For the failure modes, we randomly pick two of the detected failure
modes in a way that those two groups do not share any common images. It is worth noting that for
classes “butterfly” and “dog” we don’t report any results as model’s accuracy for these classes is
almost 100%. Figure 13 shows the accuracy gap for different classes.

Here we provide some of the failure/success modes we took and corresponding descriptions used
for generative models.

• class: “bear”

– gray + water → “a photo of a gray bear in water”;
– river → “a photo of a bear in the river”
– cub + climbing + tree → “a photo of a bear cub climbing a tree”;
– black + cub + branch → “a photo of a black bear cub on a tree branch”;

• class: “ape”
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Figure 13: The difference in classifier accuracy between images generated from success mode and
failure mode captions on Living17.
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Figure 14: Comparison of the quality of description in our method and Jain et al. (2022). AUROC,
Mean, and Standard over different datasets are reported.

– black + branch → “a photo of a black ape on a tree branch”;
– sky → “a photo of an ape in the sky”;
– gorilla + trunk + sitting → “a photo of a gorilla ape sitting near a tree trunk”;
– mother → “a photo of a mother ape”;

A.11 JAIN ET AL. QUALITY OF DESCRIPTION

We note that Jain et al. (2022) detects 10 hard and 10 easy images for each class in the dataset and
assigns a description to them. However, the way this method generates captions needs humans in the
loop as they use a bunch of dataset-oriented words (tokens) that explain different variants of semantic
attributes in the dataset. Hence, their method is not scalable to run on many different datasets so
we only considered that on Living17 and CelebA. When datasets become larger and more complex,
there will exist several failure modes, and Jain et al. (2022) that only extracts a single direction
cannot cover many of the failure inputs. Figure 14 shows the results on different datasets. We note
that on CelebA, they use a very detailed and manually collected set of tokens to generate outputs.
However, even in that dataset, their performance is slightly better than ours.
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Table 5: Accuracy on unseen (test) images for class ape when given tags appear in the inputs. More
detailed descriptions not only bring more accurate explanation of images but also can lead to harder
example where model’s performance drops more severly. Some randomly sampled images within
each group is visualized.

Num of Tags Tags Sampled Images Test Accuracy

3 hang; branch; black; 41.18%

2
hang; branch; 56.33%

hang; black; 56.25%

branch; black; 54.67%

1
hang; 70.09%

branch; 69.23%

black; 73.21%

Table 6: Average number of tags appear in at least αN images among N closest images to a ran-
domly sampled image in the representation space as well as average number of shared tags in se-
mantic space (CelebA Dataset).

Representation Space Semantic Space
α = 0.6 α = 0.7 α = 0.8

N = 50 4.17 3.56 2.91 7.55
N = 100 3.94 3.34 2.71 7.25

A.12 NUMBER OF TAGS IN THE DESCRIPTIONS

In Table 5, we bring a more detailed version of Table 1 that includes some sampled images of
detected failure modes.
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Table 7: Statistics of the distance between two points in CUB-200 dataset conditioned on number of
shared tags. Distances are reported using CLIP ViT-B/16 representation space.

# of shared tags ≥ d mean standard deviation Probability

d = 0 7.37 0.92 0.50
d = 3 7.31 0.94 0.48
d = 9 7.06 1.08 0.42
d = 15 6.29 1.88 0.30
d = 24 3.42 3.18 0.12

Table 8: Average number of tags appear in at least αN images among N closest images to a ran-
domly sampled image in the representation space as well as average number of shared tags in se-
mantic space (CUB-200 Dataset).

Representation Space Semantic Space
α = 0.7 α = 0.8

N = 50 2.53 1.46 12.34
N = 100 3.00 1.99 10.91

A.13 CUB-200 AND CELEBA

In this section, we show the results reported in Section 5.2 over CUB-200 dataset. Table 8 includes
the results of shared tags in the proximity of images and Table 7 includes the statistics of distance
between two images in the latent space.

A.14 RAM EVALUATION ON LIVING17

we run a small-scale human validation study on Living17 (one of the main datasets we used in our
paper) to evaluate the accuracy of RAM. We first obtain all tags of class “butterfly” in Living17 and
filter out low-frequency tags as discussed in 3.1. 55 tags are remained, i.e.,

Tbutterfly = {black, purple, red,flower, leaf, sit, land, gravel, stone,mud,wildflower, sky, grass, ...}.

We take 100 random images from the class “butterfly” in Living17 and evaluate precision/recall of
tagging model on those images over tags of Tbutterfly. Average Precision of RAM over those 100
images is 86.85% and average recall is 81.85%. This shows that RAM is accurate in detection
of tags in Tbutterfly. It is worth noting that Tbutterfly includes a wide range of different objects and
attributes, covering a wide range of concepts in those images.

A.15 PRIME HYPERPARAMETERS

In this section, we elaborate more on each of the hyperparameters in our work. We note that all of
the PRIME’s hyperparameters have intuitive definitions, enabling a user to calibrate PRIME toward
their specific preferences.

• Parameter a controls a trade-off between the difficulty and the quantity of detected failure
modes. For example, selecting a high value of a results in failure modes that are more
difficult but fewer in number. Figure 10 shows this trade-off.

• Parameter s determines the minimum number of required images inside a group to be
detected as a failure mode. Small groups may not be reliable, thus, we filter them out.
Larger value for s results in more reliable and generalizable failure modes. The choice
of s also depends on the number of samples within the dataset. For larger datasets, we
can assume that different subpopulations are sufficiently represented in the dataset, thus, a
larger value for s can be used. We refer to Figure 10 for observing the effect of s.

• l determines the maximum number of tags we consider for combination. In datasets we
considered, a combination of more than 5 tags would not result in groups with at least s
images, thus, we set l ≤ 4 in our experiments. The choice of l depends on the dataset and
tagging model.
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• bi refers to the degree of necessity for tags inside the failure modes. The current choice
of bis is only a sample choice, requiring the appearance of each tag to have a significant
impact on the difficulty of detected failure modes. One can adjust these hyperparameters
based on their preference.
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