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Abstract

Current protein language models (pLMs) predominantly focus on single-chain pro-
tein sequences and often have not accounted for constraints on generative design
imposed by protein-protein interactions. To address this gap, we present paired An-
tibody T5 (pAbT5), an encoder-decoder model to generate complementary heavy
or light chain from its pairing partner. We show that our model respects conserva-
tion in framework regions and variability in hypervariable domains, demonstrated
by agreement with sequence alignment and variable-length CDR loops. We also
show that our model captures chain pairing preferences through the recovery of
ground-truth chain type and gene families. Our results showcase the potential of
pAbT5 in generative antibody design, incorporating biological constraints from
chain pairing preferences.

1 Introduction

Transformer-based protein language models (pLMs) have begun to find utility across a range of
applications in the field. Remarkably, even when pretrained solely on sequence databases, these
models have demonstrated the ability to aid in protein structure prediction [1, 2] and a host of
downstream tasks including function and secondary structure annotations [3–7]. Furthermore, they
have shown promise in the area of de novo protein design, proving to be useful in efforts ranging from
point mutation design to full-sequence generation [8–14]. By leveraging the evolutionary information
contained in sequence databases, pLMs offer a pathway to understanding and designing protein
sequences through a language modeling approach.

Most pLMs are designed for single-chain sequences only. However, many biological contexts involve
protein-protein interactions where multiple chains interact simultaneously. For instance, antibodies
consist of paired heavy and light chains. Modeling heavy and light chains independently is inadequate
to reflect their heterodimeric nature and sacrifices their co-evolutionary information. Understanding
antibody chain pairing has the potential to generate partner sequences given an existing heavy or light
chain target.

To address this gap, we present paired Antibody T5 (pAbT5) to generate antibody sequences condi-
tioned on their chain pairing partner in an encoder-decoder architecture. To summarize,

• We modeled antibody chain pairing as a conditional protein design problem through T5
architecture.
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• We show that our model generates antibody sequences respecting conservation in framework
region and variability in hypervariable domains.

• We show that our generated sequences capture chain pairing preferences through the recovery
of ground-truth chain type and gene families.

2 Related Work

Prior works in generative antibody language models usually are based on either causal language
models or denoising neural networks. Nijkamp et al. [13] built a decoder-only model on single-chain
antibody sequences. Shuai et al. [15] extended the framework to conditional generation with species
and chain type prefix tokens. Denoising network from Frey et al. [14] generates variable-length
paired antibody sequences by introducing gap tokens. Distinct from language models, inverse folding
models are capable of generating multiple-chain sequences based on structural inputs [16, 17].

3 Methods

3.1 Model and Optimization

We approach the antibody chain pairing problem under a sequence-to-sequence generation framework.
We use the term forward-translation to describe light-to-heavy-chain generation and back-translation
for the reciprocal process. Notably, we do not specify the translation direction, nor do we include any
gap or prefix tokens relating to the input or target chain type, species, or gene families in our model.
The model is fine-tuned from ProtT5-XL-UniRef50, which has a T5 architecture [5].

To optimize our model, we adhere to the ProtT5-XL pretraining scheme utilizing a local batch size of
8 and a global batch size of 2048. We kept the encoder weights frozen and fine-tuned only on the
decoder and observed better encoder representation on sequences compared to fine-tuning the whole
model. We used a learning rate of 5e-5 without weight decay in AdaFactor optimizer with a gradient
clipping of 1 and a patience of 5 epochs on validation loss for two days on eight A100 GPUs. The
implementation is on PyTorch under HuggingFace framework [18, 19].

3.2 Dataset

We sourced approximately 160k pairs of antibody VH and VL sequences from the Observed Antibody
Space (OAS) database [20]. Leveraging the framework of forward- and back-translations, we
represented each bi-directional pairing through two uni-direction translations. This yielded a dataset
of roughly 321k translation samples derived from 239k distinct sequences from humans, rats, and
mice.

In the context of the protein-protein interaction network in the OAS dataset, edge-based splitting
serves as an intuitive method for data partitioning. An alternative approach is node-based partitioning,
where all edges linked to training nodes are incorporated into the training set, leaving the rest for
testing. We employ an exclusive node split strategy, reserving specific nodes and their related edges
solely for testing to rigorously evaluate the model’s generalization to unseen sequences and pairings
(Figure A.1). Consequently, our dataset is partitioned into a roughly 90-5-5 distribution, resulting in
260k training, 828 validation, and 802 test translations.

4 Results

4.1 Sequence Generation Aligns with Conserved and Variable Domains in Antibodies

Antibodies display significant diversity in their hypervariable domains to ensure specificity in antigen
binding. Both the light and heavy chains possess three loop structures, known as the CDR loops.
While these loops are highly variable, other regions, termed framework regions, remain relatively
conserved. Of all the CDR loops, the third loop on the heavy chain (CDRH3) exhibits the highest
variability. In this section, we evaluate whether our model successfully recognizes and reproduces
these distinct patterns during next-word prediction and sequence generation.
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In Figure 1, we compare the probability from next-word prediction against conservation from
alignment analysis. The model demonstrates higher confidence in the more conserved framework
region of the heavy chain target and displays increased uncertainty in the variable CDR loops. To
further examine its ability to generate realistic sequences, we align the observed and generated
sequences for a random heavy-light chain pairing from the test set. Notably, generated sequences
often exhibit greater variability than next-word probabilities, potentially due to the cascading effect
during iterative sampling. These sequences might also originate from different gene loci or families
than the target sequences. This analysis highlights the model’s ability to generate variable-length
CDR (H3) loops while preserving patterns in framework regions. On average, generated sequences
maintain approximately 60% whole-sequence identity with target sequences. This suggests our model
effectively balances capturing antibody pairing patterns and creating novel sequences. For a detailed
analysis of sequence identities and lengths by region, see Tables A.4, A.5 and A.6. Comprehensive
alignment profiles for both heavy and light chains, along with four other random output samples from
the test set, can be found in Figures A.18, A.19, A.20, and A.21.

Figure 1: Comparison of observed and model-derived alignment profiles on heavy chain across
framework regions (FR) and CDR loops. The first and second rows pair the next-word probability
under teacher-forcing with sequence conservation from alignment to UniRef90 [21]. The third and
fourth rows provide a side-by-side view of global alignments between generated sequences and their
corresponding observed sequences. The reciprocal analysis on the reverse direction can be found in
Figure A.18.

Beyond assessing alignment profiles, we further validate our model predictions by superimposing
these results on both predicted structures by DeepAb [22] and known experimental structures.
Indeed, the generated heavy and light chains exhibit structurally consistent framework regions while
emphasizing variations in the CDR loops, as illustrated in Figure A.16. With the interest to evaluate
on unseen experimental structures, we analyzed three antibodies bound to the SARS-CoV-2 spike
protein from RCSB database [23, 24]. Figure 2 demonstrates that the CDR loops remain the most
entropic regions across all three antibody structures.

Figure 2: Visualization of next-word prediction entropy for antibodies bound to the SARS-CoV-2
spike protein. Blue denotes low entropy regions, while red represents areas of high entropy. (A and
B) Offer front and back views of the 6WPS PDB structure. (C) Provides an overview of the entire
6WPS structure. (D, E, and F) depict structures from 6WPT, 7TB8 chains D and E, and 7TB8 chains
H and I, respectively.
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4.2 Conditional Generation Recovers Pairing Sequences

The human immune system can recognize a vast array of antigens by generating a diverse repertoire
of antibodies through gene rearrangement. The transcription of each antibody sequence is driven
by the combination of C, V, and J genes, with an additional D gene specifically for the heavy chain.
These genes are stored within chromosome gene loci, specifically H, λ, and κ, and each of these
genes corresponds to a segment within the complete antibody sequence. The recombination of VDJ
gene families allows for an impressive array of heavy-light chain pairings, estimated at around 106

combinations, which are further amplified by somatic mutations [25]

To benchmark our generative model against the current state-of-the-art, we evaluate the percentage
of generated sequences sharing the same chain type, gene loci, V, and J gene families as the pairing
target. We assess our model against ProGen2-OAS and IgLM, two publicly available state-of-the-
art antibody language models. ProGen2-OAS is a decoder-only LM trained on unpaired antibody
sequences, and as such, it’s not inherently designed to understand antibody pairing [13]. Similarly,
IgLM, while focusing on conditions of species and chain type by appending tag tokens at sequence
starts, doesn’t have an inherent design for pairing comprehension [15]. For ProGen2-OAS, pairing
sequences are generated unconditionally. In the IgLM scenario, we provide chain and species tags,
assuming the heavy chain must pair with the light chain and both chains belong to the same species.
Additionally, we introduce a baseline of selecting a sequence at random from the test set population
and another baseline of selecting the pairing partner of the closest sequence from the validation set,
termed as population sampling and closest sequence.

In Table 1, we present a comparison of the percentage of generated sequences that align with the
target across various attributes. pAbT5 consistently demonstrates superior performance compared to
current state-of-the-art models and baselines. Our model’s efficacy significantly surpasses that of
population sampling and closest sequence, suggesting that pAbT5’s target recovery is not merely
from exploiting dataset biases or memorization. We highlight the importance of the encoder in the T5
architecture by removing cross-attention and retraining on the decoder-only model, which results
in a similar performance to population sampling. It’s notable that ProGen2-OAS exhibits a marked
preference for generating heavy chain sequences, aligning with observations from the unpaired OAS
dataset [20]. Nijkamp et al. [13] assessed their model by starting sequence generation with the first
few tokens. Contrarily, we decided against providing these initial tokens to ensure no possible clues
about target gene loci or families were given, especially when these details aren’t evident from the
chain type of the pairing partner alone. Even when provided with chain type and species tags, IgLM
doesn’t quite match the performance of our model. pAbT5 sets a new benchmark in most areas, with
the exception being gene families with smaller sample sizes, as illustrated in Figure A.4 and A.5.

Percentage of generated sequences sharing the same attributes with target
Chain type Gene loci V gene family J gene family

Population sampling 0.50 (2163) 0.38 (1644) 0.12 (513) 0.09 (394)
Closest sequence 1.00 (4300) 0.76 (3290) 0.17 (750) 0.04 (180)

ProGen2-OAS 0.50 (2171) 0.50 (2140) 0.12 (500) 0.01 (50)
IgLM 1.00 (4320) 0.76 (3280) 0.18 (763) 0.03 (133)

Our method (decoder-only) 0.50 (2165) 0.35 (1506) 0.07 (319) 0.09 (400)
Our method (pAbT5) 1.00 (4320) 0.78 (3373) 0.25 (1066) 0.21 (896)

Table 1: Percentage of generated sequences in the human antibody test set that match the target
sequence’s chain type, gene loci, and V and J gene families. We compare our model with a random
sequence from the population (population sampling), the pairing partner of the nearest sequence from
the validation set (closest sequence), ProGen2-OAS [13], IgLM [15], and a decoder-only T5 model
by removing the encoder and cross-attention.

5 Conclusion

In this study, we introduced and evaluated pAbT5, demonstrating its efficacy in capturing intricate
antibody pairing patterns and generating chain pairing sequences with notable precision relative to
target attributes. Its performance, when compared to existing models, suggests its utility as a valuable
tool in advancing antibody research and therapeutic exploration.
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A Appendix

A.1 Method

A.1.1 Dataset

A visualization of dataset splitting strategy is given by Figure A.1.

Figure A.1: Splitting for protein-protein interaction dataset. Each sequence and pairing is represented
by a node and an edge respectively, colorized by train (blue) and test (orange) partitions. (A)
Interaction split. Nodes are not partitioned and are therefore colorless. (B) Inclusive node split. (C)
Exclusive node split. Edges between train and test nodes are dropped (dotted line). (D) Exclusive
node splitting in detail. All non-redundant sequences in paired OAS database are first split into train,
validation, and test partitions. Only pairings within each partition are included in the final dataset, i.e.
all cross-pairings are dropped.

A.2 Pairing Perplexity Reflects Preferences in Chain Pairing

To demonstrate that our model understands the context of antibody pairing, we evaluate the model
based on the perplexity of the sequence pairs. Using the human LM T5 in English-to-German
translation as an analogy, feeding an English sentence to the encoder and its German counterpart to
the decoder should in general yield a lower perplexity than feeding both encoder and decoder with
English sentences. The idea is to probe the model’s capability to understand that a German sentence
should be generated from an English input in a generative model, instead of assessing the model in a
traditional sentence-pair classification task.

Without publicly available antibody mispairing dataset, we test our model on two simple mispairing
scenarios, i.e. chain-type mispairing and species mispairing. For chain-type mispairing, we synthesize
correct heavy-light pairing and mispaired heavy-heavy/light-light pairing for each translation in test
set, with the assumption that only heavy-light-chain pairings are permitted. A similar approach is used
for species mispairing by assuming cross-species chain pairing is impermissible. Note that, given
the promiscuous nature of antibody chain pairing, a heavy chain sequence can pair with multiple
light chain chain sequences. Therefore, randomly paired heavy and light chain can still be a valid
pairing and cannot serve as a negative control in comparison to observed pairing by contrasting their
respective perplexity.

We propose two classification tasks (Figure A.2) to assess our model’s perplexity. The first task
considers two input sequences sharing the same target sequence and only one pairing is correct.
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Out of the two pairings, we assign the pairing with lower perplexity as correct and the other one as
mispaired. Based on this assignment, we identify above 90% of the correct pairings from chain-type
mispairing and close to 80% from species mispairing. The baseline of random assignment results in
50% accuracy. No classification model is trained.

In our second task, we consider a dataset by mixing and shuffling the correct and mispaired samples
from the first task and classify whether the pairing is correct given two antibody sequences alone.
Informed only by our language model’s perplexity, a logistic regression significantly outperforms the
baseline of random assignment. The classifier is trained on the average perplexity of forward- and
back-translations on validation set. All performance metrics are evaluated on test set. The weaker
classification performance might be attributed to the loss of pairing preferences between gene loci
and families in the creation of mispairing dataset (Subsection A.2).

Figure A.2: Schematics of two classification tasks considered for species mispairing. (Left) In the
first classification task, the aim is to identify the correct and mispaired sequences sharing the same
target. (Right) In the second classification task, the aim is to predict the likelihood of the pairing as a
bidirectional translation. The tasks for chain-type mispairing are similar. No chain type nor species
annotation is used in our prediction.

First Classification Task
Mispairing type Target chain Accuracy

Chain type Light 0.92
Heavy 0.91

Species Light 0.80
Heavy 0.79

Second Classification Task
Mispairing type Accuracy AUROC

Chain type 0.54 0.70
Species 0.57 0.60

Table A.1: Performance on first and second classification task on model perplexity alone. (Up) In
the first classification task, mispairing assignment is based on the rank of perplexity without any
parameterizable model. (Bottom) In the second classification task, logistic regression is trained on
the bidirectional average of translation perplexity in validation set, and evaluated on test set. Random
assignment results in an accuracy of 0.5 in the first task, and an additional AUROC of 0.5 in the
second task.

To further elaborate on the methodology, we generate synthetic mispairings to test our model’s
capability of learning chain pairing. The generation protocol for chain-type mispairing is as follows
(algorithm 1). The generation protocol for species mispairing is similar (algorithm 2).
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Algorithm 1 Chain-type mispairing dataset generation

1: Inputs: paired test dataset D
2: Outputs: chain-type mispairing dataset D′

3: initialize H , L and D′ as ∅
4: for (u, v) in D do
5: for s in (u, v) do
6: if chaintype(s) = heavy then
7: H .add(s)
8: else if chaintype(s) = light then
9: L.add(s)

10: end if
11: end for
12: end for
13: for (u, v) in D do
14: if chaintype(u) = chaintype(v) then
15: for s in (u, v) do
16: if chaintype(s) = heavy then
17: s′ ← random element in L
18: else if chaintype(s) = light then
19: s′ ← random element in H
20: end if
21: D′.add((s, s′))
22: end for
23: end if
24: end for
25: return D′

Algorithm 2 Species mispairing dataset generation

1: Inputs: paired test dataset D
2: Outputs: species mispairing dataset D′

3: initialize H , M and D′ as ∅
4: for (u, v) in D do
5: for s in (u, v) do
6: if species(s) = human then
7: H .add(s)
8: else if species(s) = mouse then
9: M .add(s)

10: end if
11: end for
12: end for
13: for (u, v) in D do
14: if species(u) = species(v) then
15: for s in (u, v) do
16: if species(s) = human then
17: s′ ← random element in M
18: else if species(s) = mouse then
19: s′ ← random element in H
20: end if
21: D′.add((s, s′))
22: end for
23: end if
24: end for
25: return D′

12



We have considered two possible schemes for preparing correct pairings (Figure A.3), i.e. single-
generation and double-generation. In single-generation, we keep the observed pairing from test
set as the correct pairing. While it ensures that the correct pairing is experimentally validated,
the comparison between an observed correct pairing and a synthetic mispairing creates a bias in
perplexity.

As such, we introduce double-generation where both pairings are generated and label the synthetically
correct pairing in italic. Despite the lack of direct experiment validation, the comparison between
correct and mispaired pairings is unbiased, is more challenging than single-generation, and provides
some insights into whether our model learns antibody chain pairing. As indicated in Table A.2 and
A.3, the conclusion remains the same when switched from single-generation to double-generation.

Figure A.3: Schematics of preparation of correct and mispaired sequences in species mispairing.
The input sequence for correct pairing is in blue and that for mispairing is in yellow. (Left) Single-
generation scheme: comparison between observed correct pairing and synthetic mispairing. (Right)
Double-generation scheme: comparison between synthetic correct pairing and synthetic mispairing.

Mispairing type Target chain Accuracy

Chain type
Light 0.99

Heavy 0.96

Species
Light 0.97

Heavy 0.96

Table A.2: First classification task assignment accuracy by the perplexity rank between correct and
mispaired antibody sequences in single-generation scheme.

Mispairing type Accuracy AUROC

Chain-type 0.54 0.72

Species 0.60 0.70

Table A.3: Second classification task performance in single-generation scheme

A.3 Conditional Generation Recovers Pairing Sequences

In order to evaluate our model’s sequence-to-sequence generative performance, we test whether
our model can recover the observed pairing in test set. Figure A.5 illustrates the recovery rate at
progressively fine levels of resolution on human antibodies. A target sequence is considered to be
recovered if the generated sequence shares the same chain type, gene loci, V gene family, or the
combination of V and J gene families. For chain types, our model always generates heavy chains
from light chain inputs, and likewise for light chain generation. For gene loci on light chain, λ and κ
loci are recovered at 48% and 56% of the time. As we approach finer resolutions, the recovery rate
drops in V families and their combination with J families. This is consistent with the observation that
antibody chain pairing is often degenerate. For instance, the heavy chain sequences from IGHV1
gene family are observed to pair with multiple families in both λ and κ loci (Figure A.11). This sets
an upper bound on the recovery rate in antibody heavy and light chain pairing. A similar analysis has
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Figure A.4: Percentage of generated sequences sharing the same chain type, gene loci, V gene
families, and V-J gene families with target. x-axis is the recovery rate of pAbT5, and y-axis is the
recovery rate of ProGen2-OAS [13], IgLM [15], picking a sequence randomly from the population,
and picking the pairing partner of the closest sequences from the validation set. Each scatter point
represents recovery at a resolution, and size of the scatter point is proportional to its respective
population size. The full table is available in Supplementary Materials.

also been performed on the recovery of species (Figure A.9) and the exact figures of recovery rate
can depend on the generative parameters, which are listed in Subsection A.3.

We use ANARCI [26] for species, chain type, and gene family classification. Although OAS dataset
indicates humans, mice, and rats as the source organisms, ANARCI identifies only the former two.
For consistent comparison in both observed and generated antibody pairs, we opt for the definition
in ANARCI in all evaluations, including t-SNE, mispairing, and generation assessment. We only
report V and J families in heavy and light chains as D families are not supported by ANARCI. In all
species-specific analyses, pairings are included only when ANARCI identifies both heavy and light
chains from the same species.

We denote the encoder sequence as the input of the translation and decoder sequence as the target of
the translation. We denote the encoder hidden state of the paired antibody in the translation order of
input-to-target as the sequence embedding of the input sequence, or simply sequence embedding. For
t-SNE visualization, we take the mean of the encoder hidden state over residues at the final layer.

In the generative process, sequences are generated at a temperature of 1, top p of 0.9 with 10 returned
sequences, determined from a grid search of temperature and top p. Experiment on beam search
results in low diversity and regions of repetitive motifs. All co-occurrences of gene families are
collected from test set. For ProGen2-OAS [13], we use the default generative parameters and do not
provide the first few tokens to avoid hinting at the chain type and gene loci. We use default generative
parameters in IgLM [15].
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Figure A.5: Recovery rate of target chain type, gene loci, and gene families in sequence generation.
Performance is represented in a hierarchical order, where parent classes are centered while children
categories are on the periphery. On each rim, the arc lengths of categories are proportional to their
populations in test set. Dark blue represents perfect recovery whereas white color implies low
recovery rate.

Figure A.6: t-SNE plot of encoder hidden states of test set sequences in progressively fine categories
(chain types, human gene loci, and human IGHV gene families).

Figure A.7: t-SNE plot of sequence embeddings colorized by ANARCI annotated species
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Figure A.8: t-SNE plot of sequence embeddings colorized by ANARCI annotated gene families.
(Left) Light chain J gene. (Middle) Heavy chain J gene. (Right) Light chain V gene.

Figure A.9: Recovery rate on species by original species and translation direction.
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Figure A.10: Co-occurrence of V families in heavy and light chains colorized by relative frequency.
Frequency is normalized by the total number of observed co-occurrence.

Figure A.11: Co-occurrence of J families in heavy and light chains colorized by relative frequency.
Frequency is normalized by the total number of observed co-occurrence.
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Figure A.12: Co-occurrence of V and J families in heavy chain colorized by relative frequency.
Frequency is normalized by the total number of observed co-occurrence.

Figure A.13: Co-occurrence of V and J families in light chain colorized by relative frequency.
Frequency is normalized by the total number of observed co-occurrence.
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Figure A.14: Co-occurrence of V families in heavy chain and J families in light chain colorized by
relative frequency. Frequency is normalized by the total number of observed co-occurrence.

Figure A.15: Co-occurrence of J families in heavy chain and J families in light chain colorized by
relative frequency. Frequency is normalized by the total number of observed co-occurrence.

A.4 Sequence Generation Aligns with Conserved and Variable Domains in Antibodies

We use clustalw [27] in Biopython [28] with default parameters to generate alignment profiles.
Conservation analysis is generated by psiblast [29] in Biopython onto UniRef90 database [21]. To
compare model confidence and sequence conservation, we apply softmax to PSSM and compare with
the probability in next-word prediction. We use Logomaker [30] for visualization of sequence and
alignment profiles. CDR and framework regions are defined in aho antibody renumbering scheme.
CDRs of light chains are from residue ID 32 to 42, 57 to 76, and 109 to 138 for CDR L1, L2, and L3
respectively. CDRs of heavy chains are located from residue ID 24 to 42, 58 to 72, and 107 to 138.
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Figure A.16: Structural models of example variable regions (Fv) with eight generated heavy chains
given one input light chain. The generated heavy chains are colored in rainbow and the light chains
are white.

We overlay entropy and cross-attention per query residue onto antibody structures in PyMOL [31].
Structural models are generated from DeepAb [22], and in the case with available crystal structures,
we align the models to the crystal chains to standardize numbering and fill in missing residues. We
cap the values of average entropy and cross-attention per query residue in structural overlay and
normalize heavy and light chains together for visualization purposes. Detailed visualization of capped
and uncapped figures are also available (Figure A.23, A.24, A.25, and A.26).

Region Light Heavy

FR1 0.57±0.18 0.63±0.21
CDR1 0.36±0.26 0.41±0.22
FR2 0.77±0.13 0.76±0.14

CDR2 0.38±0.21 0.41±0.19
FR3 0.71±0.12 0.63±0.18

CDR3 0.31±0.20 0.22±0.14
FR4 0.76±0.18 0.90±0.09

whole sequence 0.60±0.13 0.59±0.14

Table A.4: Sequence identities between generated and target sequences in test set by regions and
target chain type.

Heavy chain target Light chain target

Human 0.61±0.14 0.60±0.14
Mouse 0.56±0.10 0.62±0.10

Table A.6: Sequence identities between generated and target sequences in test set by species and
target chain type
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Region
Light Heavy

Observed Generated Observed Generated
FR1 22.75±0.43 22.74±0.44 28.91±1.45 28.99±0.06
FR2 15.00±0.00 15.00±0.00 14.00±0.00 14.00±0.00
FR3 32.02±0.20 32.00±0.04 32.00±0.00 32.00±0.00
FR4 9.97±0.22 10.00±0.03 11.00±0.00 10.96±0.33

CDR1 12.50±2.16 12.54±2.14 6.32±0.75 6.22±0.62
CDR2 7.03±0.38 7.02±0.25 16.80±0.77 16.82±0.66
CDR3 9.24±0.96 9.44±1.01 11.47±4.00 12.29±4.16

whole sequence 108.51±2.38 108.74±2.29 120.45±4.57 121.28±4.18

Table A.5: Sequence length of observed and generated sequences in test set by regions and chain
type.

Figure A.22: Cross-attention map between target heavy chain and input light chain in Figure 1
averaged throughout heads and layers. Hypervariable regions generally receive less attention from
queries consistently throughout all paired antibodies in the test set.
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Figure A.23: Structural overlay of capped average cross-attention from pairing partner onto each
residue of SARS-Cov2-binding antibodies. Red color indicates regions highly attended while blue is
weakly attended areas. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain D and E. (Lower
Right) PDB 7TB8 chain H and I. Consistently for all PDB structures, the CDR loops receive the least
attention. This is consistent with the random nature of CDR loop sequences.

Figure A.24: Structural overlay of uncapped average cross-attention from pairing partner onto each
residue of SARS-Cov2-binding antibodies. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain
D and E. (Lower Right) PDB 7TB8 chain H and I.
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Figure A.25: Structural overlay of capped next word prediction entropy of SARS-Cov2-binding
antibodies. (Upper left) PDB 6WPS. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain D
and E. (Lower Right) PDB 7TB8 chain H and I.

Figure A.26: Structural overlay of uncapped next word prediction entropy of SARS-Cov2-binding
antibodies. (Upper left) PDB 6WPS. (Upper right) PDB 6WPT. (Lower Left) PDB 7TB8 chain D
and E. (Lower Right) PDB 7TB8 chain H and I.

A.5 Zero-shot Prediction from Paired Antibody Perplexity

The emergence of protein function prediction from sequences alone can be traced back to conservation
analysis. The idea is that residues detrimental to the function(s) of the protein should be conserved
while other positions have more freedom to vary. Encoder-only protein LMs were shown to generalize
Pott’s model [32], and outperform positional-specific scoring matrix (PSSM) with zero-shot prediction
[11]. Similarly, the perplexity of decoder-only models is found to correlate with unseen experiment
measurements [13], while the same log-likelihood analysis can also be replicated on conditional
sequence generation in inverse folding [17, 33]. Zero-shot and few-shot predictions from language
pretraining are not unique to protein LMs but arise generally from large-scale language modeling.

Benchmarked on antibody functional datasets, we show that our model has competitive results
with the current state-of-the-art protein LMs. We benchmark our model on 13 antibody functional
datasets on either stability, binding affinity or expression measurements [34–36] in Figure A.27.
Our encoder-decoder model achieves a similar performance as ProGen2 and is better than ProGen2-
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OAS, which is finetuned on the unpaired OAS dataset. The major architectural difference is that
ProGen2 is a decoder-only model which requires joining heavy and light chain sequences with a
GS linker, whereas our encoder-decoder model computes the average perplexity of forward- and
back-translations. Nonetheless, ProGen2 and ProGen2-OAS have fewer parameters than our model,
making model comparison difficult. In addition, we have also included pseudo-perplexity from
encoder-only models (ESM) [1, 11] to highlight the difference in architecture.

To further investigate the impact of each component in our model, we perform an ablation study on
the need for an encoder-decoder architecture, bidirectional translations in evaluation, and pretraining.
For any comparison with statistical significance (p-value < 0.05), our encoder-decoder model always
outperforms ablations (Figure A.28).

Figure A.27: Zero-shot prediction performance on antibody measurements of our model and state-of-
the-art. x-axis represents the antibody functional datasets. (Top) The difference in absolute spearman
rank correlation (SRC) between our model and state-of-the-art. (Bottom) Absolute SRC between
model (pseudo-)perplexity and measurements. Error bars are estimated in standard deviation with
1000 bootstrap samples.

We evaluate the perplexity from the benchmarked models and calculate the absolute value of spearman
rank correlation (SRC) with the experimental measurements. By default, we define a symmetric
paired perplexity by taking the average of that in forward- and back-translations for zero-shot
prediction. Since ProGen2 is a decoder-only model, we join the heavy and light chains by a GS
linker of GGGGSGGGGSGGGGS and parse the paired antibody as a single sequence. In the case of
our decoder-only ablation, we train the model without an encoder but take the average of heavy and
light chain perplexities. Our ablation on pretraining from ProtT5 shares the same hyperparameters in
Section ??. The mean and standard deviation of SRC are estimated by bootstrapping 1000 samples.
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Figure A.28: Ablation study on zero-shot prediction on all datasets. x-axis represents datasets.
(Top) The difference in absolute spearman rank correlation (SRC) between our model and ablation.
(Bottom) Absolute SRC between model (pseudo-)perplexity and measurements. Error bars are
estimated in standard deviation with 1000 bootstrap samples.

B Sequence Clustering

Contrary to using all non-redundant sequences in the dataset, one can cluster these sequences by an
identity cutoff and include only the representative sequences of each cluster. This provides a few
advantages. First, it reduces the dataset size and increases sparsity for efficient training. Second, it
de-biases the database from heavily studied families. Third, it provides a better assessment of model
generalizability by limiting the information shared between train and test sets.

This section investigates the impact of sequence clustering on paired OAS dataset and our model
performance. We argue that for our specific case, including all non-redundant sequences helps the
model in three ways. While sequence clustering affects the performance evaluation, the impact is
minor and does not affect conclusions.

• Sequence clustering reduces the size of paired OAS dataset by at least 50%.

• Fine-grained resolution in a subspace of protein universe helps resolve all antibodies and
their pairings, in particular for learning gene families.

• De-biasing might fail to reflect the preference(s) of antibody pairing.

B.1 Impact on Dataset Size

We use linclust from mmseqs2 to cluster representative sequences with –min-seq-id to specify identity
cutoff, and -c 0.8 and –cov-mode 1, and otherwise the default parameters. We do not observe any
signs of truncation at the N- and C-termini on paired OAS dataset.

As reported in Table B.1, the dataset reduces in size exponentially with the identity threshold in
clustering. For each increment of 5%, the number of translations after clustering falls by about half.
This impacts not only the training but also the statistical power of evaluation(s) given the size of the
diminished test set.

From here, we denote exclusive node split in Section ?? on clustered sequences as cluster split. We
decide to repeat the analyses on cluster split with an identity cutoff of 95% and compare with that
from training on non-redundant sequences.
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non-redundant 95% 90% 85%

Training set 260062 127904 53814 22266
Validation set 846 356 188 74

Test set 802 346 178 78

Table B.1: Impact of identity threshold on dataset size in terms of number of translations

B.2 Impact on Results

B.2.1 Pairing Perplexity Reflects Preferences in Chain Pairing

In double-random scheme, training and evaluation on clustered sequences result in higher accuracy
in the first classification task but weaker in the second classification task. In both tasks, mispairing
identification informed by model perplexity alone still outperforms the baseline. Similar observation
holds also in single-random scheme B.3 and B.4. Overall, the results are unaffected by sequence
clustering.

First Classification Task
Mispairing type Target chain Accuracy

Chain type
Light 0.98

Heavy 0.98

Species
Light 0.85

Heavy 0.88

Second Classification Task
Mispairing type Accuracy AUROC

Chain type 0.55 0.65

Species 0.55 0.57

Table B.2: Performance on first and second classification task on model perplexity alone. (Left) In
the first classification task, mispairing assignment is based on the rank of perplexity without any
parameterizable model. (Right) In the second classification task, instead of unidirectional translation,
logistic regression is trained on the bidirectional average of translation perplexity in validation set,
and evaluated on test set. Random assignment results in an accuracy of 0.5 in the first class, and an
additional AUROC of 0.5 in the second task.

Mispairing type Target chain Accuracy

Chain type
Light 0.92

Heavy 1

Species
Light 0.99

Heavy 0.98

Table B.3: First classification task assignment accuracy by the perplexity rank between correct and
mispaired antibody sequences in single-generation scheme.

Mispairing type Accuracy AUROC

Chain-type 0.55 0.62

Species 0.56 0.62

Table B.4: Second classification task performance in single-generation scheme
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B.2.2 Sequence Generation Aligns with Conserved and Variable Domains in Antibodies

Our model from cluster split still has high entropy and generates variable-length sequences at
hypervariable domains. Results are largely unaffected by cluster split.

Figure B.1: Comparison between observed and modeled alignment profiles on heavy chain in
framework regions (FRs) CDR loops. (First row) Next word prediction probability. (Second row)
Sequence conservation from position-specific scoring matrix. (Third row) Global alignment of
generated sequences to (fourth row) the observed sequence.

Figure B.2: Cross-attention map between target heavy chain and input light chain in Figure B.1
averaged throughout heads and layers. Hypervariable regions generally receive less attention from
queries.
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Region Light Heavy

FR1 0.59±0.18 0.60±0.21
CDR1 0.35±0.25 0.38±0.20
FR2 0.78±0.13 0.76±0.13

CDR2 0.39±0.22 0.37±0.15
FR3 0.69±0.12 0.58±0.15

CDR3 0.33±0.20 0.24±0.15
FR4 0.79±0.19 0.90±0.08

whole sequence 0.60±0.13 0.56±0.12

Table B.5: Sequence identities between generated and target sequences in test set by regions and
target chain type.

Region
Light Heavy

Observed Generated Observed Generated
FR1 22.59±0.50 22.37±0.48 28.86±1.83 29.00±0.00

CDR1 12.74±2.18 12.87±1.41 6.26±0.67 6.03±0.25
FR2 15.00±0.00 15.00±0.00 14.00±0.00 14.00±0.00

CDR2 7.05±0.43 7.00±0.00 16.74±0.63 16.89±0.32
FR3 32.00±0.00 32.00±0.00 32.00±0.15 32.00±0.00

CDR3 9.63±1.06 9.95±0.81 12.32±3.93 16.51±3.97
FR4 9.94±0.36 10.00±0.00 11.00±0.00 11.00±0.00

whole sequence 108.88±2.54 109.19±1.58 121.10±4.63 125.43±4.10

Table B.6: Sequence length of observed and generated sequences in test set by regions and chain
type.

B.2.3 Conditional Generation Recovers Pairing Sequences

t-SNE plots on sequence representation are similar to those without sequence clustering (Figure B.3a,
B.3b and B.3c). When comparing on recovery rate of target sequences, we found that cluster split
leads to slightly stronger bias towards specific families (Figure B.5). Sequence recovery is similar to
that without sequence clustering (Figure A.9 and B.6).

(a) Heavy and light chains (b) Gene loci in human (c) IGHV gene families in human

Figure B.3: t-SNE plot of encoder hidden states of test set sequences in progressively fine categories
(chain types, gene loci, and gene families).
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Figure B.4: t-SNE plot of antibody embeddings colorized by ANARCI annotated species

Figure B.5: Recovery rate of target chain type, gene loci, and gene families in sequence generation.
Performance is represented in a hierarchical order, where parent classes are centered while children
categories are on the periphery. On each rim, the arc lengths of categories are proportional to their
populations in test set. Dark blue represents perfect recovery whereas white color implies low
recovery rate.
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Figure B.6: Recovery rate on species by original species and translation direction.

B.2.4 Zero-shot Prediction from Paired Antibody Perplexity

Trained on clustered sequences, our model performs more weakly (p-value < 0.05) on one dataset.
Results are largely unaffected by sequence clustering.

Figure B.7: Zero-shot prediction performance on antibody measurements of our model and state-of-
the-art on all datasets. x-axis represents datasets. (Top) The difference in absolute spearman rank
correlation (SRC) between our model and state-of-the-art. (Bottom) Absolute SRC between model
(pseudo-)perplexity and measurements. Error bars are estimated in standard deviation with 1000
bootstrap samples.
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Figure B.8: Ablation study on zero-shot prediction on all datasets. x-axis represents datasets. (Top)
The difference in absolute spearman rank correlation (SRC) between our model and ablation. (Bottom)
Absolute SRC between model (pseudo-)perplexity and measurements. Error bars are estimated in
standard deviation with 1000 bootstrap samples.
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