
Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision

Arturs Berzins 1 2

Abstract

A NN consisting of piecewise affine building
blocks, such as fully-connected layers and ReLU
activations, is itself a piecewise affine function
supported on a polyhedral complex. This com-
plex has been studied to characterize theoretical
properties of NNs and linked to geometry repre-
sentations, but, in practice, extracting it remains
a challenge. Previous works subdivide the re-
gions via intersections with hyperplanes induced
by each neuron. Instead, we propose to subdivide
the edges, leading to a novel method for poly-
hedral complex extraction. This alleviates com-
putational redundancy and affords efficient data-
structures. A key to this are sign-vectors, which
encode the combinatorial structure of the com-
plex. Our implementation (available on GitHub)
uses standard tensor operations and can run ex-
clusively on the GPU, taking seconds for millions
of cells on a consumer grade machine. Motivated
by the growing interest in neural shape represen-
tation, we use the speed and differentiablility of
our method to optimize geometric properties of
the complex. Our code is available on GitHub1.

1. Introduction
A NN is a CPWA function if it is a composition of CPWA
operators, most notably fully-connected layers and rectified
linear unit (ReLU) activations. The CPWA nature induces a
polyhedral complex decomposing the input domain, which
has provided an additional avenue to study NNs in terms
of their expressivity, robustness, and training techniques.
The geometry of the partition has also been linked to max-

1Department of Mathematics and Cybernetics, SINTEF,
Oslo, Norway 2Department of Mathematics, University of
Oslo, Oslo, Norway. Correspondence to: Arturs Berzins <ar-
turs.berzins@sintef.no>.

Presented at the 2nd Annual Workshop on Topology, Algebra, and
Geometry in Machine Learning (TAG-ML) at the 40 th Interna-
tional Conference on Machine Learning, Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

1github.com/arturs-berzins/relu_edge_subdivision

affine spline operators, power-diagrams (Balestriero et al.,
2020), and implicit shape representations (Lei et al., 2021;
Humayun et al., 2023).

The diverse range of applications motivates a computational
method for extracting this complex. Previous approaches
include formulating this as a mixed-integer linear program
(Serra et al., 2018) for region counting or employing state-
flipping to extract a 2D level-set in 3D space (Lei et al.,
2021). However, the most widely discussed approach is
region subdivision (Hanin & Rolnick, 2019; Humayun et al.,
2023). The key idea is to sequentially consider each neuron
of each layer, calculating the affine map on every existing
region and determining whether the affine hyperplane cuts
the region in two (see Figure 1).

However, we observe a redundancy in region subdivision
(illustrated in Figure 3a and detailed in Section 3) which is
due to the continuity of the activation function. We alleviate
this redundancy by instead subdividing the edges. A key to
our approach are sign-vectors, which for every cell of the
complex indicate the neuron pre-activation signs and fully
encode the combinatorial structure of the complex.

In practice, since we track only the vertices and bounded
edges (as opposed to higher-dimensional faces with arbitrary
number of facets), we benefit from simple data-structures
and operations, and can run fully on the GPU. This allows
to handle millions of cells in seconds, outperforming a pre-
vious region-based approach roughly 20 times while also
being agnostic to the input dimension D. In lower dimen-
sions, the fast and differentiable access to the polyhedral
complex allows to optimize geometric properties of the
extracted complex, which we demonstrate in a novel exper-
iment. However, the use in D > 8 is impractical even for
small networks due to the known exponential growth of the
complex (see Figure 4a). We argue the algorithm is linear
time and memory and provide our log-linear PyTorch im-
plementation, hoping to facilitate the theoretical study of
CPWA NNs and their application in geometry. For more
details, we refer to our full work (Berzins, 2023).

2. Background
We will assume familiarity with polyhedral complexes
and hyperplane arrangements, referring to a more thor-

1

https://github.com/arturs-berzins/relu_edge_subdivision

Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision

Figure 1. In CPWA NNs, each neuron of each layer sequentially subdivides the polyhedral complex. Each neuron of the first hidden layer
contributes an affine hyperplane. Each neuron of the deeper layers contributes a folded hyperplane. Illustrated is the subdivision of a
cubic domain in the D = 3 input space by the shown NN. While previous methods subdivide the regions (highest dimensional cells), our
method subdivides edges.

Figure 2. Steps of a single iteration of edge subdivision. Starting with the current 1-skeleton (0), evaluate the NN at the vertices (1) and
determine the sign of the relevant neuron (2). If the signs of a vertex pair sharing an edge differ, the hyperplane must intersect this edge
(3). This intersection is a new vertex whose location interpolates the coordinates and values of the vertex pair and splits the edge in two
(4). To build new edges, connect the new vertices sharing a face (5).

ough treatment of this topic in the context of ReLU net-
works by Grigsby & Lindsey (2022) and the references
therein. Analogous to an affine hyperplane, a folded hy-
perplane is the kernel of the pre-activation of a neuron:
H

(l)
i :=

{
x ∈ RD|W(l)⊤

i x(l−1)(x) + b
(l)
i = 0

}
, where

x(l) is the output of the l-th layer of a ReLU NN. It is
well known that the folded hyperplane arrangement H parti-
tions the input space into a polyhedral complex C(H). Any
point x ∈ RD and any cell C ∈ C(H) can be assigned a
sign-vector σ, whose entries +,−, 0 indicate the sign of
the pre-activation or, geometrically, if x is right, left, or
exactly on the folded hyperplane. The sign-vectors encode
the combinatorial structure of the complex. We call y ∈ C
an ascendant of x ∈ C if x ⊆ y and a parent of x ∈ C if
x ⊆ y and no z ∈ C satisfies x ⊆ z ⊆ y.

3. Method
Due to the continuity of the activation function, all folded
hyperplanes are continuous across each other (Figure 3a).
If each region is considered independently, upon the inter-
section with a new folded hyperplane, each new vertex is
discovered 2D−1 times in V-representation, since an edge
has 2D−1 ascendant regions in an unbounded arrangement.
Similarly, in H-representation, the hyperplane redundancy
check performed via linear programming arrives at the same
conclusion on all 2D−1 ascendant regions of the shared
edge.

We resolve this redundancy by taking into account the conti-

nuity and using only the unique vertices and edges, i.e. the
1-skeleton. For each neuron in each layer we subdivide the
edges in five steps illustrated in Figure 2 and detailed in the
following.

To understand how the 1-skeleton is subdivided, i.e. how
new 0- and 1-cells are created, consider a new hyperplane H
cutting a k-cell C. Their intersection C0 = C ∩H is a new
(k − 1)-cell. Additionally, H splits C into two new k-cells
C+ = C ∩H+ and C− = C ∩H−. So there are exactly
two mechanisms for creating (k − 1)-cells: (i) splitting a
(k − 1)-cell with H which preserves the dimension and (ii)
intersecting a k-cell with H which lowers the dimension.
Focusing on k = 0, 1, 2 as sources for new 0, 1-cells leads
us to edge subdivision.

Let V and E be the set of all vertices and edges at the current
iteration (step 0). Let H be the next folded hyperplane to
intersect with and recall that it behaves like an affine hyper-
plane on each region, folding at its facets. Per generality
assumption, no vertex in V will intersect H . Each vertex in
V is + or a − sign w.r.t. H . These signs can be determined
from the pre-activation values of the neuron corresponding
to H , obtained by simply evaluating the NN at the vertices
(steps 1, 2).

We call E ∈ E a splitting edge if H cuts E. Splitting
edges can be identified by their two vertices having opposite
signs (step 3), which we label V +, V −. The new vertex
V 0 = E ∩H on the splitting edge E can be computed by
linearly interpolating the positions of V +, V − weighted by

2

Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision

their pre-activation values (step 4). This new vertex takes
the sign 0 w.r.t. H . The old splitting edge E is removed
from E and the two new split edges E+ = E ∩ H+ with
vertices V +, V 0 and E− = E ∩H− with vertices V −, V 0

are added to E . The new signs of E+, V + and E−, V − w.r.t.
H are trivially + and −, respectively.

This completes intersecting and splitting edges with the
folded hyperplane. However, new edges are also formed
where H intersects 2-faces. We call F a splitting 2-face if
H cuts F . We call their intersection E0 = F ∩ H an in-
tersecting edge. Every bounded splitting 2-face has exactly
two splitting edges. A naive approach is doing an adja-
cency check between all pairs of splitting edges. However,
the quadratic complexity is prohibitive even for moderately
sized NNs.

Instead, we implicitly build the splitting faces. In general,
we can determine the parents of a cell by perturbing each
zero in the sign-vector σ to + or − (example in Figure 3b).
Since σ of an interior k-cell has (D− k) zeros, this process
constructs all 2(D− k) parent sign-vectors. For a boundary
cell, we perturb the zeros only toward the positive interior.

During step 5, we end up with a list of splitting 2-faces each
pointing to a single splitting edge. In this list, each 2-face
comes up exactly twice. The two edges associated with the
same 2-face must be paired, which can in principle be done
in linear time and memory, e.g., using hash-tables. Lastly, it
remains to add the intersecting edge to E . Its sign-vector is
inherited from the splitting face with a 0 appended w.r.t. H .

Complexity analysis All the steps of edge subdivision can
be implemented in linear time and memory complexity in
the number of vertices |V|, edges |E|, or splitting edges |Ê |.
We argue further that O(|E|) and O(|Ê |) can be replaced
with O(|V|), concluding that the total algorithm is O(|V|).
The number of vertices can be further related to the NN
architecture.

4. Experiments
Implementation We implement the algorithm in
PyTorch. Since only vertex positions and bounded edges
with exactly two vertices are stored, edge subdivision can
run efficiently and exclusively on the GPU. The steps
0-4 can be implemented using standard tensor operations.
However, restricting ourselves to standard operations
available in PyTorch, step 5 can only be implemented in
sub-optimal log-linear time via sorting. We hope to address
this in the future, noting that performant hashing on the
GPU with custom length keys is an open research problem.
The time and memory behaviour of our implementation,
as well as the size of the complex are measured in Figure
4a. We also compare to a recent method for D = 2 by

(a) (b)
Figure 3. (a) Motivation in D = 2: due the continuity of the
activation, the two new edges share the same vertex on the common
edge of the two regions. Processing each region independently
is redundant. (b) The parenting (k + 1)-faces of a k-face can be
obtained by perturbing each zero in its sign-vector at a time. Here,
k = 1 and the first 6 entries of the sign-vector w.r.t. the boundary
planes are hidden for visual clarity since they are all +.

Humayun et al. (2023), measuring a speed-up of 20 times
and more for larger networks (Figure 4b). In additional
experiments, we also perform validation, confirm the
predicted log-linear scaling of the implementation, and
study the spatial distribution of the vertices (Berzins, 2023).

Optimizing the complex As described in Sections 1, the
access to the exact polyhedral complex is intriguing in many
applications. Since most of these have been demonstrated
before, we focus a novel experiment in which an optimiza-
tion objective is formulated on the geometric properties of
the extracted complex, shown in Figure 5. We start with
a D = 2 ReLU NN with two hidden layers of 50 neurons
each, trained as a neural implicit representation of a bunny.
Then, in each iteration we extract the polyhedral complex
and compute the shape compactness c = 4πA/P 2 as the
ratio of the area A and the perimeter P . Using c as the
loss, the bunny shape converges to a circle in 100 iterations
using a standard Adam optimizer. In general, any loss that
depends on the vertex positions can be formulated, e.g. edge
lengths, angles, areas, volumes, curvatures, and other quan-
tities from discrete differential geometry.
In our full work (Berzins, 2023), we also study pruning of
NN parameters and a modification of edge subdivision to
speed up the extraction a specific iso-level-set, i.e. decision
boundary, akin to Lei et al. (2021), illustrated in Figure 6.

5. Conclusions
We observed a redundancy in subdividing regions and alle-
viated it by subdividing edges instead, leading to a novel
method for extracting the exact polyhedral complex from
ReLU NNs. We exploited the structure of the complex en-
coded in the sign-vectors, as well as simple data structures
and operations on the GPU, outpacing a previous method 20-
fold. The speed and differentiability allowed us to consider
a novel application in which a loss is formulated on the ex-

3

Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision

(a) (b)
Figure 4. (a) Edge and vertex counts, runtime, and memory usage of randomly initialized NNs of four layers and different widths and
input dimensions. Mean ± standard deviation over 5 runs. (b) We achieve a 20 times speed-up on average over SplineCam (Humayun
et al., 2023) which is also limited to D = 2.

Figure 5. The extracted skeleton at initial, intermediate, and final iteration of optimizing the shape compactness. The bunny shape
converges to a circle in 100 iterations of a standard Adam optimizer with the loss formulated on the extracted complex.

Figure 6. Pruning during edge subdivision reduces the number
of vertices and edges in each iteration by looking at future sign-
vectors. Displayed are the preserved intermediate edges after each
layer.

tracted complex. While in higher dimensions any method is
limited by the exponential growth of the complex, we hope
our work opens new opportunities in lower-dimensional
geometry applications. In the future, we hope to upgrade
sorting with, e.g., hash-tables to improve the total imple-
mentation to linear complexity.

Acknowledgements
This was supported by the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agree-
ment number 860843.

References
Balestriero, R., Paris, S., and Baraniuk, R. Max-affine

spline insights into deep generative networks. ArXiv,
abs/2002.11912, 2020.

Berzins, A. Polyhedral Complex Extraction from ReLU
Networks using Edge Subdivision. 40th International
Conference on Machine Learning, 2023.

Grigsby, J. E. and Lindsey, K. On transversality of bent
hyperplane arrangements and the topological expressive-
ness of relu neural networks. SIAM Journal on Ap-
plied Algebra and Geometry, 6(2):216–242, 2022. doi:
10.1137/20M1368902.

Hanin, B. and Rolnick, D. Complexity of linear regions in
deep networks. ArXiv, abs/1901.09021, 2019.

Humayun, A. I., Balestriero, R., Balakrishnan, G., and Bara-
niuk, R. Splinecam: Exact visualization and characteriza-
tion of deep network geometry and decision boundaries.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023.

Lei, J., Jia, K., and Ma, Y. Learning and meshing from
deep implicit surface networks using an efficient imple-
mentation of analytic marching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021. doi:
10.1109/tpami.2021.3135007.

Serra, T., Tjandraatmadja, C., and Ramalingam, S. Bound-
ing and counting linear regions of deep neural networks.
In ICML, 2018.

4

