
Bridging the Cyber and Physical with a Verifiable, Executable
Language for Robotics

Jiawei Chen1 , José Luiz Vargas de Mendonça1 , and Jean-Baptiste Jeannin1

Abstract— Building reliable Cyber-Physical Systems (CPS)
often requires formal verification, which is capable of producing
the rigorous safety guarantees necessary to provide confidence
in its design. However, verification may be challenging to per-
form on real-world systems, and as a result, a simplified model
may be verified instead. This results in a disconnect between
verification and reality, leading to diminished confidence in the
verification result. We have developed a method that enables
CPS designers to both formally verify and implement CPS
software in a single language. By combining the industry-tested
modeling and compilation of synchronous programming with
the verification rigor of refinement types, we strive to give CPS
designers additional confidence in designing reliable, real-world
CPS.

I. INTRODUCTION

Designing high-reliability CPS often entails formal ver-
ification, as it can provide stronger safety guarantees than
simply testing experimentally. However, formal verification
requires that the system being verified accurately represents
the real system. Unfortunately, this is not always straightfor-
ward. Programming languages for CPS design require well-
understood formal semantics for verification, while those
designed for implementation require expressiveness for pro-
ducing executable software. However, there are challenges
in reconciling the two. Real implementations of CPS may
be complex and difficult to characterize, making verification
difficult unless performed on an abstract model. This may
introduce uncertainty in the verification result. We present
a method for verification and implementation in a single
language, by combining the industry-tested modeling and
compilation capabilities of synchronous programming with
formal verification through an extended type system. With
this method, we have formally verified and implemented a
vehicle collisiom-avoidance braking controller on a real robot
[1].

A. Synchronous Modeling and Execution

Synchronous programming languages treat CPS as collec-
tions of functions that operate on streams of incoming data,
such as sensor values, to produce output streams, such as ac-
tuator commands [2], [3]. By design, synchronous programs
have limited memory and must react on the same time base
as their inputs, which makes them useful for modeling em-
bedded systems. Real-world mplementations of synchronous
languages have already been employed in industry[4], [5],
modeling critical systems such as avionics and integrated
circuits [6]. We extend an existing synchronous programming

1University of Michigan, Ann Arbor, MI, USA
{chenjw, joselvdm, jeannin}@umich.edu

language already capable of producing executable simula-
tions [7], [8], with verification and the ability to operate real
robots.

B. Verification through Refinement Types

Formal verification is introduced via refinement types,
similar to those found in non-synchronous languages [9],
[10]. Refinement types extend a language’s type system by
allowing type specifications to be conditioned on program
values. For instance, a value that must only be a positive
integer may be specified as {v : int | v > 0}, where values
of the type can only be an integer v where v > 0. The
incorporation of logical predicates into type specifications
and the ability to refer to program terms make refinement
types a powerful specification tool. Furthermore, refinement
types still inherit the compile-time verification and modular-
ity of normal types [9]. Although type-checking has already
been applied to safety-critical verification tasks, such as those
in robotics [11] and networking [12], extending refinement
type checking to streams presents some unique challenges,
which we address in our project. Our contribution includes
the translation of refinement types in synchronous programs
into constraints, which can then be checked for compatibility
using a Satisfiability Modulo Theory (SMT) solver such as
Z3 [13].

C. Related Work

Hybrid automata [14] and differential dynamic logic
[15] are commonly used for modeling and verifying CPS.
Although they can model real-world systems [16], their
nondeterministic nature precludes directly generating exe-
cutable code, though some translation may be possible [17].
Nevertheless, there exists a gap between the CPS that is
implemented on a real system and the model CPS that is
verified.

Other approaches to synchronous program verification
have been explored in existing projects. For instance, Kind
[18] and Kind 2 [19], use an approach similar to bounded
model checking to synthesize invariants. Similarly, the
Simulink-based verification tool CoCoSim [20] translates
Simulink models and assume-guarantee statements into syn-
chronous programs verifiable using the previous method.
Our approach differs in that the constraints generated for
type checking allow for a more thorough search of the
state space, but may require invariants to avoid spurious
counterexamples.

Verifiable and executable CPS have been explored in other
works. VeriPhy [17] proposes a method for compiling differ-



ential dynamic logic specifications into runtime monitors that
allow a system to recover from anomalies [17]. Koord [21],
[22] verifies coordination-level multi-agent robotics systems
and executes on real robots. Though similar in use case, our
project fulfills a distinct role relative to these works, and they
may well complement one another. For instance, one may use
our work to design and verify the fallback controller used in
VeriPhy, or the low-level controllers used in Koord.

II. METHODS

We chose to extend the Zélus language [7], a language pri-
marily designed for simulating synchronous hybrid automata,
and its compiler [8]. Although its support for hybrid systems
allows one to model systems with continuous-time dynamics,
we note that our current work verifies only discrete-time
components. We base the extended type system on the refine-
ment types found in Liquid Haskell [10] and its translation of
type specifications into automatically checkable constraints.
We then bridge the gap between the synchronous program
and the real world using a shared-variable protocol similar
to the CyPhyHouse multi-agent robotics platform [22]. Com-
bining these components, we ensure a seamless verification
to execution workflow in a single language. Technical details
regarding the language and implementation can be found in
our workshop paper [1].

A. Type-Checking Synchronous Programs

We developed a set of typing rules modeled after existing
refinement type systems [9], [10], [23]. A unique challenge
that arises from combining synchronous programs with re-
finement types is ensuring that types on streams indeed
describe all possible values of the stream. Unlike ordinary
refinement types, our type system must also account for tem-
poral behavior such as an if-statement being conditioned on a
stream of boolean values. In this case, the program repeatedly
switches between the two branches, which themselves exhibit
temporal behavior. We note that, in the discrete subset of
Zélus, streams can be modeled inductively, with one or more
initial conditions and an evolution function that determines
the stream’s subsequent value using a finite number of pre-
vious values. Thus, universal temporal properties, specifying
that something always or never happens, can be conveniently
encoded as SMT constraints, though inductive invariants may
be necessary to rule out false counterexamples. Although
only a subset of temporal logic, many safety properties of
note can be encoded as a universal temporal property in
practice. The typing rules we developed form the foundation
of our type checker, which serves as an interface between the
Zélus program augmented with refinement types and the Z3
SMT solver used to verify that all constraints are compatible.

B. Verifying a Real-World Example

We demonstrated the design process of a simple robot
program modeled after a vehicle’s adaptive cruise control
system [16]. In the various scenarios we sought to verify, the
robot with the formally-verified controller (the “ego” vehicle)
follows another vehicle along a single lane, which may

choose to accelerate or decelerate without the knowledge
of the ego vehicle. The ego vehicle is specified to avoid
a collision at all times. For simplicity, the ego can only
either accelerate or brake at its maximum rate (a “bang-bang”
controller). However, we note that more complex controllers
can still be verified, given the appropriate invariants are
chosen. The key insight behind choosing invariants often en-
tails explicitly defining an inductive property of the system.
For instance, the inductive invariant we use in this scenario
assumes that the ego is never in a situation where a collision
is unavoidable. Verification then becomes proving that the
controller in the current time step sustains this property.
Combined with verifying that the system began in a safe
configuration, property is thus proven inductively.

C. Executing Synchronous Programs on Real Robots

Although the Zélus compiler in its unmodified state is
able to generate executable simulations, these simulations
have no interactions with the physical world, save for
synchronizing simulations to real time. We extend Zélus
with an inter-process communications scheme based on
Lightweight Communications and Marshalling (LCM) [24]
to share variable values between the synchronous program
and low-level drivers for various robot peripherals. The low-
level drivers implement simple motor speed controllers and
sensor sampling for convenience, though it is possible to
implement parts of these in the verified synchronous code to
shrink the trusted base. Our current experiments employ a
small differential-drive wheeled robot equipped with LiDAR
and wheel speed sensors, making it well-suited for simulating
ground vehicles. We have published experimental results
from a simplified version of the aforementioned adaptive
cruise control scenario [1], and we have results from the
full system in submission.

III. DISCUSSION AND FUTURE WORK

The project’s primary goal is to develop a trusted chain
from system specification and modeling to implementation
on real-world CPS. Our methods extend the modeling capa-
bilities of synchronous languages with specifications through
type annotations, allowing for compile-time verification of
safety properties. The present work trusts that the compiler
correctly translates the verified synchronous program into
safe executables. There have been developments in formally-
verified compilation of synchronous languages [25], which
if implemented would further enhance trust in our methods.
We also assume that the user has correctly specified the
environment in which the CPS operates. As a result, we
carry assumptions made about the environment’s behavior
to runtime. A possible solution could be to incorporate run-
time monitoring, at the software [17] or hardware [26] level,
which can leverage our generated verification constraints
to check that verification assumptions are met in the real
system. Finally, we would like to extend verification to
hybrid components of the Zélus language, giving the user
even more expressiveness in verifying and implementing safe
CPS.



REFERENCES

[1] J. Chen, J. L. Vargas de Mendonça, S. Jalili, B. Ayele, B. N.
Bekele, Z. Qu, P. Sharma, T. Shiferaw, Y. Zhang, and J.-B. Jeannin,
“Synchronous Programming and Refinement Types in Robotics: From
Verification to Implementation,” in Proceedings of the 8th ACM
SIGPLAN International Workshop on Formal Techniques for Safety-
Critical Systems, FTSCS 2022, (New York, NY, USA), pp. 68–79,
Association for Computing Machinery, Dec. 2022.

[2] N. Halbwachs, Synchronous Programming of Reactive Systems.
Boston, MA: Springer US, 1993.

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE:
A declarative language for programming synchronous systems,” in
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages - POPL ’87, (Munich, West
Germany), pp. 178–188, ACM Press, 1987.

[4] J.-L. Colaço, B. Pagano, and M. Pouzet, “SCADE 6: A formal
language for embedded critical software development (invited paper),”
in 2017 International Symposium on Theoretical Aspects of Software
Engineering (TASE), pp. 1–11, Sept. 2017.

[5] F. Boussinot and R. de Simone, “The ESTEREL language,” Proceed-
ings of the IEEE, vol. 79, pp. 1293–1304, Sept. 1991.

[6] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages 12 years later,”
Proceedings of the IEEE, vol. 91, pp. 64–83, Jan. 2003.

[7] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet, “A hybrid
synchronous language with hierarchical automata: static typing and
translation to synchronous code,” in Proceedings of the ninth ACM
international conference on Embedded software - EMSOFT ’11,
(Taipei, Taiwan), p. 137, ACM Press, 2011.

[8] T. Bourke, J.-L. Colaço, B. Pagano, C. Pasteur, and M. Pouzet,
“A Synchronous-Based Code Generator for Explicit Hybrid Systems
Languages,” in Compiler Construction (B. Franke, ed.), vol. 9031,
pp. 69–88, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.
Series Title: Lecture Notes in Computer Science.

[9] P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,” in Proceed-
ings of the 2008 ACM SIGPLAN conference on Programming language
design and implementation - PLDI ’08, (Tucson, AZ, USA), p. 159,
ACM Press, 2008.

[10] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones,
“Refinement types for Haskell,” in Proceedings of the 19th ACM
SIGPLAN international conference on Functional programming, ICFP
’14, (New York, NY, USA), pp. 269–282, Association for Computing
Machinery, Aug. 2014.

[11] A. Anand and R. Knepper, “ROSCoq: Robots Powered by Constructive
Reals,” in Interactive Theorem Proving (C. Urban and X. Zhang, eds.),
vol. 9236, pp. 34–50, Cham: Springer International Publishing, 2015.
Series Title: Lecture Notes in Computer Science.

[12] M. Eichholz, E. H. Campbell, M. Krebs, N. Foster, and M. Mezini,
“Dependently-typed data plane programming,” Proceedings of the
ACM on Programming Languages, vol. 6, pp. 1–28, Jan. 2022.

[13] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Tools and Algorithms for the Construction and Analysis of Systems
(D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, C. R.
Ramakrishnan, and J. Rehof, eds.), vol. 4963, pp. 337–340, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008. Series Title: Lecture
Notes in Computer Science.

[14] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid Systems (G. Goos, J. Hartmanis, R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds.), vol. 736,
pp. 209–229, Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Series Title: Lecture Notes in Computer Science.

[15] A. Platzer, “Differential Dynamic Logic for Hybrid Systems,” Journal
of Automated Reasoning, vol. 41, pp. 143–189, Aug. 2008.

[16] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive Cruise Control:
Hybrid, Distributed, and Now Formally Verified,” in FM 2011: Formal
Methods (M. Butler and W. Schulte, eds.), vol. 6664, pp. 42–56, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011. Series Title: Lecture
Notes in Computer Science.

[17] R. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer, “Veri-
Phy: verified controller executables from verified cyber-physical sys-
tem models,” in Proceedings of the 39th ACM SIGPLAN Conference

on Programming Language Design and Implementation, (Philadelphia
PA USA), pp. 617–630, ACM, June 2018.

[18] G. Hagen and C. Tinelli, “Scaling Up the Formal Verification of Lustre
Programs with SMT-Based Techniques,” in 2008 Formal Methods in
Computer-Aided Design, pp. 1–9, Nov. 2008.

[19] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind 2
Model Checker,” in Computer Aided Verification (S. Chaudhuri and
A. Farzan, eds.), vol. 9780, pp. 510–517, Cham: Springer International
Publishing, 2016. Series Title: Lecture Notes in Computer Science.

[20] H. Bourbouh, P.-L. Garoche, T. Loquen, Noulard, and C. Pagetti,
“CoCoSim, a code generation framework for control/command appli-
cations An overview of CoCoSim for multi-periodic discrete Simulink
models,” in 10th European Congress on Embedded Real Time Software
and Systems (ERTS 2020), (Toulouse, France), Jan. 2020.

[21] R. Ghosh, C. Hsieh, S. Misailovic, and S. Mitra, “Koord: a language
for programming and verifying distributed robotics application,” Pro-
ceedings of the ACM on Programming Languages, vol. 4, pp. 1–30,
Nov. 2020.

[22] R. Ghosh, J. P. Jansch-Porto, C. Hsieh, A. Gosse, M. Jiang, H. Taylor,
P. Du, S. Mitra, and G. Dullerud, “CyPhyHouse: A programming,
simulation, and deployment toolchain for heterogeneous distributed
coordination,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6654–6660, May 2020. ISSN: 2577-087X.

[23] R. Jhala and N. Vazou, “Refinement Types: A Tutorial,”
arXiv:2010.07763 [cs], Oct. 2020. arXiv: 2010.07763.

[24] LCM Project, “Lightweight Communications and Marshalling.”
[25] T. Bourke, L. Brun, P.-E. Dagand, X. Leroy, M. Pouzet, and L. Rieg,

“A Formally Verified Compiler for Lustre,” Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 586–601, 2017.

[26] J. Baumeister, B. Finkbeiner, S. Schirmer, M. Schwenger, and
C. Torens, “RTLola Cleared for Take-Off: Monitoring Autonomous
Aircraft,” in Computer Aided Verification (S. K. Lahiri and C. Wang,
eds.), vol. 12225, pp. 28–39, Cham: Springer International Publishing,
2020. Series Title: Lecture Notes in Computer Science.


