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ABSTRACT

Advances in Large Language Models (LLMs) have inspired various strategies for
integrating video modalities. A key approach is Video-LLMs, which incorporate an
optimizable interface linking sophisticated video encoders to LLMs. However, due
to computation and data limitations, existing Video-LLMs are typically pre-trained
to process only short videos, limiting their broader application for understanding
longer video content. Additionally, fine-tuning Video-LLMs to handle longer
videos is cost-prohibitive. Consequently, it is essential to explore the interpolation
of Video-LLMs under a completely training-free setting. In this paper, we first
identify the primary challenges in interpolating Video-LLMs: ❶ the video encoder
and modality alignment projector are fixed, preventing the integration of additional
frames into Video-LLMs, and ❷ the LLM backbone is limited in its content length
capabilities, which complicates the processing of an increased number of video
tokens. To address these challenges, we propose an INTerPolation method for
Video-LLMs (INTP-Video-LLMs). We introduce a video token rearrangement
technique that circumvents limitations imposed by the fixed video encoder and
alignment projector. Furthermore, we introduce a training-free LLM context win-
dow extension method to enable Video-LLMs to understand a correspondingly
increased number of visual tokens. We analyze the deployment costs of INTP-
Video-LLM, and find its efficiency bottleneck is on its KV cache cost. Accordingly,
we introduce a training-free KV-cache compression mechanism that reduces mem-
ory overhead during inference. INTP-VideoLLM not only supports the processing
of longer video sequences but also optimizes memory usage during inference—all
achieved without the need for additional training. In practice, whereas pre-trained
Video-LLaVA [Lin et al., 2024] models are configured to process just 8 frames,
INTP allows these models to comprehend 32 frames.

1 INTRODUCTION

Large Language Models (LLMs) [OpenAI, 2023, Touvron et al., 2023a;b], have shown tremendous
capabilities in question answering and reasoning. Building on this foundation, Vision LLMs extend
these abilities to include images, employing a vision encoder and an LLM to generate text responses
given an image and a related question [Liu et al., 2023a, Zhang et al., 2024]. Recent advancements
aim to extend this capability from image understanding to video understanding [Lin et al., 2024,
Zhang et al., 2023a, Kim et al., 2024]. Video-LLMs combine video data with language models by
integrating learnable interfaces that capture both spatial and temporal information in video. Typically,
these interfaces use a projection network [Li et al., 2023b, Maaz et al., 2023, Li et al., 2023a] to
transform video content into video tokens that can be interpreted by LLMs, thereby bridging the gap
between video information and text processing capabilities of LLMs (see Fig.1).

However, existing Video-LLMs [Li et al., 2023b, Lin et al., 2024, Maaz et al., 2023, Li et al., 2023a,
Kim et al., 2024] struggle to process long videos. In particular, Video-LLMs often lack the temporal
resolution necessary to precisely model temporal events, limiting its application to long video [Huang
et al., 2024]. For instance, Video-LLaMA [Li et al., 2023b] and Video-LLaVA [Lin et al., 2024]
only sample 8 frames uniformly across an entire video, which is often too short for detailed temporal
analysis [Huang et al., 2024]. Simply feeding more frames into these models does not resolve the
issue, as their architectures cannot effectively process a larger number of frames. Consequently, there
is a pressing need for Video-LLMs that can understand larger numbers of video frames.
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Figure 1: (Left) Video-LLMs consist of three main components: a video encoder, an alignment projector
layer, and a fine-tuned LLM backbone. The process begins with the video encoder transforming video frames
into a series of visual tokens. A projector then maps these tokens, aligning visual features with text features.
The resulting aligned features, along with text prompts, are subsequently fed into the LLM backbone for
visual understanding. (Right) INTP, a training-free Video-LLM interpolation technique, addresses the existing
constraints of Video-LLMs. We employ a video token rearrangement that bypasses the limitations set by the
fixed video encoder and alignment projector. Additionally, we implement a training-free LLM context window
interpolation method to allow Video-LLMs to process an increased number of visual tokens effectively.

To reach this goal, one could consider training Video-LLMs from scratch to handle more extensive
video frames. Unfortunately, this approach can be impractical due to prohibitive training costs and
data accessibility issues. On the one hand, Video-LLMs require increasingly large datasets, making
data acquisition more challenging, especially considering copyright restrictions on video-language
paired data. In some cases, the training data are not publicly available. Sometimes, only the model
weights are released while the data is not open. On the other hand, the computation cost of training a
Video-LLM is expensive. For example, even the relatively less costly Video-LLaVA [Lin et al., 2024]
requires thousands of hours on Nvidia A100 GPUs. Therefore, retraining a Video-LLM to process
more frames is not feasible in many scenarios.

In this paper, we aim to significantly increase the number of frames that existing Video-LLMs can use
to understand videos in a training-free manner. We first delineate the primary challenges associated
with interpolating Video-LLMs: ❶ the video encoder and modality alignment projector are fixed,
which prevents the integration of additional frames, and ❷ the content length capacity of the LLM
backbone is limited, hindering the processing of an increased number of visual tokens.

To overcome these obstacles, we propose an interpolation method for Video-LLMs, dubbed INTP.
For the ❶ challenge, we propose a video token rearrangement technique that bypasses the restrictions
imposed by the fixed video encoder and alignment projector. This approach allows utilizing the
pre-trained video encoder and alignment projector to generate an increased number of video tokens
for LLM reasoning while maintaining the video tokens’ temporal consistency. For the ❷ challenge,
derived from the positional embedding mechanism in Video-LLMs (i.e., Rotary Position Embedding,
RoPE [Su et al., 2024]), we develop a training-free Video-LLM context window extension method.
This design ensures that the interpolated Video-LLM can handle any number of video frames.

Upon developing the INTP-Video-LLM, we examine its deployment constraints and identify that the
handling of an increased number of video tokens incurs additional memory usage. This finding echos
the memory bottleneck in long-sequence LLM deployment [Yuan et al., 2023; 2024]. To address
this issue and enhance the deployment efficiency of INTP-Video-LLM, we introduce a training-free
KV-cache compression technique that reduces memory overhead during inference. Consequently,
INTP-Video-LLM not only facilitates the processing of longer video sequences but also optimizes
memory usage during inference, all without necessitating further training.

2 RELATED WORK

2.1 VIDEO LANGUAGE MODELS

Prior to the emergence of LLMs, Yang et al. [2022] introduced FrozenBiLM, which combined a frozen
vision encoder with a bidirectional language model for efficient video processing. In the LLM era,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

video-language models continue to evolve. For instance, Video-ChatGPT enhances video instruction
tuning using high-quality instructional data [Maaz et al., 2023]. Li et al. [2023a] propose VideoChat,
which utilizes cross-attention mechanisms to integrate video tokens with user queries and dialogue
context. Li et al. [2024] propose a follow-up work, VideoChat2, which advances this integration
with a multi-stage bootstrapping method, focusing on modality alignment and further instruction
tuning. Video-LLaVA [Lin et al., 2024] introduces a pre-aligned encoder that supports both image
and video modalities, enabling shared projections and joint training across tasks. However, handling
long videos is very challenging due to the high computational complexity and memory demands of
representing extensive video content with video tokens. To address these issues, various advanced
temporal modeling techniques have been deployed. Chat-UniVi [Jin et al., 2023] proposes a unified
model that dynamically merges spatial and temporal tokens using k-NN techniques to streamline
processing. LLaMA-VID [Li et al., 2023b] uses a dual token system to effectively compress video
tokens. Despite these explorations, all previous methods rely on some form of training. In contrast,
our work is the first to explore the extension of the Video-LLM context window in a training-free
manner, offering an approach to handling long video sequences without the computational expense
and data requirements of traditional training methods.

2.2 LONG-CONTEXT LLMS

LLMs are generally pre-trained with a specified context length, with models like LLaMA and
LLaMA2 employing 2k and 4k tokens respectively [Touvron et al., 2023a;b]. Training LLMs from
scratch to handle extended context is often prohibitively expensive for many researchers. Thus,
recent innovations have focused on extending the context length through fine-tuning methods. Recent
advancements focus on modifying the position embedding (PE), particularly RoPE [Su et al., 2024],
employed in LLMs such as LLaMA and Mistral [Jiang et al., 2023]. One of the main strategies is
embedding scaling [Chen et al., 2023, Liu et al., 2023b, Peng et al., 2023], which modifies position
embeddings to accommodate longer sequences, ensuring they remain within the pre-training scope
and preventing feature extrapolation. For instance, Chen et al. [2023] condense position indices to
maintain alignment with the pre-training range, effectively expanding LLaMA’s context to 16,000
tokens with minimal fine-tuning, requiring only 1,000 steps. In a different approach, Liu et al.
[2023b], Roziere et al. [2023] adjust the rotary base of RoPE, known as “NTK-aware” scaling. To the
best of our knowledge, our work is the first exploration to extend the context window of Video-LLMs
in a training-free manner.

2.3 POST-TRAINING COMPRESSION FOR KV CACHE

Recently, the compression of Key-Value (KV) caches has garnered significant attention due to the pro-
hibitively high memory consumption associated with generating long contextual sequences in LLMs.
Current methods can be briefly categorized into three types: Quantization-aware, eviction-based, and
attention-based. Quantization-aware compression reduces KV cache size by substituting the original
KV cache with lower-precision approximations. KVQuant [Hooper et al., 2024], KIVI [Liu et al.,
2024] and WKVQuant [Yue et al., 2024] are pioneering studies in KV cache quantization, revealing
that keys and values should be quantized along different dimensions. Notably, KIVI compresses the
KV cache to as few as 2 bits. Yang et al. [2024], Dong et al. [2024] further enhance quantization per-
formance by identifying and selectively preserving more significant keys and values. SKVQ [Duanmu
et al., 2024] advances upon KIVI using a sliding window technique, wherein quantization parameters
are determined on a window-wise basis. ZipCache [He et al., 2024] establishes a robust baseline
for KV cache quantization, achieving compression ratios as high as 5x with negligible performance
degradation. In this work, we analyze the development bottlenecks of long-context Video-LLMs
and identify that the major constraint lies in the LLM’s KV cache. To address this computational
overhead, we leverage quantization techniques, effectively optimizing the model’s memory usage and
inference efficiency.

3 METHOD: INTERPOLATING VIDEO-LLMS

In this section, we first review the standard implementation of Video Large Language Models
(Video-LLMs), with a particular focus on the main components and training pipelines. We highlight
the difficulties of obtaining a long-video-LLM from scratch (Sec.3.1). Next, we present a totally
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training-free method specifically designed for Video-LLM INTerPolation, called INTP. There are
three advancements in the development and optimization of INTP: (1) A video encoder and modality-
alignment projector extension method (Sec.3.2); (2) A video-LLM context window extension method
(Sec. 3.3); and (3) An inference bottleneck analysis and a post-training quantization solution (Sec.3.4).

3.1 PRELIMINARIES: VIDEO LARGE LANGUAGE MODELS (VIDEO-LLMS)

Video-LLMs are typically composed of three core modules: a video encoder, an alignment projector
layer, and a fine-tuned large language model (LLM) backbone. The process begins with a video
encoder—often a Vision Transformer (ViT)—which converts video input Xv ∈ RN×W×H into a
series of visual tokens Zv , in which N is number of frames, W and H is the pixel width and height
of each frame. These tokens are processed by the input projector ΘZv→Hv

, which maps the encoded
visual features to the text feature space H. The aligned features, along with text prompts Hq , are then
input into a LLM backbone, and then the language model can generate the response. The architecture
of a typical Video-LLMs is illustrated in Fig. 1 (left).

Video encoders are crucial for compressing the raw video into compact representations. These
encoders are often trained from scratch via multimodal alignment pretraining [Yin et al., 2023]. For
instance, LanguageBind [Zhu et al., 2023] employs contrastive learning during the pretraining phase
to gradually align video modality with language modality. Given that LLMs inherently process
text, bridging the modality gap between natural language and video is essential. However, training
a Video-LLM from scratch is prohibitively expensive. A more feasible approach involves using a
learnable connector between the pre-trained visual encoder and the LLM, along with fine-tuning the
LLM to better interpret visual tokens. Although those components can be trained via instruction
tuning [Gong et al., 2023] or alignment tuning [Sun et al., 2023], their training remains costly. For
example, to train the video encoder, Zhu et al. [2023] collect a large-scale video-and-text dataset,
VIDAL-10M. In addition, even without pre-training the video encoder, fine-tuning the Video-LLaVA
[Lin et al., 2024] still consumes approximately 200 hours on Nvidia A100 GPUs.

In summary, given the significant data and computational expenses associated with training Video-
LLMs, developing these models from scratch to process long videos is challenging. This underscores
the importance of exploring methods to adapt existing Video-LLMs for extended video processing in
a training-free manner.

In practice, the challenges in extending the Video-LLMs can be summarized from two key aspects:
❶ the fixed nature of the video encoder and modality alignment projector, and ❷ the limited content
length capacity of the LLM backbone. First, the video encoder and alignment projector are typically
configured during initial training and remain unchanged thereafter. This prevents the system from
incorporating additional frames beyond the preset limit, which limits the model’s ability to adapt
to videos of different lengths or to capture more granular temporal details within prolonged video
sequences. Second, the LLM backbone has a predefined limit on the number of tokens it can handle.
This constrains the model’s capacity to interpret a larger number of visual tokens, effectively capping
the amount of visual information that can be processed. As the complexity and length of videos
increase, these constraints become significant bottlenecks, hindering the model’s ability to fully
understand and generate coherent responses based on longer video inputs.

3.2 ALTERNATIVE VIDEO TOKEN REARRANGEMENT

To address challenge ❶, we enable the video encoder and alignment projector to map video inputs
with an increased number of frames into the text feature space. As shown in Fig. 2, the pre-trained
video encoder is configured to process a fixed-length video sequence, Xv, consisting of N frames.
The most straightforward approach is repeatedly using the encoder and projector to process m ·N
frames by sampling and encoding multiple subsets of frames m times. Once we have collected m
groups of video tokens, we can concatenate them together to get the whole long video’s visual tokens.

However, since these video encoders and projectors are pre-trained to process only N frames
collectively, such repetitive usages lead to distorted temporal representations in the video token
sequence. The concatenating video tokens may carry the frame’s relative information—such as the
inconsistency between the tokens of the N -th frame and those of the (N +1)-th frame (i.e., tokens of
the 1-th frame and those of the (N + 1)-th frame end up sharing more similarity). This discrepancy
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Figure 2: Alternative Video Token Rearrangement. (Left) A video input sampled with fewer
frames, such as 2 frames Xv, is processed through a video encoder and projector to produce visual
tokens Zv and transformed features Hv. (Right) Increasing the number of sampled frames, for
example to 4 (Frame #1 - #4), results in a richer video input X′

v . By pairing Frames #1 with #3 and
#2 with #4, we obtain two subsequences, Xv,1 and Xv,2, each processed by the same frozen encoder
and projector. This results in new sets of tokens (Zv,1, Hv,1; Zv,2, Hv,2). These tokens are then
correspondingly integrated into an extended sequence of features H′

v .

emerges because the transformer-processed tokens are not designed to naturally accommodate the
increased spatial and temporal variety, potentially causing misalignments and inconsistencies in the
encoded video features [Xiao et al., 2023, Shang et al., 2024a].

To overcome this issue, we propose a video token rearrangement technique that preserves the temporal
consistency of the video tokens. The technique allows the generation of an increased number of
temporal-consistent video tokens, which enable the model to process extended video sequences
without requiring retraining. The module employs a dynamic rearrangement of input frames and their
corresponding tokens. Here’s how the rearrangement works:

1. For a given video input Xv with N frames, the video encoder generates an initial set of visual
tokens Zv. These tokens are subsequently mapped by the alignment projector to produce Hv.
Both the encoder and the projector remain frozen to maintain consistency in processing.

2. To enhance temporal coverage, the number of frames sampled is increased to m · N , and the
video is divided into subsequences to capture various temporal segments. For example: The first
subsequence might include Frames {#1,#(m+ 1), · · ·#(mN −m+ 1)}, providing some new
but temporally overlapped “view” of these segments. Similarly, the rest i-th subsequence might
consist of Frames {#i,#(m + i), · · ·#(mN − m + i)}. These subsequences are processed
separately through the same fixed video encoder and projector: The i-th subsequence processes
to yield visual tokens Zv,i and corresponding projected tokens Hv,i. This approach increases
the amount of visual data that can be processed without modifying the architecture or requiring
retraining of the encoder and projector.

3. The visual tokens generated from each frame group are correspondingly integrated into a new
sequence based on their frame’s absolute location, H′

v , as illustrated in Fig. 2.

This newly assembled token sequence can represent a more extended duration of the video than a
single processing pass of the original input would allow. In the following subsection, we demonstrate
how to adapt the Video-LLM backbone to process the increased number of video tokens.

3.3 INTERPOLATING VIDEO-LLM BACKBONE

To address challenge ❷, we introduce a post-training interpolation method for the Video-LLM’s
backbone, specifically targeting its positional embedding. As discussed in the related work (Sec. 2),
Rotary Position Embedding (RoPE) [Su et al., 2024] is a widely-used positional encoding scheme
adopted by several prominent LLMs, including Llama, Phi, Mistral, and Gemma. Consequently,
RoPE has become the standard method for position embedding in Video-LLMs.
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3.3.1 ROPE FUNDAMENTALS

RoPE integrates positional information into both the query vector q and key vector k of transformer
models. Specifically, for a sequence of tokens s1, s2, · · · , sL with embeddings x1, · · · ,xL ∈ RD

(D is the dimension of the embedding), RoPE applies the following transformations:

qm = fq(xm,m) ∈ RD and kn = fk(xn, n) ∈ RD. (3.1)

The transformation functions fq and fk incorporate positional information as:

fq(xm,m) = eimθWqxm and fk(xn, n) = einθWkxn, (3.2)

where θd = b−2d/|D| with a base b = 10000. These transformations ensure that the relative positions
of tokens are reflected in their interactions through the inner product operations, represented by m−n
of the tokens as follows: ⟨fq(xm,m), fk(xn, n)⟩R =

Re(⟨fq(xm,m), fk(xn, n)⟩C) = Re(x∗
mW∗

qWkxne
iθ(m−n)) = g(xm,xn,m− n) (3.3)

where ∗ is the conjugate of a complex number, Re(q,k) is the real part of the inner product of q, k,
and g(·) is an abstract mapping function. In real coordinates, the RoPE can be expressed as follows:

fW(xm,m, θd) =



cosmθ1 − sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 − sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθl − sinmθl
0 0 0 0 · · · sinmθl cosmθl


Wxm. (3.4)

3.3.2 CONTEXT WINDOW SCALING

Given the fixed context lengths of pre-trained Video-LLMs, a significant question is how to extend
these lengths cost-effectively. Utilizing the inherent flexibility of RoPE, we modify the embedding
functions to handle extended sequences without extensive retraining:

f ′
W(xm,m, θd) = fW

(
xm,

mL

L′ , θd

)
, (3.5)

where L′ > L denotes a new, extended context window. It allows us to adapt the pre-trained positional
embeddings to longer contexts, maintaining accuracy.

3.3.3 NTK-AWARE INTERPOLATION

The “NTK-aware” interpolation further refines this adjustment by recalibrating the base of the RoPE
function:

θ′ = b′
−2d/|D| and b′ = b · s

|D|
|D|−2 , (3.6)

where s = L′

L is the scaling ratio. This adjustment ensures that the extended embeddings retain their
functionality within the longer context length [Roziere et al., 2023].

By leveraging these techniques, we can extend the context window of Video-LLM’s backbone,
enhancing their capacity for understanding longer video in a training-free manner.

3.4 EFFICIENCY BOTTLENECK ANALYSIS AND A POST-TRAINING SOLUTION

Implementing the Alternative Video Token Rearrangement (Sec. 3.2) and the Interpolating Video-
LLM Backbone (Sec. 3.3) lead to the development of an interpolated Video-LLM (INTP-Video-LLM).
Indeed, this enhances long-video understanding capabilities without incurring additional training
costs. This advancement, however, raises a crucial question: does INTP-Video-LLM introduce any
additional costs during the model inference phase?

6
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Table 1: Computation Cost Analysis. The development device is A100 GPU, and time estimated by
the roofline model represents the theoretical performance that the hardware can achieve.

Method Frame LLM Quantization OPs Decode Total Storing
Number Backbone (TB) Time (ms) Memory (GB) KV (GB)

Video-LLaVA 8 Vicuna-7B FP16 14.2 18.6 14.0 1.1
INTP-Video-LLaVA 16 Vicuna-7B FP16 15.3 20.1 15.1 2.1
INTP-Video-LLaVA 16 Vicuna-7B INT2 15.3 17.6 13.2 0.3
INTP-Video-LLaVA 32 Vicuna-7B FP16 17.4 22.9 17.2 4.3
INTP-Video-LLaVA 32 Vicuna-7B INT2 17.4 22.9 13.5 0.5
INTP-Video-LLaVA 64 Vicuna-7B FP16 21.8 28.6 21.5 8.6
INTP-Video-LLaVA 64 Vicuna-7B INT2 21.8 18.8 14.0 1.1
INTP-Video-LLaVA 128 Vicuna-7B FP16 30.4 39.9 30.1 17.2
INTP-Video-LLaVA 128 Vicuna-7B INT2 30.4 20.4 15.1 2.1

3.4.1 INFERENCE COST ANALYSIS

To quantify the inference costs, we employ a modified roofline-based LLM-Viewer analysis, initially
developed in [Yuan et al., 2024]. Consider a typical scenario in which each frame is represented by
256 visual tokens. In standard Video-LLaVA [Lin et al., 2024] configurations, 8 frames represent
a video, totaling 2048 visual tokens. With the implementation of INTP, more frames can be pro-
cessed, escalating the number of visual tokens significantly. This increase is thoroughly analyzed in
Tab. 1, which details the computational cost implications for the LLM backbone’s decoding process,
especially focusing on the model latency and memory cost.

The analysis indicates that the primary additional cost during the inference phase for INTP-Video-
LLaVA is due to an increased demand for KV-cache storage, a requirement driven by the larger
volume of visual tokens being processed. This finding aligns with studies in long-context LLMs [Fu,
2024, Ashkboos et al., 2024], which highlight that the decoding phase of LLMs is predominantly
memory-bounded. This underscores the critical need for effective KV-cache management strategies
to ensure that the enhanced capabilities of INTP-Video-LLaVA can be deployed efficiently.

To address this issue, we introduce a KV-cache compression technique aimed at optimizing KV-cache
storage efficiency. Post-training quantization (PTQ) is utilized to convert full-precision tensor
inputs into quantized tensors, focusing primarily on selecting optimal quantization parameters. The
process requires only two parameters: the scaling factor S and the zero point Z, which are crucial for
the quantization process [Shang et al., 2024b, Yuan et al., 2024]. Formally, once appropriate values
for S and Z are determined, a full-precision key (or value) tensor can be quantized as follows:

KQ = S(clamp(⌊KF

S
⌉ − Z, pmin, pmax) + Z), (3.7)

where [pmin, pmax] is the quantization range determined by bit-width, for 2 bit integer, and the
bins are {−2,−1, 0, 1}. However, direct application of this method to KV quantization is not
straightforward because KV tensors require the input to be accessed. To address this, we employ a
calibration dataset (a significantly smaller set of input samples compared to the training dataset) to
collect the necessary tensors. Once the full-precision KV tensors at the k-th layer, Kk

F and Vk
F , are

obtained, they can be quantized using the same method to produce Kk
Q and Vk

Q based on Eqn. 3.7.

By implementing this quantization technique, INTP-Video-LLM can manage the increased volume
of visual tokens during inference, ensuring that the model’s enhanced capabilities are aligned with
practical deployment constraints.

4 EXPERIMENTS

We detail the experimental setup and model configurations in Sec. 4.1, followed by an analysis of the
quantitative and qualitative performance of our approach in Sec. 4.2 and Sec. 4.4. Finally, we ablate
the effectiveness of each component in our model in Sec. 4.3.
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Table 2: A comparison of different LVMs on video reasoning benchmarks. Like Video-LLaVA [Lin
et al., 2024], ChatGPT-Assistant is employed to evaluate the following performance. The version of
ChatGPT is “gpt-3.5-turbo”.

Methods LLM Num MSVD-QA MSRVT-QA ActivityNet-QA
size Frames Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM [Yang et al., 2022] 1B 8 32.2 - 16.8 - 24.7 -
VideoChat [Li et al., 2023a] 7B 8 56.3 2.8 45.0 2.5 - 2.2
LLaMA-Adapter [Zhang et al., 2023b] 7B - 54.9 3.1 43.8 2.7 34.2 2.7
Video-LLaMA [Zhang et al., 2023a] 7B 8 51.6 2.5 29.6 1.8 12.4 1.1
Video-ChatGPT [Maaz et al., 2023] 7B 8 64.9 3.3 49.3 2.8 35.2 2.7
Video-LLaVA [Lin et al., 2024] 7B 8 70.7 3.9 59.2 3.5 45.3 3.3
Video-LLaVA+INTP 7B 32 72.0 +1.3 4.0 +0.1 61.4 +2.2 3.5 +0.0 48.9 +3.6 3.5 +0.2

Table 3: Performance results on multiple-choice question benchmarks.

Methods LLM size Ego- NExT-QA
Schema Cas. Tem. Des. Avg.

FrozenBiLM [Yang et al., 2022] 1B 26.9 - - - -
InternVideo [Wang et al., 2024] 1.3B 32.1 48.0 43.4 65.1 59.1
Sevilla [Yu et al., 2024] 7B - 61.3 61.5 75.6 63.6
Video-ChatGPT [Maaz et al., 2023] 7B - 61.9 57.4 69.9 61.7
Video-LLaVA [Lin et al., 2024] 7B 37.0 61.2 54.2 71.1 60.5
Video-LLaVA+INTP 7B 38.6 +1.6 61.9 +0.7 58.6 +4.4 72.2 +1.1 62.7 +2.2

4.1 EXPERIMENTAL SETUP

4.1.1 MODEL SETTINGS

We use the Video-LLaVA [Lin et al., 2024] framework to explore Video-LLM interpolation.1 We
employ Vicuna-7B v1.5 as the LLM backbone, mirroring the architecture used in Video-LLaVA.
The visual encoders are adapted from LanguageBind, and the text tokenization is handled by the
LLaMA tokenizer, which includes approximately 32,000 classes. The projection layers consist of 2
fully connected layers, facilitating the integration of visual and textual data.

4.1.2 DATA AND TRAINING DETAILS

Consistent with our focus on developing a training-free method, our approach requires no traditional
data training processes. This aspect underscores the innovative nature of our interpolation method,
which leverages existing model architectures and tools without the need for retraining or additional
data, simplifying the implementation and reducing the computational overhead typically associated
with training new models.

4.1.3 DATASETS AND EVALUATION METRIC

We assess INTP across a variety of zero-shot video question-answer benchmarks, which we classify
as either open-ended or multiple-choice, depending on the type of question posed [Kim et al., 2024].
Our evaluation for open-ended VQA includes MSVD-QA [Xu et al., 2017], MSRVTT-QA [Xu et al.,
2017], and ActivityNet-QA [Yu et al., 2019] benchmarks. We utilize GPT-assisted assessments
as outlined in Video-ChatGPT [Maaz et al., 2023], which provide a thorough evaluation of the
model’s response accuracy and correctness. For multiple-choice VQA tasks, we evaluate the model’s
performance on NExT-QA [Xiao et al., 2021] and EgoSchema [Mangalam et al., 2024]. We determine
accuracy by the model’s ability to correctly select the appropriate answer from the provided options.

1We develop our method based on the Video-LLaVA codebase. The evaluation of our approach is conducted
using the IG-VLM [Kim et al., 2024] codebase.
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Table 4: Ablation Studies on using different numbers of frames of INTP.

Methods Number of MSVD-QA MSRVT-QA ActivityNet-QA
Frames Accuracy Score Accuracy Score Accuracy Score

Video-LLaVA [Lin et al., 2024] 8 70.7 3.9 59.2 3.5 45.3 3.3
Video-LLaVA+INTP 8 69.5 3.9 58.2 3.5 55.3 3.3
Video-LLaVA+INTP 16 72.1 +1.4 4.0 +0.1 61.0 3.5 46.9 3.3
Video-LLaVA+INTP 32 72.0 4.0 +0.1 61.4 +2.2 3.5 +0.0 48.9 +3.6 3.5 +0.2
Video-LLaVA+INTP 64 67.5 -3.2 3.8 -0.2 55.2 -4.0 3.3 -0.2 41.5 -3.8 3.1 -0.2

4.2 QUANTITATIVE RESULTS

The experimental results for three open-ended VQA benchmarks are detailed in Tab. 2, and the
results for two multiple-choice VQA benchmarks are presented in Tab. 3. These results demonstrate
that our training-free INTP enhances the performance of existing Video-LLMs. Notably, INTP acts
as a plug-and-play enhancement, boosting Video-LLM capabilities without incurring additional
costs. This compatibility underscores INTP’s potential as a universally applicable upgrade for current
Video-LLM frameworks.

4.3 ABLATION STUDIES

We consider Alternative Video Token Rearrangement and Interpolating Video-LLM Backbone as
one unit for realizing a long-video-LLM. Therefore, in our ablation study, we assess the impact
of varying the number of frames processed by INTP-Video-LLaVA. The results are presented in
Tab. 4. This analysis leads to two main conclusions: (i, Performance Improvement with Increased
Frames) A general improvement in performance as the number of frames increases, validating the
effectiveness of the INTP. By feeding more frames into INTP-Video-LLMs are able to comprehend
more extensive video content, thereby enhancing their performance. Note that INTP is realized on
the pre-trained Video-LLMs in a training-free manner. (ii, Performance Plateau at Higher Frame
Number) However, a performance plateau is observed when the number of frames is scaled to 64.
This suggests a limitation in the NTK-based LLM backbone extension method, which appears to
struggle with significantly expanding the LLM content window capacity beyond a certain point. This
finding highlights a potential area for future research and optimization to further enhance the capacity
of Video-LLMs to handle long video sequences effectively.

4.4 QUALITATIVE RESULTS

Finally, we visualize the question-and-answer samples within the ActivityNet dataset to assess
the qualitative performance of our approach in Fig. 3. In the first example, while Video-LLaVA
incorrectly describes a person “riding a bike on a skateboard” and misidentifies the hair length,
INTP-Video-LLaVA accurately describes the scene as a person “wearing orange clothes and jumping
on stilts on a trampoline” and correctly states that the person does not have long hair. This shows
INTP-Video-LLaVA’s superior ability to process and interpret a larger number of video frames,
leading to more accurate scene description and detail recognition. In the second example, Video-
LLaVA hallucinates the presence of a second person playing a guitar, which is not shown in the
video frames. In contrast, INTP-Video-LLaVA correctly identifies that there are two people in the
video, accurately describes the main activity (playing drums), and even provides specific details about
the types of drums being played (congas and tabla). Additionally, INTP-Video-LLaVA correctly
identifies the gender of the person playing the drums, demonstrating its improved ability to process
and understand visual information across a longer sequence of frames. These examples highlight
how INTP-Video-LLaVA’s capacity to handle more video frames leads to more accurate, detailed,
and coherent descriptions of video content, significantly reducing errors and hallucinations compared
to the standard Video-LLaVA model.

5 CONCLUSION

In conclusion, we presented INTP, an innovative interpolation method for Video-LLMs that ef-
fectively addresses the limitations of current models in processing extended video sequences. By
developing an alternative video token rearrangement technique and a training-free LLM context
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Prompt:
Does the person in orange 
clothes have long hair? 
(First describe the video as 
detailed as possible, and 
then answer the question.)

One person is seen riding a bike on a skateboard. Yes, the person in orange clothes has long hair.
[Wrong: there is no bike on a skateboard and long hair.]

One person is wearing orange clothes and is jumping on stilts on a trampoline. No, the person in 
orange clothes does not have long hair. 

Video-LLaVA

INTP-Video-LLaVA

Prompt:
Is the person in white a 
man? (How any people are 
in the video? Describe 
what they are doing 
separately.)

There are two people in the video. One person is playing the drums, and the other person is 
playing the guitar. Yes, the person in white is a man. 

[Hallucination: the man is not shown in the selected 8 frames]

There are two people in the video. A man is playing the drums, and the other person is playing a 
set of hand drums. The drums in front of her include congas and a tabla. She is using her hands to 

play these percussion instruments. Yes, the person in the white t-shirt is a man.

Video-LLaVA

INTP-Video-LLaVA

Figure 3: Video content and questions from ActivityNet [Yu et al., 2019]. The standard Video-LLaVA model
exhibits limitations in accurately answering the questions, primarily due to its inability to process a sufficient
number of frames (only the pink labeled frames are fed into Video-LLaVA). This constraint significantly hinders
its effectiveness in managing complex video question-answering tasks. With our proposed INTP, the enhanced
Video-LLM can process extended sequences of video frames. This not only addresses the frame limitations but
also substantially enhances the model’s understanding in complex video question-answering scenarios.

window extension, INTP enables Video-LLMs to handle significantly more visual data (32 frames)
without the need for additional training or substantial computational resources. Furthermore, the in-
troduction of a KV-cache compression module optimizes memory usage during inference, enhancing
deployment efficiency. These advancements not only extend the practical utility of Video-LLMs but
also demonstrate the potential of training-free approaches in advancing Video-LLMs.

Societal Impacts. Our approach can democratize the access to advanced video processing technolo-
gies by reducing computational demands. Despite these advancements, it is important to note that
INTP does not address potential security concerns related to the misuse of Video-LLMs. The ease of
accessibility and enhanced capabilities could potentially be exploited by malicious actors to generate
or manipulate video content in harmful ways. Thus, while INTP expands the practical applications of
Video-LLMs and reduces barriers to their use, it also necessitates careful consideration of the ethical
implications and security measures associated with their deployment.

Reproducibility Statement. Our method is implemented using the Video-LLaVA codebase, with
evaluations conducted via the IG-VLM framework. As a training-free approach, our interpolated
model can directly use existing Video-LLM weights, enhancing reproducibility. We will publicly
release our code upon the paper’s acceptance to facilitate further research in this area.
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