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ABSTRACT

The rapid growth of earth observation systems calls for a scalable approach to
interpolate remote-sensing observations. These methods in principle, should ac-
quire more information about the observed field as data grows. Gaussian processes
(GPs) are candidate model choices for interpolation. However, due to their poor
scalability, they usually rely on inducing points for inference, which restricts their
expressivity. Moreover, commonly imposed assumptions such as stationarity pre-
vents them from capturing complex patterns in the data. While deep GPs can
overcome this issue, training and making inference with them are difficult, again
requiring crude approximations via inducing points. In this work, we instead ap-
proach the problem through Bayesian deep learning, where spatiotemporal fields
are represented by deep neural networks, whose layers share the inductive bias of
stationary GPs on the plane/sphere via random feature expansions. This allows
one to (1) capture high frequency patterns in the data, and (2) use mini-batched
gradient descent for large scale training. We experiment on various remote sens-
ing data at local/global scales, showing that our approach produce competitive or
superior results to existing methods, with well-calibrated uncertainties.

1 INTRODUCTION

The advent of earth observation systems have made it possible to monitor virtually all of earth’s
atmosphere and the ocean at unprecedented scales. This development has been pivotal to the un-
derstanding of anthropogenic impact on the environment, including global warming and rise in sea
level. Hence, it is crucial that we are able to process the voluminous data effectively and extract
maximal information from it to make better informed decisions in our path to achieving sustainable
development goals.

However, observations from satellite products are inherently sparse in space-time, requiring methods
to effectively fill in the gap at unobserved locations (Le Traon et al., 1998). This typically relies on
data assimilation techniques such as the ensemble Kalman filter (Evensen, 2003), which requires one
to have access to a physical model that describes the evolution of the field. While this can produce
detailed and accurate reconstructions of the field, the physical models are typically expensive to
run at high resolutions, often requiring access to high performance compute clusters. This can be
challenging when one does not have the expertise nor the resources to gain access and/or run the
models. On the other hand, statistical methods such as Gaussian process regression (GPR, Williams
& Rasmussen (2006)) can be deployed. However, GPR scales poorly to large data sets, necessitating
approximate inference schemes such as sparse Gaussian processes (Titsias, 2009), which may result
in crude approximations if the underlying process does not have sufficiently large lengthscale or
smoothness (Burt et al., 2019). Moreover, kernels used for GPR are often too simplistic, which can
prevent learning of detailed fluctuations in the underlying non-stationary and multi-scale field. Deep
Gaussian processes (DGPs) (Damianou & Lawrence, 2013) have emerged as an attractive solution
to the latter problem. However, they still suffer from the difficulty of computing the posterior, again
requiring variational inference to learn only a crude approximation to the true posterior.

In recent years, Bayesian deep learning (BDL) have emerged as an alternative paradigm for sta-
tistical modelling, which combines the flexibility and scalability of deep learning methods with
Bayesian modelling principles (Papamarkou et al., 2024). In our current setting, we can approach
spatiotemporal interpolation using BDL, by representing the ground truth underlying field f† by a
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Figure 1: We propose deep random features (DRF) for accurate and flexible interpolation of satellite
measurements of the earth’s surface (Left). Compared to sparse variational GPs (SVGP, Centre),
an ensemble of DRFs is able to achieve more detailed reconstructions of the field with sensible
uncertainty estimates (Right).

Bayesian neural network fθ : X → Y , (here, X denotes the spatiotemporal input space and Y the
output signals) and training on input-output pairs D = {(xn, yn)}Nn=1 for xn ∈ X and yn ∈ Y ,
corresponding to earth observations. However, naı̈ve design choices for fθ can lead to poor recon-
structions of f†; for example, a vanilla deep ReLU network is bound to perform poorly as it fails
to learn high frequency features Tancik et al. (2020). On the other hand, deep neural networks with
trigonometric activations (Sitzmann et al., 2020; Lu & Shafto, 2022) have emerged as an effective
model for representing high-frequency spatiotemporal signals. However, they are not designed for
interpolation of sparse data in mind and are therefore prone to overfitting.

Taken altogether, we propose to design fθ inspired by DGPs, such that it retains the learning capac-
ity of DNNs, while having the interpretability and inductive biases of GPs. Our main contributions
are as follows: We propose the use of kernel-derived random features (Rahimi & Recht, 2007) as
building blocks for BNNs to model spatiotemporal fields. We demonstrate through extensive exper-
iments that they are capable of capturing fine-scale information in data, while being able to quantify
uncertainty accurately by considering deep ensembles. Furthermore, motivated by recent develop-
ments in geometric probabilistic modelling (Borovitskiy et al., 2020), we also consider analogous
random features on the sphere, leading to a novel DNN architecture with Gegenbauer polynomial
activation functions that can model global weather fields that are adapted to the sphere. Our models
are easily implementable in modern deep learning frameworks such as PyTorch and scale up to
large datasets exceeding millions of data points through mini-batched gradient-based optimisation,
pushing the boundary of what is currently possible with statistical interpolation.

1.1 RELATED WORKS

In Cutajar et al. (2017), trigonometric feature expansion of DGPs similar to ours have been consid-
ered, with the intent of proposing a tractable variational inference (VI) scheme for DGPs. They show
superior performance to mean-field VI (Damianou & Lawrence, 2013), however, have been largely
overlooked due in part to the adoption of doubly stochastic VI (Salimbeni & Deisenroth, 2017), as
the de facto standard method for DGP inference. Jiang et al. (2024) similarly leverages random
Fourier features to approximate kernel machines, emphasising composite kernels for incorporating
prior knowledge into neural networks. DNNs with trigonometric activations have resurfaced as an
object of interest more recently, with the emergence of neural radiance fields (Mildenhall et al., 2021)
and subsequent work on implicit neural representations Tancik et al. (2020); Sitzmann et al. (2020).
Rigorous study of trigonometric networks and their connection to DGPs have been considered in Lu
& Shafto (2022), and more general investigation of wide DNNs with bottlenecks in relation to DGPs
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have been considered in Agrawal et al. (2020); Pleiss & Cunningham (2021). Other closely related
works include Meronen et al. (2020; 2021), who study calibration of shallow networks with periodic
activations, Garnelo et al. (2018) proposes a different approach to combining aspects of GPs with
DNNs, and the works Sun et al. (2020); Dutordoir et al. (2021) establish connections between neural
network layers and inducing points for GPs/DGPs.

2 BACKGROUND

2.1 GAUSSIAN PROCESSES AND DEEP GAUSSIAN PROCESSES

A Gaussian process (GP) is a random function f : RI → R such that for any N > 0 and any
set of points xn ∈ RI for n = 1, . . . , N , we have that (f(x1), . . . , f(xN ))⊤ ∈ RN is Gaus-
sian. GPs are characterised by a mean function m : RI → R and a kernel k : RI × RI → R,
such that E

[
f(x)

]
= m(x) and Cov [f(x), f(x′)] = k(x,x′) for all x,x′ ∈ RI (Williams &

Rasmussen, 2006). Extending these to have vector outputs f : RI → RO is made possible by
considering vector-valued means m : RI → RO and matrix-valued kernels k : RI ×RI → RO×O,
satisfying E

[
fi(x)

]
= mi(x) and Cov [fi(x), fi(x

′)] = kij(x,x
′), ∀i, j = 1, . . . , O. We write

f ∼ GP(m,k) to denote that f is a GP with mean m and kernel k. A deep GP (DGP)
f : RI → RO extends GPs by considering compositions f(x) = fL ◦ · · · ◦ f1(x), where
f1 : RI → RB , f ℓ : RB → RB for ℓ = 2, . . . , L − 1 and fL : RB → RO are vector-GPs.
The intermediate states RB are referred to as the bottlenecks. We note that DGPs are more flex-
ible class of models than GPs. However, due to their compositional structure, they are no longer
Gaussian and therefore require approximate methods for inference, e.g. using variational Bayes.

2.2 RANDOM FOURIER FEATURES

Consider a zero-mean scalar GP f ∼ GP(0, k) for some kernel k. We say that k is stationary if
there exists a function κ : RI → R such that k(x,x′) = κ(x−x′). In Rahimi & Recht (2007), it is
shown that any stationary kernel on RI can be expressed as an expectation

k(x,x′) = 2σ2Eω,b

[
cos(ω⊤x+ b) cos(ω⊤x′ + b)

]
(1)

≈ 2σ2

H

H∑
h=1

cos(ω⊤
h x+ bh) cos(ω

⊤
h x

′ + bh), ωh ∼ p(ω), bh ∼ U([0, 2π]) (2)

for some σ > 0, where p(ω) is the normalised Fourier transform of the function κ and U([0, 2π])
denotes the uniform distribution in the interval [0, 2π]. From the weight-space viewpoint of GPs,
equation 2 implies that we have

f(x) ≈
H∑

h=1

θhϕh(x), θh ∼ N (0, 1), (3)

where ϕh(x) =
√
2σ2/H cos(ω⊤

h x+ bh), h = 1, . . . ,H, (4)

with ωh ∼ p(ω) and bh ∼ U([0, 2π]. Extension to vector-valued GPs f : RI → RO with indepen-
dent output components is straightforward, leading to a random Fourier feature representation of the
form f(x) = Θϕ(x) for Θ ∈ RO×H with Θij ∼ N (0, 1), i.i.d. ∀i, j. For details and examples of
random Fourier features, we refer the readers to Appendix A

3 DEEP RANDOM FEATURES FOR SPATIOTEMPORAL MODELLING

GPs are commonly used in spatiotemporal modelling due to their interpretability and smoothness
inductive biases that are appealing to many geostatistical applications (Wikle et al., 2019). However,
they are limited by their poor scalability and Gaussian assumptions. On the other hand, deep neural
networks (DNN) offer a scalable, flexible modelling framework, however, do not have the desirable
inductive bias of GPs. Motivated by this, we consider deep random features (Figure 2), which
use random features corresponding to stationary GPs as building blocks for a larger neural network
model tailored for spatiotemporal modelling, combining the benefits of both GPs and DNNs.

3
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Figure 2: Illustration of spatiotemporal modelling with deep random features.

3.1 DEEP RANDOM FEATURES

In Section 2.2, we have seen that a shallow GP can be approximated by a combination of random
features according to equation 3. In a similar fashion, Cutajar et al. (2017) propose a random feature
expansion of deep GPs, by replacing each GP layer by their corresponding random features, yielding
a DNN architecture that mimic the behaviour of the original DGP. In further details, let ϕ1 : RI →
RH be a random feature (equation 4), which may be viewed equivalently as a single layer of a neural
network with weights {ωm}Hm=1, biases {bm}Hm=1 and cosine activation. The first hidden layer in a
deep GP, which itself is a vector-valued GP f1 : RI → RB , can be approximated by a linear model

h1(x) = Θ1ϕ1(x), (5)

where Θ1 ∈ RB×H with Θ1
ij ∼ N (0, 1), i = 1, . . . , B, j = 1, . . . ,H . Similarly, given random

features ϕℓ : RB → RH for ℓ = 2, . . . , L, Gaussian weights Θℓ ∈ RB×H for ℓ = 2, . . . , L− 1 and
ΘL ∈ RB×O, we may consider a DNN fΘ : RI → RO of the form

fΘ(x) = hL ◦ · · · ◦ h2 ◦ h1(x), where hℓ(x) := Θℓϕℓ(x), ℓ = 1, . . . , L, (6)

which we refer to as the random feature expansion of a DGP f : RI → RO. Generally, we may
consider building DNNs independently of a DGP by using layers of the form h(x) = Θϕ(x) as
building blocks for a neural network. We refer to such models as deep random features. Note that
while each layer hℓ(x) approximates a stationary GP, its compositions are no longer stationary.

3.1.1 TRAINING

In contrast to standard neural networks, when we train deep random features, we opt to alternate
between trainable and fixed layers, where the parameters ωℓ

m, bℓm in the layers ϕℓ(·) are fixed upon
initialisation, but the parameters Θ := {Θ1, . . . ,ΘL} are trained. This is to mimic training of
DGPs from the weight-space perspective, where inference should only be made with respect to Θ.
Given a dataset D = {(Xn,yn)}Nn=1, and an arbitrary loss ℓ : RO × RO → R, we minimise

Ltrain(Θ;D) =
1

N

N∑
n=1

ℓ(fΘ(Xn),yn) + β∥Θ∥2, (7)

for some regularisation parameter β > 0. From a generalised Bayes’ perspective, this is equivalent
to maximum a priori estimation with the generalised posterior p(Θ|D) ∝ exp(−ℓ(fΘ(X),y))p(Θ)
(Bissiri et al., 2016). Using mean-squared error as the loss and considering a shallow network,
minimising equation 7 via gradient descent can be seen as sampling from the GP posterior in the
neural tangent kernel limit (Lee et al., 2019; He et al., 2020). Using other losses such as the Huber
loss, this becomes akin to robust GP regression (Algikar & Mili, 2023; Altamirano et al., 2024).
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3.1.2 SPHERICAL RANDOM FEATURES

When modelling signals over the sphere, which arises when we need to interpolate global satellite
measurements (see Figure 1), we require an analogous notion of random features defined over the
sphere. In Borovitskiy et al. (2020), commonly used kernels such as the Matérn kernels are extended
to be defined over general Riemannian manifolds, including the two-sphere S2. In general, such
kernels can be approximated by the Mercer sum

k(s, s′) ≈ 1

CΦ

J∑
j=0

Φ(λj)φj(s)φj(s
′), s, s′ ∈ S2, (8)

for some Φ : R → R and constant CΦ determined from the kernel, and {λj}Jj=0, {φj}Jj=0 are the
J top eigenvalues and eigenfunctions respectively of the negative Laplace-Beltrami operator; on S2,
the latter is precisely the spherical harmonics. Furthermore, on S2, by making use of the addition
theorem for spherical harmonics and the result (Azangulov et al., 2024, Proposition 7), we get an
alternative expression for the kernel (see Appendix A.2 for the derivation)

k(s, s′) ≈ Eω,b

[
cω G1/2

ω (dS2 (s, b))G1/2
ω (dS2 (s

′, b))
]
, s, s′ ∈ S2, (9)

where Gα
n (·) are the Gegenbauer polynomials of order n and weight parameter α, dS2(·, ·)

denotes the geodesic distance on S2, cω is an appropriate scaling constant, and the ex-
pectation is taken over b ∼ U(S2), the uniform distribution over the sphere, and ω ∼
Multinomial(C−1

Φ Φ(λ1), . . . , C
−1
Φ Φ(λJ)). Then, by considering Monte Carlo approximation of

the expectation in equation 9, this implies random feature maps of the form

ϕm
S2(s) =

√
M−1cωm

G1/2
ωm

(dS2 (s, bm)), s ∈ S2, m = 1, . . . ,M, (10)

where ωm ∼ Multinomial(C−1
Φ Φ(λ1), . . . , C

−1
Φ Φ(λJ)), bm ∼ U(S2). (11)

This gives us an analogous notion of random features (equation 4) on the sphere, which we can use
as a component in our deep random feature model when our input is spherical.

Remark 1 We may also consider the deterministic features ϕm(s) =
√

C−1
Φ Φ(λm)φm(s), derived

from equation 8, which is analogous to the regular Fourier features (Hensman et al., 2018; Solin &
Särkkä, 2020) in the planar case. However in practice, we find that working with random features
(equation 10) produce more stable results when using single precision arithmetic.

3.1.3 SPATIOTEMPORAL MODELLING WITH DEEP RANDOM FEATURES

So far, we have only discussed how to process spatial inputs. In order to deal with the temporal
components in our data, we first consider deep random features in the spatial domain h

(Lx)
x : X →

RB (X = RI or S2), and temporal domain h
(Lt)
t : R → RB separately, before combining them as

f(x, t) = Θ
(
concat[h(Lx)

x (x),h
(Lt)
t (t)]

)
, (12)

where Θ ∈ RO×2B are learnable weights initialised with i.i.d. standard Gaussians. At short
timescales, geospatial fields are approximately stationary, hence we can use a single layer network
to model the temporal component h(Lt)

t (i.e., Lt = 1). To introduce more complex spatiotempo-
ral dependence, we can replace the linear output layer in equation 12 with deep random features.
However we find that in most applications this is unnecessary, only introducing extra cost.

3.1.4 SKIP CONNECTIONS

To prevent pathological behaviour from emerging as we increase the network depth, we add skip
connections to the inputs (Duvenaud et al., 2014; Dunlop et al., 2018). In the planar case, this takes

h(ℓ+1)(x) = Θℓ+1ϕℓ+1
(
concat[h(ℓ)(x),x]

)
(13)

in the (ℓ + 1)-th layer of the network, where ϕℓ+1 : RB+I → RM . In the spherical case, this
is not straightforward as the outputs of each layer will be Euclidean while the input is spherical.
To this end, we consider ϕℓ+1 to be additive random features corresponding to the sum kernel
k((x, s), (x′, s′)) = kRB (x,x′) + kS2(s, s

′), for x,x′ ∈ RB , s, s′ ∈ S2, where kRB (·, ·), kS2(·, ·)
are stationary kernels on their respective spaces (see Appendix B.1 for details).
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3.2 UNCERTAINTY QUANTIFICATION

Uncertainty quantification (UQ) with deep random features is achieved using standard Bayesian
deep learning techniques. In particular, we consider the following methods in our experiments:

Variational inference. This considers a Gaussian approximation to the posterior p(Θ|D) ≈
N (Θ|m,C). Here, the moments of the variational distribution q(Θ) := N (Θ|m,C) are learned
by maximising the evidence lower bound (ELBO)

LELBO(fΘ;D) = Eq [−ℓ(fΘ(X),y)]−KL(q||pΘ), (14)

where pΘ(Θ) = N (Θ|0, I) is the prior on Θ and KL(·||·) is the Kullback-Leibler divergence.

Dropout at test time. A simple heuristic for obtaining uncertainty estimates is to apply dropout
not only at training time but also at test time. This yields an ensemble of random outputs, whose
empirical distribution informs us of the model uncertainty. In fact, one can understand this as a form
of variational inference, as shown in Gal & Ghahramani (2016).

Deep ensembles. Deep ensembles (Lakshminarayanan et al., 2017) obtain uncertainty estimates
by training an ensemble of models, initialised from different random seeds. The ensemble of outputs
is then used to estimate uncertainty, similar to the dropout method for UQ. While being a simple
method, this has been shown to be surprisingly effective at obtaining uncertainty estimates. More-
over, provided the model is small enough (which is often the case for deep random features), the
ensembles can be trained in parallel on a single GPU.

3.3 HYPERPARAMETER SELECTION

Our deep random features model contain several hyperparameters λ, including those of the kernel
(e.g. lengthscales) that we use to derive our random features. If variational inference is used for
UQ, we can take the ELBO (equation 14) for model comparison, as it may be viewed as a surro-
gate for the log model evidence log p(D|λ), being its lower bound. When using ensemble based
methods, we rely on performance on a held-out validation set D∗ = {(x∗

n,y
∗
n)}N

∗

n=1 to select our
hyperparameters. In particular, we consider the following validation loss to select λ

Lval(λ) =
1

N∗

N∗∑
n=1

1

J

J∑
j=1

ℓ(fj(x
∗
n;D,λ);y∗

n), (15)

where {fj}Jj=1 are the ensembles. Note that this can be viewed as approximating the negative
log-predictive density (see Remark 3, Appendix C.1). We minimise this loss using Bayesian opti-
misation. In practice, we find that learning λ from equation 15 alone may still lead to overfitting
models. Therefore to prevent this, we may opt to add an extra functional regularisation term

Lval+reg(λ) = (1− α)Lval(λ) + α∥∇f̄( · ;D,λ)∥2L2 , f̄ :=
1

J

J∑
j=1

fj (16)

for α ∈ [0, 1), which helps to penalise those λ that give rise to functions f with sharp gradients (see
Remark 2 in Appendix B.2 on why we do not consider hyperpriors for regularisation). Here, ∥ · ∥2L2

denotes the appropriate L2 norm depending on the input space and ∇ the gradient. For spherical
inputs, we refer the readers to Appendix B.2 for more details.

4 EXPERIMENTS

We evaluate the spatiotemporal deep random features (DRF) model on various remote sensing
datasets and compare against various baselines to assess its ability to make predictions and quantify
uncertainty. In our first experiment, we consider interpolation of synthetic data, and evaluate our
model’s ability to recover the ground truth. In our second and third experiments, we consider inter-
polation of real satellite data at local and global scales to test the robustness of our method. Details
can be found in Appendix C. All experiments are performed using the NVIDIA L4 GPU.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 BASELINE MODELS

Throughout this section, we consider several models as baselines to compare our model against. We
consider both GP-based baselines and DNN-based baselines. In the former category, we consider
the sparse variational GP (SVGP) model in Hensman et al. (2013), deep GPs (DGP) using doubly
stochastic variational inference (Salimbeni & Deisenroth, 2017) and a mixture model of local GPs
using the GPSat library (Gregory et al., 2024b). In the latter caregory, we consider deep ensembles
of multilayer perceptrons (MLP) with ReLU activations, Fourier features network (FFN, Tancik et al.
(2020)), which use random Fourier features in the first layer only, MLP with sinusoidal activations
(SIREN, Sitzmann et al. (2020)) and conditional neural processes Garnelo et al. (2018).

4.2 EVALUATION ON SYNTHETIC DATA

The purpose of our first experiment is to use synthetic observations from a ground truth field to
evaluate our model’s ability to reconstruct the field. We use mean sea surface height (MSS) in the
arctic as our ground truth, synthesised from 12 years of altimetry readings of Sentinel-3A, 3B (S3A,
3B) and CryoSat-2 (CS2) satellites. We then generate artificial measurements along S3A, 3B and
CS2 tracks between the dates March 1st–10th 2020, taking the MSS values along the tracks and
adding i.i.d. Gaussian noise to mimic measurement noise. Our final dataset comprise 1,158,505
datapoints; we select 80% of these randomly for training and the remaining 20% for validation. We
train all models using the mean-squared error loss (for GP baselines, this corresponds to a Gaussian
likelihood) with fixed weight decay parameter matching the observation noise variance. Visual
comparison of predictions from all models can be found in Appendix C.5.1.

4.2.1 EFFECT OF DEPTH

In Figure 3, we show the effect of depth on our model’s ability to reconstruct the true MSS field
(in terms of RMSE) and corresponding computation time of the entire workflow, including the time
to tune the kernel hyperparameters (see Appendix C.2.2). Generally, we find that deep networks
outperform the shallow network on the RMSE, with the four layer model performing the best on this
example. With > 4 layers, we start to see some overfitting, which explains the higher RMSE for the
10 and 20 layer models. In Figure 4, we display mean results for models with two and four layers.
We see that the deeper network is able to capture higher frequency details, resulting in the improved
RMSE. The time it takes to train and tune models with 1-4 layers are not significantly different.

Figure 3: Comparison of RMSE and
computation time vs. number of layers.

2-layer DRF 4-layer DRF

0.4

0.2

0.0

0.2

0.4

Figure 4: Comparison of predictions from DRF with
two layers (left) and four layers (right). The four layer
model is able to capture finer details compared to the
two layer model.

4.2.2 UQ COMPARISONS

Next, we compare various UQ methods applied to a DRF model with four layers. In Table 1, we dis-
play comparisons with respect to the root mean squared error (RMSE), the negative log-likelihood
(NLL), and the continuous ranked probability score (CRPS) (see Appendix C.1 for details on our
evaluation method). The latter two evaluate the quality of uncertainties produced. Overall, we find
that deep ensembles produce the best result in the CRPS and the RMSE, whereas variational infer-
ence (VI) yielded the best NLL. The lower NLL using VI may be due to the fact that its predictions
are typically underconfident (see Figure 8, Appendix C.5.1) and NLL penalises them more lightly

7
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Model CRPS NLL RMSE Time (minutes)

DRF (Ensembles) 0.046± 0.005 13.590± 4.899 0.135± 0.006 19.7± 0.4
DRF (VI) 0.071± 0.019 −0.407± 0.756 0.166± 0.021 6.40± 0.06
DRF (Dropout) 0.174± 0.001 425.987± 208.969 0.238± 0.001 48.6± 2.5

SVGP 0.230± 0.001 320.811± 52.960 0.155± 0.002 14.6± 0.0
DGP 0.058± 0.001 1614.069± 328.517 0.135± 0.002 42.3± 0.03
GPSat 0.045± 0.007 74.738± 15.622 0.126± 0.001 63.6± 0.2
ReLU MLP 0.062± 0.000 30.504± 7.877 0.146± 0.000 10.07± 0.01
FFN 0.072± 0.008 126.869± 111.178 0.153± 0.005 31.3± 0.3
SIREN 0.066± 0.000 13.974± 0.393 0.155± 0.000 2.55± 0.002
CNP 0.238± 0.070 2.525± 0.459 0.202± 0.010 21.0± 0.1

Table 1: Comparison of the CRPS, NLL and RMSE scores for a four-layer DRF (with different UQ
methods) against various baselines on the synthetic experiment. Best performing model in bold,
second best performing in blue and third best performing in orange. We display the mean and
standard deviation over five experiments.

than overconfident ones. However, the results in Figure 8 suggest that the results from deep en-
sembles are better calibrated to the observations, which explains the lower CRPS. Dropout does not
perform well in neither the mean prediction nor uncertainty estimation.

4.2.3 BASELINE COMPARISONS

In Table 1, we also display results for the other baseline models described in Section 4.1. Regarding
computation times, for DRF and FFN, we include the time to tune the kernel hyperparameters using
Bayesian optimisation (Section 3.3) to make a fair comparison with the GP-based baselines, where
the total time for training and inference are recorded. However, we assume other hyperparameters,
such as number of layers and hidden units to be fixed (L = 4, B = 128, H = 1000). For the other
DNN-based baselines, we assume the architecture is tuned ahead of time and fixed.

Comparing with the GP baselines, we find that DGP and the GPSat model to be closest competitors
to the DRF deep ensembles, with GPSat surpassing its performance on the RMSE. However, the
time taken to train the DGP and GPSat model are two to three times longer than the time taken to
train and tune the ensemble DRF. For example, GPSat trains 1225 local GP models on this example,
which makes computation heavy. DGP has overall low predictive variances (see Figure 9, Appendix
C.5.1), which results in high NLL values. In contrast, the uncertainty estimates of DRF and GPSat
are well-calibrated to the satellite tracks. Qualitatively, all three models recover the ground truth
well, with GPSat and DRF reconstructing it almost perfectly.

Comparing to other DNN baselines, SIREN’s performance is noteworthy, being similar to DRF
in that it uses trigonometric activations and differing only in the way the weights are initialised
and whether it has bottleneck layers with fixed preactivations. The DRF ensemble is better able to
capture the spatiotemporal patterns of the field, reinforcing the importance of the subtle architectural
differences. The ReLU network, FFN and CNP all lead to oversmoothing results, similar to SVGP.

4.3 FREEBOARD ESTIMATION FROM SATELLITE ALTIMETRY DATA

Here, we consider the interpolation of real altimeter readings of sea-ice freeboard taken along the
Sentinel-3A, 3B and CryoSat-2 satellites (Gregory et al., 2024a). Real satellite altimetry measure-
ments are typically noisy with heavy-tailed statistics (see Figure 7, Appendix C.3), hence they
present a more challenging setting than our previous synthetic experiment. Our goal here is to
test the robustness of our approach in comparison to other methods in this more realistic setting. Ex-
perimental details can be found in Appendix C.3 and visual comparison of all results can be found
in Figure 10, Appendix C.5.2.

We compare a two-layer DRF against the same baselines as before and display the root mean abso-
lute error (RMAE), CRPS and negative log-predictive density (NLPD) on a separately held out test
data comprising 15% of the entire data in Table 2. We use the RMAE instead of the RMSE here
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as it is more robust to the heavy-tailed statistics of the measurement error, and therefore provides a
more reliable performance metric in this setting. The hyperparameter search for DRF was performed
with functional regularisation (see Section 3.3) as we found that without it, optimising on only the
validation loss lead to overfitting models (see Figure 5). Here, we used a penalty weight of α = 0.9.

We find that out of our GP-based baselines, SVGP and the GPSat model give comparable perfor-
mance to DRF ensembles, with GPSat giving the best performance quantitatively. However, when
we examine the outputs from all three models (Figure 5), we find that the results from GPSat con-
tain spurious patterns resulting from unstable hyperparameter optimisation at several local expert
locations. This issue occurs since the GPSat local experts only see data in local regions, making
them more sensitive to the heavy noise present in the data. On the other hand, DRF sees data glob-
ally, which helps them to identify the larger structures in the data, while simultaneously capturing
the finer details owing to their deep architecture. We find that qualitatively, SVGP performs well
on this example, due to the larger prominence of low frequency features in the underlying field that
extend across the basin. We see that DRF provides a middle ground between the two, being neither
“too local” as we see in GPSat, nor “too global”, demonstrating its ability to adapt to the character-
istics of the field. The other DNN baselines are found to perform poorly, with the ReLU MLP and
CNP showing especially poor fit. The quantitative metrics for FFN and SIREN are actually decent,
with FFN performing best on RMAE. However, the qualitative results in Figure 10 show signs of
heavy overfitting with both models, which is especially prominent in SIREN.

Model CRPS NLPD RMAE

DRF (Ensembles) 0.077± 0.000 −0.944± 0.020 0.322± 0.000
SVGP 0.079± 0.001 −1.300± 0.004 0.322± 0.001
DGP 0.208± 0.000 −0.159± 0.000 0.339± 0.001
GPSat 0.076± 0.001 −1.167± 0.025 0.318± 0.000
ReLU MLP 0.714± 0.936 0.076± 1.578 0.751± 0.554
FFN 0.080± 0.001 2.145± 1.811 0.316± 0.004
SIREN 0.088± 0.000 −1.109± 0.010 0.345± 0.001
CNP 0.101± 0.001 −0.898± 0.030 0.328± 0.002

Table 2: Comparison of the CRPS, NLPD and RMAE scores for a two-layer DRF against various
baselines on sea-ice freeboard interpolation from S3A, 3B and CS2 satellite altimetry readings. Best
performing model in bold, second best performing in blue and third best performing in orange.

DRF(No reg) DRF(reg) GPSat SVGP

0.1

0.0

0.1

0.2

0.3

Figure 5: Mean results of DRF, GPSat and SVGP on freeboard interpolation. For DRF, we plot
results obtained both with and without functional regularisation during hyperparameter search.

4.4 LARGE SCALE INTERPOLATION OF GLOBAL SEA LEVEL ANOMALY

In this final experiment, we investigate the potential of DRF to interpolate global fields using spheri-
cal random features (Section 3.1.2) in the spatial inputs. For this experiment, we use real data of sea
level anomaly measurements collected from the Sentinel 3A, 3B satellites (Copernicus Data Space
Ecosystem, 2024). By considering four days of measurements, our final data consists of 8,094,569
datapoints. We use 80% for training, and 20% for validation. Similar to our previous data ob-
tained from real satellite measurements, this data contains many outliers, making it a challenge to
interpolate the data robustly, let alone whilst being consistent with the geometry of the sphere.
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Our goal is to fit a spatiotemporal field f : S2 × R → R. To this end, we consider a DRF model
whose first layer in the spatial component is given by the spherical random feature ϕS2 : S2 → RH

(equation 10). The subsequent layers are given by Euclidean random feautures. To train our model,
we opted to use the Huber loss instead of MSE, which gave rise to slightly more robust results, likely
due to the large number of outliers. We also used functional regularisation with a penalty weight of
α = 0.95 when tuning hyperparameters.

In Figure 6, we compare the mean predictions of the spherical DRF model with predictions from
(1) SVGP using the spherical Matérn kernel of Borovitskiy et al. (2020), and (2) the Euclidean
DRF model, taking the longitude and latitude coordinates of the satellite tracks as spatial in-
puts in R2. We use the spherical Matérn kernel implementation in the geometric-kernels
package Mostowsky et al. (2024) to model the spatial component of our SVGP baseline. The
temporal component is included by modelling the GP with a product kernel k((x, t), (x′, t′)) =
kS2(x, x

′)kR(t, t
′). Comparing the SVGP output with DRF, we see that they are both able to capture

the larger patterns in the data. However, SVGP fails to capture some of the finer fluctuations (as
also indicated by quantitative metrics in Table 3 in Appendix C.4.3), for instance those around the
Antarctic circumpolar current, known for its intense ocean activities.

For the Euclidean DRF, while it admits a deep structure, we find that it is not flexible enough to adapt
to the spherical geometry of the input space. For example, there are spurious distortions around the
poles cause by the stereographic projection, in addition to a discontinuity at longitude = 0◦ (see
Figure 11 in Appendix C.5.3). Perhaps more interestingly, the Euclidean DRF is not able to learn
the fine scale fluctuations that the spherical DRF is able to pick up, only being able to learn large
scale trends in the data, similar to SVGP. This highlights the importance of explicitly incorporating
the spherical inductive bias into the model when modelling global fields.

Spherical SVGP Euclidean DRF Spherical DRF

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

Figure 6: Mean results for global sea level anomaly interpolation. From left to right: SVGP using
the spherical Matérn kernel, Euclidean DRF, and Spherical DRF. Spherical DRF is able to learn
more intricate details compared to the other two baselines.

5 CONCLUSION

In this paper, we propose to model spatiotemporal fields using deep neural networks, whose layers
are derived from random feature expansions of stationary kernels. This neural representation can
be trained on observations to effectively fill in the gaps between remote sensing observations of
the earth’s surface. Our experiments on various remote sensing data demonstrate that the deep
ensemble model is able to flexibly adapt to the data, being able to learn both low and high-frequency
structures that exist in the underlying field. A current limitation of our approach is the difficulty
of tuning kernel hyperparameters; we use Bayesian optimisation (BO) on the validation loss to
achieve this, which require knowledge of the ranges each hyperparameter may take. This is not
clear due to the deep architecture, making the hyperparameters less interpretable than the shallow
case. Additionally, we observe that it is sometimes necessary to add functional regularisation to
reduce BO variance, necessitating hand tuning of the penalty weight α, a hyper-hyperparameter.
Despite this, our promising results suggest the potential for deep learning methods to pave the way
for more accurate and flexible reconstructions of spatiotemporal fields from remote sensing data.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Devanshu Agrawal, Theodore Papamarkou, and Jacob Hinkle. Wide neural networks with bottle-
necks are deep Gaussian processes. Journal of Machine Learning Research, 2020.

Pooja Algikar and Lamine Mili. Robust Gaussian process regression with Huber likelihood. arXiv
preprint arXiv:2301.07858, 2023.

Matias Altamirano, Francois-Xavier Briol, and Jeremias Knoblauch. Robust and conjugate Gaussian
process regression. In International Conference on Machine Learning. PMLR, 2024.

Iskander Azangulov, Andrei Smolensky, Alexander Terenin, and Viacheslav Borovitskiy. Stationary
kernels and Gaussian processes on Lie groups and their homogeneous spaces I: the compact case.
Journal of Machine Learning Research, 2024.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems 33, 2020.

Pier Giovanni Bissiri, Chris C Holmes, and Stephen G Walker. A general framework for updating
belief distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
2016.

Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, et al. Matérn Gaussian processes on
Riemannian manifolds. In Advances in Neural Information Processing Systems, 2020.

David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates of convergence for sparse vari-
ational Gaussian process regression. In International Conference on Machine Learning. PMLR,
2019.

Copernicus Data Space Ecosystem. Sentinel-3 sea level anomaly data, 2024. URL https://
dataspace.copernicus.eu.

Kurt Cutajar, Edwin V Bonilla, Pietro Michiardi, and Maurizio Filippone. Random feature expan-
sions for deep Gaussian processes. In International Conference on Machine Learning. PMLR,
2017.

Andreas Damianou and Neil D Lawrence. Deep Gaussian processes. In Artificial Intelligence and
Statistics. PMLR, 2013.

Matthew M Dunlop, Mark A Girolami, Andrew M Stuart, and Aretha L Teckentrup. How deep are
deep Gaussian processes? Journal of Machine Learning Research, 2018.

Vincent Dutordoir, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin Ghahramani, and
Nicolas Durrande. Deep neural networks as point estimates for deep Gaussian processes. In
Advances in Neural Information Processing Systems, 2021.

David Duvenaud, Oren Rippel, Ryan Adams, and Zoubin Ghahramani. Avoiding pathologies in
very deep networks. In Artificial Intelligence and Statistics. PMLR, 2014.

David K Duvenaud, Hannes Nickisch, and Carl Rasmussen. Additive Gaussian processes. In Ad-
vances in Neural Information Processing Systems, 2011.

Geir Evensen. The ensemble Kalman filter: Theoretical formulation and practical implementation.
Ocean dynamics, 2003. doi: https://doi.org/10.1007/s10236-003-0036-9.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning. PMLR, 2016.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPy-
Torch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In Advances
in Neural Information Processing Systems, 2018.

11

https://dataspace.copernicus.eu
https://dataspace.copernicus.eu


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning. PMLR, 2018.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estima-
tion. Journal of the American Statistical Association, 2007. doi: https://doi.org/10.1198/
016214506000001437.

William Gregory, Isobel R Lawrence, and Michel Tsamados. A Bayesian approach towards daily
pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite obser-
vations. The Cryosphere, 2021. doi: https://doi.org/10.5194/tc-15-2857-2021.

William Gregory, Ronald MacEachern, So Takao, Isobel R Lawrence, Carmen Nab, Marc Peter
Deisenroth, and Michel Tsamados. Datasets for “Scalable interpolation of satellite altimetry data
with probabilistic machine learning”, 2024a. URL https://zenodo.org/doi/10.5281/
zenodo.13218448.

William Gregory, Ronald MacEachern, So Takao, Isobel R Lawrence, Carmen Nab, Marc Pe-
ter Deisenroth, and Michel Tsamados. Scalable interpolation of satellite altimetry data with
probabilistic machine learning. Nature Communications, 2024b. doi: https://doi.org/10.1038/
s41467-024-51900-x.

Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural
tangent kernel. Advances in Neural Information Processing Systems, 2020.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. In Uncertainty
in Artificial Intelligence, 2013.

James Hensman, Nicolas Durrande, and Arno Solin. Variational Fourier features for Gaussian pro-
cesses. Journal of Machine Learning Research, 2018.

Ziyang Jiang, Tongshu Zheng, Yiling Liu, and David Carlson. Incorporating prior knowledge into
neural networks through an implicit composite kernel. Transactions on Machine Learning Re-
search, 2024. URL https://openreview.net/forum?id=HhjSalvWVe.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, 2017.

PY Le Traon, F Nadal, and N Ducet. An improved mapping method of multisatellite altime-
ter data. Journal of Atmospheric and Oceanic Technology, 1998. doi: https://doi.org/10.1175/
1520-0426(1998)015%3C0522:AIMMOM%3E2.0.CO;2.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, 2019.

Nils Lehmann. Lightning UQ Box, 2024. URL https://lightning-uq-box.
readthedocs.io/en/latest/.

Chi-Ken Lu and Patrick Shafto. On connecting deep trigonometric networks with deep
Gaussian processes: Covariance, Expressivity, and Neural Tangent Kernel. arXiv preprint
arXiv:2203.07411, 2022. doi: https://doi.org/10.48550/arXiv.2203.07411.

Lassi Meronen, Christabella Irwanto, and Arno Solin. Stationary activations for uncertainty calibra-
tion in deep learning. In Advances in Neural Information Processing Systems, 2020.

Lassi Meronen, Martin Trapp, and Arno Solin. Periodic activation functions induce stationarity. In
Advances in Neural Information Processing Systems, 2021.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 2021. doi: https://doi.org/10.1145/3503250.

12

https://zenodo.org/doi/10.5281/zenodo.13218448
https://zenodo.org/doi/10.5281/zenodo.13218448
https://openreview.net/forum?id=HhjSalvWVe
https://lightning-uq-box.readthedocs.io/en/latest/
https://lightning-uq-box.readthedocs.io/en/latest/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peter Mostowsky, Vincent Dutordoir, Iskander Azangulov, Noémie Jaquier, Michael John Hutchin-
son, Aditya Ravuri, Leonel Rozo, Alexander Terenin, and Viacheslav Borovitskiy. The Geomet-
ricKernels package: Heat and Matérn kernels for geometric learning on manifolds, meshes, and
graphs. arXiv:2407.08086, 2024.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
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