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Abstract

As AI becomes fundamental in sectors like healthcare, explainable AI (XAI)
tools are essential for trust and transparency. However, traditional user studies
used to evaluate these tools are often costly, time consuming, and difficult to
scale. In this paper, we explore the use of Large Language Models (LLMs) to
replicate human participants to help streamline XAI evaluation. We reproduce a
user study comparing counterfactual and causal explanations, replicating human
participants with seven LLMs under various settings. Our results show that (i)
LLMs can replicate most conclusions from the original study, (ii) different LLMs
yield varying levels of alignment in the results, and (iii) experimental factors such
as LLM memory and output variability affect alignment with human responses.
These initial findings suggest that LLMs could provide a scalable and cost-effective
way to simplify qualitative XAI evaluation.

1 Introduction

As artificial intelligence (AI) becomes integrated into critical sectors such as healthcare [1–3], the
adoption of explainable AI (XAI) becomes inevitable [4–6]. For example, AI models can help
diagnose diseases [7], predict patient outcomes [8], and recommend treatments [9]. The decisions of
these models are often opaque, making it difficult for practitioners to fully trust or understand them.
Therefore, XAI tools can have a huge impact in the integration of AI in healthcare. This necessity is
also highlighted by regulatory efforts such as the EU AI Act [10], which enforces transparency and
accountability in AI systems, particularly in critical sectors, where understanding AI-driven decisions
can mean the difference between life and death.

This need for effective XAI tools has led to a significant number of studies aimed at advancing the
field [11]. Many of these efforts have focused mainly on developing new techniques and algorithms
[12–17] to explain models and evaluate them through quantitative metrics. However, this approach
holds significant challenges, as there are no clear and unique metrics (e.g., surrugate model fidelity
[12], counterfactual validity [17], and proximity score [18]) to evaluate these tools. The choice of
metrics is often highly dependent on the specific XAI technique and the domain of application, and
these metrics frequently fail to capture the actual benefits from the end-user’s perspective. As a
result, many tools are optimized to maximize performance in these quantitative metrics, ignoring
the ultimate goal of providing explanations that help users understand the model’s decisions [19].
In contrast, fewer studies involve qualitative evaluations in which users assess key properties such
as the effectiveness, helpfulness, and trustworthiness of the explanations [20–24]. Furthermore,
there is no standardized process for structuring these evaluations, leading to inconsistencies in the
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way user studies are conducted. Consequently, running user studies tends to be not only costly and
time consuming but also prone to producing variable outcomes, which limits their scalability and
reproducibility. These challenges create barriers that result in fewer qualitative evaluations and slow
down progress in the field.

Under these circumstances, Large Language Models (LLMs) offer a promising way to complement
user studies. First, LLMs can help researchers run smaller, more focused studies by integrating
their results with LLM-generated data, reducing the need for large-scale participant recruitment.
This streamlines the evaluation of XAI tools while ensuring alignment with human preferences.
Second, LLMs are useful in expert-driven studies, where recruiting participants like clinicians is
challenging. Instead of relying on large groups of laypeople for early-stage feedback—which can
reduce the validity of the study—LLMs can provide preliminary insights, allowing researchers to
refine tool designs before engaging experts, saving time and resources. For example, a healthcare
institution developing machine learning models to detect brain cancer via MRI scans must validate
the model by understanding its decision-making process. XAI techniques are essential for this, as they
provide insights into the model’s reasoning. To ensure the model’s explanations align with clinical
expectations, a user study involving practitioners is crucial. In this context, LLMs can streamline the
process by pre-evaluating the XAI outputs, ensuring that the model’s decisions are coherent before
full expert validation, saving time and resources.

This paper explores the potential of LLMs to bridge the gap between the need for scalable XAI
evaluation and the limitations of traditional user studies. Specifically, we aim to replicate a user
study which compared counterfactual and causal explanations in terms of their helpfulness and
effectiveness in transmitting insights from AI systems. However, instead of human participants, we
use LLMs and explore whether the LLM-generated results align with the conclusions drawn from
the original user study. We evaluated seven of the most advanced LLMs — Llama 3 (8B and 70B)
[25], Qwen 2 (7B and 72B) [26], Mistral 7B [27], Mistral Nemo and GPT-4o Mini [28] - in various
experimental settings. These settings included leveraging LLMs memory and exploring the effects of
LLM variability in generating answers to understand their impact in the alignment between LLMs and
humans preferences. The results of our experiments demonstrate that: (i) LLMs can replicate most
of the conclusions from the original user study, (ii) different LLMs can lead to varying conclusions
depending on the architecture and capabilities of the model, and (iii) the experimental setup, such
as the use of memory or randomness, can significantly impact the extent to which LLM responses
align with human responses. These initial findings provide promising insights into the feasibility
of developing automatic, scalable, and cost-effective qualitative evaluation frameworks that rely on
LLMs as an alternative to traditional user studies.

2 Traditional user studies to evaluate XAI tools

In the evaluation of XAI tools, particularly within healthcare, user studies are considered the gold
standard for assessing how well these tools perform in real-world scenarios [29]. Typically, these
studies involve a structured process in which healthcare professionals or end users interact with
XAI tools under controlled conditions. In previous user studies that evaluated XAI tools [20–23],
participants were assigned with activities such as predicting the output of the AI model based on
AI-generated explanations and/or completing questionnaires about the perceived usefulness of the
explanations and the degree of trust in the model.
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For instance, Colin et al. [20] asked participants to guess the prediction of the model based on
the provided explanation to evaluate how various XAI techniques [14, 30] help users detect biases,
identify strategies for solving unknown tasks, and recognize model failures. Their user study included
scenarios with inherent biases, tasks in which users lacked domain expertise, and models prone to
misclassifying specific examples. The primary objective was to assess which explanation strategies
were most effective in helping users replicate the model’s decision-making process. The assumption
was that if an explanation was understandable and complete, users would be able to predict the
model’s decisions accurately. The conclusions were drawn by comparing the performance of different
explanation techniques against each other, as well as against a baseline scenario where no explanations
were provided. Similarly, Karagoz et al. [23] asked professionals to report their level of trust in
an AI model both before and after receiving an explanation [12, 13] of the decision of the model.
Participants were also asked to make predictions based on the explanation. Additionally, the study
examined the level of agreement between practitioners who made decisions using XAI tools versus
those who did not. As with the previous study, the researchers used statistical tests to compare
the results across different explanations and settings (pre- and post-explanation). In a different
approach, Singh et al. [21] designed a study in which participants filled out a questionnaire with
several items regarding the actionability of the explanations they were shown. The aggregated results
were compared to determine which types of explanations were perceived as more actionable. Their
findings demonstrated that this setting effectively highlighted which explanation type was considered
most actionable by participants. These user studies demonstrate the diversity of metrics and settings
used (from performing tasks to giving opinion through a questionnaire) in the evaluation of XAI
tools, highlighting the lack of a universally accepted structure or standardized metrics for conducting
user studies in this field. Despite this variability, one common thread across all the studies is the
comparison of aggregated results for different XAI tools in hypothetical real-world scenarios. This
ability to simulate real-world use cases is the primary advantage of user studies.

However, despite their importance, user studies have several significant drawbacks. Conducting these
studies is often resource intensive and requires substantial time and financial investment to recruit par-
ticipants and simulate usage environments (e.g., clinical decision making in the context of healthcare).
The involvement of domain experts (e.g., clinicians), who may already have demanding schedules,
further complicates the process. Furthermore, variability in user experience and interpretation can
lead to inconsistent results, making it challenging to draw generalizable conclusions, especially if the
number of participants is relatively low. This variability also limits the scalability of user studies,
as replication across different institutions, or with larger groups, can be prohibitively expensive and
time consuming.

3 Can LLMs evaluate XAI tools?

LLMs are advanced AI systems designed and trained to process text data and generate human-like text
based on vast amounts of data, covering a wide range of topics. This training enables them to estimate
context, generate coherent answers, and mimic human-like reasoning in their responses. LLMs excel
in tasks that require the comprehension and generation of natural language, making them particularly
effective in simulating human interactions [31], such as those involved in user studies. LLMs have
also demonstrated significant performance in tasks beyond their original training without the need
for additional fine-tuning. For example, LLMs can classify various data types, such as tabular data
[32] and time series [33], or generate synthetic data [34]. Although they may not yet represent the
state-of-the-art models for these tasks (with specialized models often being more capable), they offer
valuable versatility. This is especially relevant when dealing with niche domains like healthcare,
where specialized models are typically preferred for specific tasks due to their superior and tailored
capabilities. However, LLMs can offer additional capabilities in conjunction with specialized models
and tools, leveraging their human-like conversational abilities and contextual understanding.

To exploit these abilities in conjunction with specialized models and XAI tools, we propose using
LLMs to qualitatively evaluate XAI tools, simulating human-based studies. Querying LLMs instead
of humans offers several significant advantages. Firstly, LLMs provide a cost-effective alternative,
eliminating the need for expensive and time-consuming recruitment and compensation of human
participants. This allows for the rapid and inexpensive execution of studies that can be conducted
repeatedly with unlimited queries, leading to large-scale data collection and analysis. In general,
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including the use of LLMs in the user study would dramatically increase the flexibility and scalability
of the research process regarding the development of XAI tools.

However, achieving useful results with LLMs is only possible if the LLM model is properly aligned
with human preferences. Ensuring such alignment is one of the key challenges in the development of
more powerful LLMs today. This alignment is typically achieved through additional training [35] or
techniques [36]. These differences in the alignment process can significantly affect the way LLMs
generate responses, influencing their reasoning processes, beliefs, and preferences. This variability
in alignment becomes a critical consideration in scenarios where the primary goal is to accurately
mimic user preferences, such as in our evaluations of XAI tools. In particular, we are interested in
assessing two types of alignment: general alignment, where we determine the outcome of statistical
comparisons (e.g., explanation A is generally perceived as better than explanation B), and absolute
alignment, where we measure specific ratings (e.g., explanation A is rated a 4 on a scale of 1 to 5
for helpfulness). In both cases, the choice of which LLM to use is not trivial. Different LLMs can
exhibit varying degrees of alignment depending on the training process and the intended application.
Thus, selecting the most suitable LLM is a critical design decision that can significantly impact the
effectiveness and reliability of the user study.

In addition to alignment, several other factors influence how LLMs generate responses. These include
varying the initial prompts, employing different prompting techniques (e.g., zero-shot, few-shot
[37], chain-of-thought [38]) and leveraging session memory. The structure and clarity of the input
prompt can significantly affect the coherence and relevance of the model output. For example, various
types of prompt injection can be used to alter the generation process, incorporating elements such as
personalization, task description, and context specification. Then, conversation memory can impact
LLMs’ performances by allowing the models to exploit prior generated information, increasing
the chance of alignment (as also the human evaluator is influenced by the past examples) and also
modifying the variability of the output. If memory is used, then the order of instruction also plays
an important role in conditioning the results. These factors contribute to the variability in LLM
generation, further highlighting the importance of carefully selecting and configuring the model to
better align with specific user preferences and study goals.

4 Experiments

We designed our experiments to explore whether it is feasible to estimate human preferences in XAI
user studies using LLMs. More specifically, we tested for general alignment (i.e., can we arrive
to the same findings/conclusions on a population/study level) and absolute alignment (i.e., can we
come to similar responses on a case-by-case level) between our LLM-based study and an existing
use-based study. Additionally, we aim to explore the impact of different factors that might influence
the outcomes of such studies when using LLMs. To achieve this, we address the following research
questions:

• Alignment: Is it possible to replicate the results of an XAI user study using LLMs? Are
LLMs answers aligned with human preferences in the context of evaluating explanations in
absolute terms?

• LLM Variability: Do different LLMs lead to different general alignment?

• Framework Variability: Does the use of memory in LLMs influence the results of the user
study? How does variability in LLM responses impact the general alignment?

4.1 Evaluation Setting

4.1.1 User study

As a foundation for the experimental setting, we use the first set of experiments of the user study by
Celar and Byrne [22]. Their study was designed to better understand the relationship between causal
and counterfactual explanations in terms of their helpfulness and effectiveness in transmitting insights
from AI systems to end users. Participants interacted with the predictive AI system’s input and output,
along with explanations from an XAI tool providing insights into the system’s decision-making
process. The study featured four experimental conditions: counterfactual versus causal explanations
in high versus low familiarity scenarios. Counterfactual explanations provide alternative scenarios by
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answering "what if" questions and describing how the world would have to change for a desirable
outcome to occur. In contrast, causal explanations describe the direct cause-and-effect relationships
that led to the observed outcome. In the high familiarity condition, participants determine whether
alcohol levels are over or under the legal limit for driving. In contrast, the low familiarity condition
requires participants to assess the safety of an unknown chemical compound.

In each experimental setting of their study, users completed three tasks. In the first, they rated the
helpfulness of a given explanation based on the input and output of the AI system. In the second task,
participants attempted to make the prediction themselves using the provided explanation. Finally,
in the third, they expressed their confidence level in their prediction on the Likert scale: "not at all
confident", "not very confident", "neither", "fairly confident", and "very confident".

The first two tasks consisted of sixteen cases each. In the high familiarity scenario, the case
comprised the following fields: name of the subject, weight, units of alcohol consumed, duration,
gender, and stomach content. In the low familiarity setting, the case comprised the name of the
chemical, occupational exposure limit, pH, exposure duration, air pollution rating, and PNEC Rating.
Participants completed the first task on sixteen cases, followed by the second task on sixteen new
cases. The third task questions were interleaved between the second task cases in equal numbers,
ensuring sequential progression. In the first task, each case was paired with a prediction and an
explanation, either causal or counterfactual, and the user judged the statement "This explanation was
helpful" on a Likert scale: "strongly disagree", "disagree", "neutral", "agree", and "strongly agree".
In the second task, only the case information was shown to enable the user to make their prediction,
either over the limit/under the limit or safe/not safe.

4.1.2 Estimating human preferences with LLMs

To replicate the above-mentioned user study [22], we transpose the experimental setting designed
for human evaluators into a compatible setting for LLMs. In this context, each LLM is treated as
a participant, tasked with generating responses across the same experimental conditions (high/low
familiarity and causal/counterfactual explanations).

LLM models are used to generate responses in place of human participants. A run corresponds to the
execution of one experiment formed by the helpfulness, prediction, and confidence tasks. A state
refers to the specific conditions under which the model generates responses, such as the combination
of familiarity and explanation type for each task. We use two approaches to aggregate and compare
the results across different models and runs. In the first approach, we conduct multiple inference
runs for each model and calculate the mean response at each question. This method, similar to the
self-consistency technique, helps to mitigate the variability in the generated outputs and produces
a more stable, reliable average response for each experimental condition. By averaging across
multiple runs, we reduce the impact of any outlier responses and ensure consistency in the model’s
performance. In the second approach, we treat each inference run as if it were generated by a different
participant. This method simulates the diversity typically seen in a group of human participants.
By treating each run independently, we capture the variability that may arise in model-generated
responses, mirroring how individual differences exist in human participants.

In addition, the use of instruction-following models enables us to explore the influence of conversation
history during task execution. We assume that while performing the tasks, users undergo a learning
process. Thus, to replicate the same process, we enable the LLM to use previously generated answers
and instructions as context for every new inference. We test this scenario against a baseline where
the models do not have access to any previously generated answers and inputs, and every inference
is treated as a separate task. We refer to these two scenarios as "with memory" and "in isolation",
respectively. The isolation setting poses two challenges. The first issue arises in the third task,
where the LLM is asked to provide a confidence level about the prediction made in the previous task.
However, if each inference is treated without memory, the LLM has no information about the previous
task or the answer given. As a result, it cannot express a confidence level about its performance. To
address this issue, we switch to a hybrid approach regarding memory by allowing the second and
third tasks to be completed in pairs and enabling the conversation history between the two tasks. The
second issue involves the assumption that the users, while performing the first task learn how to make
the predictions in the second task. This assumption is violated due to the lack of presence of the
conversation memory. To address this issue we apply a few-shot prompting technique. This method
uses synthetic data of input-output examples to instruct the LLM on what answer is expected and
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the way reasoning should be done. In our scenario, we take the sixteen cases from the first task, pair
them with the corresponding prediction as if made by the same LLM, and use them as context for the
input of the second task.

Given the two initial settings (familiar and not familiar) for our experiments, we feed LLMs with
specific prompts to fit each task and each conversation memory setting. Specifically, we propose the
following prompts, where we switch the familiarity setting based on the experiment and inject the
cases illustrated previously:

First task prompt

Given the following case, how would you rate the sentence "This explanation was helpful"? You must
answer by only providing one value from the following: "Strongly disagree", "Disagree", "Neutral",
"Agree", "Strongly agree". {case}

Second task prompt

Complete the sentence "Based on the information provided, I believe the app’s prediction for this
person|chemical will be ...". You must answer by only providing one value from the following: Over the
limit, Under the limit | Safe, Not safe. {case}

Third task prompt

How confident are you in your prediction? You must answer by only providing one value from the
following: "Not at all confident", "Not very confident", "Neither", "Fairly confident", "Very confident".

Our final consideration concerns the impact of case ordering during inference in the memory setting.
Since the original user study used different permutations of the cases for each participant, we apply
the same approach to the LLM to ensure consistency. This allows us to account for any potential
influence that case order might have on performance or results. This introduces the concept of
“LLM-user.” An LLM-user refers to the aggregation of results obtained across multiple inference
runs, where a fixed permutation of cases is used for each group of runs. The results from multiple
LLM-users are then combined to form the study’s overall conclusions.

4.1.3 Metrics and statistical tests

Our primary objective is to compare the results obtained from LLMs with those from the original
user study. To ensure consistency, we use the same statistical metrics and tests as those proposed in
the original user study [22].

The original study compares four experimental conditions: low familiarity with causal explanations,
low familiarity with counterfactual explanations, high familiarity with causal explanations, and high
familiarity with counterfactual explanations. The analysis focuses on the mean responses provided by
participants, aiming to show that high familiarity scenarios lead to better outcomes compared to low
familiarity ones and that counterfactual explanations are generally more helpful and insightful than
causal explanations. We replicate this approach by calculating the mean values for the LLM-generated
responses in each condition and comparing the outcomes across the four experimental scenarios. This
allows us to get information about the absolute alignment between LLMs and humans.

However, the main conclusion of the paper are drawn on statistical tests regarding the effect of the
two primary variables — familiarity (high vs. low) and explanation type (causal vs. counterfactual)
— and their interaction. Therefore, we apply a two-way ANOVA statistical test [39], just as in the
original study, to assess whether these factors significantly influence the responses of LLMs, as
they do for human participants (general alignment). This method allows us to investigate whether
LLMs exhibit similar patterns of reasoning and judgment, even if they do not present an absolute
alignment. Since we aim to assess the alignment between LLMs and the user study, we assume
that the answer distributions match in shape and, therefore, we test for normality of the LLMs’
answers. The ANOVA test assumptions are only partially satisfied for certain models, specifically
Mistral-Nemo-Instruct-2407, Mistral-7B-Instruct-v0.3, and GPT-4o-Mini. As a result, we exercise
caution and refrain from drawing strong conclusions based on the statistical outcomes for these
models.

By aligning our evaluation techniques with those used in the original work, we aim to determine how
well LLMs replicate human reasoning processes and whether they demonstrate the same preferences
and patterns when presented with familiar or unfamiliar scenarios, as well as causal or counterfactual
explanations.
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4.2 Results

Evaluating XAI tools with LLMs partially mirrors user study conclusions. (Figure 2) Using
the results of the Qwen 2 72B model (sampling the same number of “LLM-users” as participants
in the original user study), we successfully replicated 6 of the 9 statistical outcomes from the first
part of the user study. Figure 2 illustrates the concordance between the LLM results and those of the
original human-based study for each statistical test. This shows that, under specific conditions, partial
alignment between human and LLM conclusions can be achieved when replacing human participants
with LLMs. Specifically, we observed perfect general alignment in tasks that require the prediction
of the model output given an explanation. However, alignment was more challenging in tasks that
involved confidence-related questions, where the LLM struggled to match human responses.
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Figure 2: Concordance of the results for each statistical
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the ANOVA test and the results of the comparison of the
averaged values.

LLMs exhibit slight differences in ab-
solute alignment with human prefer-
ences. (Figure 3) Although LLMs can
replicate overall trends in user studies,
their responses still show some devia-
tions from human participants. Figure
3 presents the MSE of the Qwen 2 72B
model across different categories (help-
fulness, accuracy, confidence) in both fa-
miliar and unfamiliar conditions under
causal and counterfactual settings. While
the MSE for helpfulness is relatively
low, particularly in familiar contexts, the
model struggles more with accuracy, es-
pecially in unfamiliar settings. Confi-
dence shows the largest errors, mainly
in unfamiliar conditions. These results
suggest that, although the model’s ab-
solute predictions differ from human re-
sults, its comparative judgments remain
consistent, showing potential as an alter-
native in user evaluations across different
scenarios.

Different LLMs exhibit varying levels of general alignment with human responses. (Figure
2) The degree of general alignment between LLMs and human participants varies between models,
reflecting differences in size, capabilities, and behaviors. Figure 2 shows that some LLMs align more
closely with human judgments in specific tasks, while others diverge. Among the tested models,
Qwen 2 72B and GPT-4o Mini achieved the highest general alignment, matching human conclusions
in 6 out of 9 cases. Interestingly, the smaller LLaMA 8B demonstrated better general alignment
than its larger counterpart, LLaMA 70B. In contrast, the largest Qwen 2 model (72B) significantly
outperformed the smaller Qwen 2 7B, indicating that a larger model does not necessarily guarantee
better alignment with human responses across all architectures. Additionally, all models showed
their best performance on the prediction tasks, while they performed worst in the confidence-related
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Figure 4: Concordance of the results for each statistical test aggregated by experimental settings.
Experimental settings explored comprise conversation with or without conversation memory and
usage of aggregated inference runs.

tasks. This may be because LLMs are trained to answer specific questions (such as predicting
outcomes) based on provided context (an explanation). Confidence questions, on the other hand,
involve subjective judgments that are more challenging for LLMs to mimic, as they may struggle to
express confidence levels—since their responses always represent the most probable outcome, not
a measure of certainty. This suggests that while LLMs can replicate decision-making tasks, more
nuanced, subjective metrics like confidence may require further refinement.

Usage of memory impacts LLMs’ general alignment. (Figure 4) Figure 4 illustrates the con-
cordance between the results of the LLMs and those of the original human-based study in different
settings, specifically comparing models with and without memory use. LLMs that utilize memory
behave differently from those that do not. Generally, LLMs without memory exhibit more uniform
performance across all tests, likely due to the absence of influence from the prior context. In contrast,
the use of memory introduces variability, as the model’s responses are affected by the way it interprets
and incorporates information from previous interactions. Despite this variability, models that em-
ployed memory tended to perform better overall, showing higher concordance with human judgments.
This suggests that memory, when used effectively, can enhance an LLM’s ability to align with human
responses. However, this benefit depends on how well the memory mechanism is utilized.

Simulating different users through aggregation leads to opposite results. (Figure 4) Evaluating
the impact of aggregation allows us to better assess the impact of LLM generation variability. Figure 4
compares the outcomes of different models using both aggregated and non-aggregated methods. The
results reveal that prior to aggregation, different LLMs exhibit varying degrees of initial variability,
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as they show different level of agreement with the aggregated results. Therefore, the aggregation
method significantly influences the alignment of the LLM results. For instance, models with memory
that use aggregation closely mirror the human user results. However, when non-aggregated responses
are considered, the variability across runs increases, leading to more divergent results, particularly in
confidence ratings and prediction accuracy. The non-aggregated approach without memory produces
results that deviate significantly from the original user study. This suggests that relying on individual,
un-aggregated LLM responses introduces greater variability, making it difficult to replicate human
users. By contrast, aggregated models, especially those using memory, maintain more consistent
performance. As shown in Figure 4, by using aggregation, we observe an increase in the alignment of
LLMs with the user study in 11 out of 14 cases while the other 3 maintain the original alignment
with the non-aggregated models.

5 Limitations

One significant limitation of our research is that it is based on a single publicly available user study,
which focused on evaluating explanations generated by two similar XAI methods. The use of only
two explanation techniques in a single user study limits the breadth of the conclusions we can draw.
XAI encompasses a wide variety of techniques and applications across different domains, and our
findings may not generalize to all types of explanations or contexts. Moreover, our approach cannot
replicate certain types of human studies, such as qualitative interviews or assessments that measure
real trust, particularly in expert-driven fields like healthcare, where the trust of clinicians is crucial.
Similarly, this approach would struggle to handle entirely new domains that fall outside the LLM’s
training set, as the models rely on prior knowledge to generate responses. However, this study
highlights an interesting path for further exploration. We plan to extend the experimental settings in
future work to include a broader range of XAI techniques and user studies. Additionally, we aim to
incorporate queries to Vision Language Models (VLMs) to evaluate visually oriented XAI techniques,
such as saliency maps, which are important in the healthcare field.

Another limitation is the possibility that the tasks or responses from the original Celar and Byrne
[22] study may be part of the LLM training set. This could introduce bias and compromise the
validity of the results. Ensuring that the LLM responses are genuinely independent of the study’s
prior knowledge will be critical in addressing this limitation.

Lastly, a limitation lies in the specific LLMs used in this study. Although we used up-to-date
LLMs at the time of evaluation, the rapid pace of advancements in AI technology, especially in
LLMs, means that future models may exhibit different behavior, reasoning abilities, or alignment
capabilities. Similarly, improvements in alignment techniques could lead to better alignment with
human preferences, potentially altering the conclusions drawn in this study. As a result, future
research will need to inspect LLM performance again as new models and alignment methods emerge.
Nonetheless, this paper serves as an illustration of this idea, providing promising results and laying
the groundwork for further investigation.

6 Conclusions

In conclusion, our investigation into the use of Large Language Models (LLMs) to complement and
integrate user studies for evaluating Explainable AI (XAI) tools offers promising initial results. By
replicating a user study on counterfactual and causal explanations, we found: (i) LLMs can replicate
most of the conclusions derived from traditional user studies, indicating their potential as scalable
and cost-effective alternatives, (ii) different LLM architectures and capabilities can produce varying
outcomes, emphasizing the importance of selecting appropriate models for specific evaluation tasks,
and (iii) experimental factors, such as the use of memory and the impact of variability in generating
responses, significantly affect the alignment between LLM and human preferences. Our findings
suggest LLM-based evaluations could greatly improve the scalability and reproducibility of XAI
assessments. Future work should aim to enhance the alignment of LLMs with human judgment in the
evaluation of XAI tools and explore the broader applicability of this approach across various XAI
techniques and domains.
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A Implementation details

Running local and remote models We executed Hugging Face models (Mistral, Llama 3.1, and
Qwen2 families) on a local server equipped with the following hardware:

• CPU: 2 x AMD EPYC 7513 32-Core Processor
• RAM: 512 GB
• GPU: 4 x RTX A6000 (48 GB VRAM each)

CUDA acceleration was utilized to parallelize and distribute computation across the GPUs, signifi-
cantly speeding up the processing.

The total inference time for running the full experiment was approximately 76 hours.

For GPT 4o Mini, inference was run using the OpenAI API. Inference time depends on the usage
Tier available on the API.

Code and licenses Our code implementation is built using Python 3.12 and leverages the open-
source library LangChain [40] (MIT License) to develop the inference infrastructure for both local
and remote executions. All plots were generated using the Matplotlib [41] (BSD License) library. The
dataset used in the experiment is freely available, following the guidelines provided in the original
paper [22].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See research questions and results in Section 4

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not contain theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4 for description of experimental setting
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code and data
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: A brief description is available at Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Sections 1 and 2 describe the impact of integrating LLMs in human user-
studies, their benefit and limitations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release neither data or models

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix A

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t release any new asset
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t use crowdsourcing or research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: See previous answer
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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