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ABSTRACT

We introduce NeCo: Patch Neighbor Consistency, a novel self-supervised training
loss that enforces patch-level nearest neighbor consistency across a student and
teacher model. Compared to contrastive approaches that only yield binary learning
signals, i.e. ‘attract’ and ‘repel’, this approach benefits from the more fine-grained
learning signal of sorting spatially dense features relative to reference patches. Our
method leverages differentiable sorting applied on top of pretrained representations,
such as DINOv2-registers to bootstrap the learning signal and further improve
upon them. This dense post-pretraining leads to superior performance across
various models and datasets, despite requiring only 19 hours on a single GPU. This
method generates high-quality dense feature encoders and establishes several new
state-of-the-art results such as +2.3 % and +4.2% for non-parametric in-context
semantic segmentation on ADE20k and Pascal VOC, +1.6% and +4.8% for linear
segmentation evaluations on COCO-Things and -Stuff and improvements in the
3D understanding of multi-view consistency on SPair-71k, by more than 1.5%.

1 INTRODUCTION

Dense self-supervised learning trains feature extractors to produce representations for every pixel
or patch of an image without supervision. This field has seen substantial advancements in recent
years, notably improving unsupervised semantic segmentation (Ziegler & Asano, 2022; Salehi et al.,
2023; Araslanov et al., 2021; Stegmüller et al., 2023; Wang et al., 2021), object-centric representation
learning (Zadaianchuk et al., 2023), and other dense downstream tasks like object tracking and object
detection (Hénaff et al., 2021; 2022; Lebailly et al., 2023; Salehi et al., 2023).

One particularly interesting use-case of densely pretrained encoders was developed by Balazevic et al.
(2023). They propose to solve semantic segmentation by posing it as a nearest-neighbor retrieval
problem utilizing the features of the spatial patches. This non-parametric method not only mirrors
in-context learning in large language models (LLMs) (Brown et al., 2020) but also delivers rapid and
robust performance, especially with limited data.

Building on this idea, we propose an inverted approach: using nearest-neighbor retrieval not just for
evaluation but as a training mechanism for encoders. This approach promises a more fine-grained
learning signal, enabling the capture of intricate visual details. For instance, the features of a tire
should be closely related to one another, as well as to those of a car body, while remaining distinct
from features of an airplane.

Unlike contrastive losses, which offer a binary ‘attract’ or ‘repel’ signal, this provides a much richer,
continuous learning signal. Additionally, it avoids the pitfalls of reconstruction-based methods like
MAE (He et al., 2022), where low-level RGB patches that are visually similar may not carry similar
semantics. By operating strictly in the deep feature space, learning is guided by higher-level semantics
rather than superficial pixel-level similarities. As a result, this method promises to yield models with
deeply semantic spatial features specifically tailored for in-context tasks, enhancing their adaptability
and robustness. However, this approach, while promising, presents two main challenges.

The first is the source of supervision. In the case of evaluation, ground-truth labels are used, yet we
are interested in obtaining better self -supervised representations. While previous works (Balazevic
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et al., 2023; Lebailly et al., 2023) address this by essentially converting dense learning to image-level
learning via learnable pooling of patches, we offer a more practical and versatile solution. We simply
start from already image-level pretrained models and adapt them further. We term this stage dense
post-pretraining and demonstrate that it is an effective and fast solution to this problem, taking only
19 hours on a single GPU for tuning for a ViT-S/16 model.

The second challenge is the discrete nature of nearest-neighbor retrieval, which does not yield
gradients. To overcome this, we apply a differentiable sorting method proposed by Petersen et al.
(2021), originally developed for ranking supervision, that we can use to backpropagate gradients. As
we demonstrate empirically, this results in a more efficient and effective algorithm.

Our method enforces Patch Neighbor Consistency, so we term it NeCo. We show that it can be applied
on top of image-level pretrained models such as DINO (Caron et al., 2021), and densely trained ones
like iBOT (Zhou et al., 2022), Leopart (Ziegler & Asano, 2022), CrIBO (Lebailly et al., 2023) and
DINOv2 (Oquab et al., 2023; Darcet et al., 2024) to obtain superior features for in-context scene
understanding. Despite not being as close to our NeCo training task, our method also consistently
excels on downstream benchmarks such as 3D understanding, unsupervised semantic segmentation
and also full-finetuning semantic segmentation, where it even improves upon the state-of-the-art
DINOv2-R model (Darcet et al., 2024).

Overall, our contributions can be summarized as follows:

• We propose a new post-pretraining adaptation that applies a dense, patch-sorting-based
self-supervised objective, NeCo, applicable to any pretrained Vision Transformer

• We demonstrate NeCo’s utility by applying it to six different backbones and evaluating it on
five datasets and five evaluation protocols, achieving performance gains from 6% to 16%.

• We set several new state-of-the-art performances, for example on the in-context segmentation
benchmark of Balazevic et al. (2023), we outperform the previous methods such as CrIbo
and DINOv2 on Pascal VOC and ADE20k by 4% to 13% across different metrics.

2 RELATED WORKS

Dense Self-supervised Learning. Dense self-supervised learning methods aim to generate catego-
rizable representations at the pixel or patch level, rather than the image level. This field has gained
significant attention (Salehi et al., 2023; Ziegler & Asano, 2022; Araslanov et al., 2021; Stegmüller
et al., 2023; Lebailly et al., 2023; Balazevic et al., 2023; Hwang et al., 2019; Liu et al., 2020; Hénaff
et al., 2022; Van Gansbeke et al., 2021; Hénaff et al., 2022; 2021; Yun et al., 2022) due to the
observation that image-level self-supervised methods (Caron et al., 2018; Asano et al., 2019; Chen
et al., 2020; Grill et al., 2020; Caron et al., 2021; Izacard et al., 2021; Oquab et al., 2023) do not
necessarily produce expressive dense representations (Balazevic et al., 2023; Hénaff et al., 2022; He
et al., 2019; Purushwalkam & Gupta, 2020).

CroC (Stegmüller et al., 2023) is a recent method that has proposed a dense self-supervised loss to
address the issue. It applies joint clustering between different views, ensuring that cluster centers cap-
turing the same object are similar. Leopart (Ziegler & Asano, 2022) improves dense representations
by applying a dense clustering loss to pretrained models. Extending this concept, TimeTuning (Salehi
et al., 2023) has demonstrated that finetuning pretrained backbones over the temporal dimension of
unlabeled videos enhances dense reasoning capabilities. Recently, Hummingbird (Balazevic et al.,
2023) has proposed a dense loss that leverages attention within and across images during training,
showing strong in-context scene understanding during evaluation. CrIBo (Lebailly et al., 2023) takes
this further by explicitly enforcing cross-image nearest neighbor consistency between image objects,
achieving state-of-the-art results.

We similarly adopt nearest neighbor consistency due to its promising results in in-context scene
understanding but with two major differences: (1) instead of using pooled versions of patches at
either the image or object level, we directly apply it to patch features; (2) in addition to nearest
neighbor consistency, we ensure that the order of neighbors for the same patches from different views
is similar. These changes result in more semantic patch-level features, directly enhancing in-context
scene understanding and stabilizing training, as there is no need to infer object-level features through
clustering methods, which can be unstable during training.
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Figure 1: NeCo overview. Given an input image I , two augmentations τ1 and τ2 are applied to create
two different views, which are processed by the teacher and student encoders, ϕt and ϕs respectively.
The teacher encoder is updated using Exponential Moving Average (EMA). The encoded features are
then aligned using ROI Align and compared with reference features Fr obtained by applying ϕt to
other batch images. Next, pairwise distances Dij between Fs and Fr, as well as between Ft and Fr,
are computed using cosine similarity. These distances are then sorted using differentiable sorting and
utilized to force nearest order consistency across the views through the NeCo loss.

Unsupervised Object Segmentation. Several works specifically target unsupervised object segmen-
tation (Seitzer et al., 2022; Löwe et al., 2023; Bao et al., 2023; Siméoni et al., 2023; Zadaianchuk
et al., 2023; Wang et al., 2023; Hamilton et al., 2022; Lan et al., 2023; Zadaianchuk et al., 2022). The
goal of these works is not to learn semantic patch-level representations; instead, they often utilize
the existing information in frozen pretrained backbones and train another model to explicitly solve
semantic segmentation. For instance, Seitzer et al. (2022) train a slot-attention encoder and decoder
module (Locatello et al., 2020) to reconstruct DINO (Caron et al., 2021) pretrained features with a
few slots for each input image. This process enables the creation of per-image object cluster maps,
where each slot represents a distinct object or part of an object within the image, based on the features
it predicts.

In contrast, our approach learns distinct features for various objects and employs dense representations
as intermediaries for dense tasks like semantic segmentation. These features can then be used to
develop per-dataset cluster maps for semantic segmentation use cases.

3 PATCH NEIGHBOR CONSISTENCY

The goal is to develop a feature space in which, for a given input, patches representing the same
object exhibit similar features, whereas patches representing different objects show distinct features.
A key challenge for a self-supervised method in this process is defining the similarity between image
patches. Although patches from the same object (e.g. a cat) are expected to be more similar to each
other than to those from different objects (e.g. a dog), they may still depict different parts of the
object (e.g. a cat’s tail and legs).

Therefore, a learned dense feature space must provide an ordering of similarities to ensure that
patches from the same object and its parts are correctly distinguished from those of other objects.
To this end, our method works by extracting dense features of the inputs, finding their pair-wise
distances, and forcing a consistency between the order of nearest neighbors within a batch across two
views. While contrastive and clustering-based methods (Chen et al., 2020; Caron et al., 2020; Ziegler
& Asano, 2022; Salehi et al., 2023) can be seen as potential substitutes for sorting in aligning positive
views, they only enforce similarity without capturing the nuanced ordering constraints necessary for
structured relationships. Moreover, they often rely on explicit negative samples, which limits their
flexibility. In contrast, our sorting-based approach not only maintains relative similarities without the
need for negatives but also prevents mode collapse by preserving subtle distinctions among patches,
even within the same object. Figure 1 provides an overview of the method, which we describe in
detail below.
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Feature Extraction and Alignment. Given an input image I , two augmentations specified by
parameters τ1 and τ2 are applied to create two different views V1 and V2. These views are then
divided into N = ⌊HP ⌋ × ⌊

W
P ⌋ separate patches, where H and W represent the height and width of

the input image, and P represents the patch size. The patches are represented as V p
1 =

[
v11 , . . . , v

1
N

]
and V p

2 =
[
v21 , . . . , v

2
N

]
, which are fed to the feature extractor.

We utilize the Vision Transformer (ViT) architecture (Dosovitskiy et al., 2020) as the backbone and
employ a teacher-student framework, where the student and teacher models are denoted by ϕs and ϕt,
respectively. The teacher’s weights are updated using the exponential moving average of the student’s
weights.

As the generated views cover different parts of the input, the extracted features do not necessarily
correspond to the same objects. To address this, we align the features by applying ROI-Align (He et al.,
2017), adjusted according to the crop augmentation parameters. This process creates spatially aligned
dense features for the teacher and student networks, represented by Fs ∈ RN ′×d and Ft ∈ RN ′×d.
These features are then forced to maintain a consistent order of nearest neighbors, ensuring more
robust and meaningful feature representations, as explained next.

Pairwise Distance Computation. To identify the nearest neighbors of the patches, it is necessary
to extract features from other images in the batch and compute their distances with respect to Fs

and Ft. To achieve this, all batch images are fed through the teacher network, ϕt, to obtain the
batch features FB ∈ RBN×d. We sample a random fraction f ≪ 1 of these patches to obtain the
R = fBN reference patches Fr ∈ Rr×d which we use to compare the nearest neighbors of our Fs

and Ft features. To this end, we compute distances based on cosine similarities,

Ds(i, j) = 1− ⟨F i
s , F

j
r ⟩

∥F i
s∥∥F

j
r ∥

, (1)

Dt(i, j) = 1− ⟨F i
t , F

j
r ⟩

∥F i
t ∥∥F

j
r ∥

, (2)

i ∈ (1, . . . , N ′), j ∈ (1, . . . , R), (3)

Next, these distance matrices are sorted in a differentiable manner to produce a loss that enforces a
similar sorting across the two views.

Differentiable Sorting of Distances. To determine the order of nearest neighbors from distance
matrices, sorting is necessary. However, traditional sorting algorithms cannot propagate gradients
because they use non-differentiable operations such as d′i ← min(da, db) and d′a ← max(da, db)
to facilitate element swapping in the sequence for an ordering a < b. Given a sequence s =(
d1, . . . , dR

)
, where R is the length of the sequence, We use relaxed, differentiable versions of these

operations by defining their soft versions following recent work (Lee et al., 2017), as follows:

d′a = softmin(da, db) := daf(db − da) + dbf(da − db), (4)

d′b = softmax(da, db) := daf(da − db) + dbf(db − da), (5)

where the function f(x) = 1
π arctan(βx) + 0.5, and β > 0 is an inverse temperature parameter,

specifying the steepness of the operator. This function is sigmoid-shaped and centered around x = 0.
As β approaches infinity, the relaxation converges to the discrete swap operation. This operation
can be defined in an approximate permutation matrix Pswap(di, dj) ∈ RL×L, which is essentially an
identity matrix except for the entries Pii, Pij , Pji, and Pjj defined as

Pii = Pjj = f(dj − di), Pij = Pji = f(di − dj), (6)

such that one step of swapping the pair (di, dj) in the sequence is equivalent to multiplying P with
that sequence. The final permutation matrix for the entire sequence is determined by the sorting
algorithm employed. For example, in the odd-even sorting algorithm, the permutation matrix Pt for a
step t is defined as:
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Pt =
∏
i∈M

Pswap(di, di+1), (7)

where M is the set of odd indices if t is odd and the set of even indices if t is even. The overall
permutation matrix Q is obtained by multiplying the permutation matrices from all steps of the sorting
algorithm, Q =

∏L
t=1 Pt. As shown by (Petersen et al., 2021), L = R of such steps are sufficient for

efficient sorting. In the discrete case, for each column i, the permutation matrix has exactly one entry
of 1, indicating the sequence element that should be placed in the i-th column. In the relaxed version,
column values represent a distribution over possible sequence elements. In our case, a row i of the
distance matrix Ds shows the distance of the i-th student feature to all the reference features.

With its sorting matrix Qi, the (r, k) element of this matrix can be viewed as the probability of
a reference feature r being the k-th nearest neighbor for the i-th feature. Hence, to maintain the
order of nearest neighbors for every ROI-aligned patch feature, we compute Qi for every row of
Ds and Dt and force these to be similar. This results in final matrices Qs = [Qs

1, . . . , Q
s
N ′ ] and

Qt = [Qt
1, . . . , Q

t
N ′ ], which are used in the training loss.

Training Loss. After computing permutation matrices, we enforce similarity on the order of nearest
neighbors for each of the aligned patch features using the cross-entropy loss. The loss for the
permutation matrix of patch i is defined as:

LCE(Q
t
i, Q

s
i ) = −

∑
j,k

Qt
i(j, k) log(Q

s
i (j, k)),

And the final training loss is defined as the sum of per-patch losses computed over all samples:

LNeCo =

N ′∑
i=1

LCE(Q
t
i, Q

s
i )

This ensures, in a differentiable manner, that the order of nearest neighbors is consistent between the
student and teacher features.

4 EXPERIMENTS

4.1 SETUP

Benchmarked Methods. We compare our method against state-of-the-art dense self-supervised
learning methods, including CrIBo (Lebailly et al., 2023), Hummingbird (Balazevic et al., 2023),
TimeT (Salehi et al., 2023), Leopart (Ziegler & Asano, 2022), and CrOC (Stegmüller et al., 2023) as
well as baselines such ad DINO (Caron et al., 2021), iBOT (Zhou et al., 2022). To provide a more
comprehensive evaluation, We also include the performance of DINOv2 enhanced with registers,
referred to as DINOv2R (Oquab et al., 2023; Darcet et al., 2024), as it has demonstrated strong
dense capabilities. Additionally, we benchmark our method against leading unsupervised semantic
segmentation approaches such as COMUS (Zadaianchuk et al., 2022), DINOSAUR (Seitzer et al.,
2022), DeepSpectral (Melas-Kyriazi et al., 2022), and MaskContrast (Van Gansbeke et al., 2021).

Training. We run our experiments on ViT-Small and ViT-Base with a patch size of 14. We start
from various pretrained backbones, and use DINOv2 with registers unless otherwise noted. We
post-pretrain these models for 25 COCO epochs on a single NVIDIA RTX A6000-46GB GPU, taking
around 19 hours. For other training details, including detailed computational efficiency analysis, we
refer readers to the Appendix A.

Evaluation. In all our evaluations, we discard the projection head, following previous works (Caron
et al., 2021; Ziegler & Asano, 2022; Salehi et al., 2023), and directly use the spatial tokens from
the Vision Transformer backbone. Scores in all experiments are reported as mean intersection over
union (mIoU). We conduct four types of evaluations: linear segmentation fine-tuning with a 1× 1
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Figure 2: In-context scene understanding benchmark. Dense nearest neighbor retrieval perfor-
mance is reported across various training data proportions on two scene-centric datasets, Pascal
VOC and ADE20k. The retrieved cluster maps are compared with the ground truth using Hungarian
matching (Kuang et al., 2021), and their mIoU score is reported. For all models, ViT-B16 is used
except for DINOv2R and NeCo, where it is ViT-B14. For full tables, refer to Appendix B.3

convolution, end-to-end segmentation with the Segmenter head (Strudel et al., 2021), clustering and
overclustering semantic segmentation (Ziegler & Asano, 2022; Salehi et al., 2023), and dense nearest
neighbor retrieval (Balazevic et al., 2023). For clustering and overclustering, we apply K-Means
to spatial tokens, setting K to the number of ground truth objects and to high values like 300 and
500, as previously used (Ziegler & Asano, 2022; Salehi et al., 2023). We then extract object cluster
maps and match them using Hungarian matching (Kuhn, 1955). For dense nearest neighbor retrieval,
we follow the protocol from Balazevic et al. (2023), implemented in Pariza et al. (2024). For 3D
understanding benchmark, We use the multiview feature consistency evaluation method proposed
by El Banani et al. (2024), except all the images are resized to 224 × 224.

Datasets. We train our model on ImageNet-100 (Tian et al., 2020), Pascal VOC12 (Everingham
et al., 2010), and COCO (Lin et al., 2014) for ablations and use COCO as our primary training
dataset for all state-of-the-art comparisons. For evaluations, we use the validation sets of Pascal
VOC12 (Everingham et al., 2010), COCO (Lin et al., 2014), ADE20k (Zhou et al., 2017), and
Pascal Context (Mottaghi et al., 2014). For finetuning and feature transferability evaluations on
COCO (Caesar et al., 2018), we train using a 10% split of the training set, while we use the full
training splits of the other datasets. For the 3D understanding benchmark, we use Spair-71k (Min
et al., 2019) dataset.

4.2 COMPARISON TO STATE-OF-THE-ART

In this section, we first compare the quality of frozen features learned through NeCo with state-
of-the-art methods in in-context learning via nearest neighbor retrieval and unsupervised semantic
segmentation tasks. Next, we demonstrate NeCo’s versatility by applying it to five different pretrain-
ing models and show it improves their dense features consistently. We then evaluate the transferability
of our learned dense representations to other datasets by using linear head semantic segmentation and
end-to-end fine-tuning with Segmentor (Strudel et al., 2021). Finally, we show that NeCo improves
the 3D understanding of different vision models, as proposed in El Banani et al. (2024), using the
multiview consistency experiment. We report the results of applying NeCo to more backbones in
Appendix B.

Visual In-Context Learning Evaluation. We compare our approach to a recently proposed bench-
mark (Balazevic et al., 2023) that evaluates in-context reasoning in vision models. Unlike traditional
linear segmentation methods, this evaluation does not require fine-tuning or end-to-end training. In-
stead, it creates validation segmentation maps by matching patch-level, feature-wise nearest neighbor
similarities between validation images (queries) and training samples (keys). This method, inspired
by NLP strategies, tests how well models learn tasks from a few examples. The results are presented
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in Figure 2. As shown, NeCo outperforms prior state-of-the-art methods such as CrIBo and DINOv2R
by 4% to 13% on Pascal and ADE20k across different fractions. The performance gap between
NeCo and others increases, particularly in the data-efficiency regime. This improvement is due to our
method’s explicit enforcement of patch-level nearest neighbor consistency, resulting in higher-quality
patch-level representations that remain effective even with fewer images. In contrast, other methods
that promote image-level (Balazevic et al., 2023) or object-level (Lebailly et al., 2023) consistency
force consistency between a pooled vector of patches, potentially leading to inadequate semantic
patch-level representations, particularly in smaller datasets. Our method’s ability to perform well
with few images brings vision models one step closer to in-context learning style generalist reasoning.
For complete tables and details of using other backbone variants, please refer to Appendix B.3. For
visualizations please refer to Appendix C.

Table 1: Frozen clustering-based evaluations. (a) We evaluate the models by running K-means
with various clustering granularities K on the spatial features on two datasets. The resulting cluster
maps are matched to the ground-truth by Hungarian matching, and the intersection is reported in
mIoU. (b) Following previous works (Ziegler & Asano, 2022; Salehi et al., 2023), we post-process
the resulting maps and report unsupervised semantic segmentation on Pascal VOC. Both tables use
ViT-S with the patch size of 16, except for DINOv2R and NeCo, where it is 14.

(a) Clustering

Pascal VOC COCO-Things
Method K=GT K=300 K=500 K=GT K=300 K=500
DINO 4.3 13.9 17.3 5.4 18.8 19.2
iBOT 4.4 23.8 31.1 7.6 26.6 28.0
CrOC 3.4 16.4 20.0 4.9 14.7 18.1
TimeT 12.2 43.6 46.2 17.5 42.7 44.6
DINOv2R 12.2 46.7 49.5 12.3 38.9 41.2
CrIBo 18.3 51.3 54.5 14.5 46.0 48.3
NeCo 18.5 66.5 68.9 22.8 59.7 63.8

(b) Semantic segmentation

Method mIoU
MaskConstrast 35.1
DINOv2R 35.1
DeepSpectral 37.2
DINOSAUR 37.2
Leopart 41.7
COMUS 50.0
NeCo 55.6

Frozen Clustering-based Evaluations. Next, we evaluate the representation quality of our learned
dense features across different objects in each dataset. Ideally, we expect that all patch features
belonging to the same object, when clustered, will be assigned to the same cluster. If the learned
representations are more fine-grained, such as learning object parts instead of whole objects (e.g.,
hands or faces instead of a person), they should consistently cover the same part across the entire
dataset. To measure this, we extract dense features from all images and apply K-means clustering
with various K values to create cluster maps for each image. These cluster maps are then matched
with the ground truth using Hungarian matching (Kuhn, 1955), and their mIoU is reported. For the
first scenario, K matches the number of ground truth objects. Additionally, to account for the second
scenario, we also report performance in overclustering setups.

The results in Table 1a show that NeCo passes state-of-the-art by CrIBo by 14.5% on average
across various datasets and metrics. Note that this gain is not due to the DINOv2R initialization,
as it performs 4% lower than CrIBo on average. In Table 1b, we report clustering performance
when K matches the number of ground truth objects, with clustering applied solely to foreground
patches extracted by methods used in Ziegler & Asano (2022); Salehi et al. (2023). We outperform
other methods by at least 5.1% without relying on self-training, which requires training a separate
segmentation head, as used in COMUS. For visualizations please refer to Appendix C.

Linear Semantic Segmentation Evaluation. In this experiment, we keep the pretrained backbone
frozen and train a linear layer on top of the spatial features to solve a supervised semantic segmentation
task. Bilinear interpolation is used to match the spatial feature resolution to the image size, enabling
the application of pixel-wise cross-entropy loss. This setup provides a better evaluation of the
pretrained models compared to end-to-end finetuning, where all learned parameters are overwritten.
The results, reported in Table 2, show that NeCo surpasses CrIBo on all datasets by at least 10% and
consistently outperforms DINOv2R, achieving gains of up to 4.8%. These significant improvements
demonstrate that patches representing the same object or object part have higher similarities in
feature space compared to other methods, as a simple linear layer can utilize these features for strong
semantic segmentation.

7



Published as a conference paper at ICLR 2025

Table 2: Linear segmentation performance. A linear segmentation head is trained on top of the
frozen spatial features obtained from different feature extractors. We report the mIoU scores achieved
on the validation sets of 4 different datasets.

Method Backbone Params COCO-Things COCO-Stuff Pascal VOC ADE20K
DINO ViT-S/16 21M 43.9 45.9 50.2 17.5
TimeT ViT-S/16 21M 58.2 48.7 66.3 20.7
iBOT ViT-S/16 21M 58.9 51.5 66.1 21.8
CrOC ViT-S/16 21M 64.3 51.2 67.4 23.1
CrlBo ViT-S/16 21M 64.3 49.1 71.6 22.7
DINOv2R ViT-S/14 21M 82.2 59.1 79.0 40.0
NeCo ViT-S/14 21M 82.3 61.9 81.5 40.7
DINO ViT-B/16 85M 55.8 51.2 62.7 23.6
MAE ViT-B/16 85M 38.0 38.6 32.9 5.8
iBOT ViT-B/16 85M 69.4 55.9 73.1 30.1
CrIBo ViT-B/16 85M 69.6 53.0 73.9 25.7
DINOv2R ViT-B/14 85M 84.8 59.3 80.2 43.0
NeCo ViT-B/14 85M 86.4 64.1 84.4 46.5

Compatibility with Differently Pretrained Backbones. As shown in Table 3, our method is
generalizable across various self-supervised learning initialization, improving them by roughly 4%
to 30% across different metrics and datasets. Surprisingly, NeCo even enhances the performance
of methods specifically designed for dense tasks, such as CrIBo, TimeT, and Leopart. For instance,
CrIBo demonstrates a performance increase of approximately 5% in overclustering evaluations, which
measures how fine-grained and semantic the representations learned during pretraining are. This
indicates that NeCo applied to CrIBo can extract more discriminative features, leading to improved
transfer performance, shown by 0.5% and 3.7% better linear classification performance on Pascal
VOC and COCO-Things.

Table 3: NeCo starting from different pretrainings. We report frozen clustering and linear
segmentation on Pascal VOC and COCO-Things. NeCo can considerably boost (↑) the performance
of models with different initialization, showing our approach’s generality. The backbone is ViT-S16.

Pascal VOC COCO-Things
At Init +NeCo At Init +NeCo

Pretrain K=GT K=500 Lin. K=GT K=500 Lin. K=21 K=500 Lin. K=21 K=500 Lin.
iBOT (Zhou et al., 2022) 4.4 31.1 66.1 15.4↑11.0 51.2↑20.1 68.6↑2.5 7.6 28.0 58.9 20.4↑12.8 52.8↑24.8 67.7↑8.8

DINO (Caron et al., 2021) 4.3 17.3 50.2 14.5↑10.2 47.9↑30.6 61.3↑11.1 5.4 19.2 43.9 16.9↑11.5 50.0↑30.8 62.4↑18.5

TimeT (Salehi et al., 2023) 12.2 46.2 66.3 17.9↑5.7 52.1↑5.9 68.5↑2.2 18.4 44.6 58.2 20.6↑2.2 54.3↑9.7 64.8↑6.6

Leopart (Ziegler & Asano, 2022) 15.4 51.2 66.5 21.0↑5.6 55.3↑4.1 68.3↑1.8 14.8 53.2 63.0 18.8↑4.0 53.9↑0.7 65.4↑2.4

CrIBo (Lebailly et al., 2023) 18.3 54.5 71.6 21.7↑3.4 59.6↑5.1 72.1↑0.5 14.5 48.3 64.3 21.1↑6.6 54.0↑5.7 68.0↑3.7

End-to-End Full-Finetuning Evaluation. One advantage of self-supervised pretraining is the ability
to transfer learned general semantic features to specialized downstream tasks, improving performance
in an end-to-end finetuning setup. We evaluate this capability of NeCo by adding a transformer-based
decoder from Segmenter (Strudel et al., 2021) on top of the feature extractor and finetuning the entire
network for semantic segmentation. The backbone’s spatial features are fed into a transformer decoder
along with K learnable class tokens. These class and spatial tokens are projected onto each other to
obtain patch-level predictions, which are then upsampled to match the input image size, enforcing
pixel-wise cross-entropy loss. We report the mIoU scores achieved on Pascal VOC, Pascal Context,
COCO-Stuff, and ADE20k in Table 4. Despite all parameters being adapted, the results show that
NeCo learns superior features, leading to better performance in downstream tasks, outperforming
CrIBo by at least 3.4% across different datasets and backbones. Notably, while DINOv2R has
demonstrated strong transfer results in various tasks, including semantic segmentation, due to being
trained on a massive dataset of 142M images and using a combination of dense and classification
losses, NeCo surpasses even this. By training only 19 GPU-hours on COCO, which is a fraction of
the original compute, we obtain consistent gains of up to 1.7%, setting a new state-of-the-art.

Multiview Feature Consistency Evaluation. This evaluation assesses the 3D understanding of
models through geometric correspondence estimation, aiming to measure the consistency of feature
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Table 4: Evaluation of Full Fine-Tuning with Segmenter. Various backbones pre-trained with
different self-supervised learning methods are fine-tuned using Segmenter (Strudel et al., 2021). The
table shows the mIoU scores obtained on validation sets across 4 different datasets.

Method Backbone Params Pascal Context Pascal VOC COCO-Stuff ADE20K
DINO ViT-S/16 21M 46.0 80.3 43.2 43.3
CrOC ViT-S/16 21M 46.0 80.9 42.9 42.8
TimeT ViT-S/16 21M 47.4 80.4 43.1 43.5
CrIBo ViT-S/16 21M 49.3 82.3 43.9 45.2
DINOv2R ViT-S/14 21M 59.3 86.2 46.9 48.6
NeCo ViT-S/14 21M 59.7 87.0 47.3 48.9
DINO ViT-B/16 85M 45.8 82.2 44.4 45.0
MAE ViT-B/16 85M 47.9 82.7 45.5 46.4
CrIBo ViT-B/16 85M 49.2 83.4 44.6 46.0
DINOv2R ViT-B/14 85M 62.4 86.0 48.8 52.3
NeCo ViT-B/14 85M 63.0 87.7 49.3 52.5

Table 5: Multiview feature consistency results on SPair-71k, Recall@0.01. We use the evaluation
method proposed by El Banani et al. (2024). NeCo improves the results of DINO models by roughly
1.8% for 3D understanding, measured by multiview feature consistency.

� M � á v � � � » 
 Ò ♂ à é � � Avg
DINO-B16 26.7 14.9 35.4 15.6 20.6 19.3 18.1 33.7 11.2 19.4 23.9 16.3 16.3 18.8 11.1 12.9 29.5 10.1 19.6
+ NeCo 26.0 17.5 36.7 16.9 22.0 23.5 18.0 33.5 10.6 21.0 21.6 20.2 20.6 19.3 13.7 13.9 36.3 12.5 21.3
DINOV2R-B14 31.2 34.4 56.7 23.2 26.1 29.4 37.5 51.3 20.8 36.6 36.7 31.7 26.2 29.4 15.4 26.5 39.2 11.9 32.5
+NeCo 40.6 25.7 58.0 20.4 37.1 33.3 37.2 56.2 24.6 37.7 40.8 33.1 23.7 35.1 22.8 23.9 45.4 22.4 34.3

representations across multiple views of the same scene. By identifying matching points in different
images without additional model training, it provides a direct evaluation of 3D feature quality (El Ba-
nani et al., 2024). The evaluation is done on a large-scale dataset called Spair-71k (Min et al., 2019).
As Table 5 shows, NeCo can boost the performance of DINO models by roughly 10% on average
across different categories. This demonstrates that the proposed method extends beyond enhancing
semantic segmentation and has a broader impact on vision foundation models by improving their
overall spatial understanding

4.3 ABLATION STUDIES

Here, we examine the essential parameters of our method by training NeCo on Pascal VOC12 and
ADE20k. We assess its ability to perform linear segmentation and in-context scene understanding
using the frozen representations learned with each set of parameters. For in-context scene understand-
ing evaluations, we use 1

128 fraction of the training data and reduce the spatial dimension to 4482.
The number of training epochs for linear segmentation evaluations is set to 20 epochs. For more
ablations, including the effect of training epochs and sorting hyperparameters, refer to Appendix B.

Patch Selection Approach. We demonstrate the effect of selecting patches from the foreground,
background, or both in Table 6a. Foreground patches are selected using the attention map averaged
across heads. Our results indicate that selecting patches from the foreground gives 1% better results
compared to the background selection in 3 out of 4 metrics. However, the performance peaks when
we select patches from both locations. This improvement can be attributed to the use of scene-centric
images for training, where the background often contains meaningful objects that contribute to
enhanced performance.

Utilizing a Teacher. We ablate the role of teacher-student architecture in Table 6b. As shown,
employing a teacher network updated by exponential moving average can significantly improve the
performance across all the metrics by 8% to 20%. This is consistent with the previous works (Caron
et al., 2021; Grill et al., 2020), which reported a more stable training process when the teacher-student
architecture is employed.

Nearest Neighbor Selection Approach. We evaluate the influence of picking nearest neighbors from
the same image (intra) or different batch images (inter) and find that selecting patches across images
consistently boosts performance by roughly 0.4% to 1% across different metrics. The higher diversity
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Table 6: Ablations of the key parameters of our method. We evaluate the models by training
a linear layer on top of the frozen representations (Lin.) or using the in-context (IC) evaluation
of Balazevic et al. (2023) using the validation images for PascalVOC12 and ADE20k.

(a) Patch selection

Pascal ADE20K
Location Lin. IC Lin. IC
backg. 78.4 60.5 35.8 20.6
foreg. 78.4 61.6 36.8 21.5
both 78.9 62.0 37.3 21.7

(b) Use of EMA Teacher

Pascal ADE20K
Teacher Lin. IC Lin. IC

✗ 70.4 42.6 28.3 15.9
✓ 78.9 62.0 37.3 21.7

(c) Num Neighbors

Pascal ADE20K
Num Lin. IC Lin. IC

4 74.4 54.8 35.2 19.7
8 76.8 61.1 36.3 20.2
16 77.7 60.9 36.7 20.9
32 78.1 61.3 37.1 21.4
All 78.9 62.0 37.3 21.7

(d) Training dataset

Pascal ADE20K
Dataset Lin. IC Lin. IC
IN-100 76.7 55.8 34.9 18.7
Pascal 77.9 60.6 36.4 20.8
COCO 78.9 62.0 37.3 21.7

(e) Batch Size

Pascal ADE20K
Batch Size Lin. IC Lin. IC

1 76.0 60.0 35.4 20.1
4 76.2 60.2 35.6 20.2
8 76.8 61.1 36.3 20.8

16 77.7 61.2 36.7 21.1
32 78.2 61.4 37.1 21.4
64 78.9 62.0 37.3 21.7

of patches involved in the latter approach likely accounts for this improvement (see Appendix B.7 for
full tables).

Training Dataset. Table 6d presents the impact of the training dataset based on the ImageNet-100,
Pascal, and COCO datasets. ImageNet-100 comprises relatively simple images with few objects,
whereas Pascal and COCO feature more complex scenes with multiple objects. Our method shows
consistent improvements when trained on multi-object datasets, achieving a performance increase of
2% to 7% on COCO compared to ImageNet-100. This improvement is due to the greater quantity
and diversity of objects per batch in multi-object scenes, which provide stronger learning signals by
requiring discrimination against a higher number of objects. Notably, the additional performance
boost we observe from finetuning DINOv2R on Pascal—despite it already being trained on this
dataset (Oquab et al., 2023)—further underscores the efficacy of our proposed loss function.

Sorting Algorithm. We ablate the effect of changing the sorting algorithm and find that our method
maintains strong performance across various approaches, achieving the best results with Bitonic
sorting, which slightly outperforms the alternatives on average. Additionally, we investigate the
absence of a sorting component, which leads to deteriorated performance. The complete tables for
this study, along with an ablation on the sorting steepness parameter, are provided in Appendix B.7,
as our method is robust to variations in sorting parameters.

Batch Size. Table 6e examines how batch size affects performance. Smaller batch sizes provide
marginal gains, but larger batch sizes show more significant improvements, indicating that perfor-
mance could be further improved with batch sizes exceeding 64.

Number of Neighbors. As detailed in the method section, we use a differentiable sorting algorithm
to compute and sort the distances between each patch and others. The ablation study in Table 6c
evaluates selecting the top K distances instead of all. Results show that incorporating more neighbors
improves performance, but beyond a threshold (e.g., 32), the effect diminishes, indicating robustness
against this hyperparameter.

5 CONCLUSION

In this work, we propose Patch Nearest Neighbor Consistency as a new method for dense post-
pretraining of self-supervised backbones. By applying our method to the many backbones including
the DINOv2-registers model, we improve upon these models by a large margin for frozen clustering,
semantic segmentation, full finetuning, and 3D understanding, setting several new state-of-the-art
performances.
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A EXPERIMENTAL SETUP

A.1 DENSE POST-PRETRAINING

Implementation Framework Our model is implemented in Python, using Torch (Paszke et al.,
2019) and PyTorch Lightning (Falcon & team, 2019).

Datasets Our pretraining datasets consist of COCO (Caesar et al., 2018) and ImageNet-100 subset
of the original Imagenet (Russakovsky et al., 2015). COCO contains approximately 118,000 scene-
centric images, whereas ImageNet-100k includes around 100k object-centric images.

Data Augmentations Our Data augmentations are the same as in Ziegler & Asano (2022). More
specifically, we use: random color-jitter, Gaussian blur, grayscale and multi-crop augmentations.
Similarly, the global crop’s resolution is 224x224 and the local crop’s resolution is 96x96, for the
all the experiments except when working with Dinov2 where we use 518x518 for global crops and
98x98 for local crops. The only place where the resolution is different for NeCo using DINOv2 is in
the ablation studies, where we use 224x224 for global crops and 98x98 for local crops. Furthermore,
our generated global and local crops have the constraint that they intersect at least by 1% of the
original image size.

Network Architecture For our backbone, we employ vision transformers. More specifically, we
train on ViT-Small and ViT-Base (Dosovitskiy et al., 2020). Moreover, following Caron et al. (2021);
Grill et al. (2020), we use a student-teacher setup where the teacher weights are updated by the
exponential moving average of the student weights.

Registers in Dinov2 We report results on DINOv2R (Darcet et al., 2024), DINOv2XR, and DI-
NOv2 (Oquab et al., 2023). For DINOv2XR, we remove the registers to match the input patch
structure of the original DINOv2 model. DINOv2XR serves as an interesting experiment to eval-
uate whether removing registers, thus simplifying the architecture to align with DINOv2, affects
performance significantly. However, all our primary results and comparisons focus on DINOv2R.

Projection Head Following Caron et al. (2021), the projection head consists of three linear layers
with hidden dimensionality of 2048, a Gaussian error linear units as activation function (Hendrycks
& Gimpel, 2016), and an output dimensionality of 256.

Dense Image Representation Alignment of Crops Following Ziegler & Asano (2022), due to the
distinction between global and local crops, after projecting the dense spatial output to a lower space,
the alignment step is applied on the dense image representations to bring them to a fixed spatial
resolution of size of 7x7 during training. This ensures that the local and global crop feature maps
have the same size and that they correspond to each other. The alignment is done using region of
interest alignment (roi align) (He et al., 2017).

Optimization We train both network sizes with a cosine learning rate schedule going down to 0
over 25 training epochs, except for the ablation studies where we use 10 epochs. The initial projection
head learning rate is 1e−4 for all the experiments, whereas the backbone’s learning rate is 1e−5,
with the exception of being 1e−6 when applying our method on Dinov2. The exponential moving
average for updating the teacher’s weights is adapted with a cosine schedule starting at 0.9995 and
going up to 1. We use Adam Optimizer (Kingma & Ba, 2017) with a cosine weight decay schedule.

Differentiable Sorting Networks By default we use the Bitonic Differentiable Sorting Networks
(Petersen et al., 2021) and the steepnesses (i.e., inverse temperatures) used for the network are 100 for
the Student and 100 for the teacher. All the other parameters remain as the default ones; i.e., we use
the logisticϕ function with a λ = 0.25 for the interpolation of numbers in the differentiable sorting
algorithms.
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Table 7: Post-Training Configurations for Different Experimental Setups used in this work. This
set of tables shows all the different Post-Training parameter configurations used for post-training
models for various experiments. The last row of each configuration table shows the GPU hours that
are approximately used for post-training the model with the respective configuration. The rest of the
parameters are the same and are as explained in Appendix A.1. Note, that the ∗ for the configuration
in Table 7a, denotes that the model is not eventually trained for 25 epochs but instead stopped
after around the GPU hours mentioned since the model does not provide significant improvements
afterwards (at around the 7th epoch). Last DINOv2R-XR means DINOv2R but excluding registers
from the checkpoint().

(a) DINOv2R Best

Param Value
Global Crop 518
Local Crop 98
Backbone LR 1e−6
Head LR 1e−4
Max Epochs 25∗

Drop Registers No
GPU Hours 18.8

(b) DINOv2R-XR Best

Param Value
Global Crop 518
Local Crop 98
Backbone LR 1e−6
Head LR 1e−4
Max Epochs 25∗

Drop Registers Yes
GPU Hours 18.8

(c) DINOv2 Best

Param Value
Global Crop 518
Local Crop 98
Backbone LR 1e−6
Head LR 1e−4
Max Epochs 25∗

Drop Registers N/A
GPU Hours 18.8

(d) DINOv2R-XR Ablations

Param Value
Global Crop 224
Local Crop 98
Backbone LR 1e−6
Head LR 1e−4
Max Epochs 10
Drop Registers Yes
GPU Hours 7.2

(e) All others than DINOv2R

Param Value
Global Crop 224
Local Crop 96
Backbone LR 1e−5
Head LR 1e−4
Max Epochs 25
Drop Registers N/A
GPU Hours 17.5

Table 8: The Post-Training Configuration used for each experiment table.

Table Configuration
1 7a
2 7a
3 7e
4 7a

5 7a for DINOv2R
7e for DINO

Table Configuration
6 7d
9 7a
10 7a, 7b, 7c
11 7a, 7b, 7c

12 7e for DINO
7a, 7b, 7c for rest

Table Configuration
13 7e
14 7e
15 7a, 7b, 7c
16 7d
17 7e

A.2 EVALUATION SETUP

Visual In-Context Learning The Dense Nearest Neighbor Retrieval Evaluation is a retrieval-based
scene understanding evaluation introduced by Balazevic et al. (2023). Its goal is to assess the scene
understanding capabilities of a dense image encoder. It works as follows:

1. Memory Bank Construction: Using a dataset of images and their dense annotations, two
memory banks are created. One memory bank stores image patch features extracted from
the spatial output of a dense encoder applied to the training images. The other memory bank
stores the corresponding patch labels from the dataset annotations.

2. Query Processing: For an image from the validation split, the spatial output of the dense
image encoder is processed. For each patch representation in this output, the k nearest
neighbors are identified from the memory bank of features. The labels of these nearest
neighbors are then combined to construct the query’s label.
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3. Comparison: After constructing the annotation for the entire image, it is compared with the
ground truth annotation.

Due to the unavailability of the original implementation by Balazevic et al. (2023), we use the open
implementation from Pariza et al. (2024). This implementation aligns with the original authors’
description and details, including the use of the ScaNN Library (Guo et al., 2020) for efficient nearest
neighbor retrieval. We adhere to the setup from the Hummingbird Model authors (Balazevic et al.,
2023) for our experiments. We use a memory size of 10,240,000 and configure ScaNN with 30
nearest neighbors, consistent with the evaluation of the Hummingbird model on this memory size.

The final results are reported as mean Intersection over Union (mIoU) on four different fractions
of two datasets: Pascal VOC 2012 (Everingham et al.) and ADE20K (Zhou et al., 2017). The
sub-sampling factors are 1, 8, 64, or 128. For factors greater than 1, results are averaged over five
different seeds. These dataset subsets are created by uniformly and randomly selecting a unique set
of images from the training split, ensuring an approximately equal number of distinct images for
each annotation label. For example, for the 1/128 fraction of the Pascal VOC 2012 dataset, we would
collect around 83 images, ensuring each of the 20 labels (excluding the background) appears in at
least 4 different images in the subset.

Overclustering. For the Overclustering experiment, following Ziegler & Asano (2022), we run
K-Means (using faiss (Johnson et al., 2019)) on all spatial tokens from our backbone (i.e., with the
projection head discarded) for a given dataset. We then group the clusters to the ground-truth classes of
the dataset by applying greedy matching to the pixel-level precision and then run Hungarian matching
(Kuhn, 1955) on the combined cluster maps, which makes the evaluation metric permutation-invariant
(Ji et al., 2019). We use a crop size of 448x448 for the input images, and overclustering is applied
on downsampled 100x100 masks in order to speed up the Hungarian matching. The final results
are reported as an average of mean Intersection over Union (mIoU) over five different seeds on
four different datasets: COCO-Thing and COCO-Stuff (Caesar et al., 2018), Pascal VOC 2012
(Everingham et al.), and ADE20K (Zhou et al., 2017).

Linear segmentation For linear segmentation, we closely follow the setup from Leopart (Ziegler &
Asano, 2022). Concisely, we take 448x448 images, encode them with our backbone to get the spatial
outputs, apply bilinear interpolation to match the mask resolution, and finally apply a linear head
to obtain the segmentation predictions. These predictions are then compared with the ground truth
segmentation masks and trained via cross-entropy loss.

For training the linear head, we downsample the segmentation masks to 100x100 to increase training
speed. We use Stochastic Gradient Descent with a weight decay of 0.0001, a momentum of 0.9, and a
step learning rate scheduler. We found that a learning rate of 0.01 works quite well for the backbone
models we evaluated and our setup. We fine-tune the linear heads for 20 epochs.

Moreover, we train and evaluate linear heads on four versions of datasets: Pascal VOC 2012
(Everingham et al.), subsets of COCO-Thing and COCO-Stuff (explained in Appendix A), and
ADE20K (Zhou et al., 2017).

Segmenter Finetuning Following the evaluation setup from Lebailly et al. (2023), we finetune our
backbones and the transformer-based decoder from Segmenter (Strudel et al., 2021) in an end-to-end
manner. We use the Segmenter implementation available within the MMSegmentation Library
(MMSegmentation Contributors, 2020).

The performance metric used here is the mIoU score, reported on four different datasets: Pascal
Context (Everingham et al., 2010), Pascal VOC 2012 (Everingham et al.), COCO-Stuff 164K (Caesar
et al., 2018), and ADE20K (Zhou et al., 2017). The crop size used is 512×512. For the DINOv2
model and our method on it, we apply zero padding around the image of 512×512 to bring it to the
size of 518×518.

The remaining configurations follow Lebailly et al. (2023). For the ADE20K and COCO-Stuff 164K
datasets, we use 160k iterations, and for Pascal VOC 2012 and Pascal Context, we use 80k iterations,
all with an eta_min of 0.1 · lr. We use the Adam optimizer (Kingma & Ba, 2017) and for each
pretraining method and dataset, we experiment with four different learning rates (8× 10−5, 3× 10−5,
1× 10−5, 8× 10−6) before reporting the highest mIoU score.
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Fully unsupervised semantic segmentation To better evaluate the scene understanding abilities
of our method, we also evaluate it using the Fully Unsupervised Semantic Segmentation Evaluation
method (Ziegler & Asano, 2022). This evaluation consists of two parts: Cluster-based Foreground
Extraction (CBFE) and Overclustering with Community Detection (CD).

The CBFE clusters the spatial outputs of a model over a dataset and assigns each cluster as background
(bg) or foreground (fg). The separation of foreground and background clusters is facilitated by
attention maps from a Vision Transformer, which provide cues for the fg/bg distinction. We construct
the final hard fg-bg assignment by averaging the attention heads, applying Gaussian filtering with a
7x7 kernel size, and retaining 70% of the attention mass to obtain the final binary mask. The rest of
the configurations remain the same as the original setup (Ziegler & Asano, 2022).

The CD metric (Ziegler & Asano, 2022) exploits local co-occurrence statistics among clusters to
identify and categorize objects. This approach uses no labels for categorizing semantic parts; it simply
finds local co-occurrence of clusters in an image by utilizing an information-theoretic definition
of network communities. Our configurations for the CD evaluation remain the same as in Leopart
(Ziegler & Asano, 2022).

We use the implementation from Leopart (Ziegler & Asano, 2022) and apply CBFE and CD on
the non-augmented (train) split of Pascal VOC 2012 (Everingham et al.), and evaluate on its full
validation set. For CD, we report the best results over 10 seeds obtained from a hyper-parameter
search, leading to our best parameters for CD+CBFE: weight_threshold = 0.07, markov_time = 1.2,
and k_community = 189.

B ADDITIONAL EXPERIMENTS

B.1 UNSUPERVISED SEMANTIC SEGMENTATION

In Table 1b, we show the contribution of each component to the final clustering evaluation gains on
Pascal VOC 2012 with 21 clusters for DINOv2R ViT-small. Starting with our method NeCo, we then
apply Clustering Based Foreground Extraction (CBFE), and finally community detection (CD). We
observe that CBFE provides the largest boost (23.3%) due to the high quality of our overclustering
maps, as also shown in Table 1a. While CD contributes a more modest increase (13.8%), which is
about half as much as CBFE, combining both CBFE and CD results in a significant improvement,
bringing the overall gain to 55.1%, compared to the initial 17.8%.

Table 9: Component contributions. We show the gains that each individual component brings for
PVOC segmentation and K=21.

mIoU
DINOv2R 12.2
+ NeCo 17.8 (+5.6%)
+ CBFE 41.5 (+23.7%)
+ CD 55.6 (+13.9%)

B.2 FULL CLUSTERING TABLES

In Table 10, we show full clustering results shown by Table 1b.

B.3 FULL VISUAL IN-CONTEXT LEARNING TABLES

We show the results shown by Figure 2 in Table 11. To provide a more comprehensive comparison,
we also evaluate our method against SelfPatch (Yun et al., 2022), a finetuning approach with a similar
aim of enhancing dense representations.
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Table 10: Clustering evaluation performance. K-means with various clustering granularity K
is applied to the spatial features obtained from different feature extractors on two datasets. The
resulting cluster maps are matched to the ground truth by Hungarian matching (Kuhn, 1955), and the
intersection is reported in mIoU.

Pascal VOC COCO-Things
Method Backbone Params K=GT K=300 K=500 K=GT K=300 K=500
DINO (Caron et al., 2021) ViT-S/16 21M 4.3 13.9 17.3 5.4 18.8 19.2
iBOT (Zhou et al., 2022) ViT-S/16 21M 4.4 23.8 31.1 7.6 26.6 28.0
CrOC (Stegmüller et al., 2023) ViT-S/16 21M 3.4 16.4 20.0 4.9 14.7 18.1
TimeT (Salehi et al., 2023) ViT-S/16 21M 12.2 43.6 46.2 17.5 42.7 44.6
DINOv2R (XR) (Oquab et al., 2023) ViT-S/14 21M 12.2 46.7 49.5 12.3 38.9 41.2
CrIBo (Lebailly et al., 2023) ViT-S/16 21M 18.3 51.3 54.5 14.5 46.0 48.3
DINOv2 ViT-S/14 21M 17.1 53.5 58.2 19.7 51.6 53.8
DINOv2R ViT-S/14 21M 18.0 59.1 64.5 20.1 55.1 59.2
NeCo (DINOv2) ViT-S/14 21M 15.5 50.4 57.7 20.0 56.0 60.0
NeCo (DINOv2R) ViT-S/14 21M 18.5 66.5 68.9 22.8 59.7 63.8
NeCo(DINOv2XR) ViT-S/14 21M 17.8 69.4 72.6 18.2 61.2 64.5
MAE ViT-B/16 85M 3.5 6.0 7.4 6.9 9.2 10.1
DINO ViT-B/16 85M 5.3 19.6 23.9 6.4 19.1 21.2
iBOT ViT-B/16 85M 6.5 29.0 34.0 7.2 26.4 30.5
DINOv2R (XR) ViT-B/14 85M 14.4 47.7 50.5 12.4 30.9 33.5
CrIBo ViT-B/16 85M 18.9 56.9 56.8 16.2 43.1 44.5
DINOv2 ViT-B/14 85M 15.5 52.8 56.9 22.6 54.0 54.9
DINOv2R ViT-B/14 85M 21.4 62.2 64.6 23.1 55.2 57.8
NeCo (DINOv2) ViT-B/14 85M 17.2 66.8 71.1 23.7 62.2 63.1
NeCo (DINOv2R) ViT-B/14 85M 17.2 72.2 71.9 17.3 62.1 64.6
NeCo (DINOv2XR) ViT-B/14 85M 18.6 64.2 71.8 13.3 61.3 65.5

Table 11: In-context scene understanding benchmark. Dense nearest neighbor retrieval perfor-
mance is reported across various training data proportions on two scene-centric datasets, ADE20k
and Pascal VOC. The retrieved cluster maps are compared with the ground truth using Hungarian
matching (Kuhn, 1955), and their mIoU score is reported.

ADE20K Pascal VOC
Method Backbone Params 1/128 1/64 1/8 1/1 1/128 1/64 1/8 1/1
DINO ViT-S/16 21M 9.5 11.0 15.0 17.9 26.4 30.5 41.3 48.7
SelfPatch ViT-S/16 21M 10.0 10.9 14.7 17.7 28.4 32.6 43.2 50.8
CrOC ViT-S/16 21M 8.7 10.8 15.2 17.3 34.0 41.8 53.8 60.5
TimeT ViT-S/16 21M 12.1 14.1 18.9 23.2 38.1 43.8 55.2 62.3
Leopart ViT-S/16 21M 12.9 14.8 19.6 23.9 44.6 49.7 58.4 64.5
CrlBo ViT-S/16 21M 14.6 17.3 22.7 26.6 53.9 59.9 66.9 72.4
DINOv2XR ViT-S/14 21M 19.6 22.8 30.1 35.9 53.0 57.9 68.2 75.0
DINOv2 ViT-S/14 21M 22.4 25.8 33.6 38.9 55.7 61.8 72.4 77.0
DINOv2R ViT-S/14 21M 23.7 27.1 33.9 39.5 60.1 65.7 74.5 78.8
NeCo (DINOv2) ViT-S/14 21M 22.1 25.2 32.9 38.0 59.8 64.6 73.4 78.6
NeCo (DINOv2R) ViT-S/14 21M 23.7 27.2 34.7 40.9 65.6 70.1 76.8 80.7
NeCo (DINOv2XR) ViT-S/14 21M 23.7 27.2 34.0 39.8 66.5 70.3 76.3 80.2
MAE ViT-B/16 85M 10.0 11.3 15.4 18.6 3.5 4.1 5.6 7.0
DINO ViT-B/16 85M 11.5 13.5 18.2 21.5 33.1 37.7 49.8 57.3
Leopart ViT-B/16 85M 14.6 16.8 21.8 26.7 50.1 54.7 63.1 69.5
Hummingbird ViT-B/16 85M 11.7 15.1 22.3 29.6 50.5 57.2 64.3 71.8
CrlBo ViT-B/16 85M 15.9 18.4 24.4 28.4 55.9 61.8 69.2 74.2
DINOv2XR ViT-B/14 85M 22.1 25.8 33.2 38.7 51.8 58.9 70.6 77.3
DINOv2 ViT-B/14 85M 22.1 25.2 32.3 37.9 54.1 60.5 71.5 76.7
DINOv2R ViT-B/14 85M 25.6 29.4 36.5 41.9 59.1 64.6 74.2 78.7
NeCo (DINOv2) ViT-B/14 85M 26.6 31.1 38.9 43.4 68.4 72.8 79.6 82.8
NeCo (DINOv2R) ViT-B/14 85M 27.8 32.1 39.7 44.5 69.0 73.1 79.8 82.9
NeCo (DINOv2XR) ViT-B/14 85M 29.1 33.7 39.2 44.2 67.0 71.4 77.5 83.5
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B.4 OBJECT DETECTION WITH VITDET

We report the performance of ViTDet (Li et al., 2022) on COCO dataset for ViT-S with DINO,
DINOv2, and DINOv2R backbones and compare them with the NeCo finetuned versions. Our
method consistently improves all the DINO family backbones, as shown by Table 12. In particular,
NeCo improves validation Box AP and Mask AP by 2.4% and 3.3%, respectively, over DINOv2,
highlighting the versatility of our approach

Table 12: Object detection performance with ViTDet. Although NeCo is trained only for 19
GPU hours, it can still improve the performance of DINO backbones on average across the specified
measures.

Backbone Epochs Val Box AP Val Mask AP
Dino 12 42.9 38.6
+ NeCo 12 43.0 38.7
Dinov2XR 12 42.5 36.7
+ NeCo 12 42.6 36.7
Dinov2 12 45.7 40.0
+ NeCo 12 48.1 41.4
Dinov2R 12 47.9 41.1
+ NeCo 12 48.3 41.4

B.5 APPLYING NECO TO VISION-LANGUAGE FOUNDATION MODELS

We present the results for CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) on linear
segmentation and visual in-context learning in Table 14 and Table 13. As shown in the tables above,
NeCo improves the performance of both CLIP and SigLIP by approximately 12% to 37% across
various benchmarks. These results demonstrate that NeCo is not limited to vision foundation models
but can also be effectively applied to vision-language models.

Table 13: In-context scene understanding benchmark (mIoU). Dense nearest neighbor retrieval
performance is reported across various training data proportions on ADE20k and Pascal VOC
datasets.

ADE20K Pascal VOC
Method Backbone Params 1/128 1/64 1/8 1/1 1/128 1/64 1/8 1/1
CLIP ViT-B/16 85M 5.8 6.5 8.7 11.3 25.3 27.8 33.4 33.9
+ NeCo ViT-B/16 85M 17.7 19.8 22.9 24.2 62.8 63.5 65.1 66.2
SigLIP ViT-B/16 85M 6.0 7.1 9.0 10.6 25.3 27.8 32.2 33.9
+ NeCo ViT-B/16 85M 15.9 18.4 20.7 21.9 60.9 62.0 62.5 63.1

Table 14: Linear segmentation performance. A linear segmentation head is trained on top of the
frozen spatial features obtained from different feature extractors. We report the mIoU scores achieved
on the validation sets of 5 different datasets.

Method Backbone Params Pascal VOC ADE20K COCO-Stuff COCO-Things Cityscapes
CLIP ViT-B/16 85M 44.3 13.8 43.1 42.0 27.7
+NeCo ViT-B/16 85M 68.2 25.8 56.1 48.9 41.0
SigLIP ViT-B/16 85M 44.6 15.9 36.2 46.0 32.2
+NeCo ViT-B/16 85M 70.1 29.4 55.3 69.9 42.0

B.6 GENERALIZING NECO TO BROADER TASKS AND DATASETS

we report the performance of various backbones, including DINOv2R finetuned with the NeCo loss,
on out-of-distribution datasets such as Cityscapes (Cordts et al., 2016)(semantic segmentation) and
NYUd (Couprie et al., 2013)(monocular depth estimation). As demonstrated in Table 15a and
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Table 15c, NeCo consistently enhances the generalization of all backbones on the Cityscapes dataset.
Furthermore, even for tasks that diverge from semantic segmentation, such as depth estimation,
NeCo reduces the DINOv2R error by around 2%. These findings highlight that NeCo not only
maintains but improves the generalization capability of DINOv2R features across diverse tasks.
For completeness, we also include results on (Markus Gerke, 2014) in Table 15b, showing that
NeCo consistently enhances the performance, even on out-of-distribution datasets.

Table 15: Performance comparison on the Cityscapes, NYUd, and Vaihingen datasets.

(a) Linear segmentation on Cityscapes

Pretraining Original + NeCo

DINO-B/16 41.8 42.5
iBot-B/16 42.9 44.5
Leopard-B/16 43.8 44.5
DINOv2XR-B/14 52.3 56.0
DINOv2-B/14 51.4 57.7
DINOv2R-B/14 53.4 58.9

(b) Linear segmentation on Vaihingen

Pretraining Original + NeCo

CLIP-B/16 25.7 28.8
SigLIP-B/16 26.9 28.3
DINOv2R-S/14 31.9 32.8
DINOv2XR-B/14 34.2 35.9
Dinov2R-B/14 34.9 35.3

(c) Linear depth prediction on NYUd

Backbone Pretraining RMSE

ViT-S/14

DINOv2 0.460
+ NeCo 0.461

DINOv2XR 0.456
+ NeCo 0.453

DINOv2R 0.455
+ NeCo 0.455

ViT-B/14

DINOv2 0.412
+ NeCo 0.385

DINOv2XR 0.410
+ NeCo 0.397

DINOv2R 0.410
+ NeCo 0.387

B.7 EXTRA ABLATIONS

Sorting Steepness. In Table 16e, we vary the sorting steepness, denoted by β, for both teacher
and student networks to evaluate the influence of hard or soft nearest neighbor assignments. The
performance improves when the teacher’s steepness is higher or equal to the student’s, consistent
with previous findings (Caron et al., 2021). Our best results are achieved when both networks have
equal steepness. However, extreme steepness values (e.g., 1000) harm performance. This is because
sorting patch similarities lacks clear boundaries, and formulating it as a hard assignment can force
incorrect orderings, negatively impacting performance.

Training Epochs. We show the performance across different training epochs in Table 16f. As the
table shows, even after just one epoch of training, DINOv2R improves by 1% to 3% across various
metrics. The performance continues to increase with more training epochs, but the improvements
become smaller after 25 epochs, which is the number used in the paper.

Patch Similarity Metric. We show the effect of using different metrics for computing pair-wise
patch similarity in Table 16c. As the table shows, Cosine similarity is consistently better than
Euclidean distance. We have used cosine similarity in all our experiments.

ROI-Align Effect. ROI-Align component can be removed if the multi-crop augmentation is omitted
or by using the same Global Crop across the teacher and student branches. We ablate the effect
of removing ROI align in Table 16d. As shown by the results, this removal negatively affects
performance due to using weaker self-supervised supervision through the augmentations.
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Table 16: Ablations of the key parameters of our method. We evaluate the models by training
a linear layer on top of the frozen representations (Lin.) or using the in-context (IC) evaluation
of Balazevic et al. (2023) using the validation images for PascalVOC12 and ADE20k. Note, that the
In-Context Learning (IC) is done on the 1/128 fraction of each dataset used.

(a) Nearest-neighbour selection

Pascal ADE20K
NN Lin. IC Lin. IC
intra 78.1 61.2 36.3 21.3
inter 78.9 62.0 37.3 21.7

(b) Sorting algorithm

Pascal ADE20K
Method Lin. IC Lin. IC

✗ 47.3 17.8 15.8 5.1
Odd-even 78.9 62.2 37.0 21.6
Bitonic 78.9 62.0 37.3 21.7

(c) Patch similarity

Pascal ADE20K
Metric Lin. IC Lin. IC
Euc. 78.1 60.2 36.4 21.1
Cos. 78.9 62.0 37.3 21.7

(d) ROI Align

Pascal ADE20K
Lin. IC Lin. IC

✗ 75.8 60.2 35.6 19.3
✓ 78.9 62.0 37.3 21.7

(e) Sorting steepness

Pascal ADE20K
(Std, Tch) Lin. IC Lin. IC
(10,100) 78.3 60.5 36.2 20.8
(1000,100) 74.5 48.3 27.8 16.5
(1000,1000) 79.0 61.5 36.6 21.2
(100,100) 78.9 62.0 37.3 21.7

(f) Training Epochs

Pascal ADE20K
Epochs Lin. IC Lin. IC Exec. Time

1 76.8 60.5 35.8 20.1 0.5h
2 77.7 62.7 36.6 21.4 1h
4 79.0 64.7 37.8 22.4 2h
8 80.0 65.6 38.9 22.9 5h

16 80.6 66.1 39.5 23.3 10h
25 81.3 66.5 40.1 23.7 19h
50 81.6 66.7 40.2 23.8 40h

B.8 COMPUTATIONAL ANALYSIS

We provide a detailed runtime analysis for DINO, CrIBo, TimeT, and NeCo in Table 17. All
experiments are conducted on 8 NVIDIA RTX A6000-46GB GPUs. The results are reported on
COCO-Things linear segmentation. The results show NeCo significantly improves computational
efficiency and performance. First, DINO and CrIBo are finetuned for 25 additional epochs starting
from their existing checkpoints to match the extra training performed by NeCo . As the table
shows, with the same number of extra epochs, NeCo outperforms both models across all metrics,
demonstrating that the improvement stems from the proposed loss function rather than extended
training. Secondly, with only 2.5 GPU hours of extra training on top of CrIBo, NeCo boosts its
performance in linear segmentation by 3.7%. These results show that NeCo not only enhances
computational efficiency but also achieves superior results.

C ADDITIONAL VISUALIZATIONS

Visualization of nearest patch retrieval. In Figure 4, we take one patch from an image in Pascal
VOC as the query and retrieve its seven nearest patches across the dataset. We compare NeCo against
DINOv2R. As illustrated, the nearest neighbors retrieved by NeCo are not only more relevant
compared to DINOv2R but also more precise, successfully finding nearest patches not only within
the same object but also within object parts.

In Figure 5, we show some borderline cases where DINOv2R retrieves more relevant patches than our
method. NeCo occasionally retrieves patches of similar parts from different objects. For example, a
patch from a bicycle wheel might be matched with a motorcycle wheel. Additionally, since we rely on
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Table 17: Computational analysis and segmentation performance. NeCo demonstrates superior
computational efficiency, requiring only 2.5 GPU hours to enhance CrIBo’s performance by 3.7% in
linear segmentation.

Method Dataset Epoch Time Init Epochs GPU Hours K=GT K=500 LS
(Min:Sec)

DINO ImageNet 15:33 Random 800 ∼8 days 5.4 19.2 43.9
DINO ImageNet 15:33 Random 800 + 25 ∼8 days + 6.5h 7.0 20.3 37.4
TimeT YTVOS 3:12 DINO 30 ∼8 days + 2h 18.4 44.6 58.2
NeCo COCO 4:48 DINO 25 ∼8 days + 1.6h 16.9 50.0 62.4
CrIBo ImageNet 20:37 Random 800 ∼11 days 14.5 48.3 64.3
CrIBo ImageNet 20:37 Random 800 + 25 ∼11 days + 9h 15.0 48.5 64.3
NeCo COCO 4:48 CrIBo 25 ∼11 days + 2.5h 21.1 54.0 68.0

cropping to induce nearest neighbor similarity, small objects in the input, which may not significantly
affect the overall semantics, can alter the semantics at the patch level, leading to unexpected nearest
neighbors, as seen in the case of the sheep photo.

Visualization of clustering and Overclustering. We display the visualizations for both the cluster-
ing and overclustering approaches in Figure 7 and Figure 6, respectively. For the clustering approach,
detailed in Table 1b, we apply cluster-based foreground extraction combined with community detec-
tion to identify the foreground regions from features extracted across the entire dataset. The extracted
features are then masked with the extracted masks and clustered according to the number of objects
in the dataset, which is 21 for Pascal. As shown in Figure 7, this process successfully assigns unique
cluster IDs to the detected objects and accurately sketches their boundaries.

For overclustering, we don’t extract foreground regions and instead cluster all the features into a
significantly higher number of clusters compared to the ground truth. For Pascal, this number (K) is
set to 100. Figure 6 illustrates the results. We observe a similar effect as with clustering, except that
some objects, such as humans or certain animals, are partitioned into their constituent parts, which
remain relatively consistent across different samples.
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Figure 3: Pascal VOC visualizations. We overlay the ground truth on top of a subset of images in
Pascal VOC. These images and their ground truth segmentation maps are used for our tasks, such as
visual in-context learning and linear segmentation.
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(a) DINOv2R

Query Retrieved  Nearest Neighbors

(b) NeCo

Query Retrieved  Nearest Neighbors

Figure 4: Nearest patch retrieval. Comparison of nearest neighbor retrieval results between
NeCo and DINOv2R on Pascal VOC. For each query patch, NeCo retrieves more relevant and precise
nearest patches, accurately identifying patches within the same object and object parts.
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(a) DINOv2R

Query Retrieved  Nearest Neighbors

(b) NeCo

Query Retrieved  Nearest Neighbors

Figure 5: Borderline cases. NeCo , sometimes retrieves patches of similar parts from different
objects. For example, a patch from a bicycle wheel might be matched with a motorcycle wheel.
Additionally, since we rely on cropping to induce nearest neighbor similarity, small objects in the
input, which may not significantly affect the overall semantics, can alter the semantics at the patch
level, leading to unexpected nearest neighbors, as seen in the case of the sheep photo.
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(a) Input

(b) DINOv2R

(c) NeCo

Figure 6: DINOv2R and NeCo overclustering visualizations on Pascal for K=100. NeCo localizes
objects more precisely with tighter boundaries.
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Figure 7: Fully unsupervised segmentation on Pascal for K=21. We extract foreground masks
using the CBFE+CD method, following the approach outlined in Ziegler & Asano (2022). These
masks are then clustered into the number of objects present in the Pascal dataset, with K = 21. As
demonstrated, NeCo yields distinct and accurate segmentation maps for each object.
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D DATASET DETAILS

Pascal VOC 2012 (Everingham et al.) This dataset, the latest split version of trainaug, features 10,582
images and their annotations distributed across 21 classes, with one referring to the background
class. The validation set consists of 1,449 images. Following Van Gansbeke et al. (2021) we ignore
unlabelled objects as well as the boundary class. Moreover, for hyper-parameter tuning of the fully
unsupervised segmentation method (Ziegler & Asano, 2022) that we apply on our method, we use the
PVOC12 train split with 1464 images. Figure 3 shows the dataset images overlaid by the annotations.

Pascal Context (Everingham et al., 2010) This scene-centric dataset includes 4,998 training images
covering 60 semantic classes, including the background. The validation set consists of 5,105 images.
We use this dataset for the Linear Segmentation and Segmenter experiments, via the MMSegmentation
Library (MMSegmentation Contributors, 2020).

COCO-Stuff 164K (Caesar et al., 2018) This scene-understanding dataset includes labels across 91
"stuff" categories and 80 "things" categories. The training set comprises 118,000 images, and the
validation set contains 5,000 images. We follow the same setup as Ziegler & Asano (2022) and thus
we use the COCO benchmark in two ways to isolate further the given object definitions.

Concisely, we begin by extracting stuff annotations, which refer to objects without clear boundaries
and often found in the background, using the COCO-Stuff annotations (Caesar et al., 2018). Then,
we consolidate the 91 detailed labels into 15 broader labels, as described in Ji et al. (2019) and we
assign the general label “other” to non-stuff objects, as this label lacks specific semantic meaning.
Non-Stuff objects are ignored during training and evaluation. We indicate this version of the dataset
within our work as COCO-Stuff used in Overclusterring and Linear Segmentation in Appendix A.2.

Next, we extract foreground annotations utilizing the panoptic labels from Kirillov et al. (2019). We
combine the instance-level annotations into object categories using a script provided by the authors.
Additionally, we consolidate the 80 detailed categories into 12 broad object classes.The background
class is ignored during training and evaluation. This leads as to the COCO-Thing version of the
dataset which we use for the Overclusterring and our Linear Segmentation in Appendix A.2.

ADE20K (Zhou et al., 2017) The dataset is a collection of images used for semantic segmentation
tasks, featuring finely detailed labels across 150 unique semantic categories. Some of the categories
include stuffs like sky and grass, as well as distinguishable objects like person, and a car. Overall,
it includes a wide variety of scenes, with 20,210 images in the training set and 2,000 images in the
validation set, making it one of the most challenging and diverse datasets for scene understanding.
We use the full dataset in our experiments. In our experiments, we ignore the others label of the
dataset.

Imagenet (Russakovsky et al., 2015) The dataset, is a large-scale visual database designed for use in
visual object recognition research. It contains over 1.3 million images categorized into 1,000 object
classes. Each image is labeled with detailed annotations, making it a critical resource for training and
evaluating machine learning models, particularly in the field of computer vision. In our work, we
also explore training on part of the Imagenet, the Imagenet100k that consists 100K images across
100 classes, from the original dataset.

SPair-71k (Min et al., 2019) is a large-scale dataset of image pairs explicitly designed for semantic
correspondence. It was constructed from images extracted from the well-known datasets of PASCAL
(Everingham et al., 2010; Xiang et al., 2014). The task involves establishing correspondences at the
pixel level between instances of objects in different images of the same class. There are 18 object
categories, diversified between rigid and non-rigid objects, such as cars, aeroplanes, cats, and humans.
Of these, 8 categories represent non-rigid objects, particularly challenging for semantic matching due
to their deformability: cats, cows, humans, among others.

Each image is paired with its corresponding class-specific keypoints to help determine salient object
parts. Furthermore, the pairs of images were annotated with a measure of viewpoint variation,
describing how far the perspective can change between two images of the same category of an object.
This annotation is done by human annotators for high-quality evaluation data. The combination of
rich variability in object pose, appearance, and occlusion with background clutter, together with
dense high-quality ground-truth correspondences, renders SPair-71k a uniquely challenging but
comprehensive dataset to advance the frontiers of semantic correspondence and object matching.
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