
Semiparametric Token-Sequence Co-Supervision

Anonymous ACL submission

Abstract

In this work, we introduce a semiparametric001
token-sequence co-supervision training method.002
It trains a language model by simultaneously003
leveraging supervision from the traditional next004
token prediction loss which is calculated over005
the parametric token embedding space and the006
next sequence prediction loss which is calcu-007
lated over the nonparametric sequence embed-008
ding space. The nonparametric sequence em-009
bedding space is constructed by a separate010
language model tasked to condense an input011
text into a single representative embedding.012
Our experiments demonstrate that a model013
trained via both supervisions consistently sur-014
passes models trained via each supervision in-015
dependently. Analysis suggests that this co-016
supervision encourages a broader generaliza-017
tion capability across the model. Especially,018
the robustness of parametric token space which019
is established during the pretraining step tends020
to effectively enhance the stability of nonpara-021
metric sequence embedding space, a new space022
established by another language model. We023
will publicly release our model and code in024
URL.025

1 Introduction026

Language models are typically trained through027

next-token prediction (NTP), where the model fore-028

casts the distribution of the next token’s embedding,029

given a current token embedding (Touvron et al.,030

2023a; Brown et al., 2020; Zhang et al., 2022). This031

process relies on a language model head, which in-032

cludes embeddings for the entire vocabulary. While033

this approach has demonstrated high performance,034

its reliance on predicting over a finite parametric035

vocabulary space restricts the models’ expressiv-036

ity (Min et al., 2022; Yang et al., 2017; Pappas037

et al., 2020). Also, such supervision constrains the038

model’s predictive capabilities to only the next to-039

ken, whereas humans can anticipate sequences of040

varying granularities highlighting a significant gap.041

In this work, we aim to enhance the capabili- 042

ties of language models by superposing paramet- 043

ric token embedding space and nonparametric se- 044

quence embedding space at the output space of a 045

language model. Drawing on previous research that 046

highlights the adaptable nature of language mod- 047

els’ parametric token embedding space, we theo- 048

rize that the language model can integrate a new 049

embedding space alongside the model’s existing 050

parametric space and can also leverage the stable 051

foundation of its parametric space established dur- 052

ing the pretraining phase when integrating the new 053

embedding space. 054

To this end, we introduce semiparametric token- 055

sequence co-supervision, a novel training approach 056

that trains a language model (Gen) by incorporat- 057

ing supervision from both the traditional next token 058

prediction (NTP), calculated over the parametric 059

token embedding space, and next sequence predic- 060

tion (NSP), which is calculated over nonparametric 061

sequence embedding space as in Figure 1. This 062

nonparametric sequence embedding space is con- 063

structed by another language model, Embseq, which 064

compresses the entire input text into a singular, 065

representative embedding. The supervision is cal- 066

culated via contrastive learning over embedding 067

from the nonparametric embedding space and the 068

output distribution from Gen. 069

We experiment across 10 information-seeking 070

datasets in KILT and ALCE benchmarks. We com- 071

pare a model trained via semiparametric token- 072

sequence co-supervision, multi-task training over 073

NTP and NSP, against a model trained on each 074

supervision individually. Models trained with 075

co-supervision consistently outperform models 076

trained on separate supervisions by an average 077

of 14.2, demonstrating that constructing a com- 078

mon space through co-supervision fosters the gen- 079

eralization and robustness of the language model. 080

The nonparametric space under semiparametric 081

token-sequence co-supervision is more stable com- 082
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Figure 1: While previous methods train language models
with next token prediction loss (NTP), semiparametric token-
sequence co-supervision trains a language model in a multi-
task manner where supervision from parametric token em-
bedding space (NTP) and supervision from nonparametric
sequence embedding space (NSP) flow simultaneously.

pared to models trained solely on NSP, suggesting083

that the robustness of the parametric space, estab-084

lished through pretraining, provides a solid foun-085

dation that enhances the stability of the nonpara-086

metric space. Also, unlike models trained only via087

NTP, the model trained via semiparametric token-088

sequence co-supervision tends to effectively use089

knowledge from the nonparametric space during090

generation, suggesting a shift from rote learning to091

active knowledge utilization.092

Models trained through token-sequence co-093

supervision demonstrate a notable enhancement094

over models trained with each type of supervi-095

sion independently, especially on out-of-domain096

datasets, with an average improvement rate of 6.6097

compared to in-domain datasets. Also, the token-098

sequence co-supervision promotes robust interac-099

tion between the parametric token space and the100

nonparametric sequence space; Gen tends to gen-101

erate responses by utilizing the knowledge from102

the nonparametric space. Moreover, the inherent103

distribution of Embseq, a pretrained language model104

(LM), influences the overall performance where105

aligning Embseq and Gen to the same pretrained LM106

thereby the same distribution, contributes to a more107

stable training process.108

2 Related Works109

Aligning two different models Various studies110

have explored ways to align two different models.111

In multi-modal tasks, efforts have been made to112

connect pretrained vision-only and language-only113

models, either by employing cross-attention mech- 114

anisms (Alayrac et al., 2022) or by aligning the 115

vision encoder’s output embedding with the lan- 116

guage model’s input space (Liu et al., 2023). Also, 117

aligning a language model with another multilin- 118

gual language model enables the model to perform 119

multilingual tasks by leveraging the distribution 120

from the multilingual model (Bansal et al., 2024; 121

Yoon et al., 2024). Moreover, recent research has 122

focused on retrieval-augmented language models 123

that align a retrieval model with a language model 124

to mitigate the issue of hallucination in language 125

models. Studies suggest that aligning these two 126

models leads to improved performance compared 127

to training them separately (Lin et al., 2023; Shi 128

et al., 2023). semiparametric token-sequence co- 129

supervision also aims to train on aligning two dif- 130

ferent models but is unique in that it focuses on 131

aligning the two models at the output space of the 132

language model rather than the input space. 133

Language Models with Nonparametric Em- 134

beddings Integrating nonparametric embeddings 135

into language models has consistently demon- 136

strated advantages. This approach enhances the 137

expressiveness beyond the inherent capabilities of 138

language models (Khandelwal et al., 2019; Zhong 139

et al., 2022). Also, leveraging the rich contex- 140

tual knowledge encapsulated within nonparametric 141

embeddings effectively reduces instances of hallu- 142

cination and improves the generation of accurate 143

and factual content (Lewis et al., 2020; Borgeaud 144

et al., 2022; Guu et al., 2020). Moreover, it show 145

high performance for rare and unseen cases as such 146

tend to not exist in model paramteric space (Lee 147

et al., 2023b; Min et al., 2022). semiparametric 148

token-sequence co-supervision also leverages the 149

nonparametric embedding space but is unique in 150

that it trains the model to utilize both the para- 151

metric and nonparametric embedding space, where 152

the nonparametric embedding space is not static 153

at the training step, but is trainable making the 154

nonparametric space more adaptable to the well- 155

constructed parametric embedding space. 156

3 Semiparametric Token-Sequence 157

Co-Supervision 158

In Section 3.1, we delve into our interpretation of 159

the Next Token Prediction (NTP), first laying the 160

foundation for our hypothesis. Subsequently, in 161

Section 3.2, we explore next sequence prediction 162

(NSP), an extension of next token prediction to 163
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Figure 2: Overview of Semiparametric token-sequence co-supervision. Gen is an autoregressive LM with LM head on top, which
is trained with co-supervision over parametric token embedding space (LNTP) and nonparametric sequence embedding space
(LNSP). Embseq , another autoregressive LM constructs nonparametric sequence embedding space with the output embeddings
when given sequence as input. ti indicates tokens, h indicates dimension size of hidden state, and M indicates number of
sequences in a batch(Refer Appendix A.1 for datailed calculation).

nonparametric sequence embedding space. In Sec-164

tion 3.3, to test our hypothesis we introduce Semi-165

parametric token-sequence co-supervision, a train-166

ing method with supervision from both parametric167

token embedding space (NTP) and nonparametric168

sequence embedding space (NSP) in a simultane-169

ous manner.170

3.1 Revisiting Next Token Prediction171

We revisit the conventional approach of Next Token172

Prediction (NTP), which forms the foundation of173

most modern language models (LMs). NTP is a174

process to predict token t over the vocabulary set175

V when given the preceding tokens t1, . . . , tk to a176

language model:177

argmaxt∈V P (t|t1, . . . , tk) (1)178

As shown in Figure 2, we specify Gen as an179

autoregressive language model, consisting of a lan-180

guage model (LM) and language model head (LM181

Head). LM Head WV (∈ R|V |×h) is a linear layer182

where h denotes the model hidden state dimension.183

When given sequence of tokens t1, . . . , tk to LM,184

it returns a hidden state vector qk (∈ Rh). The hid-185

den state is calculated with LM Head which returns186

the probability distribution over vocabulary size.187

Thereby Equation 1 can be reformulated as:188

argmaxt∈V WV qk (2)189

Equation 2 can be interpreted as a retrieving 190

stage, indicating that the parametric token em- 191

bedding space WV (LM Head) which consists of 192

model vocab set determines the corpus (the range of 193

objects from which "what" we will retrieve) when 194

given qk, the hidden state embedding as a query. 195

As the conventional language modeling paradigm 196

only provides supervision over a fixed vocabulary- 197

sized token embedding space WV , the usage was 198

limited to predicting the most probable next to- 199

ken embedding. However, with such interpretation, 200

when given multiple supervision from various em- 201

bedding spaces, the methodology is extendable to 202

predicting not only token embedding WV but also 203

various representatives in any other non-parametric 204

spaces. 205

3.2 Next Sequence Prediction 206

Broadening the scope of next token prediction 207

(NTP), we explore the domain of sequence-level 208

embedding space WC . In natural language process- 209

ing, many tasks extend beyond merely predicting 210

the next token; they necessitate the utilization of 211

sequence-level knowledge such as contexts from 212

external memory from a corpus (Zhong et al., 2022; 213

Hao et al., 2023; Lewis et al., 2020). This is where 214

the next sequence prediction (NSP) becomes in- 215

valuable. Unlike traditional NTP, which operates 216

over parametric token embedding space, NSP in- 217

teracts with nonparametric sequence embedding 218

space. NSP allows models to anticipate and gener- 219
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ate answers based on given sequences on-demand,220

mirroring the human-like ability to anticipate se-221

quences of varying granularities and its ability to222

refer to external sequences while answering a ques-223

tion.224

When equipped with an embedding space WC225

representing embedding space constructed with a226

corpus set of sequences C, NSP is a process to227

predict the sequence s akin to Equation 2.228

argmaxs∈CWCqk229

Specifically, the embedding space WC is con-230

structed by the last hidden state of another autore-231

gressive model Embseq; WC is a nonparametric em-232

bedding space constructed with a set of last hidden233

state embedding s where s = Embseq(s) for s ∈ C.234

The concept of augmenting next token predic-235

tion (NTP) supervision with additional guidance236

has been previously explored. However, the motiva-237

tions are distinct from those behind semiparametric238

token-sequence co-supervision. Our objective is239

to leverage co-supervision to foster a unified space240

that bridges the nonparametric sequence embed-241

ding space with the parametric token embedding242

space. This approach emphasizes supervision in243

identifying the appropriate relevant sequence from244

a corpus within the nonparametric space. In con-245

trast, earlier efforts, such as the next sentence pre-246

diction (NSP) feature in BERT (Devlin et al., 2018),247

focused on a simpler binary supervision task that248

determines the relevance of a succeeding sentence.249

Also to the best of our knowledge, semiparametric250

token-sequence co-supervision is a first approach251

of training autoregressive language model with co-252

supervision apart from only NTP.253

3.3 Co-Supervision254

To test the hypothesis, we introduce Semiparamet-255

ric token-sequence co-supervision as shown in Fig-256

ure 2. It trains a single autoregressive language257

model Gen by incorporating supervision from both258

the traditional next token prediction (NTP) which259

is calculated over the parametric token embedding260

space and next sequence prediction (NSP), which261

is calculated over nonparametric sequence embed-262

ding space.263

For NTP, we apply an ordinary casual language264

modeling loss function. When given input X:265

LNTP = − 1

|X|
∑
ti∈X

logPGen(ti|t<i) (3)266

For NSP, we apply the contrastive InfoNCE 267

loss (Karpukhin et al., 2020; Izacard et al., 2021); 268

when given a query embedding, positive sequence 269

pair relevant to the query, and a pool of negative 270

sequences unrelated to the query, Embseq and Gen 271

are trained to maximize the similarity between the 272

query embedding and the positive pair and mini- 273

mize the similarity with the negatives pairs. As 274

it is impractical to dump all embeddings of a cor- 275

pus set every step, here we approximate softmax 276

over all corpus by softmax over positive and neg- 277

ative pairs in the same batch (Karpukhin et al., 278

2020; Izacard et al., 2021). We consider other se- 279

quences in the same batch as negatives (in-batch 280

negatives). Formally, given a query embedding 281

q, positive pair passage embedding c+i , and nega- 282

tive pairs c−1 , · · · , c−M−1 where M is the number 283

of sequences in a batch, NSP is calculated via: 284

LNSP(qi, c+i , c−1 , . . . , c−M−1) 285

= − log
esim(qi,c

+
i )

esim(qi,c
+
i ) +

∑M−1
j=1 esim(qi,c

−
j )

(4) 286

Thereby total loss over semiparametric token- 287

sequence co-supervision is calculated as: 288

Lco-supervision = LNTP + λLNSP (5) 289

where λ is the weight parameter to match the loss 290

scale between LNSP and LNTP as it flows through 291

Gen together. 292

4 Implementation Details 293

In this section, we share implementation details of 294

experiments over information-seeking datasets. In 295

Section 4.1, we share details of the problem setup. 296

In Section 4.2 and Section 4.3, we describe details 297

of how we train a language model (Gen) with both 298

supervision of next token prediction (NTP) and 299

next sequence prediction (NSP) simultaneously, the 300

inference step of the trained model, respectively. 301

4.1 Problem Setup 302

For details, we start with an explanation of nota- 303

tions and training instances. Gen is the trainable 304

language model that trains over by co-supervision 305

from both NTP and NSP. Embseq is the trainable 306

language model that constructs the nonparametric 307

sequence embedding space and which calculates 308

over Gen output embedding for NSP loss. 309

Training instances are in a form of 310

“q, n1, [NSP], c1, n2, · · ·ni, [NSP], ci, · · · ” (Asai 311
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et al., 2023) (Examples in Appendix B.2). q is an312

input query. [NSP] is a special token indicating the313

model to calculate over sequence embedding space,314

in other words when the model itself considers315

external knowledge is necessary. ci is a relevant316

sequence when given sequences before [NSP] as317

input. For example, c1 is the relevant sequence318

when given q, n1 as an input. The number of [NSP]319

varies from 0 to multiple differing by how many320

times the query necessitates retrieval (external321

knowledge) during generation.322

4.2 Training323

Figure 2 shows the overview of how we train a324

language model Gen with semiparametric token-325

sequence co-supervision, where both LNTP (equa-326

tion 3) and LNSP (equation 4) flows through a lan-327

guage model Gen simultaneously. For LNSP loss,328

we train another language model Embseq together329

which constructs a nonparametric sequence embed-330

ding space. Specifically, the query embedding (q)331

and sequence embeddings (c) to calculate LNSP are332

calculated by:333

q = Gen (query[NSP]) [−1]334

c = Embseq (<s>context</s>) [−1]335

336

which is the last layer token representation of [NSP]337

from Gen and last layer token representation of338

end-of-sequence token from Embseq, respectively.339

Thereby the gradient of LNSP flows through both340

Embseq and Gen. Whereas for LNTP, the gradient341

only flows through Gen.342

4.3 Inference343

During the inference step, we first dump all con-344

text embedding with Embseq during the offline time.345

Given a set of sequences, we feed each sequence346

into Embseq and extract representative embedding347

c.After the dumping, we get a context embedding348

matrix of C ∈ Rh×M .349

After dumping, in the online step, Embseq is no350

longer necessary and we only need Gen. The gener-351

ated response is in the same form as the training in-352

stances “q, n1, [NSP], c1, n2, · · ·ni, [NSP], ci, · · · ”353

(Section 4.1).354

When Gen generates [NSP], it treats the last layer355

representation of [NSP], generated after inputting356

sequences up to [NSP] (q, · · · , ni), as the query357

embedding q. This embedding q is then calculated358

over the context embedding matrix C to find the359

most relevant sequence (ci) for the query. ci is 360

added after [NSP], allowing the generation process 361

to proceed based on the sequence. When Gen gen- 362

erates a token other than [NSP], it functions the 363

same as a standard language model, selecting the 364

next token based on the highest probability through 365

the language modeling head. See Appendix A.2 366

for more details. 367

5 Experiments Setup 368

Baseline For analysis of how co-supervision af- 369

fects model performance, we train a baseline model 370

the same as in Section 4.2 but with each supervi- 371

sion separately; NTP is calculated in the same way 372

whereas NSP is calculated between output embed- 373

dings of Embseq (q and c). 374

q = Embseq (query[NSP]) [−1] 375

c = Embseq (<s>context</s>) [−1] 376

377

Metric To measure how training a language 378

model with both supervision of NTP and NSP 379

shows different aspects over the model trained with 380

each supervision separately, we measure model 381

performance via three metrics. Correctness and 382

grounding performance measures how well the 383

parametric token space is built and how well the 384

two spaces interact. Retrieval performance mainly 385

measures how well the nonparametric sequence 386

space is built. Correctness (Cor) evaluates how 387

well the model generates a response thereby an- 388

swering the given query for each task. For instance, 389

in the case of question answering (QA), correctness 390

is measured by answer accuracy (Table 5 in the Ap- 391

pendix). Retrieval performance measures whether 392

the model finds relevant paragraphs to answer the 393

given question which requires well-constructed 394

nonparametric sequence space. Grounding (Gr) 395

performance evaluates how well the model gener- 396

ates based on given external knowledge. Following 397

the approach of previous works (Gao et al., 2023; 398

Lee et al., 2023a), we use TRUE (Honovich et al., 399

2022), a T5-11B model finetuned on various NLI 400

datasets, to see whether the external knowledge en- 401

tails a part of the response that is generated based 402

on the knowledge. More details of the metrics are 403

in Appendix B.1. 404

Training Dataset All models undergo training 405

using the dataset provided by Asai et al. (2023), 406

featuring a diverse range of instruction-following 407
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datasets. The dataset contains information-seeking408

questions paired with long-form responses, where a409

set of sequences are annotated within the responses410

(example form in Section 4.1). As the dataset in-411

cludes instances beyond our scope such as cases412

where the matching sequence is irrelevant to the413

response as Asai et al. (2023) aims to train model414

self-critique, a filtering process was applied. This415

refined the dataset to 42,932 instances suitable for416

our research objectives. Detailed information about417

the dataset and our filtering approach can be found418

in the Appendix B.2.419

Evaluation Dataset We conduct evaluations on420

two benchmarks: KILT (Petroni et al., 2021) and421

ALCE (Gao et al., 2023). Some of these datasets422

overlap with the training dataset, categorized as423

in-domain datasets, while others are considered424

out-of-domain datasets. While the ALCE setting425

shows closer alignment of our training dataset, as426

the benchmark does not contain annotation of rel-427

evant sequences, we adapt the KILT benchmark428

to conform to the ALCE setting. For this reason,429

we mainly focus analysis on the KILT benchmark,430

which we can measure all three metrics. Further431

details on the evaluation datasets are available in432

Appendix B.3.433

Training details We use pretrained Llama2434

7B (Touvron et al., 2023b) as an initial model for435

both Gen and Embseq. We use 8 Nvidia A100 for436

the experiments. We also set the base hyperpa-437

rameter as epoch 3, batch size 8, learning rate of438

2e-5 and a decayed rate gamma of 0.85 every 1439

epoch, and AdamW optimizer (Loshchilov and Hut-440

ter, 2019) with no decay across all the experiments.441

For experimenting semiparametric token-sequence442

co-supervision, we set the weight λ as 0.01 while443

training. We also apply gradient clipping to the444

Gen model, with a maximum norm equal to 1.445

6 Experimental Results & Analysis446

Table 1 shows the overall performance on the KILT447

benchmark and Table 2 shows the overall per-448

formance on the ALCE benchmark when given449

20 sequences (Top 20) or 100 sequences (Top450

100) as a corpus. Both tables show that models451

trained with semiparametric token-sequence co-452

supervision consistently outperform models trained453

under each type of supervision separately. This sug-454

gests that this co-supervision encourages a broader455

generalization capability throughout the model. In456

this section, we delve into the impact of each type 457

of supervision on the model’s performance and ex- 458

plore the effects of co-supervision. From now, 459

for simplicity we name the model trained with 460

semiparametric token-sequence co-supervision 461

as NTP + NSP and the model trained under 462

each supervision separately as NTP1. 463

Nonparametric sequence embedding space 464

under semiparametric token-sequence co- 465

supervision is more stable Training a language 466

model with both supervisions from LNTP and LNSP 467

consistently shows higher retrieval performance 468

(average of +16.6) over those trained only with 469

LNSP. Especially, the performance gap tends to 470

increase as corpus size increases and over out-of- 471

domain (improvement rate of 35.04 for in-domain 472

and 41.67 for out-of-domain). Such results indicate 473

that the nonparametric sequence embedding space 474

constructed through Embseq is more stable when 475

trained together with supervision from parametric 476

token embedding space. As previous research 477

has shown that new embeddings (tokens) can 478

easily adapt to well-established parametric token 479

embedding space of the model (Hao et al., 480

2023; Schick et al., 2023), we hypothesize such 481

adaptability applies to nonparametric sequence 482

embedding space; the robustness of the parametric 483

token embedding space, established during the 484

pretraining step provides a solid foundation that 485

enhances the stability of the nonparametric space. 486

NQ TQA zsRE Trex
0

5

10

15

20

NTP
NTP+NSP

Figure 3: Reduction rate of correctness when consider-
ing those correct by parametric knowledge as wrong.

Co-supervision encourages high interaction be- 487

tween the two spaces Figure 3 (Numbers are in 488

Table 7 of Appendix) shows the degradation rate 489

of correctness when removing the ones that are 490

correct by the parametric knowledge (categoriz- 491

1Please note that NTP is not only trained with NTP but
also NSP but separately. We name it NTP for simplicity
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Retriever Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr

NQ* WoW* FEVER* ELI5

Top 20
NTP 62.0 49.7 51.5 31.0 14.7 44.9 58.0 57.1 5.8 30.9 21.8 9.3

NTP + NSP 65.1 55.7 62.6 49.8 15.7 63.7 77.5 65.2 28.0 36.3 21.5 8.7

Top 100
NTP 35.7 38.1 43.0 14.7 13.4 40.0 28.8 56.7 5.2 12.7 21.9 7.0

NTP + NSP 56.8 50.5 58.7 36.9 14.8 61.3 66.2 64.3 26.1 21.0 21.6 10.2

zsRE T-REx TriviaQA HotpotQA

Top 20
NTP 51.2 40.3 54.6 60.6 40.6 48.5 63.0 65.2 41.7 30.2 29.9 43.1

NTP + NSP 80.5 59.6 74.0 75.5 67.1 63.9 74.5 71.7 47.9 55.6 37.9 48.9

Top 100
NTP 32.8 27.1 47.2 47.4 30.8 45.1 46.5 54.9 37.7 12.6 19.6 11.8

NTP + NSP 71.2 53.4 70.0 67.7 58.9 59.1 67.3 68.0 45.7 46.2 34.3 45.5

Table 1: Overall performance of NTP + NSP (model trained with semiparametric token-sequence co-supervision)
and NTP (models trained under each type of supervision separately) in KILT benchmark. Datasets with * on top
indicate in-domain datasets.

ASQA* ELI5

Cor Gr Cor Gr

Top 5
NTP 28.4 42.5 9.7 8.9

NTP + NSP 31.8 44.0 9.3 10.3

Top 100
NTP 20.2 31.1 9.9 13.1

NTP + NSP 26.3 36.8 10.5 13.4

Table 2: Overall performance of NTP + NSP and NTP
in ALCE benchmarks. Dataset with * on top indicates
in-domain datasets.

ing responses associated with incorrect paragraphs492

as wrong). Models trained with semiparametric493

token-sequence co-supervision show less degrada-494

tion compared to the one with separate supervi-495

sion, highlighting that co-supervising encourages496

interaction between token and sequence embed-497

ding space as it is trained to share a common space.498

Also, it suggests that the model leverages the con-499

textual knowledge within the nonparametric space500

for generating responses, as supported by previ-501

ous research (Min et al., 2022; Lee et al., 2023b),502

rather than depending exclusively on its parametric503

knowledge base. Even when limiting Gen to only504

parametric space during inference, thus preventing505

it from accessing nonparametric sequence embed-506

ding space, the model trained via co-supervision ex-507

hibits a more significant drop in correctness (from508

45.7 to 32.8) compared to the model only with su-509

pervision from NTP (from 32.8 to 32.0), indicating510

semiparametric token-sequence co-supervision en-511

courages on using the knowledge from nonparamet-512

ric sequence space rather than mere memorization,513

utilizing knowledge from its own parametric space.514

Co-supervision enhances general understand- 515

ing over varying input distribution. Models 516

trained with semiparametric token-sequence co- 517

supervision consistently outperform those trained 518

under indivico-supervision in terms of correctness 519

and grounding performance across both KILT and 520

ALCE benchmarks. This advantage is more pro- 521

nounced with larger corpus sizes, with Top 100 522

showing more significant improvements than Top 523

20. The performance gap is particularly notice- 524

able in datasets such as FEVER, T-REx, and zsRE, 525

largely due to differences in generalization capabil- 526

ities. Models under co-supervision demonstrate a 527

broader understanding across diverse input distri- 528

butions, whereas models trained solely with next 529

token prediction (NTP) struggle with unique input 530

formats. For example, T-REx and zsRE, which are 531

slot-filling tasks, present unique formats ("subject 532

[SEP] relationship type") that pose challenges. Ad- 533

ditionally, in FEVER, the issue of low grounding 534

performance arises from models generating simple 535

answers without providing evidence, despite being 536

prompted for evidence-based responses. 537

Flowing loss over the sequences when calculat- 538

ing LNTP in co-supervision tends to make the 539

model memorize the knowledge rather than uti- 540

lizing the knowledge from nonparametric em- 541

bedding space One interesting factor we found 542

is that when we do not mask sequences when calcu- 543

lating LNTP of token-sequence co-supervision Gen 544

tend to rely more on their memorized parametric 545

knowledge compared to models trained with se- 546

quences masked, which tends to utilize the external 547

knowledge retrieved from the nonparametric se- 548

quence embedding space. Such a tendency aligns 549

7



with the findings of Mallen et al. (2022), where550

the model tends to depend on retrieved knowledge551

more when it lacks familiarity with the information552

(long-tail knowledge). By calculating generation553

loss over the context, the model tends to encode554

the context knowledge in its parameters, leading555

to a reduced reliance on retrieved knowledge and556

more on its own knowledge.557

Ret Cor Gr
0

10

20

30

40

50

60

70
gpt2-large
tiny llama
llama2 7B

Figure 4: Overall performance of how different Embseq ,
which constructs the nonparametric sequence embed-
ding space, affects the overall performance when train-
ing with NTP + NSP. We experiment over 3 different
models, GPT2-large, TinyLlama, Llama2-7B.

How does the choice of Embseq affect perfor-558

mance? In our experiments, we investigated how559

different versions of Embseq impact overall perfor-560

mance, specifically focusing on how the output em-561

beddings from Embseq contribute to constructing the562

nonparametric sequence embedding space. The av-563

erage results, illustrated in Figure 4, compare three564

distinct choices for Embseq: GPT2-large (Radford565

et al., 2019), TinyLlama (Zhang et al., 2024), and566

Llama2-7B. The findings suggest that the specific567

distribution inherent to each pretrained language568

model influences the performance of Gen. Notably,569

when Gen and Embseq are derived from the same570

model—thus sharing the same distribution—the571

training process appears more stable. This obser-572

vation underlines the significance of distribution573

compatibility between Gen and Embseq in enhancing574

model training and performance.575

Affect of weight lambda (λ) when training semi-576

parametric token-sequence co-supervision We577

investigate how different weights ({10−1, 10−2,578

10−3}) between the next token prediction super-579

vision (LNTP) and next sequence prediction su-580

pervision (LNSP) affect the model’s performance,581

Avg(Ret) Avg(Cor) Avg(Gr)
0

10

20

30

40

50

60

70
0.1
0.01
0.001

Figure 5: Average performance of each metric over 8
datasets in KILT when changing weight parameter λ of
NTP + NSP.

which is the lambda weight in Equation 5. In our 582

setup, as a single generation model Gen receives co- 583

supervision from both the parametric token embed- 584

ding space and the nonparametric sequence embed- 585

ding space, the weight determines the balance of 586

influence between these two spaces on the model’s 587

training. Figure 5 (numbers in Table 6 in the Ap- 588

pendix) illustrates that a weight of 10−3 results in 589

poor retrieval performance, indicating challenges 590

in grasping and stabilizing the nonparametric se- 591

quence embedding space. Moreover, at a weight 592

of 10−1, the model’s generation ability tends to 593

decline, suggesting that it rather ruins the well- 594

formed parametric token embedding space. This 595

analysis underscores the critical role of balancing 596

supervision from both embedding spaces to opti- 597

mize model performance across various metrics. 598

7 Conclusion 599

In this paper, we propose a semiparametric token- 600

sequence co-supervision training method, which 601

trains a single autoregressive language model with 602

both supervision from parametric token embed- 603

ding space and nonparametric sequence embedding 604

space in a simultaneous manner. Experiments over 605

10 information-seeking datasets show that such 606

co-supervision consistently outperforms models 607

trained with each supervision separately of average 608

+14.2, demonstrating that constructing a common 609

space through co-supervision fosters the general- 610

ization and robustness of the language model. Such 611

a method is not only limited to sequence space but 612

can be expandable to any embedding space which 613

we leave as future work. 614

8



8 Limitation615

Due to resource constraints, our experimentation616

did not extend to altering Gen with other pretrained617

LMs such as Mistral (Jiang et al., 2023). Moreover,618

as our primary objective is not to develop the opti-619

mal model through token-sequence co-supervision620

but rather to explore the efficacy and implications621

of this approach, our hyperparameter tuning was fo-622

cused on key factors such as the weight parameter623

λ, batch size, among others, rather than conducting624

an extensive hyperparameter search.625

9 Ethics626

While our model benefits from token-sequence co-627

supervision, which enhances its ability to utilize628

external knowledge, we must acknowledge poten-629

tial ethical implications. Notably, we have not yet630

explored how the model behaves when generating631

sequences containing external knowledge that may632

contain toxic information. For instance, consider633

a scenario where the model generates text contain-634

ing biased or harmful information sourced from635

external knowledge bases. It is essential to conduct636

further research and consider ethical implications637

to ensure that the model’s outputs align with soci-638

etal values and norms, such as refusing to predict639

from such text. Addressing these concerns will640

be crucial for responsibly deploying the model in641

real-world applications.642
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A NTP + NSP863

A.1 Gathering in-batch negatives864

Suppose we have B batched instances D1, . . . DB865

for each training step, and each Di has ci,1, . . . ci,li866

reference context(li ≥ 1). We can collect M =867 ∑B
i=1 li context embeddings(after counting dupli-868

cates) and the same amount of query embedding,869

each referring to one positive target. We set the870

target context embedding as the positive one, while871

setting the rest M − 1 as the in-batch negative sam-872

ples.873

During the experiments, we gather all the con-874

text embeddings across all 8 GPUs to increase the875

number of in-batch negatives. We ensure at least876

63 2, but the exact number differs across training877

steps(experimentally about 80 to 90).878

2at least 1 context per instance, 8 per each GPU, a total of
8 GPUs infer 64 total reference context embeddings, yielding
at least 64− 1 = 63 in-batch negatives.

A.2 Inference 879

We run inference of our trained models using 1 880

A6000 GPU with 48GB memory. 881

A.3 Parsing 882

To distinguish where the model generates by 883

grounding on the retrieved sequence and where the 884

model generates in a freeform, we add two special 885

tokens [CS] and [CE] which each indicate the start 886

of the generation by grounding on the retrieved se- 887

quence and the end, respectively. In other words, 888

when the model generates a response in the form of 889

“q, n1, [NSP], c1, g1, · · ·ni, [NSP], ci, gi, · · · ”, the 890

part between [CS] and [CE] is the gi part and the 891

rest is ni indicating freeform generation. 892

B Experiments Setup 893

B.1 Details of metrics 894

We assess the generation results in three axes: cor- 895

rectness, retrieval performance, and grounding per- 896

formance 897

Correctness Correctness evaluates how well the 898

model answers the given query for each task. For 899

each dataset, we chose the metric to evaluate fol- 900

lowing the metric used in its official paper. Details 901

for each dataset is in Table 7. 902

Retrieval Performance Retrieval performance 903

measures whether the model retrieves relevant para- 904

graphs to answer the given question. We measure 905

in two aspects, whether the gold paragraph exists 906

within retrieved paragraphs (Ret) and retrieval pre- 907

cision to assess how many of the model-retrieved 908

paragraphs contain gold paragraphs (Ret-P). For 909

example, when the model retrieves three differ- 910

ent paragraphs {P1, P2, P3} while generating a 911

response and only one of them {P2} is the gold 912

paragraph, Ret will be 100 since there is a gold 913

paragraph in the set of retrieved paragraphs while 914

Ret-P is 1
3 since only one is correct. Please note that 915

we measure the metric by considering both gold 916

and retrieved as a set; when the same paragraph is 917

retrieved twice, we consider it as one during the 918

calculation. 919

Grounding Performance Grounding perfor- 920

mance evaluates how well the model generates 921

based on given external knowledge. Following 922

the approach of previous works (Gao et al., 2023; 923

Lee et al., 2023a), we use TRUE (Honovich et al., 924

2022), a T5-11B model finetuned on various NLI 925
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Source Name Instance Num

Open-Instruct

GPT-4 Alpaca 6363
Stanford Alpaca 7826

FLAN-V2 720
ShareGPT 2544

Open Assistant 1 2671

KILT
Wizard of Wikipedia 2159

Natural Questions 12306
FEVER 5502

HF Dataset
OpenBookQA 54

Arc-Easy 183

ASQA ASQA 2732

Table 3: Statistic and characteristics of training dataset
(42932 instances). Instance Num inside the parentheses in-
dicate the number of corresponding instances within all the
filtered instances (43060 instances)

datasets, to see whether the external knowledge en-926

tails a part of the response that is generated based927

on the knowledge. To be more specific, as we928

add special tokens [CS] and [CE] to distinguish929

between natural form generation and generation930

based on given external knowledge (grounding gen-931

eration); [CS] indicates the starting point of ground-932

ing generation, and [CE] indicates the endpoint.933

Thereby we parse the generated response into pairs934

(external knowledge, grounding generation) and935

calculate the average of whether the external knowl-936

edge entails the grounding generation in sentence937

wise of grounding generation.(Further details on938

parsing the output are available in Appendix A.2.)939

B.2 Details of training dataset940

Filtering We apply 3 filtering from Asai et al.941

(2023) to make our training dataset.942

1. Relevance and Support: We retained instances943

with relevant and fully or partially supported944

citations to ensure dataset integrity.945

2. Citation Count: Instances without citations or946

with more than 3 citations were filtered out to947

balance complexity and informativeness.948

3. Length Constraint: We removed instances ex-949

ceeding 1024 tokens (input + output) to opti-950

mize computational efficiency.951

These criteria yielded a final training dataset of952

42932 instances, poised to provide high-quality953

examples for effective model training.954

Statistics Among 42.9k training instances, 32.1k955

instances contain 1 [NSP], 6.7k instances contain956

2 [NSP], and 4k instances contain 3 [NSP] in the 957

output. The source of these instances is shown in 958

Table 3. 959

Single [NSP] Example Question: "which river 960

has the largest basin in world" 961

Answer: "[NSP] Amazon River and Crenar- 962

chaeota. The Amazon has over 1,100 tributaries, 963

12 of which are over long. Some of the more no- 964

table ones are: Amazon River The Amazon River (, 965

; Spanish and ) in South America is the largest river 966

by discharge volume of water in the world, and by 967

some definitions it is the longest. The headwaters 968

of the Apurímac River on Nevado Mismi had been 969

considered for nearly a century as the Amazon’s 970

most distant source, until a 2014 study found it 971

to be the Cordillera Rumi Cruz at the headwaters 972

of the Mantaro River in Peru. The Mantaro and 973

Question: which river has the largest basin in world 974

[CS] Amazon [CE] " 975

Multi [NSP] Example Question: "Why do corpo- 976

rations lobby for laws that impoverish lower class 977

citizens?" 978

Answer: "[NSP] Corporate capitalism power and 979

influence corporations and large business interest 980

groups have over government policy, including the 981

policies of regulatory agencies and influencing po- 982

litical campaigns (see corporate welfare). Many 983

social scientists have criticized corporations for 984

failing to act in the interests of the people, and 985

their existence seems to circumvent the principles 986

of democracy, which assumes equal power rela- 987

tions between individuals in a society. In an April 988

29, 1938 message to the Congress, Franklin D. 989

Roosevelt warned that the growth of private power 990

could lead to fascism: Dwight D. Eisenhower crit- 991

icized the notion of the confluence of corporate 992

power and d̈e factoQ̈uestion: Why do corporations 993

lobby for laws that impoverish lower class citi- 994

zens? [CS] While it is true that corporations may 995

lobby for laws or regulations that are favorable to 996

their own interests, it is not necessarily the case 997

that these laws or regulations would have nega- 998

tive impacts on lower class citizens. [CE] [NSP] 999

Anti-corporate activism control the markets, that 1000

income inequality is increasing, and that corpo- 1001

rations have gained too much power. As part of 1002

the political left, activists against corporate power 1003

and influence support a decreased income gap and 1004

improved economical equity. The defenders of 1005

corporations such as Ron Arnold highlight that 1006
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governments do legislate in ways that restrict the1007

actions of corporations (see Sarbanes-Oxley Act)1008

and that lawbreaking companies and executives are1009

routinely caught and punished, usually in the form1010

of monetary fines. In addition, from the perspective1011

of business ethics it might be argued that chief ex-1012

ecutives are not inherently more evil than Question:1013

Why do corporations lobby for laws that impov-1014

erish lower class citizens? [CS] For example, a1015

corporation may lobby for laws that reduce regu-1016

lation on its industry, which could potentially lead1017

to lower costs and higher profits for the corpora-1018

tion, but could also have negative consequences for1019

workers or consumers. [CE] It is important to rec-1020

ognize that the relationship between corporations,1021

lobbying, and public policy is complex, and it is1022

not always clear how specific laws or regulations1023

will impact different groups of people.In general,1024

it is important for citizens to stay informed about1025

the activities of corporations and to advocate for1026

policies that benefit the common good.",1027

B.3 Details of evaluation dataset1028

Construction Step Following the evaluation1029

setup of Gao et al. (2023), we retrieve the top 1001030

paragraphs from the Wikipedia corpus provided1031

by KILT for each instance in the dataset. We re-1032

trieve paragraphs by utilizing a well-performing1033

retriever model, contriever-msmarco (Izacard1034

et al., 2021). When constructing the top 100 para-1035

graphs, we initially populate the corpus set with1036

gold annotations from the KILT benchmark and1037

subsequently supplement the remainder with para-1038

graphs retrieved from contriever-msmarco, en-1039

suring that all gold paragraphs are in the top 1001040

paragraphs.1041

Dataset Statistics and Characteristics In Ta-1042

ble 4, we present the statistics and characteristics1043

of the datasets in KILT (Petroni et al., 2021) bench-1044

mark employed for evaluation. Datasets lacking ev-1045

idence annotation, such as WNED-CWEB, WNED-1046

WIKI, and AIDA CoNLL-YAGO, are excluded1047

from the KILT benchmark.1048

C Experimental Results1049

C.1 Weight parameter λ1050

Table 6 shows the performance by changing the1051

weight parameter λ in Equation 5.1052

C.2 NTP + NSP benefits more from the 1053

flexibility of [NSP] placement 1054

To assess how much the flexibility of determin- 1055

ing where [NSP] is placed affects performance, we 1056

compare scenarios where [NSP] is always gener- 1057

ated at the first token of response to a given in- 1058

put query (freeze placement of [NSP]), and where 1059

[NSP] is generated when the model predicts as 1060

necessary (flexible placement of [NSP]). Under 1061

these conditions, though the absolute score itself is 1062

higher for NTP + NSP, the degradation by freez- 1063

ing the placement is generally higher for models 1064

trained with NTP + NSP whereas those trained 1065

with NTP exhibit consistent improvements (Ta- 1066

ble 13). This suggests that the training approach 1067

of NTP + NSP benefits more from the flexibility 1068

of [NSP] placement, where the flexibility is one of 1069

the key benefits when operating Gen and Embseq in 1070

the output space. Specifically, results show that the 1071

freedom to choose the placement of [NSP] enables 1072

NTP + NSP-trained models to leverage the advan- 1073

tages of communication between Embseq and Gen 1074

more effectively, optimizing performance through 1075

appropriate integration of external information. All 1076

numbers in Table 11. 1077

C.3 Does the benefit of semiparametric 1078

token-sequence co-supervision still hold 1079

when replacing Embseq trained via NSP to 1080

more general retrieval model? 1081

To see whether the benefits of multi-task training 1082

still persits when we replace Embseq of NTP to 1083

other general retrieval models, including the one 1084

that is widely known in out-of-domain (contriever- 1085

msmarco), in Table 14, we compare NTP + NSP 1086

with variations of NTP. We could see the NTP + 1087

NSP in most cases shows the highest performance 1088

over the three variations of NTP. Llama without 1089

parameter sharing tends to show the strongest per- 1090

formance among the variations of NTP. Such re- 1091

sults suggest that co-supervision on a language 1092

model stabilizes the nonparametric embedding 1093

space, which we conjecture is due to the benefit 1094

from robust parametric space. 1095

C.4 Effect of Batch Size 1096

Results in Figure 6 (Numbers in Table 10) show the 1097

average performance of each metric over 8 datasets 1098

in KILT with different batch sizes per GPU. Results 1099

show the importance of increasing the batch size 1100

in NTP + NSP; performance of all metrics tends 1101
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Name Task Instance Num Input Format Output Format Reference

Natural Questions (NQ) ODQA 2,837 Question Extractive Kwiatkowski et al. (2019)
Wizard of Wikipedia (WoW) Dialogue Conversation 3,054 Long Abstractive Dinan et al. (2019)

FEVER Fact Checking 10,444 Claim Classification Thorne et al. (2018)

TriviaQA ODQA 5,359 Question Extractive Joshi et al. (2017)
ELI5 ODQA 1,507 Question Long Abstractive Fan et al. (2019)

Zero Shot RE (zsRE) Slot Filling 3,724 Structured Entity Levy et al. (2017)
T-REx Slot Filling 5,000 Structured Entity ElSahar et al. (2018)

HotpotQA ODQA 5,600 Question Short Abstractive Yang et al. (2018)

Table 4: Statistic and characteristics of evaluation dataset.

Name Metric

Natural Questions (NQ) Answer Accuracy
Wizard of Wikipedia (WoW) Unigram F1

FEVER NLI

TriviaQA Answer Accuracy
ELI5 Rougel

Zero Shot RE (zsRE) Answer Accuracy
T-REx Answer Accuracy

HotpotQA Answer Accuracy

Table 5: Correctness metric for each datasets

Ret Ret-P Cor Cor- Gr
20

25

30

35

40

45

50

55

60
BS 2
BS 4
BS 8

Figure 6: Average performance of each metric over 8 datasets
in KILT when changing batch size. Each number indicates
batch size per GPU.

to increase with increasing batch size. We hypoth-1102

esize such a trend largely due to stable training of1103

NSP loss; as it is widely known that retrieval mod-1104

els tend to show higher performance with larger1105

batch size, which is not always true for generation1106

models (Keskar et al., 2017). As NSP loss is cal-1107

culated via in-batch negatives, training with larger1108

batch size in other words increasing the number1109

of negatives consistently improves retrieval per-1110

formance (Izacard et al., 2021; Karpukhin et al.,1111

2020).1112

20 30 40 50 60 70 80 90 100
35

40

45

50

55

60

NQ

Ret (NTP+NSP) (7.49%)
Ret (NTP) (32.64%)
Cor (NTP+NSP) (9.34%)
Cor (NTP) (23.34%)
Gr (NTP+NSP) (6.23%)
Gr (NTP) (16.50%)
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55

60

65
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75
TriviaQA

Ret (NTP+NSP) (9.66%)
Ret (NTP) (26.19%)
Cor (NTP+NSP) (5.16%)
Cor (NTP) (15.80%)
Gr (NTP+NSP) (4.59%)
Gr (NTP) (9.59%)

Figure 7: NTP + NSP tend to be more robust with larger
corpus size (x-axis)

C.5 Performance gap tends to increase as 1113

corpus size increases 1114

Figure 7 shows that the performance gap between 1115

NTP + NSP and NTP tends to increase as corpus 1116

size increases; NTP + NSP shows more stable 1117

and robust performance with different sizes of the 1118

corpus. 1119

C.6 Grounding performance tends to vary by 1120

retrieval performance 1121

When analyzing the impact of retrieval success on 1122

grounding performance, NTP + NSP significantly 1123

outperforms in grounding when retrieval is success- 1124

ful compared to when it fails, whereas the model 1125

trained only by NTP shows little difference regard- 1126

less of retrieval outcome. Upon investigating why 1127
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Np weight Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R

NQ* WoW* FEVER* ELI5

10−1 59.0 55.9 47.7 43.3 42.0 41.6 15.2 36.8 67.5 64.7 64.4 36.0 40.7 29.0 22.5 5.2

10−2 65.1 62.7 55.7 62.6 49.8 49.7 15.7 63.7 77.5 75.9 65.2 28.0 36.3 29.4 21.5 8.7
10−3 33.7 33.6 35.7 34.9 14.0 14.0 13.2 27.0 27.4 27.3 28.3 9.2 19.9 19.4 22.6 4.2

zsRE T-REx TriviaQA HotpotQA

10−1 64.7 64.0 39.0 47.2 64.2 63.6 50.0 45.2 70.2 68.0 64.9 41.1 41.7 61.0 29.2 41.8

10−2 80.5 80.2 59.6 74.0 75.5 75.4 67.1 63.9 74.5 73.0 71.7 47.9 55.6 79.1 37.9 48.9
10−3 33.6 33.6 26.2 41.8 48.5 48.4 48.0 38.3 40.3 40.2 53.9 24.9 20.7 31.1 23.9 29.9

Table 6: Np weight (Top20)

Cor. Cor− Cor. Cor− Cor. Cor− Cor. Cor−

NQ* zsRE T-REx TriviaQA

Top20
NTP 49.7 40.5 40.3 37.5 40.6 36.4 65.2 53.1

NTP + NSP 55.7 49.3 59.6 58.1 67.1 62.5 71.7 65.2

Top100
NTP 38.1 27.7 27.1 24.3 30.8 25.8 54.9 39.2

NTP + NSP 50.5 44.4 53.4 52.0 58.9 54.6 68.0 59.8

Table 7: Performance of correctness performance (Cor.) and correctness when considering those instances where
retrieval fail as incorrect (Cor−)

models trained with NTP + NSP exhibit lower1128

grounding performance upon retrieval failure, it1129

appears to stem from the disconnect caused by at-1130

tempting to answer the query with the incorrect1131

document. In such cases, the model might fetch1132

information that seems closest to the expected an-1133

swer from the external knowledge but ends up gen-1134

erating content that also contains knowledge from1135

the given query, leading to less relevance to the1136

retrieved paragraph or fabricating information not1137

present in the paragraph (Examples in Table 12 in1138

Appendix). Conversely, models trained with NTP1139

demonstrate consistent grounding performance, un-1140

affected by the success or failure of retrieval. This1141

suggests that NTP’s grounding capability is more1142

reliant on its generative performance rather than the1143

accuracy of retrieval, leading to similar outcomes1144

irrespective of whether the correct information was1145

retrieved or not. Based on these findings, future1146

work could explore critiquing the success of re-1147

trieval based on grounding scores.1148

C.7 A single language model distinguishes1149

and interprets both token and sequence1150

embeddings space1151

The high performance of models trained through1152

both supervision from parametric token embed-1153

ding space and nonparametric sequence embedding1154

space shows that a single model (Gen) can distin-1155

guish and comprehend both embedding spaces. As1156

the task we experiment over requires the model to 1157

selectively draw distributions tailored to the appro- 1158

priate embedding space as needed in the decoding 1159

step; when external knowledge is required, the out- 1160

put embedding operates with the nonparametric 1161

sequence embedding to find the most relevant one 1162

and for other cases, the output embedding operates 1163

with the parametric sequence embedding which 1164

generates in a natural form. 1165

C.8 Generation performance without the 1166

condition of retrieval performance 1167

As correctness and grounding performance depend 1168

on retrieval performance, we evaluate both NTP + 1169

NSP and NTP trained models in a setting where 1170

retrieval is always correct or always wrong to see 1171

the correctness and grounding performance with- 1172

out the condition of retrieval performance. We 1173

evaluate two settings where 1. oracle: retrieval is 1174

always correct and 2. failure: retrieval is always 1175

wrong. Table 15 shows the average performance of 1176

each metric over datasets in the KILT benchmark 1177

for oracle setting(all numbers in Table 8) and Ta- 1178

ble 9 shows performance for failure setting. NTP + 1179

NSP trained models shows higher performance 1180

in the oracle setup whereas lower performance 1181

in the failure setup. Such results correlate with the 1182

findings on top where since semiparametric token- 1183

sequence co-supervision trained tends to get the 1184

answer correct based on the retrieved paragraphs, it 1185
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Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr

Force [NSP] NQ* WoW* FEVER* zsRE

X
NTP 99.9 73.7 67.4 100.0 19.4 57.1 100.0 59.1 6.0 99.9 72.4 74.7

NTP + NSP 99.8 68.6 69.3 100.0 19.6 69.8 100.0 65.4 31.0 100.0 71.7 80.8

O
NTP 100.0 71.9 69.5 100.0 19.3 59.4 100.0 59.1 6.0 100.0 70.3 74.8

NTP + NSP 100.0 70.9 70.7 100.0 19.9 69.5 100.0 65.6 31.7 100.0 71.8 80.3

T-REx TriviaQA ELI5 Avg

X
NTP 98.0 58.0 56.0 96.7 73.2 48.9 100.0 20.7 6.5 99.2 53.8 45.2

NTP + NSP 100.0 78.2 71.8 100.0 68.0 45.4 100.0 20.7 6.8 100.0 56.0 53.5

O
NTP 100.0 66.2 71.0 100.0 72.4 48.6 100.0 20.7 6.5 100.0 54.3 47.9

NTP + NSP 100.0 78.9 72.0 100.0 68.4 44.2 100.0 20.7 6.3 100.0 56.6 53.5

Table 8: Performance over the oracle setup. We skip HotpotQA as the dataset requires two paragraphs, making it
difficult to make in the same setting

Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr

Force [NSP] NQ* zsRE T-REx TriviaQA Avg

X
NTP 0.0 12.2 13.8 0.0 7.9 15.7 0.0 9.3 7.9 0.0 7.6 8.3 0.0 9.2 11.4

NTP + NSP 0.0 11.7 13.6 0.0 7.3 11.6 0.0 9.3 6.6 0.0 7.6 5.2 0.0 9.0 9.2

O
NTP 0.0 11.9 15.6 0.0 7.6 16.8 0.0 8.8 8.1 0.0 7.7 8.7 0.0 9.0 12.3

NTP + NSP 0.0 11.9 13.6 0.0 7.3 11.7 0.0 8.9 7.1 0.0 7.4 5.0 0.0 8.9 9.3

Table 9: Experiment over the case where retrieval always fail. We skip HotpotQA as the dataset requires two
paragraphs, making it difficult to make in the same setting, and datasets without answers as it is hard to distinguish
false negatives.

BS R R-P Cor C− Gr R R-P Cor C− Gr R R-P Cor C− Gr R R-P Cor C− Gr

Top20

NQ* WoW* FEVER* ELI5

2 63.1 59.1 50.0 44.6 60.6 37.5 36.8 14.4 7.3 33.5 71.4 67.5 56.3 40.7 6.0 38.9 27.0 21.8 8.4 8.7

4 63.3 59.0 50.8 44.9 49.0 40.8 40.1 15.3 8.2 31.7 73.7 69.2 66.0 50.0 21.0 35.1 25.0 22.2 7.8 5.3

8 65.1 62.7 55.7 49.3 62.6 49.8 49.7 15.7 10.4 63.7 77.5 75.9 65.2 51.5 28.0 36.3 29.4 21.5 7.8 8.7

zsRE T-REx TriviaQA HotpotQA

2 68.8 65.9 50.8 49.4 48.1 68.0 66.5 60.0 55.0 46.5 71.4 68.9 57.8 54.6 43.0 48.9 71.0 29.2 26.4 43.1

4 78.0 75.2 56.4 55.1 50.5 73.0 71.3 65.0 60.1 46.5 72.7 68.9 68.5 62.7 38.6 52.2 73.6 36.8 33.9 36.8

8 80.5 80.2 59.6 58.1 74.0 75.5 75.4 67.1 62.5 63.9 74.5 73.0 71.7 65.2 47.9 55.6 79.1 37.9 35.2 48.9

Top100

NQ* WoW* FEVER* ELI5

2 53.3 49.2 43.2 38.1 56.9 24.3 23.9 13.8 4.8 29.8 58.6 54.2 55.8 32.9 5.3 21.4 14.2 21.7 4.6 8.5

4 52.9 48.2 44.6 38.0 56.9 27.9 27.4 14.6 5.8 30.6 61.2 56.8 61.7 34.9 18.8 18.9 12.6 22.2 4.1 8.9

8 56.8 53.8 50.5 44.4 58.7 36.9 36.9 14.8 7.9 61.3 66.2 64.2 64.3 43.4 26.1 21.0 15.8 21.6 4.6 10.2

zsRE T-REx TriviaQA HotpotQA

2 54.1 50.2 41.1 39.7 43.7 57.6 55.0 52.2 46.1 41.4 64.0 61.3 53.1 49.4 42.0 37.1 53.8 25.7 20.8 41.1

4 67.0 63.3 50.3 48.6 45.9 65.3 62.8 59.2 53.7 42.0 65.2 60.9 64.4 56.9 35.6 41.2 57.8 32.6 27.6 33.3

8 71.2 70.7 53.4 52.0 70.0 67.7 67.5 58.9 54.6 59.1 67.3 65.6 68.0 59.8 45.7 46.2 65.3 34.3 29.7 45.5

Table 10: Performance by changing batch size (BS).

shows high correctness in the oracle setup whereas1186

lower correctness in the failure setup. Also as1187

we could see that semiparametric token-sequence1188

co-supervision trained models tend to show low1189

grounding performance when retrieval fails, we1190

can see that it shows lower grounding performance 1191

in the failure setup whereas high grounding perfor- 1192

mance in the oracle setup. 1193
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Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr

fix [NSP] NQ* zsRE T-REx TriviaQA Avg

NTP
X 35.7 38.1 43.0 32.8 27.1 47.2 47.4 30.8 45.1 46.5 54.9 37.7 32.5 30.2 34.6

O 39.8 40.7 46.1 36.2 30.0 47.7 48.4 29.4 45.9 46.2 55.0 37.9 34.1 31.0 35.5

NTP + NSP
X 56.8 50.5 58.7 71.2 53.4 70.0 67.7 58.9 59.1 67.3 68.0 45.7 52.6 46.2 46.7

O 56.2 50.2 59.4 70.8 52.7 70.0 67.8 60.2 60.0 66.7 67.0 45.6 52.3 46.0 47.0

Table 11: Performance when fixing [NSP] at the start token of response. We experiment over Top100.

Question Retrieved Paragraph Generated Response

who plays peter in what we do in
the shadows

Steve Pemberton :: Steven James Pemberton (born 1 September
1967) is an English actor, comedian and writer, best known as
a member of T̈he League of Gentlemenẅith Reece Shearsmith,
Mark Gatiss, and Jeremy Dyson. Pemberton and Shearsmith also
co-wrote and appeared in the sitcom P̈sychovilleänd the comedy-
drama Ïnside No. 9.̈ His other television credits include D̈octor
Who,̈ B̈enidorm,̈ B̈lackpool,̈ S̈hameless,̈ Ẅhitechapel,̈ Ḧappy
Valleyänd M̈app and Lucia.̈

The actor Steve Pemberton plays the role of
Peter in the British comedy television show.

the basic steps of rational de-
cision making include defining
goals and

Rational planning model :: The rational model of decision-making
is a process for making sound decisions in policy making in the
public sector. Rationality is defined as 2̆01ca style of behavior that
is appropriate to the achievement of given goals, within the limits
imposed by given conditions and constraints2̆01d. It is important
to note the model makes a series of assumptions in order for it to
work, such as:

The basic steps of rational decision making
include defining goals and then analyzing
alternative solutions to determine the best
course of action.

Table 12: Example from NQ

NTP NTP + NSP

Ret Cor Gr Ret Cor Gr

X 32.5 30.2 34.6 52.6 46.2 46.7

O 34.1 31.0 35.5 52.3 46.0 47.0

Table 13: Performance difference between static (fix the
placement of [NSP]) and dynamic (allow the model to
decide when to generate [NSP]) query

17



Retriever Param Sharing Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R

NQ* WoW* FEVER* ELI5

Llama x 53.3 50.3 54.2 28.0 28.3 28.1 15.2 48.0 61.9 60.7 58.2 5.7 18.5 14.9 22.1 7.3

Llama o 35.7 34.4 38.1 43.0 14.7 14.6 13.4 40.0 31.4 30.4 56.7 5.2 12.7 11.0 21.9 7.0

contriever o 50.3 49.8 51.0 52.1 23.0 23.0 14.9 42.5 39.0 38.9 54.5 11.0 18.8 9.6 22.1 7.3

NTP + NSP 56.8 53.8 50.5 58.7 36.9 36.9 14.8 61.3 66.2 64.2 64.3 26.1 21.0 15.8 21.6 10.2

zsRE T-REx TriviaQA HotpotQA

Llama x 49.8 49.5 38.4 53.9 52.4 52.4 33.2 45.7 65.1 64.1 66.4 44.8 43.1 63.3 34.0 39.3

Llama o 32.8 32.7 27.1 47.2 47.4 47.4 30.8 45.1 46.5 45.8 54.9 37.7 12.6 12.4 19.6 11.8

contriever o 45.0 44.0 36.2 42.2 36.9 36.7 33.8 33.1 67.3 65.1 73.0 42.2 46.0 65.1 34.0 37.4

NTP + NSP 71.2 70.7 53.4 70.0 67.7 67.5 58.9 59.1 67.3 65.6 68.0 45.7 46.2 65.3 34.3 45.5

Table 14: Top100

Oracle Failure

Cor Gr Cor Gr

NTP 54.3 47.9 9.0 12.3
NTP + NSP 56.6 53.5 8.9 9.3

Table 15: Generation performance without the condition
of retrieval performance
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