
Under review as submission to TMLR

Input Invex Neural Network

Anonymous authors
Paper under double-blind review

Abstract

Connected decision boundaries are useful in several tasks like image segmentation, cluster-
ing, alpha-shape or defining a region in nD-space. However, the machine learning literature
lacks methods for generating connected decision boundaries using neural networks. Thresh-
olding an invex function, a generalization of a convex function, generates such decision
boundaries. This paper presents two methods for constructing invex functions using neu-
ral networks. The first approach is based on constraining a neural network with Gradient
Clipped-Gradient Penality (GCGP), where we clip and penalise the gradients. In contrast,
the second one is based on the relationship of the invex function to the composition of in-
vertible and convex functions. We employ connectedness as a basic interpretation method
and create connected region-based classifiers. We show that multiple connected set based
classifiers can approximate any classification function. In the experiments section, we use
our methods for classification tasks using an ensemble of 1-vs-all models as well as using
a single multiclass model on larger-scale datasets. The experiments show that connected
set-based classifiers do not pose any disadvantage over ordinary neural network classifiers,
but rather, enhance their interpretability. We also did an extensive study on the proper-
ties of invex function and connected sets for interpretability and network morphism with
experiments on simulated and real-world data sets. Our study suggests that invex function
is fundamental to understanding and applying locality and connectedness of input space
which is useful for various downstream tasks.

1 Introduction

The connected decision boundary is one of the simplest and most general concepts used in many areas,
such as image and point-cloud segmentation, clustering or defining reason in nD-space. Connected decision
boundaries are fundamental to many concepts, such as convex-hull and alpha-shape, connected manifolds and
locality in general. Yet another advantage of the connected decision boundaries is selecting a region in space.
If we want to modify a part of a function without changing a global space, we require a simply connected
set to define a local region. Such local regions allow us to learn a function in an iterative and globally
independent way. Similarly, locality-defining neurons in Neural Networks are useful for Network Morphism
based Neural Architecture Search (Wei et al., 2016; Chen et al., 2015; Cai et al., 2018; Jin et al., 2019; Elsken
et al., 2017; Evci et al., 2022; Sapkota & Bhattarai, 2022). These characteristics of decision boundaries can
be crucial for the interpretability and explainability of neural networks. It is evident that Neural Networks
are de-facto tools for learning from data. However, the concerns over the model being black-box are also
equally growing. Furthermore, machine learning models such as clustering and classification are based on
the smoothness assumption that the local space around a point also belongs to the same class or region.
However, such regions are generally defined using simple distance metrics such as Euclidean distance, which
limits the capacity of the models using it. In reality, the decision boundaries can be arbitrarily non-linear,
as we observe in image segmentation, alpha-shape and too few to mention.

Let us introduce connected set, disconnected set and convex set as decision boundaries by comparing them
side by side in Figure 1. From the Figure, we can observe that the convex set is a special case of the
connected set and the union of connected sets can represent any disconnected set. And, the disconnected
sets are sufficient for any classification and clustering task, yet the individual sets are still connected and

1

Under review as submission to TMLR

interpretable as a single set or region. Furthermore, we can relate the concept of simply connected (1-
connected) decision boundary with the locality and also be viewed as a discrete form of the locality. This gives
us insights into the possibilities of constructing arbitrarily non-linear decision boundaries mathematically or
programmatically

`

A

B
x

w

(a) Convex Set

`

A

Bzy

x

w

(b) Connected Set

`

z

A

By

x

w

A

(c) Disconnected Set

`

A

Bzy

x

w

A C
u

v
x

(d) Connected Sets

Figure 1: Different types of sets according to the decision boundary in continuous space. (a) Convex sets
have all the points inside a convex decision boundary. A straight line connecting any two points in the set also
lies inside the set. Here, A is a convex set, and B is a non-convex set. (b) Connected sets have continuous
space between any two points within the set. Any two points in the connected set can be connected by a
curve that also lies inside the set. Here, both A and B are connected sets; A is a bounded 1-connected set.
(c) Disconnected sets are opposite of connected sets. Any two points in the disconnected set can not be
connected by a curve that also lies inside the set. Here, A is the disconnected set and B is the connected
set. (d) The same decision boundary as (c) is represented by multiple connected sets. Disconnected set A
in (c) is a union of connected set A and C in (d). Here, all A, B and C are connected sets. However, A ∪ C
is a disconnected set and B ∪ C is still a connected set.

To create a connected decision boundary for low and high-dimensional data, we require a method to constrain
neural networks to produce simply connected (or 1-connected) decision boundaries. Our search for a simply
connected decision boundary is inspired by a special property of a convex function exhibiting its lower contour
set forming a convex set, which is also a simply connected space. However, we need a method that gives us
a convex set that is always simply connected but not necessarily required to be a convex set.

Invex function (Hanson, 1981; Ben-Israel & Mond, 1986; Mishra & Giorgi, 2008) is a generalization of the
convex function that exactly satisfies our above-mentioned requirements. The lower contour set of an invex
function is simply connected and can be highly non-linear, unlike convex sets. Simply connected set is
equivalent to invex set (Mititelu, 2007; Mohan & Neogy, 1995). However, there does not exist a principled
method to constrain a neural network to be invex. To this end, we propose two different methods to constrain
the neural network to be invex with respect to the inputs which we call Input Invex Neural Networks (II-
NN): (i) Using Gradient Clipped Gradient Penalty (GC-GP) (ii) Composing Invertible and Convex Functions.
Among these two methods, GC-GP constrains the gradient of a function with reference to a simple invex
function to avoid creating new global optima. This method limits the application to a single variable output
and one-vs-all classification. Similarly, our second approach leverages the invertible and convex functions to
approximate the invex function. This method is capable of creating multiple simply connected regions for
multi-class classification tasks.

We performed extensive both qualitative and quantitative experiments to validate our ideas. For quantitative
evaluations, we applied our method to both the synthetic and challenging real-world image classification data
sets: MNIST, Fashion MNIST, CIFAR-10 and CIFAR-100. We compared our performance with competitive
baselines: Ordinary Neural Networks and Convex Neural Networks. Although we validated our method for
classification tasks, our method can be extended to other tasks too. This is well supported by both the
parallel works (Nesterov et al., 2022; Brown et al., 2022) and earlier work (Izmailov et al., 2020) using the
invex function and simply connected sets as a fundamental concept for tasks other than classification. Similar
to our study of simply connected decision boundaries, simply connected manifolds are homeomorphic to the
n-Sphere manifold and are related to the Poincaré conjecture (See Appendix Sec. I). We design our qualitative
experiments to support our claims on the interpretability and explainability of our method compared to our
Neural baseline architectures. Please note comparing our method with the work on AI and explainability
would be beyond the scope.

2

Under review as submission to TMLR

Overall, we summarize the contributions of this paper as follows:

1. We introduced the invex function in the Neural Networks. To the best of our knowledge, this is the
first work introducing the invex function on Neural Networks.

2. We present two methods to construct invex functions, compare their properties along with convex
and ordinary neural networks as well as demonstrate its application for interpretability.

3. We present a new type of supervised classifier called multi-invex classifiers which can classify input
space using multiple simply connected sets as well as show its application for network morphism.

4. We experiment with classification tasks using toy datasets, MNIST, FMNIST, CIFAR-10 and
CIFAR-100 datasets and compare our methods to ordinary and convex neural networks.

2 Background and Related Works

2.1 Locality and Connected Sets

This work on the invex function is highly motivated by the connected set and its applications. A better
mathematical topic related to what we are looking for is the simply connected set or space. This type of set
is formed without any holes in the input space inside the defined set. Some examples of simply connected
space are convex space, euclidean plane or n-sphere. Other space such as the torus is not simply connected
space, however, they are still connected space.

The concept of locality is another idea related to simply connected space. In many machine learning al-
gorithms, the locality is generally defined by euclidean distance. This gives the nearest examples around
the given input x or equivalently inside some connected n-Sphere. This concept of locality is used widely
in machine learning algorithms such as K-NN, K-Means, RBF (Broomhead & Lowe, 1988). The concept
of locality has been applied in local learning (Bottou & Vapnik, 1992; Cleveland & Devlin, 1988; Ruppert
& Wand, 1994). These works highlight the benefit of local learning from global learning in the context of
Machine Learning. The idea is to learn local models only from neighbourhood data points. Although these
methods use simple methods of defining locality, we can define it arbitrarily.

We try to view these two concepts, locality and simply connected space, as related and interdependent
on some locality-defining function. In traditional settings, the locality is generally defined by thresholding
some metric function, which produces a bounded convex set. In our case, we want to define locality by any
bounded simply connected space which is far more non-linear. Diving into metric spaces is beyond the topic
of our interest. However, we connect both of these ideas with the generalized convex function called the
invex function. We use a discrete form of locality, a connected region, produced by the invex function to
classify the data points inside the region in a binary connected classifier and multiple connected classifiers
in Section 3.

2.2 Generalized Convex Functions

We start this subsection with the general definition of Convex, Quasi-Convex and Invex functions.

Convex Function A function on vector space X ∈ Rn, f : X → R is convex if:

For all x1, x2 ∈ X, and t ∈ [0, 1],

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) (1)

Quasi-Convex Function A function on vector space X ∈ Rn, f : X → R is quasi-convex if:

For all x1, x2 ∈ X, and t ∈ [0, 1],

f(tx1 + (1 − t)x2) ≤ max{f(x1), f(x2)} (2)

If we replace the inequality with ’<’ then, the function is called Strictly Quasi-Convex Function. Such
a function does not have a plateau, unlike the quasi-convex function.

3

Under review as submission to TMLR

Invex Function A differentiable function on vector space X ∈ Rn, f : X → R is invex if:

For all x1, x2 ∈ X, and there exists an invexity function η : X × X → Rn,

f(x1) − f(x2) ≥ η(x1, x2) · ∇f(x2) (3)

Invex function with invexity η(x1, x2) = x1 − x2 is a convex function (Ben-Israel & Mond, 1986). Fol-
lowing are the 2 properties of the invex function that are relevant for our experiments. Furthermore, non-
differentiable functions also invex.

Property 1 If f : Rn → Rm with n ≥ m is differentiable with Jacobian of rank m for all points and
g : Rm → R is invex, then h = g ◦ f is also invex.

This property can be simplified by taking m = n, which makes the function f an invertible function.
Furthermore, the function with Jacobian of rank m is simply learning the m-dimensional manifold in the
n-dimensional space (Brehmer & Cranmer, 2020). The above property simplifies as follows .

If f : Rn → Rn is differentiable, invertible and g : Rn → R is invex, then h = g ◦ f is also invex.

Property 2 If f : Rn → R is differentiable, invex and g : R → R is always-increasing, then h = g ◦ f is also
invex.

However, during experiments, we use a non-differentiable continuous function like ReLU which has continuous
counterparts. Such functions do not affect the theoretical aspects of previous statements.

The invex function and quasi-convex function are a generalization of a convex function. All convex and
strongly quasi-convex functions are invex functions, but the converse is not true. These functions inherit a
few common characteristics of the convex function as we summarize in Table 1. We can see that all convex,
quasi-convex and invex functions have only global minima. Although the quasi-convex function does not
have an increasing first derivative, it still has a convex set as its lower contour set.

Invex sets are a generalization of convex sets. However, we take invex sets as the lower contour set of the
invex function, which for our understanding is equivalent to a simply connected set. There has been a
criticism of the unclear definition of invexity and its related topics such as pre-invex, quasi-invex functions
and sets (Zălinescu, 2014). However, in this paper, we are only concerned with the invex function and invex
or simply connected sets. We define the invex function as the class of functions that have only global minima
as the stationary point or region. The minimum/minima can be a single point or a simply connected space.

As mentioned before, the lower contour set of the invex function is a simply connected set, which is a general
type of connected decision boundary. Such a decision boundary is more interpretable as it has only one set
and can form a more complex disconnected set by a union of multiple connected sets. We present an example
of invex, quasi-convex and ordinary functions in Figure 2. Their class decision boundary/sets are compared
in Table 1.

Table 1: Comparison of property of Convex, Quasi-Convex, Invex and Ordinary Function.

Function Type Only Global Minima Increasing First Derivative Set (−∞, θ)
Convex ✓ ✓ convex

Quasi-Convex ✓ ✗ convex
Invex ✓ ✗ 1-connected (invex)

Ordinary function ✗ ✗ disconnected

2.3 Constraints in Neural Networks

Constraining neural networks has been a key part of the success of deep learning. It has been well studied
that Neural Networks can approximate any function (Cybenko, 1989), however, it is difficult to constrain
Neural Networks to get desirable properties. It can be constrained for producing special properties such as
Convex or Invertible, which has made various architectures such as Invertible Residual Networks (Behrmann

4

Under review as submission to TMLR

x1

1.0
0.5

0.0
0.5

1.0

x2

1.0

0.5
0.0

0.5
1.0

y
=

f (
x1

, x
2)

0.5

0.0

0.5

1.0

(a) Quasi-Convex Function

x1

1.0
0.5

0.0
0.5

1.0

x2

1.0
0.5

0.0
0.5

1.0

y
=

f(x
1,

 x
2)

0.00

0.25

0.50

0.75

1.00

(b) Invex Function

x1

1.0
0.5

0.0
0.5

1.0

x2

1.0

0.5
0.0

0.5
1.0

y
=

f (
x1

, x
2)

1.0

0.5

0.0

0.5

1.0

(c) Ordinary Function

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x2

-0
.6 -0
.5

-0
.4

-0.3 -0.
2

0.0

0.3

0.3

0.6
0.6

0.6

0.8

0.8

0.8

1.0 1.0

1.0
1.0

(d) Quasi-Convex Function

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x2
-0.1

0.0 0.1

0.2
0.3

0.3

0.4

0.4

0.5

0.5
0.

6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

(e) Invex Function

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x2

-0.8

-0.6

-0.4

-0.4

-0.2

-0.2

0.0

0.0

0.0

0.
2

0.2

0.
4

0.6
0.8

0.8

0.8 0.8

(f) Ordinary Function

Figure 2: 3D plot (top row) and Contour plot (bottom row) of Quasi-Convex, Invex and Ordinary Function.
The global minima (red star) is plotted in Convex and Invex Functions. Contour plots on different levels
show the decision boundary made by each class of functions. Zoom in the diagram for details.

et al., 2019), Convex Neural Networks (Amos et al., 2017), Convex Potential Flows (Huang et al., 2020)
possible. Similarly, other areas such as optimization and generalization are made possible by constraints
such as LayerNorm (Ba et al., 2016), BatchNorm (Ioffe & Szegedy, 2015) and Dropout (Srivastava et al.,
2014).

The Lipschitz constraint of Neural Networks is another important constraint that has received much at-
tention after one of the seminal works on Wasserstein Generative Adversarial Network (WGAN) (Arjovsky
et al., 2017). The major works on constraining the Lipschitz constant on neural networks include WGAN-
GP (Gulrajani et al., 2017), WGAN-LP (Petzka et al., 2018) and Spectral Normalization (SN) (Miyato et al.,
2018). These methods have their benefits and drawbacks. LP is an improvement over GP, where the gradient
magnitude is constrained to be below specified K using gradient descent. However, these methods can not
constrain the gradients exactly as it is applied with an additional loss function. These methods can however
be modified to constrain gradients locally. Furthermore, SN constrains the upper bound of the Lipschitz
Constant (gradient norm) globally. This is useful for multiple applications such as on WGAN and iRes-
Net (Behrmann et al., 2019). However, our alternative method of constructing the invex function requires
constraining the gradient norm locally. Although we can not constrain the local gradients exactly, we refine
the gradient constraint to solve the major drawbacks of GP and LP. The details regarding the problems of
GP, LP and SN and how our method GC-GP solves the problem are included in the Appendix A.

2.4 Convex and Invertible Neural Netowrks

Convex Neural Network: ICNN (Amos et al., 2017) has been a goto method for constructing convex
functions using neural networks. It has been used in multiple applications such as Convex Potential Flow,
Partial Convex Neural Network and Optimization. It is also useful for the construction of invex neural
networks when combined with invertible neural networks as mentioned in the previous section.

Normalizing Flows and Invertible Neural Networks: Normalizing Flows are one of the bidirectional
probabilistic models used for generative and discriminative tasks. They have been widely used to estimate
the probability density of training samples, to sample and generate from the distribution and to perform a

5

Under review as submission to TMLR

discriminative task such as classification. Normalizing Flows use Invertible Neural Networks to construct
the flows. It requires computing the log determinant of Jacobian to estimate the probability distribution.

In our case, we only require the neural network to be invertible and do not require computing the log
determinant of the Jacobian. This property makes training Invex Neural Networks much more practical,
even for large datasets. We can easily compose an Invertible Neural Network and Convex Neural Network
to produce Invex Neural Network. This property is supported by the Property 1 of the invex function.

There are many invertible neural network models such as Coupling Layer (Dinh et al., 2014), iRevNet (Ja-
cobsen et al., 2018) and Invertible Residual Networks(iResNet) (Behrmann et al., 2019). iResNet is a great
choice for application to the invertible neural network. Since it does not require computing the jacobian, it is
relatively efficient to train as compared to training normalizing flows. Furthermore, we can simply compose
iResNet and a convex cone function to create an invex function.

GMM Flow and interpretability: Gaussian Mixture Model on top of Invertible Neural Network has been
used for normalizing flow based semi-supervised learning (Izmailov et al., 2020). It uses a gaussian function
on top of an invertible function (an invex function) and is trained using Normalizing Flows. The method is
interpretable due to the clustering property of standard gaussian and low-density regions in between clusters.
We also find that the interpretability is because of the simply connected decision boundary of the gaussian
function with identity covariance. If the covariance is to be learned, the overall functions may not have
multiple simply connected clusters and hence are less interpretable. The conditions required for connected
decision boundaries are discussed more in Appendix E.

The authors do not connect their approach with invexity, connected decision boundaries or with the local
decision boundary of the classifier. However, we alternatively propose that the interpretability is also due
to the nature of the connected decision boundary produced by their approach.

Furthermore, the number of clusters is equal to the number of Gaussians and is exactly known. As compared
to neural networks, where the decision boundaries are unknown and hence uninterpretable. The simple
knowledge that there are exactly N local regions each with their class assignment is the interpretability.
We also find that this interpretable nature is useful for analyzing the properties of neural networks such as
the local influence of neurons as well as neuron interpretation, which is simply not possible considering the
black-box nature of ordinary neural network classifiers.

2.5 Classification Approaches

One-vs-All classification (Rifkin & Klautau, 2004) approach is generally used with Binary Classification
Algorithms such as Logistic Regression and SVM (Cortes & Vapnik, 1995). However, in recent Neural
Network literature, multi-class classification with linear softmax classifier on feature space is generally used
for classification. In one of our methods in Section 4.2, we use such One-vs-All classifiers using invex, convex
and ordinary neural networks.

Furthermore, we extend the idea of region/leaf-node based classification to simply connected space. This
method is widely used in decision trees and soft decision trees (Frosst & Hinton, 2017; Kontschieder et al.,
2015). The goal is to assign a probability distribution of classes to each leaf node where each node represents
a local region on input space. In our multi-invex classifier, we employ multiple leaf nodes which are then used
to calculate the output class probability. This method allows us to create multiple simply connected sets
on input space each with its own class probabilities. The detail of this method is in Section 3.2.2. Figure 3
compares the classification approach used generally in Neural Networks to Region based classification.

3 Methodology

In this section, we present our two approaches to constructing the invex function. Furthermore, we use the
invex function to create a simply connected set for binary classification and multi-class classification models.

6

Under review as submission to TMLR

G1G0

G3G2

G1G0

G3G2

G0,
G2G0

G3

G1G0

G3G2

Fold Space
R1

R3

R2

R0

C1

C0

(a) (b) (c)

Figure 3: Classification of group of data points (Gi) in (a) by Ordinary Neural Networks in (b) and by
Region-based classification method in (c). Here, (a) shows the input space of XOR type toy dataset where
G0 and G3 belong to class C1 and the rest to class C0. (b) Shows two-stage classification by Ordinary
Neural Networks, where the input space is transformed (folded) to a two-class cluster and separated by
simple classifiers. (c) Shows a different approach based on Region based classification. Each of the regions
(connected sets) Ri is assigned a class label. This approach still uses neural networks for non-linear morphing
of the input space, however, it does not fold the space but only morphs it; the disconnected sets of the same
class should be assigned to different regions.

3.1 Constructing Invex Function

We present two methods for constructing the invex function. These methods are realised using neural
networks and can be used to construct invex functions for an arbitrary number of dimensions.

3.1.1 Invex Function using GC-GP

We propose a method to construct an invex function by modifying an existing invex (or convex) function
using its gradient to limit the newly formed function. This method was realised first while constructing
invex neural networks as compared to our next method. It consists of 3 propositions to create an arbitrarily
complex invex function and does not require an invertible neural network or even a convex neural network.
The proposition for constructing the invex function using this method is as follows.

Proposition 1 Let f : X → R and g : X → R be two functions on vector space X. Let x ∈ X be any point,
x∗ be the minima of f and x ̸= x∗. If f be an invex function and If(∇g(x) · ∇f(x)

∥∇f(x)∥

)
+ ∥∇f(x)∥ > 0

then h(x) = f(x) + g(x) is an invex function

Proposition 2 Let g : X → R be a function on vector space X, let x ∈ X be any point, x∗ be the minima
of g and x ̸= x∗. If

∇g(x) · x − x∗

∥x − x∗∥
> 0

then g is an invex function.

Proposition 3 Modifying invex function as shown in proposition 1 for N iterations, starting with non-
linear gi(x) and after each iteration, setting fi+1(x) = hi(x) can approximate any invex function.

The minima x∗ used in Proposition 2 is the centroid of the invex function in input space which can be easily
visualized. The motivations, intuitions and proof for these Propositions are in Appendix C.

Gradient Clipped Gradient Penalty (GC-GP): This is our idea to constrain the input gradient value
that is later used to construct invex neural network using the above Propositions 1, 2, 3.
Gradient Penalty: To penalize the points which violate the projected gradient constraint, we modify the
Lipschitz penalty (Petzka et al., 2018). We create a smooth penalty based on the function shown in Figure 4

7

Under review as submission to TMLR

and Equation 4. We use the smooth-l1 loss function on top of it for the penalty. This helps the optimizer
to have a smooth gradient and helps in optimization. It is modified to regularize the projected gradient as
well in our II-NN.

fout_clip(pg) =


1
20fsoftplus(20 · pg) if pg < 0.14845

3 · pg − 0.0844560006 otherwise
(4)

Gradient Clipping: To make the training stable and not have a gradient opposing the projected gradient
constraint, we construct a smooth gradient clipping function using softplus (Dugas et al., 2001) function for
smooth transition of the clipping value as shown in Figure 4 and Equation 5. The clipping is done at the
output layer before back-propagating the gradients. We clip the gradient of the function to near zero when
the K-Lipschitz or projected-gradient constraint is being violated at that point. This helps to avoid criterion
gradients opposing our constraint.

fpg_penalty(pg) = −1
4 fsoftplus(−20 · (pg − 0.1)) (5)

Combining these two methods allows us to achieve very accurate gradient constraints on the neural network.
Our method can not guarantee that the learned function has desired gradient property such as local K-
Lipschitz or projected-gradient as defined. However, it constrains the desired property with near-perfect
accuracy. This is shown experimentally in Table 5. Still, we can easily verify the constraint at any given
point. The Figure 4 shows the step-by-step process for constructing Basic Invex function using Proposition 2
realised using Algorithm 1. The algorithms for constructing different invex functions using this method are
in Appendix C.3 and more details of GC-GP are in Section A.

X
∇f(X)

y

Projected Gradient

t

Error
Δy

y = f(X,𝛳)

Gradient Penalty (GP)

①

②

③

④

⑤ ⑥

⑦

⑧

Output Gradient Clipping (GC)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

3

2

1

0

1

2

y

gradient penalty
output-gradient clipper

Figure 4: Left: Pipeline for Basic II-NN with corresponding pseudo-code in Algorithm 1. Right: Function
used for output gradient-clipping (GC) and projected gradient-penalty (GP) where, x-axis is the projected-
gradient value.

3.1.2 Invex Function using Invertible Neural Networks

Invex functions can be created by composing the Invertible function and convex function as discussed in
Section 2.4. The choice of invertible function and convex function can both be neural networks, i.e. invertible
neural network and convex neural network. We have iResNet and ICNN for invertible and convex neural
networks respectively. Composing these two neural networks allows us to learn any invex function.

Furthermore, We can use a simple convex cone with an invertible neural network to create an invex function.
In this paper, we use the convex cone as it is relatively simple to implement as well as allows us to visualize
the center of the cone in the input space, which represents a central concept for classification and serves as
a method of interpretation.

finvex(X) = fcone(finvertible(X))

8

Under review as submission to TMLR

Algorithm 1: Basic II-NN (Proposition 2) - PyTorch like pseudocode
X, t is the dataset with m elements.
f_iinn is a parametric neural network model with additional center parameter.
lamda is the scaling parameter for projected gradient penalty.
f_pg_scale and f_out_clip are gradient penalty and
output_gradient clipper respectively as shown in Figure 4
for step in range(STEPS):

y = f_iinn(X) #1
grad_X = torch.autograd.grad(y, X) #2
grad_center = (X - center)
grad_center = grad_center/torch.norm(grad_center, dim=1)
pg = torch.batch_dot_product(grad_X, grad_center) #3
pgp = f_smoothl1(f_pg_scale(pg)).mean() * lamda #4
pgp.backward_to(f_iinn.parameters()) #5
del_y = criterion(y, t).backward_to(y) #6
clip_val = f_out_clip(pg)
del_y_clip = del_y.clip(-clip_val, clip_val) #7
del_y_clip.backward_to(f_iinn.parameters()) #8
optimizer.step()

3.2 Simply Connected Sets for Classification

The main goal of this paper is to use simply connected sets for classification purposes. We want to show
that simply connected sets can be used for any classification task. However, not all methods of classification
using the invex function produce simply connected sets. We discuss in detail the condition when the formed
set is simply connected in Appendix E.

3.2.1 Binary Connected Sets

It can be formed by our GC-GP method in Section 3.1.1 and the Invertible method in Section 3.1.2. Invex
function with finite minima creates two connected sets, one simply connected set (inner) and another con-
nected set (outer). If the function is monotonous, it creates two simply connected sets (that are not bounded).
We can consider the monotonous invex functions as having centroid/minima at infinity. Furthermore, we
can create a binary classifier with connected sets as:

ycluster = σ(−fII−NN (x))

Here, σ(x) is a threshold function or sigmoid function. y = 0 represents the outer set and y = 1 represents
the inner set.

Such binary connected sets can be used to determine the region of a One-vs-All classifier and we can form
complex regions of classification using multiple such binary connected sets. In this paper, however, we create
only N sets for N classes and use ArgMax over class probabilities, which does not create all connected sets
classifier despite each classifier having connected decision boundaries.

3.2.2 Multiple Connected Sets

Multiple simply connected sets are created by the nearest centroid classifier, linear classifier or by linear
decision trees. However, the connected sets are generally convex and can be mapped to arbitrary shapes by
an inverse function. Hence, if we use this in reverse mode, we can transform any space into latent space
and then into simply connected sets where the decision boundaries are highly non-linear in the input space.
Here, the distance or linear function is convex. Hence, the overall function is invex for each region or node.
This is similar to the homeomorphism of connected space as mentioned in Appendix I. Figure 5 shows the

9

Under review as submission to TMLR

multi-invex classifier using simply connected set leaf nodes. In this paper, we refer to Multiple Connected
Sets based Classifier by Multi-Invex Classifier.

Invertible Neural Network
X Z

…

P(c0) P(c1) P(c2) ….

P(c0) P(c1) P(c2) ….

P(c0) P(c1) P(c2) ….

P(c0) P(c1) P(c2) ….

P(c0) P(c1) P(c2) ….

Leaf Nodes / Regions Class Probabilities

Figure 5: Network Diagram of Multi-Invex Classifier. The Leaf nodes are either produced by a linear decision
tree or by the nearest centroid classifier.

We find that ArgMax over multiple convex functions or multiple invex functions does not produce multiple
connected sets. Similarly, the Gaussian Mixture Model with gaussian scaling and different variance also does
not produce multiple connected sets. This is explained in detail in Appendix E.

Algorithm 2: Multi Invex Classification - PyTorch like pseudocode
X: is the batch of dataset with N Dimensions: shape[Batch Size, D].
weight: has shape[D, Num Regions], bias shas shape[Num Regions]
class_prob: has shape[Num Regions, Num Classes], inverse_temp is an scaler
f_iNN: is an invertible neural network model with trainable parameter.
f_connected: is a ConnectedClassifier with 'args' representing suitable arguments
Composing creates multiple invex function with multiple connected decision boundary

class ConnectedClassifier():
def forward(self, x, weight, bias, class_probs, weight_type, inverse_temp, hard=False):

if weight_type == 'linear':
x = torch.matmul(x, weight) + bias

elif weight_type == 'euclidean':
x = - (torch.cdist_normalized(x, weight) + bias)

x = x*torch.exp(inverse_temp)
Here, x is the scaled metric that creates voronoi diagram after argmax.
if hard:

x = torch.softmax(x*1e9, dim=1) ## equivalent to argmax + to_one_hot
else:

x = torch.softmax(x, dim=1)
return x.matmul(class_probs)

z = f_iNN(X)
y = f_connected(z, *args)

Why do we need Multi-Invex Classifiers ? We know that Voronoi diagrams with l2-norm from cen-
troids (or sites) produce convex sets. Such sets can be used to partition the data space into multiple regions
and the regions can be assigned class probability for classification tasks (we experiment with this in Sec-
tion 4.1). Although it is possible to partition the data space into convex regions, it is inefficient due to the
limited structure of convex partitioning. Furthermore, Voronoi diagrams produced by l1-norm or by adding
a bias term in the output l2-norm can create non-convex partitioning, but still, the partitioning is limited.

10

Under review as submission to TMLR

Moreover, in general, Voronoi diagrams can even produce disconnected regions (Klein & Wood, 1988) which
is not useful for our application. There also have been works on using convex metric functions for Voronoi
diagrams (Chew & Dyrsdale III, 1985; Ma, 2000), however, the works are limited to 2D and 3D cases and for
a limited number of convex metrics which is insufficient for general application to N-D data points and with
learnable convex function. Hence, using an invertible function along with dot-product or l2-norm Voronoi
partitioning is suitable for creating multiple connected set classifiers.

Furthermore, Voronoi diagrams have a geometric stability property (Reem, 2011): a small change in the
centroids (or sites) creates a small change in the shape of the Voronoi cells. Similar stability holds when
some centroids are added or removed; the change in the Voronoi partitions is also small. This plays a crucial
role in local function morphism using connected classifiers.

Interpretability: If we are to use z = fbackbone(x) and y = fclassifier(z) then classification y can have
different variations of interpretability depending on models used for backbone and classifier. Our method
starts with Voronoi partitioning based classification which we call Connected Classifier. It partitions given
input space into multiple connected sets and assigns class probability over the regions. Such partitions are
however used with softmax for training, but for testing, we can do hard region assignments and hard class
output. The partitions and the centroid of the partitions are generally easy to interpret.

However, such classifiers lack the highly non-linear decision boundary that we seek. Hence, our choice is to
use an invertible backbone to create a non-linear connected set based classifier. As an invertible function
does not fold the space but only morph, it can map every point in input space to latent space and vice versa.
This allows us to consider the invertible backbone + connected classifier as a whole in terms of input space
and provides high interpretability. The centers on the latent space as well as the decision boundaries can be
mapped to the input space.

This is not the case for ordinary NN backbone; the model is ambiguous in terms of input-output mapping
and can not be easily used in reversed direction. Hence, using an ordinary NN backbone strips away the
interpretability aspect. Furthermore, if we are to use an invertible NN backbone along with the MLP
classifier, we do not gain any advantage of interpretability as the MLP classifier itself is hard to interpret
and the neurons are highly dependent on each other. Although we can use a linear classifier with an invertible
backbone, such a classifier allows only N regions for N classes which might not be optimal for datasets with
disconnected classes.

Our approach of using centroids in data space and representing a region using a center matches the concept
of Prototype (Rdusseeun & Kaufman, 1987; Biehl et al., 2016) generally used in Explainable AI (Chen et al.,
2019; Nauta et al., 2021). However, we do not choose exact data points as centroids but are learned, which
makes it different from the prototype, but serves the same purpose of explaining a region of data points
using a single concept/region/centroid. We can find the medoid data point of a region which can serve as
a Prototype and allow us to interpret the contents in a region, however, if we change the centroid to the
medoid, the decision boundary also changes accordingly. It is also possible to use the concept of Prototype
and Criticism (Kim et al., 2016) for Network Morphism and to improve connected set based classification,
however, we do not experiment with it.

4 Experiments

Our experiments mostly consist of a comparison of two of our methods separately with convex and ordinary
neural networks. We are unable to make a direct comparison between our two methods due to their funda-
mental differences in architecture and type of classification performed. In the experiments, we first compare
our GCGP method with Convex and Ordinary Neural Networks on multiple datasets. Secondly, we compare
our Multi-Invex Classification method with Ordinary Neural Network using different settings on multiple
datasets.

11

Under review as submission to TMLR

4.1 Experiments on toy datasets

Invex function for classification To compare the capacity of the invex function to classify connected
sets, we experiment on a 2D spiral dataset which is known to have two connected sets as classes. In Table 2
we compare the classification accuracy between Linear, Convex, Ordinary and Invex Neural Networks. We
find that our Basic Invex Network can not completely classify the toy classification dataset but composing
it one more time helps to achieve 100% accuracy. Furthermore, we show that it can be easily classified by
an invex neural network using the invertible method with a similar number of neurons.

Furthermore, we compare visually the convex set classifier and connected-set classifier using toy datasets.
The visualization of the decision boundary learned is shown in Appendix C.4. We also consider using the
invex function for defining a local region of certainty for robust prediction and rejection of outside samples
in Appendix H.

Multi-convex set vs multi-invex set classification We compare the use of a multi-invex classifier as
compared to multi-convex for a difficult toy 2D classification task. If we use an invertible backbone for the
multi-convex classifier, we get a multi-invex classifier. The task is designed to represent disconnected classes
for the same class and consists of non-linear class decision boundaries. Figure 6 shows that a convex set
based classifier can classify the dataset correctly given a large number of regions, however, connected set
based classifier can classify with less number of clusters with more non-linear regions.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

(a) Convex (N:3)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

(b) Invex (N:3)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

(c) Convex (N:7)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

(d) Invex (N:7)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

(e) Convex (N:13)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

(f) Invex (N:13)

Figure 6: Decision boundary of multi-connected classifiers: multi-convex and multi-invex. (Top Row)
shows the decision boundary learned by softmax over regions, which is difficult to interpret. (Middle Row)
shows the decision boundary using hard classification i.e. each region is labelled as one of the classes, which
makes the classification more interpretable. (Bottom Row) shows the regions of classification represented
by each neuron of l2-norm based connected classifier. We can simply remove regions containing no data
points. Zoom in the diagram for details.

Network Morphism: Adding and Removing Regions We extend the experiments on a toy classifi-
cation problem for conveying the ease of understanding the connected set/region based classifiers. We can
easily add new regions without affecting previous regions much and simply assign a class output to them.
Furthermore, we can also remove regions that do not add benefit to the classification task. The regions are
linked with the centroids, which are individual neurons in the connected classifier layer. We demonstrate the
application of network morphism in Figure 7 using a 2D toy classification dataset. The dataset consists of
5 non-linear clusters and 3 classes. Although we can visualize the process in 2D, the underlying mechanism

12

Under review as submission to TMLR

remains the same for higher dimensions as well. In higher dimensions, we can create similar locally activating
neurons (or cluster centroids representing some locality) which can be used to morph the classifier without
causing global function changes.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(b)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(e)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(f)

Figure 7: (Top Row) shows the classification decision boundary learned by the multi-invex classifier with
hard (using argmax) over regions. (Bottom Row) shows the decision boundary of regions using argmax.
The indices (a) - (f) represent different stages of manual network morphism. (a) An multi-invex classifier
trained with 5 regions. It fails to partition the dataset correctly and performs poorly. (b) Adding a new
center at (-1, -1) with violet class. (c) Adding a new center at (0, -1) with yellow class. (d) Fine-tuning the
classifier which gets high classification accuracy. (e) Removing poorly partitioned center at (-0.78, -0.32)
with yellow class. (f) Fine-tuning the classifier after removal. Zoom in the diagram for details.

Table 2: Accuracy on various Datasets with different Architectures using binary classification. The accuracy
on MNIST and FMNIST are summary of 1-vs-all classifier from Table 6, 7, 8. For visualization on the
synthetic Classification 1 dataset, check Appendix F. The bold numbers represent the best results and
the blue numbers represent the second-best results. The color gray represents the Invex function using the
invertible method. This row is not directly comparable to others due to different neural architectures. The
Basic Invex row represents the invex function constructed using Proposition 2, the Invertible (composed)
row represents a modification of Basic Invex model for 1 iteration using Proposition 1. Invex (invertible)
row represents the Invex function constructed with Invertible Neural Network and Convex Cone.

Architecture Dataset (MLP) Dataset (CNN)
Classification 1 MNIST MNIST F-MNIST

Linear/Logistic 72.0 90.79 - -
Convex 82.5 96.83 94.68 81.27

Ordinary 100.0 97.09 98.08 87.76
Basic Invex (Ours) 96.25 97.61 97.85 87.8

Invex (composed) (Ours) 100.0 - - -
Invex (Invertible) (Ours) 100.0 97.49 98.82 89.80

4.2 Experiments on Large Datasets

One-vs-All classification on Binary Connected Classifiers. We also experiment on larger-scale
datasets, MNIST, and F-MNIST. In Table 2 we compare our GC-GP method with other methods using
argmax over multiple (connected) binary classifiers on MNIST and FMNIST datasets. This is due to the
limitation of our GC-GP method which can only output a single variable. Although such classification is not
generally used in Neural Networks, we find it abundantly in other ML algorithms. This is an inefficient way
to create classifiers, however direct comparison is not possible otherwise. In this experiment, we use similar
(almost similar) architecture for comparison between Convex, Ordinary and Invex Neural Networks. We
also test the invex function using an invertible backbone for relative comparison, however, direct comparison

13

Under review as submission to TMLR

is not possible due to architectural differences. The hyperparameter λ represents regularization constant
for Projected Gradient Penalty of GC-GP (See Algorithm 1). It is chosen low for stable training and high
for better gradient constraining. We use λ = 2 on Basic Invex and Invex (composed) experiments for all
datasets. We settle at this specific value with trial and error. Better tuning of λ can result in better ac-
curacy. We find that invex function-based classifiers perform similarly to ordinary neural networks on the
given datasets. This might be due to the simple clustered nature of classes in input space which is confirmed
by the 2D manifold visualization of the invex classifier in Appendix G.

We can not be certain if a function is invex or not in a high-dimensional space like MNIST when using the
GC-GP method. To verify that our function is invex we test for constraints on all training and test datasets
as well as on 1 Million random points. It is found that in F-MNIST our classifiers follow our invexity rule
on > 99% of data points and > 99% of random points. In the MNIST dataset, for both MLP and CNN
architecture, some classifiers have fewer percentages of points that follow our invex rule. The details of
the experiments and the percentage of points following our invexity rule are mentioned in the Appendix
section C.4.

Table 3: Accuracy on various datasets using various architectures. The blue numbers represent Accuracy
using hard classification as per nearest region/classifier for Connected Classifier. iNN represents invertible
Neural Network as backbone whereas NN represents ordinary Neural Network for backbone. Connected
Classifier represents our method of classification and MLP Classifier represents ordinary 2 layer MLP for
classification task. The settings using iNN + Connected Classifier and iNN + Linear Classifier produce
connected set based classification. (*) Represents model used for interpretation in Table 4

Architecture Dataset (MLP) Dataset (CNN)
MNIST MNIST F-MNIST C-10 C-100

iNN + Connected Classifier 96.68 98.87 89.58 84.45 52.58
96.77 98.78 89.49 84.23* 51.85

iNN + MLP Classifier 96.81 98.26 89.61 84.77 56.91
NN + Connected Classifier 97.55 99.4 90.38 85.93 50.74

97.54 99.34 88.1 85.79 50.39
NN + MLP Classifier 97.38 98.89 90.58 86.02 53.08

iNN + Connected Classifier 96.83 98.38 89.35 83.95 52.44
(Regions = Classes) 96.85 98.43 88.43 83.81 51.54

iNN + Linear Classifier 96.61 98.24 88.97 84.71 56.08

Multi-connected set classifier We compare the classification capacity of a multi-connected set classi-
fier with an ordinary neural network. Here, we use invertible architecture along with the same architec-
ture without invertibility for comparison. The details regarding the classification method are mentioned in
Methodology Section.

Here, we directly compare the classification capacity of ordinary neural networks with connected-set-based
classifiers. The classification accuracy of different models on MNIST, F-MNIST, CIFAR-10 and CIFAR-
100 datasets are in Table 3. Furthermore, we also use node-based classification on top of the ordinary
backbone for a fair comparison. We use an invertible or ordinary backbone combined with a connected or
MLP(disconnected) classifier for a detailed comparison. To test the benefit of a multi-connected-set classifier
we also test using an invertible backbone and linear classifier. The experiments show that our connected
classifier performs poorly as compared to MLP or Linear classifier, however, using a linear equivalent con-
nected classifier, i.e. using the number of regions equal to the number of classes, we find that using multiple
regions helps in accuracy. This gap in performance can be credited to the poor optimization of the connected
classifier. We initialize the ordinary neural network using spectral normalization (SN) which improves the
performance of the ordinary neural network on invertible architecture. For all experiments, we use an l2-
norm based connected classifier except for the CIFAR-100 experiment where we use a dot-product based
connected classifier. Furthermore, we classify using the multi-invex classifier on a 2-D manifold in input
space (see Appendix G). Such classifiers have lower classification accuracy but output the manifold in 2-D
which can be plotted similarly to UMAP (McInnes et al., 2018).

14

Under review as submission to TMLR

0 1 2 3 4

5 6 7 8 9

T-shirt Trouser Pullover Dress Coat

Sandal Shirt Sneaker Bag Ankle boot

Figure 8: Left: Centroids of 10 classifiers (in input space) for MNIST. Right: Centroids of 10 classifiers (in
input space) for Fashion-MNIST. These centroids visualization is done with models using Invertible Residual
MLP trained with 1-vs-all classification and not from Table 2 or 3.

Interpretation of Regions/Neurons The centroid of each classifier of the One-vs-All classification can
be visualized since the centroid represents the maximal class point. The visualization helps us to interpret
where the neuron is focusing in a local region (or compact 1-connected set) around the centroid. We observe
the centroids of 10 MNIST classifiers and 10 F-MNIST one-vs-all classifiers per class to have centroids as
shown in Figure 8. We transform the center of the cone created by binary connected classifier layers by using
an invertible neural network in the reverse direction. This gives us the centers in terms of input space which
can be visualized as an image.

Furthermore, the centers of the Multi-Connected Set based classifier can also be visualized as shown in
Table 4. We find that centers do not exactly represent the data points, and are not explainable in terms
of input space. The centers on the table show that the region contains noisy points similar to adversarial
examples (Goodfellow et al., 2014) and can produce output with high class probability. We can similarly
perform an analysis of each neuron representing a region in terms of accuracy and visualize the medoid of
the data points as well as an example nearest to the centroid in each region.

5 Limitations

Invex function using gradient constraint depends on GC-GP, a robust method, however, it can not guarantee
if the function is invex or not. When we experiment on 1-Lipschitz Constraint in Table 5, we find that our
method successfully constrains properly for different values of lambda(λ). However, the constraint is not
followed properly for some λ and some experiments. This observation also follows the projected gradient
constraint used for the invex function. Table 6, 7, 8 show the percentage of points following the constraints,
where we find that there are points that do not satisfy the constraints. This might be a problem for certain
cases where invexity needs to be guaranteed. Even if the constraint is satisfied for all data points by the
learned function, we need to confirm if it satisfies for all possible points. In such a case, we can theoretically
argue that some invex function with the same gradients on those data points satisfies the constraint for all
possible points. Furthermore, we need robust mathematical proofs for our gradient constraint method of
constructing the invex function. Our intuition is easily understood in 3D visualization. However, we can
only interpolate the idea of equations using general operations like the dot product, norm and inequality for
any dimension. The connected classifier used in Multi-Invex classifier experiments shows poor performance
as compared to the MLP classifier which is mainly due to poor optimization of the model when used with
a connected classifier. This gap in performance can be analysed and improved. We are also unsure if
the partitions of binary connected classifier and multi-invex classifier are overfitting for high dimensional
datasets. We consider regularizing invertible functions for simpler decision boundaries and applying the
concept of Prototype and Criticism used in Explainable AI to improve the Connected Classifiers for our
future work. See Appendix J for future works.

15

Under review as submission to TMLR

Table 4: Interpretation of connected regions of Multi-Invex (multiple connected set based) classifier on
CIFAR-10. The Center represents the center used by the region in Voronoi Diagram to create a decision
boundary, it is not interpretable, however, belongs to the same region. Z-space represents observations in
latent space after invertible transformation and X-space represents observations in input space. Medoid
examples represent the medoid of data points belonging to the region. Nearest examples show the nearest
example to the Center for the region. Class, name and index, represents the class the region/neuron belongs
to and RegionId represents the index of the region/neuron among 100 used in the experiments; the remaining
region/neuron do not contain any test points and can be removed. The region contains Num Points total
samples with Correct number of samples represented by Accuracy in percentage.

Center

Medoid
X-space

Nearest
X-space

Medoid
Z-space

Nearest
Z-space

Class 2 (2) 7 (17) 1 (21) 4 (24) 5 (25) 6 (26) 3 (33) 9 (49) 0 (50)
RegionId bird horse automobile deer dog frog cat truck airplane

Num Points 424 986 974 1043 13 1023 67 5 953
Correct 366 874 911 851 7 898 26 2 809

Accuracy(%) 86.56 88.74 93.53 81.59 53.85 87.88 40.30 40.00 84.89

Center

Medoid
X-space

Nearest
X-space

Medoid
Z-space

Nearest
Z-space

Class 9 (59) 1 (61) 2 (62) 5 (65) 7 (77) 2 (82) 8 (88) 0 (90) 3 (93)
RegionId truck automobile bird dog horse bird ship airplane cat

Num Points 1024 3 412 972 9 59 1002 94 937
Correct 907 3 341 725 2 48 916 77 653

Accuracy(%) 88.57 100.0 82.77 74.59 22.22 83.05 91.52 81.91 69.80

6 Conclusion

In this paper, we introduced a new type of Neural Network called Input Invex Neural Network (II-NN).
We present two methods to create an invex function with neural networks. Experiments show that II-NN
has comparable performance to that of Ordinary Neural Networks in the classification task. We relate the
concept of a simply-connected set with the invex function and show that multiple simply connected decision
boundaries can perform any classification task.

16

Under review as submission to TMLR

Furthermore, we relate the concept of simply connected decision boundaries with interpretability. Knowing
the centroid of the set, the data points in it and the maximum value it represents can be useful for multi-
ple applications such as activation visualization and neuron interpretation. We also exploit the geometric
stability property of the Connected Set Classifier to perform Network Morphism on toy datasets.

Although we use GC-GP for constructing the invex function, it can be used for other tasks such as on
WGAN (Arjovsky et al., 2017) or modified for other constraining problems. Connected regions can also be
used for other applications than we experiment with; II-NN will be useful in such cases.

17

Under review as submission to TMLR

References
Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on

Machine Learning, pp. 146–155. PMLR, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International conference on machine learning, pp. 214–223. PMLR, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible
residual networks. In International Conference on Machine Learning, pp. 573–582. PMLR, 2019.

Adi Ben-Israel and Bertram Mond. What is invexity? The ANZIAM Journal, 28(1):1–9, 1986.

Michael Biehl, Barbara Hammer, and Thomas Villmann. Prototype-based models in machine learning. Wiley
Interdisciplinary Reviews: Cognitive Science, 7(2):92–111, 2016.

Léon Bottou and Vladimir Vapnik. Local learning algorithms. Neural computation, 4(6):888–900, 1992.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation.
Advances in Neural Information Processing Systems, 33:442–453, 2020.

David S Broomhead and David Lowe. Radial basis functions, multi-variable functional interpolation and
adaptive networks. Technical report, Royal Signals and Radar Establishment Malvern (United Kingdom),
1988.

Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel Loaiza-
Ganem. The union of manifolds hypothesis and its implications for deep generative modelling. arXiv
preprint arXiv:2207.02862, 2022.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by network
transformation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks like that:
deep learning for interpretable image recognition. Advances in neural information processing systems, 32,
2019.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge transfer.
arXiv preprint arXiv:1511.05641, 2015.

L Paul Chew and Robert L Dyrsdale III. Voronoi diagrams based on convex distance functions. In Proceedings
of the first annual symposium on Computational geometry, pp. 235–244, 1985.

William S Cleveland and Susan J Devlin. Locally weighted regression: an approach to regression analysis
by local fitting. Journal of the American statistical association, 83(403):596–610, 1988.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-
order functional knowledge for better option pricing. Advances in neural information processing systems,
pp. 472–478, 2001.

18

Under review as submission to TMLR

Nelson Elhage. Softmax linear units. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/solu/index.html.

Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and efficient architecture search for convo-
lutional neural networks. arXiv preprint arXiv:1711.04528, 2017.

Utku Evci, Max Vladymyrov, Thomas Unterthiner, Bart van Merriënboer, and Fabian Pedregosa. Gradmax:
Growing neural networks using gradient information. arXiv preprint arXiv:2201.05125, 2022.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv preprint
arXiv:1711.09784, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf.

Morgan A Hanson. On sufficiency of the kuhn-tucker conditions. Journal of Mathematical Analysis and
Applications, 80(2):545–550, 1981.

William L Hosch. Poincaré conjecture. October 2013.

Chin-Wei Huang, Ricky TQ Chen, Christos Tsirigotis, and Aaron Courville. Convex potential flows:
Universal probability distributions with optimal transport and convex optimization. arXiv preprint
arXiv:2012.05942, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-supervised learning with
normalizing flows. In International Conference on Machine Learning, pp. 4615–4630. PMLR, 2020.

Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. i-revnet: Deep invertible networks. arXiv
preprint arXiv:1802.07088, 2018.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search system. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 1946–1956, 2019.

Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to criticize! criticism
for interpretability. Advances in neural information processing systems, 29, 2016.

Rolf Klein and Derick Wood. Voronoi diagrams based on general metrics in the plane. In Annual Symposium
on Theoretical Aspects of Computer Science, pp. 281–291. Springer, 1988.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural decision
forests. In Proceedings of the IEEE international conference on computer vision, pp. 1467–1475, 2015.

Lihong Ma. Bisectors and voronoi diagrams for convex distance functions. 2000.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, volume 30, pp. 3. Citeseer, 2013.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelligence
Review, 42(2):275–293, 2014.

19

https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf

Under review as submission to TMLR

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

Shashi Kant Mishra and Giorgio Giorgi. Invex functions (the smooth case). Invexity and Optimization, pp.
11–38, 2008.

Stefan Mititelu. Invex sets and nonsmooth invex functions. Revue Roumaine de Mathematiques Pures et
Appliquees, 52(6):665–672, 2007.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for gener-
ative adversarial networks, 2018.

SR Mohan and SK Neogy. On invex sets and preinvex functions. Journal of Mathematical Analysis and
Applications, 189(3):901–908, 1995.

Meike Nauta, Annemarie Jutte, Jesper Provoost, and Christin Seifert. This looks like that, because...
explaining prototypes for interpretable image recognition. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 441–456. Springer, 2021.

Vitali Nesterov, Fabricio Arend Torres, Monika Nagy-Huber, Maxim Samarin, and Volker Roth. Learning
invariances with generalised input-convex neural networks. arXiv preprint arXiv:2204.07009, 2022.

Henning Petzka, Asja Fischer, and Denis Lukovnicov. On the regularization of wasserstein gans, 2018.

LKPJ Rdusseeun and P Kaufman. Clustering by means of medoids. In Proceedings of the statistical data
analysis based on the L1 norm conference, neuchatel, switzerland, volume 31, 1987.

Daniel Reem. The geometric stability of voronoi diagrams with respect to small changes of the sites. In
Proceedings of the twenty-seventh annual symposium on Computational geometry, pp. 254–263, 2011.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The Journal of Machine Learning
Research, 5:101–141, 2004.

David Ruppert and Matthew P Wand. Multivariate locally weighted least squares regression. The annals of
statistics, pp. 1346–1370, 1994.

Suman Sapkota and Binod Bhattarai. Noisy heuristics nas: A network morphism based neural architecture
search using heuristics. arXiv preprint arXiv:2207.04467, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. In International Conference
on Machine Learning, pp. 564–572. PMLR, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Constantin Zălinescu. A critical view on invexity. Journal of Optimization Theory and Applications, 162(3):
695–704, 2014.

20

Under review as submission to TMLR

Appendices
A Gadient-Clipped Gradient Penalty

K-Lipschitz constraint of Neural Networks has been important for multiple works such as WGAN and
iResNet. WGAN-GP (Gulrajani et al., 2017) regularizes the Lipschitz constant of the data points to be
some value (eg. K=1). This method has two drawbacks. Firstly, it cannot exactly constrain the gradient
to be precisely K-Lipschitz as it is added to the loss term and constrained via gradient descent. This is
shown in the experiment section in Table 5. It is because, in many training examples, the gradient from the
criterion is opposite to the gradient from the gradient-penalty, which does not allow the desired Lipschitz
constant. Secondly, the constraint adds the loss if the local Lipschitz constant at some points is less than
desired. According to the definition of the Lipschitz constant, the local Lipschitz value can be any below
the maximum K specified. Similarly, WGAN-LP (Petzka et al., 2018) regularizes only if the local Lipschitz
constant at a point is greater than the specified K. It solves the second problem with WGAN-GP, yet it
faces the same first drawback. Spectral Normalization (Miyato et al., 2018) is another robust method for
constraining the K-Lipschitz constant of the Neural Network. It constrains the Neural Network at the
functional level, i.e. constraints the weights. The problem with this method is that it constrains the upper
bound of the Lipschitz constant globally.

Although WGAN-GP and WGAN-LP constrain the function globally, they can be modified to constrain
locally as well. Since these methods constrain the gradient of the input w.r.t output, it can constrain each
input point to a different magnitude of the gradient, i.e. to a specific local Lipschitz constant. The Spectral
Normalization (Miyato et al., 2018), however, cannot constrain the local K-Lipschitz or input gradient. To
construct an invex function, we have a requirement to have local K-Lipschitz constraint or input gradient
constraint guaranteed as shown in Proposition 1.

A.1 How our method solves the problem

Since we develop a method for constructing invex function depending on the projected input gradient con-
strained neural network, we also engineered a method to impose such constrain on Neural Networks. Our
method (GC-GP) improves on the drawbacks of previous gradient constraint methods. The details are
discussed in Section 3.

To summarize, we use two components to constrain local gradient constraints. First, we apply Gradient
Penalty (GP) according to the Gradient Constraint required (Gradient Magnitude in the case of K-Lipschitz
and Projected Gradient Constraint in case of constructing invex functions). It is known that the criterion
can also oppose the Gradient Constraint, which will not constrain the gradient properly. To solve this,
we apply gradient clipping by intercepting the gradient at the output neuron. We zero out the criterion
gradient at those points where gradient constraint is being violated. This allows us to achieve two goals,
fitting neural network to the data and constraining gradient (make function K-Lipschitz or invex). The
pipeline for gradient constraint is shown by Figure 4. The pseudocode for GC-GP used in the invex function
is shown in Algorithm 1.

A.2 Limitations of our method

Although our method (GC-GP) improves upon GP and LP, it can not guarantee the constraint is satisfied, it
only regularizes towards that constraint. Although we experimentally show (in Section B) that the majority
of data points satisfy our constraint, it is still not a theoretical guarantee. This might limit the use of GC-GP
for some theoretical works and proofs.

21

Under review as submission to TMLR

B Lipschitz Constraint : Experiment

X1

1.000.750.500.250.000.250.500.751.00

X2
1.000.750.500.250.000.250.500.751.00

Y

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(a) Regression 1

X1

1.000.750.500.250.000.250.500.751.00

X2
1.000.750.500.250.000.250.500.751.00

Y

0.4
0.2
0.0
0.2
0.4

(b) Regression 2

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x2

-0.8
-0.8 -0.6 -0.4

-0.2
0.0

0.2

0.2

0.2

0.4

0.4

0.
4

0.6

0.6

0.8

0.8

0.8

(c) Regression 1

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x2

-0
.5

-0.5

-0.4

-0.4

-0.4

-0.4
-0.3

-0.3

-0.3

-0.2

-0.2

-0
.1
-0.1

0.0

0.0

0.0

0.
1

0.10.
2 0.2

0.2

0.2

0.3

0.4

(d) Regression 2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Classification 1: Lipschitz Compare

Figure 9: (a) and (c) are the 3D plot and Contour plot of Regression 1 dataset respectively. Similarly, (b)
and (d) are the 3D plot and Contour plot of the Regression 2 dataset respectively. (e) is the Classification 1
Dataset (Spiral). These datasets are used for the Lipschitz constraint experiment as well as invex function
experiments. The source code for the datasets is available in the supplementary material.

We conduct detailed experiments for comparing the Lipschitz constraint of various methods in Table 5. It can
be observed that our method (GC-GP) achieves relatively high performance while maintaining the Lipschitz

22

Under review as submission to TMLR

constant close to the target (K = 1). In the Classification 1 dataset, our method has a Lipschitz constant
close to one (1) and does better with λ = 3. Although GC-GP can not guarantee the target Lipschitz
constant, it can be seen from the experiment that it achieves near-perfect constraint.

Firstly, we experiment with three toy datasets for comparing the Lipschitz constraint on regression and
classification with various methods. These are: two 2D regression and a 2D classification dataset. The
Regression 1 and 2 datasets consist of 2500 and 5625 points on a grid respectively whereas the Classification
1 dataset is a 2D spiral data consisting of 400 data points. For regression, we test on Mean Squared Error
(MSE) and for classification, we test on Binary Cross Entropy (BCE) and Accuracy on the training data. We
compare constraint methods: Gradient-Penalty (GP) (Gulrajani et al., 2017), Lipschitz-Penalty (LP) (Petzka
et al., 2018), Spectral Normalization (SN) (Miyato et al., 2018) and Our Method (Gradient Clipped Gradient
Penalty, GC-GP) for 1-Lipschitz function. The metrics and Lipschitz constant of function learned are shown
in Table 5. The dataset used for Regression 1, 2 and Classification 1 are in Figure 9.

We use the scaled sigmoid function for the final layer of the Spectral Normalized Neural Network during
classification. The sigmoid is scaled by 4 such that its Lipschitz constant is 1. Thus, the Lipschitz constant
of the overall function is unchanged by the sigmoid activation. The experiments on Table 5 is conducted on
Neural Network with configuration: (2,10,10,1), where 2 and 1 are input and output dimension respectively.
We use ELU (Clevert et al., 2015) activation for regression and LeakyReLU (Maas et al., 2013) activation
for classification in intermediate layers. We use sigmoid in the final layer for classification. We train each
model for 7500 epochs using a full batch using soft-l1-loss for penalizing the gradient norm (or K-Lipschitz).

23

Under review as submission to TMLR

Dataset Method Seed Loss / Lipschitz Minimum Time (ms)
(Accuracy) Constant (K) Gradient Norm

Regression 1

GP (λ = 1) A 0.06793 1.37824 0.12656 4.12±0.58
B 0.06391 1.45713 0.28021
C 0.07396 1.23643 0.30802

GP (λ = 3) A 0.11041 1.22805 0.59818 4.12±0.60
B 0.11135 1.21324 0.55712
C 0.10442 1.18923 0.62169

LP (λ = 1) A 0.05598 1.21801 0.01146 4.19±0.56
B 0.05524 1.25629 0.02150
C 0.05597 1.20679 0.01799

LP (λ = 3) A 0.06335 1.10782 0.02662 4.17±0.56
B 0.06344 1.12563 0.00471
C 0.06310 1.18670 0.01166

SN A 0.09156 1.00014 0.12324 2.88±0.47
B 0.09139 0.99901 0.12381
C 0.09121 0.99785 0.12192

GC-GP (λ = 1) (Ours) A 0.08365 0.92083 0.02074 5.60±0.96
B 0.08426 0.99231 0.01201
C 0.08185 0.92162 0.02632

GC-GP (λ = 3) (Ours) A 0.08874 0.88536 0.03419 6.05±0.77
B 0.08708 0.87693 0.02011
C 0.08819 0.88356 0.01996

Regression 2

GP (λ = 1) A 0.02060 1.19123 0.32234 6.06±0.81
B 0.01715 1.35935 0.25872
C 0.01786 1.31234 0.24638

GP (λ = 3) A 0.02641 1.14505 0.540290 7.80±0.75
B 0.02131 1.13570 0.47666
C 0.03304 1.20034 0.57999

LP (λ = 1) A 0.00530 1.12591 0.00758 6.13±0.78
B 0.00524 1.13546 0.01011
C 0.00529 1.17633 0.00312

LP (λ = 3) A 0.00571 1.14781 0.00490 6.15±0.84
B 0.00550 1.07732 0.02155
C 0.00546 1.07079 0.01466

SN A 0.01774 0.45701 0.006839 3.27±0.54
B 0.01923 0.47381 0.00768
C 0.01871 0.48544 0.00780

GC-GP (λ = 1) (Ours) A 0.00759 0.89684 0.00537 7.75±0.75
B 0.00720 0.89899 0.01888
C 0.00729 0.89305 0.01133

GC-GP (λ = 3) (Ours) A 0.00757 0.86108 0.00964 6.05±0.77
B 0.00757 0.85756 0.01369
C 0.00826 0.85425 0.00193

Classification 1

GP (λ = 1) A 0.12006 (100.0) 1.67273 0.28320 2.26±0.45
B 0.11239 (100.0) 1.74431 0.37148
C 0.11637 (100.0) 1.71859 0.26768

GP (λ = 3) A 0.20353 (98.0) 1.66700 0.35362 2.60±0.46
B 0.23160 (97.25) 1.49510 0.51360
C 0.19764 (99.25) 1.51147 0.03693

LP (λ = 1) A 0.01828 (100.0) 1.37528 0.0 2.66±0.47
B 0.06048 (97.25) 2.25560 0.0
C 0.01934 (100.0) 1.60750 0.0

LP (λ = 3) A 0.17167 (96.5) 1.58051 0.00492 2.66±0.46
B 0.054330 (100.0) 1.80411 1.72 × 10−7

C 0.050757 (97.25) 2.06773 0.0
SN A 0.43505 (76.0) 0.79094 0.17857 2.51±0.45

B 0.42814 (76.5) 0.85739 0.22571
C 0.43819 (76.25) 0.95832 0.19253

GC-GP (λ = 1) (Ours) A 0.30689 (98.0) 1.19644 0.18211 3.55±0.40
B 0.35706 (84.75) 1.03542 0.07420
C 0.29447 (98.0) 1.04589 0.130878

GC-GP (λ = 3) (Ours) A 0.32096 (96.0) 0.97788 0.14575 3.55±0.40
B 0.35798 (85.25) 0.96265 0.07568
C 0.33111 (94.75) 1.07161 0.14411

Table 5: Comparison between various K-Lipschitz Constraint methods. Seeds A, B and C are 147, 258 and
369 respectively. The time taken is measured for all seeds. Our method takes the most time as it needs to
scale the penalty and clip the gradient. Spectral Normalization (SN) takes the least time as it does layerwise
iterative normalization and does not depend on the data.

24

Under review as submission to TMLR

C Invex Function using GC-GP

C.1 Motivation/Intution for Connected Sets and Invex function

To simplify our problem, we start with a 1D function that is not convex but has only global minima. To
our surprise, we found that such a function can actually be decomposed into two sums, a convex part and
a locally Lipschitz constrained part as shown in Figure 10. We first develop a constraint that is required
for the function to be quasi-convex in 1D (A strongly quasi-convex function in 1D is equivalent to an invex
function with a single minima point).

𝙮i = 𝒇invex(𝒙)

𝙮c = 𝒇convex(𝒙)

𝙮l = 𝒇local-lipschitz(𝒙)

Figure 10: A 1D invex function finvex(x) decomposed into convex fconvex(x) and flocal−lipschitz(x). This
serves as an initial motivation for finding invex function using gradient constraint/local-Lipschitz constraint
method.

We found the constraint to be as follows. However, generalizing to a higher dimension was a challenge.

sign
(dyc

dx

)
×

(dyc

dx
+ dyl

dx

)
> 0

We found that we were looking for an invex function, as it was the only generalization that had a requirement
to have only global minima as stationary points. Modifying the above equation for 2D, we find that similar to
the local Lipschitz constraint, the local projected gradient constraint should be done by using a dot product
instead. In the next section, we present the idea in an organized format, not parallel with the development
of the theory and its implementation.

C.2 Theory of Constructing Invex Function

Proposition 1 Let f : X → R and g : X → R be two functions on vector space X. Let x ∈ X be any point,
x∗ be the minima of f and x ̸= x∗. If f be an invex function (convex or strongly quasi-convex) and If(∇g(x) · ∇f(x)

∥∇f(x)∥

)
+ ∥∇f(x)∥ > 0

then h(x) = f(x) + g(x) is an invex function.

Proof in 1D: Let us consider a 1D invex function f(x) as shown in Figure 11. If we add the function f(x)
with some gi(x), then we will have a new function hi(x). The modified function might be invex or not. If
it does not change the direction of the gradient at any point with reference to the gradient of the original
function f(x), i.e.

∇hi(x) · ∇f(x) > 0 (6)

25

Under review as submission to TMLR

then hi(x) is an invex function. If the modified function changes the direction of the gradient, it would
mean that there exists new minima/maxima that are not the minima of the f(x). If we preserve the above
inequality, we keep the position of minima intact and modify only those part which preserves the invexity.
Those modifications which do not follow the above rule might still be an invex function. For example,
if the modification shifts the function in Figure 11 from left to right, it is still an invex function, but the
direction of the gradient would be opposing in many input points. In Figure 11, we use x1 and x2 as example
points to show the gradient and the inequality. The modified functions: h1(x), h2(x) and h3(x) have the
same direction of gradient at all points hence, these are invex function. The modified functions h0(x) and
h4(x) have different gradient direction at some points. Hence, these functions are not invex. In 1D, the dot
product between the original gradient and gradient of the modified function at each point gives a +ve value
if the direction is the same. We want all the dot products between gradients to be positive, to preserve
invexity while changing the non-linearity of the function. We ignore the inequality at minima (x∗) because
the gradient is zero and does not follow the inequality.

This definition is still true in 2D for which the visual proof is shown in the next paragraph. This idea can be
extended to n-Dimensional (nD) functions as well. The main goal is to change the existing invex (or convex)
function such that the modified gradient still leads to the same global minima. If the projected gradient of
the modified function ∇hi(x) in the direction of ∇f(x) is positive at all points, it implies that there is no
new maxima/minima created during the modification. This is what preserves the invexity. We extrapolate
the idea to nD functions as well but we lack proof for it. However, the idea is intuitive enough to suggest
that it most likely holds true for nD as well.

Extrapolation from convex function: Let us consider only the nD differentiable convex function. We
know that a differentiable convex function has global minima as well as convex contour sets. A convex
contour set is a generalization of a 1-connected set. Furthermore, there are two types of convex function:
(1) with a minimum at finite x (or local convex function) which has a bounded convex contour set. (2)
with minima at some infinity (∞) which has an unbounded convex contour set.

We take the property of a differentiable convex function that it has a global minimum and modify the contour
sets, with a new function superposition, such that the sets are still connected, i.e. has only the same single
global minima, and are more non-linear. Such a general function having only global minima is called an
invex function. Our initial axiom is defined by equation (4). If the angle between gradients of the old convex
function and modified function is less than π

2 at all points, then we can say that no new minima have been
formed. This is because, if any new minima are formed then around that minima, the gradients of the old
function and that of the modified function around the minima would be opposing at some points.

This modification proposition can be applied to an invex function as well as to a simple convex function like
a cone. However, our method will prevent the function from having a large change in direction (i.e. angle
≥ π

2), which could still be an invex function. This is tackled by propositions 2 and 3.

In applications like machine learning, the data points are finite and normalized to a small range. Here,
locality might refer to having boundaries in the range of x.

This statement can be written mathematically.

∇h(x) · ∇f(x)
∥∇f(x)∥ > 0 (7)

Using h(x) = f(x) + g(x) and solving this we get,

(∇g(x) · ∇f(x)
∥∇f(x)∥

)
+ ∥∇f(x)∥ > 0 (8)

Proof in 2D: Consider a simple invex function f(x) as shown in figure 12. It is a simple modification of the
sigmoid function. We can make it more non-linear by adding another function g(x). If the modified function
g(x) does not change the direction of the projected gradient at any point, then it is an invex function.

∇h(x) · ∇f(x) > 0 (9)

26

Under review as submission to TMLR

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
=

f(x
)

0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.0

0.2

0.4

0.6

0.8 x1 x2func h0(x)
func h1(x)
func h2(x)
func h3(x)
func h4(x)
invex f(x)

Figure 11: A 1D function f(x) with modification by various gi(x), forming modified function hi(x).

X14 2 0 2 4 6
X2

2
0

2
4

6

Y

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

4 2 0 2 4

2

0

2

4

6
f(x)
f(x)

a

b

c

d

e

Figure 12: Initial invex function. This function is modified and checked at points a-e to find if the function
is invex or not. The check actually happens at all points in the algorithm. However, here we use these 5
points to convey the property of change in direction of the gradient and its relation with invex function.

We present 4 modifications to the function in Figure 12 which shows various cases to prove our proposition.
We choose 5 points (a, b, c, d and e) which show condition being satisfied or not being satisfied by various
modifications.

Modification 1: The Figure 13 shows h(x) = f(x) + g(x). The modification has the same global minima,
i.e. no new minima/maxima have been created. The modified function satisfies the condition in Equation 9
at all points. It can be seen that the projected gradient all have positive values. It can also be seen on the
contour plot that there are no new minima or maxima. Hence, the modification is still an invex function.

Modification 2: The modification as shown in Figure 14 is similar to Modification 1. The modified
function is still an invex function (same reason as Modification 1).

Modification 3: The modification as shown in Figure 15 is not an invex function. It has a new maximum
as compared to the original function, as can be seen on the contour plot. This is reflected by the violation
of Equation 9. If we look at point a, then we can see that the projected gradient of modified function h(x)

27

Under review as submission to TMLR

X14 2 0 2 4 6
X2

2
0

2
4

6

Y

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

4 2 0 2 4

2

0

2

4

6
h(x)
h(x)
f(x)

a

b

c

d

e

Figure 13: Modified invex function 1, also an invex function.

X14 2 0 2 4 6
X2

2
0

2
4

6

Y

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

4 2 0 2 4

2

0

2

4

6
h(x)
h(x)
f(x)

a

b

c

d

e

Figure 14: Modified invex function 2, also an invex function.

on f(x) is negative. Since it violates our condition, we are not sure that it is an invex function. Hence, our
condition is violated if there is a new minima/maxima, which is predicted by the projected gradient.

Modification 4: The modification as shown in Figure 16 is also not an invex function. It has a new
minimum as compared to the original function. It can be seen on the contour plot as well. The modified
function violates the Equation 9 constraint at point d (and points around it). Hence it may not be an invex
function. In this case, it is not an invex function. But we can not say that the function is not invex if it
violates Equation 9.

Proposition 2 Let g : X → R be a function on vector space X, let x ∈ X be any point, x∗ be the minima
of g and x ̸= x∗. If

∇g(x) · x − x∗

∥x − x∗∥
> 0

then g is an invex function.

28

Under review as submission to TMLR

X14 2 0 2 4 6
X2

2
0

2
4

6

Y

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

4 2 0 2 4

2

0

2

4

6
h(x)
h(x)
f(x)

a

b

c

d

e

Figure 15: Modified invex function 3, not an invex function.

X14 2 0 2 4 6
X2

2
0

2
4

6

Y

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

4 2 0 2 4

2

0

2

4

6
h(x)
h(x)
f(x)

a

b

c

d

e

Figure 16: Modified invex function 4, not an invex function.

Proof: Let us consider a cone as an initial invex function in Proposition 1. Let us take the cone of form
f(x) = a∥x − x∗∥, where x∗ is the center/tip of the cone. This is a cone with a scale factor of a. The unit
vector of the gradient of the cone is given by the following equation.

∇̂f = ∇f(x)
∥∇f(x)∥ = x − x∗

∥x − x∗∥
(10)

Moreover, let us consider the cone to be a generalized function. When a → 0 then f(x) → 0 but ∇̂f remains
the same. The magnitude of this generalized function at all the points is zero, but the direction of the
gradient points away from the minima (tip of the cone). Using this in Proposition 1, we get.

∇g(x) · x − x∗

∥x − x∗∥
> 0 (11)

The method of constructing invex function as mentioned above can not construct all invex functions. Hence,
there is a need for a universal invex function constructor.

29

Under review as submission to TMLR

Proposition 3 Modifying invex function as shown in Proposition 1 for N iterations with non-linear g(x)
can approximate any invex function.

Intuitive Visual Proof : The invex function according to Proposition 2 is very simple and can not ap-
proximate all invex functions. Whereas, Proposition 1 requires an invex function to start from and modify
the function. We can build a basic invex function using Proposition 2 and modify it using Proposition 1
for multiple iterations to make it more and more complex function to approximate the required invex func-
tion. A simple intuitive visualization of the requirement of multiple iterations of modification as well as the
universality is shown in Figure 17.

Original Contour (of interest)
Modified Contour
Original Gradient at a point (of interest)
Modified Gradient
Gradients of initial cone at various points

(a) (b)

(d)(c)

Figure 17: Multiple possible modifications of invex function (or a cone function). The diagrams are made
simple by focusing only on a single contour (a 1-connected decision boundary) as well as on a single point
of the function. (a) Modification of cone showing change in direction < π

2 or dot product > 0 (as per
Proposition 1, 2). (b) Modification of cone showing change in direction ≃ π

2 . (c) Modification of cone
showing a change in direction > π

2 or dot product < 0 which is still a connected set; however, our method
does not allow such change; hence the requirement of multiple iterations of modification. (d) Modification
of cone similar to (c), but using twice modified function (a - b - d) showing change in dot product > 0 in
each step but overall change < 0.

In a practical case, let us consider the invex function for the classification-1 dataset. We have done ex-
periments on Table 2 for connected sets using composed invex function. The visualization for the decision
boundary is shown in Figure 18.

The initial invex function is guided by the radial gradients as shown in Figure 17. This invex function is
limited by Proposition 2. It can’t have gradients that oppose the guiding gradients. Hence, we compose
on top of this function for a more non-linear invex function as shown in Figure 17. This time the gradient

30

Under review as submission to TMLR

guidance is enough for 100% accurate classification. Furthermore, this function can be made more non-linear
by composing it multiple times. Hence, we can say that multiple iterations of modifying the invex function
can approximate any invex function.

C.3 Algorithm for constructing II-NN

C.3.1 Modifying II-NN

A Modified II-NN is constructed according to Proposition 1. The parameters of the existing invex function
are frozen and the function is modified. The modification is made by adding a new Neural Network to the
existing invex function or II-NN. Its corresponding pseudocode is in Algorithm 3.

Algorithm 3: Modified II-NN - PyTorch like pseudocode
X, t is the dataset with m elements.
g_iinn is a model with neural network parameter and center parameter.
f_invex is an invex function (maybe a Neural Network) that is not trained.
lamda is the scaling parameter for projected gradient penalty.
f_pg_scale and f_out_clip are gradient penalty and
output_gradient clipper respectively as shown in Figure 4
for step in range(STEPS):

1. forward pass
y = g_iinn(X) + f_invex(X)
2. Gradient of the function
g_gradX, f_gradX = torch.autograd.grad(y, X)
3. Projected gradient
pg = torch.bmm(g_gradX.reshape(m, 1, -1),

f_gradX.reshape(m, -1, 1)).reshape(-1,1)
4. Compute projected gradient penalty
pgp = f_smoothl1(f_pg_scale(pg)).mean() * lamda
5. Compute gradient of parameters
pgp.backward_to(g_iinn.parameters())
6. Compute del_y from loss function
del_y = criterion(y, t).backward_to(y)
7. clip del_y using projected gradient
clip_val = f_out_clip(pg)
del_y_clip = del_y.clip(-clip_val, clip_val)
8. Compute gradient of parameters from above
del_y_clip.backward_to(g_iinn.parameters())
9. Update the parameters
optimizer.step()

C.3.2 II-NN by guiding with invex function

An II-NN can also be trained by scaling the output of the existing invex function to zero. This is similar
to Proposition 2 but instead of a generalized cone, it uses II-NN or other invex function. Its corresponding
pseudocode is in Algorithm 4.

C.4 II-NN Details : Experiment

The Regression 1 dataset used is the same as in Figure 9. The Classification 1 dataset along with predictions
by Linear, Convex, Ordinary, Basic Invex and Composed Invex Neural Networks is in Figure 18. We conduct
experiments per class basis on MNIST using MLP in Table 6 and CNN in Table 7 as well as on F-MNIST
using CNN on Table 8. The experiments compare the performance of the Convex Classifier, Invex Classifier

31

Under review as submission to TMLR

Algorithm 4: Guided II-NN - PyTorch like pseudocode
X, t is the dataset with m elements.
g_iinn is a model with neural network parameter and center parameter.
f_invex is an invex function (maybe a Neural Network) that guides the
projected gradient of g_iinn
lamda is the scaling parameter for projected gradient penalty.
f_pg_scale and f_out_clip are gradient penalty and
output_gradient clipper respectively as shown in Figure 4
for step in range(STEPS):

1. forward pass
y = g_iinn(X)
z = f_invex(X)
2. Gradient of the function
g_gradX = torch.autograd.grad(y, X)
f_gradX = torch.autograd.grad(z, X)
3. Projected gradient
pg = torch.bmm(g_gradX.reshape(m, 1, -1),

f_gradX.reshape(m, -1, 1)).reshape(-1,1)
4. Compute projected gradient penalty
pgp = f_smoothl1(f_pg_scale(pg)).mean() * lamda
5. Compute gradient of parameters
pgp.backward_to(g_iinn.parameters())
6. Compute del_y from loss function
del_y = criterion(y, t).backward_to(y)
7. clip del_y using projected gradient
clip_val = f_out_clip(pg)
del_y_clip = del_y.clip(-clip_val, clip_val)
8. Compute gradient of parameters from above
del_y_clip.backward_to(g_iinn.parameters())
9. Update the parameters
optimizer.step()

32

Under review as submission to TMLR

Architecture Invexity %
Class Logistic Convex Invex Invex Ordinary Train+Test 1M random

(Basic) (Invertible) + (Train + Test)
0 98.724 99.490 99.541 99.592 99.541 100.0000 100.0000
1 98.590 99.427 99.471 99.604 99.604 99.9971 99.9998
2 95.155 98.401 99.079 98.789 98.983 100.0000 89.5211
3 94.802 98.366 98.861 98.762 98.861 99.9843 73.8646
4 96.894 98.727 99.032 99.185 99.236 99.9971 99.9998
5 93.330 98.430 98.711 98.99 98.599 100.0000 100.0000
6 97.338 99.165 99.322 99.374 99.322 99.9986 97.2588
7 96.449 98.492 98.687 98.346 98.589 100.0000 33.2285
8 91.273 96.150 98.665 98.409 98.871 99.9986 99.9999
9 93.162 96.283 98.167 98.365 98.464 99.9871 99.9985

Argmax 90.790 96.830 97.090 97.250 97.670 - -

Table 6: MNIST MLP: Accuracy with various architectures and Invexity %

and Ordinary Classifier for all experiments. We compare with Logistic regression on the MNIST dataset. We
also test the percentage of the Invexiy rule followed by all train and test points as well as 1 Million random
points. It is observed that most of the classifiers follow our Invex rule on > 99% of training and test points
and random points.

We experiment on toy datasets (see Figure 9) to test the capacity of the Invex Neural Network. First, we
compare on regression and secondly on classification dataset. We use a 2D spiral dataset for classification
which has binary connected sets as classes and is suitable to test the invex function. On a bigger dataset, we
experiment on MNIST using MLP as well as CNN architecture and on Fashion-MNIST (Xiao et al., 2017)
dataset on CNN architecture. We compare the performance of the Invex function with Linear, Convex and
Ordinary Neural Network on Table 2.

The models for toy datasets are trained for 5000 epochs with a full batch whereas the models for MNIST
and F-MNIST are trained for 20 epochs with a batch size of 50. For toy regression and classification
we use network with configuration (2,10,10,1) and (2,100,100,1) respectively. And MLP on MNIST, our
configuration is (784, 200, 100, 1). In these configurations, the first and the last number represents the input
and output dimension, and the rest represents the dimension of hidden layers. For CNN on MNIST and
F-MNIST we use configurations (1C, 16C, 32C, GAP, 1) and (1C, 32C, 32C, GAP, 1), where configurations
are as: input channel, hidden channels, Global Average Pooling (GAP) and output unit. We train the binary
classification model for each class of MNIST and F-MNIST and apply argmax over the probability of each
class for multi-class classification. The per-class datasets are balanced during sampling. All convolutional
layers have kernel:5, stride:2 and padding:1. For regression we use ELU activation and LeakyRelu for rest.
Furthermore, we also compare the performance of the Binary Invex Classifier using the invertible method for
the invex function. This architecture is not directly comparable as it uses iResNet architecture. However,
we use close matching architecture to compare the performance (available on code at github). We find that
both of our models perform relatively similar. Furthermore, we can easily use invertible mapping to map
output centroid to input space for visualization.

On the MNIST dataset, since the data are not evenly spaced, we use mixup to increase the diversity of
points sampled and penalize functions where the constraint is not followed. On the Classification dataset,
we use random input points to check and penalize the function where the constraint is not followed. This
helps to constrain the function to be invex in the region where data points are unavailable. However, this
does not improve performance much when used on CNN. Hence, in the FMNIST experiment, we do not use
the mixup method. Furthermore, we use mixup on invertible invex method experiments, not meant for direct
comparision.

33

Under review as submission to TMLR

Architecture Invexity %
Class Logistic Convex Invex Invex Ordinary Train+Test 1M random

(Basic) (Invertible) + (Train + Test)
0 98.724 97.755 99.388 99.949 99.235 100.0000 100.0000
1 98.590 99.163 99.559 99.780 99.471 100.0000 96.5372
2 95.155 97.335 98.837 99.758 98.643 100.0000 100.0000
3 94.802 97.574 98.713 99.653 99.257 100.0000 99.9951
4 96.894 97.301 99.695 99.745 99.796 99.9857 10.0613
5 93.330 96.973 98.823 99.664 98.935 100.0000 100.0000
6 97.338 97.390 99.530 99.687 99.478 100.0000 99.9995
7 96.449 96.012 99.124 99.708 99.319 100.0000 99.9503
8 91.273 96.920 98.614 99.538 98.922 100.0000 6.5421
9 93.162 92.815 97.869 99.257 98.117 100.0000 100.0000

Argmax 90.790 94.680 97.850 98.820 98.080 - -

Table 7: MNIST CNN: Accuracy with various architectures and Invexity %

Architecture Invexity %
Class Convex Invex Invex Ordinary Train+Test 1M random

(Basic) (Invetible) + (Train + Test)
0 92.10 95.25 95.40 95.30 100.0000 99.9739
1 97.75 99.10 99.55 99.10 100.0000 99.9064
2 90.10 93.75 94.75 94.0 100.0000 98.4567
3 92.60 95.60 96.95 96.20 99.9971 99.9158
4 89.05 93.65 94.50 93.85 99.9929 99.8463
5 98.35 99.15 99.60 98.95 100.0000 100.0000
6 81.65 88.00 89.40 87.95 99.9986 99.8244
7 93.75 98.50 98.85 98.80 100.0000 100.0000
8 97.75 98.70 99.25 98.60 99.9971 99.9998
9 95.90 98.60 98.95 98.30 99.9986 99.9999

Argmax 81.27 87.76 89.80 87.80 - -

Table 8: F-MNIST CNN: Accuracy with various architectures and Invexity %

34

Under review as submission to TMLR

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(a) Logistic Regression

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(b) Ordinary Neural Network

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(c) Convex Neural Network (ICNN)

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(d) Invex (Invertible)

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(e) Basic Invex (GC-GP)

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(f) Invex : composed over Basic Invex in (e)

Figure 18: The 2D plot of decision boundary made by (a): Logistic Regression, (b): Ordinary Neural
Network, (c): Input Convex Neural Network, (d): Invex (Invertible) Neural Network, (e): Basic Invex and
(f): Invex composed over Basic Invex in (e). This dataset is named the Classification 1 task in the tables.

D Multiple Invex Classifier

D.1 Experiment Details

We use an Invertible Residual Network with Convolutional Layers for the Invertible backbone. The classi-
fication is performed by connected set classifiers which perform classification by dividing input space into
multiple 1-connected sets. We use a convex (1-connected) set using a Voronoi diagram (set) created by linear
softmax or distance softmax. We use linear softmax in experiments due to their easier optimization. This

35

Under review as submission to TMLR

Voronoi set is actually morphed to input space by the invertible mapping to create multiple 1-connected sets
(not convex).

For MNIST and Fashion MNIST datasets, we use an Invertible Residual Network with the same configuration
(Architecture 1). Similarly, for CIFAR-10 and CIFAR-100 datasets, we also use the Invertible Residual
Network with the same configuration (Architecture 2) as shown by Algorithm 5.

Algorithm 5: Configuration of Invertible Backbone for MNIST and CIFAR.

FOR MNIST AND FASHION MNIST: FOLLOWING INVERTIBLE ARCHITECTURE CONFIGURATION
The Input Image Channels is 1 and the total number of dimensions is 784.
The Redisual Flow Layer takes number of hidden channels as second parameter.
actf = irf.Swish
Invertible_Sequence = [

nn.BatchNorm2d(1),
irf.ConvResidualFlow(1, [16], activation=actf),
irf.InvertiblePooling(2),
nn.BatchNorm2d(4),
irf.ConvResidualFlow(4, [64], activation=actf),
irf.InvertiblePooling(2),
nn.BatchNorm2d(16),
irf.ConvResidualFlow(16, [64, 64], activation=actf),
nn.BatchNorm2d(16),
irf.Flatten(img_size=(16, 7, 7)),
nn.BatchNorm1d(16*7*7),

]

FOR CIFAR-10 AND CIFAR-100: FOLLOWING INVERTIBLE ARCHITECTURE CONFIGURATION
The Input Image Channels is 3 and the total number of dimensions is 3072.
The Redisual Flow Layer takes number of hidden channels as second parameter.
actf = irf.Swish
Invertible_Sequence = [

nn.BatchNorm2d(3),
irf.ConvResidualFlow(3, [32, 32], kernels=5, activation=actf),
irf.InvertiblePooling(2),
nn.BatchNorm2d(12),
irf.ConvResidualFlow(12, [64, 64], kernels=5, activation=actf),
nn.BatchNorm2d(12),
irf.ConvResidualFlow(12, [64, 64], kernels=5, activation=actf),
irf.InvertiblePooling(2),
nn.BatchNorm2d(48),
irf.ConvResidualFlow(48, [128, 128], kernels=5, activation=actf),
nn.BatchNorm2d(48),
irf.ConvResidualFlow(48, [128, 128], kernels=5, activation=actf),
irf.InvertiblePooling(2),
nn.BatchNorm2d(192),
irf.ConvResidualFlow(192, [256, 256], kernels=5, activation=actf),
nn.BatchNorm2d(192),
irf.ConvResidualFlow(192, [256, 256], kernels=5, activation=actf),
nn.BatchNorm2d(192),
irf.Flatten(img_size=(192, 4, 4)),
nn.BatchNorm1d(3072),

]

36

Under review as submission to TMLR

Table 9: Accuracy on various Datasets. The blue numbers represent Accuracy using hard classification as
per nearest region/classifier for Connected Classifier.. The seeds are A = 147, B = 258 and C = 369.
In MNIST, Fashion MNIST and CIFAR-10 experiments, we use 100 connected sets or hidden units for
a connected classifier or MLP classifier respectively. For the CIFAR-100 experiment, we use 500 units.
iNN represents invertible Neural Network as backbone whereas NN represents ordinary Neural Network
for backbone. Connected Classifier represents our method of classification and MLP Classifier represents
ordinary 2 layer MLP for classification task. The settings using iNN + Connected Classifier and iNN +
Linear Classifier produces connected set based classification. (*) Data is subject to change.

Dataset (MLP) Dataset (CNN)
Architecture Seed MNIST MNIST F-MNIST C-10 C-100

iNN + Connected Classifier

A 96.62 98.58 89.58 83.59* 52.58
96.59 98.51 88.49 83.17* 51.85

B 96.68 98.87 89.39 83.62* 51.09
96.77 98.78 86.9 83.38* 50.7

C 96.68 98.59 89.3 84.45 51.93
96.76 98.48 87.89 84.23 50.98

iNN + MLP Classifier
A 96.57 98.2 89.37 84.48 56.91
B 96.63 98.23 89.61 84.34 56.23
C 96.81 98.26 89.18 84.77 56.19

NN + Connected Classifier

A 97.28 99.37 90.38 85.93 50.5
97.24 99.36 88.1 85.79 50.13

B 97.44 99.4 89.88 85.63 49.17
97.38 99.34 88.16 85.67 48.68

C 97.55 99.32 89.84 85.58 50.74
97.54 99.25 88.35 85.50 50.39

NN + MLP Classifier
A 97.19 98.62 90.33 85.9 52.73
A 97.17 98.79 90.58 86.02 52.6
A 97.38 98.89 90.35 85.75 53.08

iNN + Connected Linear

A 96.63 98.16 89.35 83.75 50.78
96.72 98.09 88.43 83.7 50.19

B 96.59 98.38 89.07 83.95 51.95
96.67 98.43 88.64 83.81 51.33

C 96.83 98.17 89.32 83.86 52.44
96.85 98.14 88.88 83.74 51.54

iNN + Linear
A 96.61 97.98 88.69 84.06 56.05
B 96.61 97.96 88.54 84.71 56.08
C 96.48 98.24 88.97 84.36 56.05

The architecture is available with the code. We use our connected classifier that has N hidden units or N
connected sets on feature space and output M class probabilities. We know that without Spectral Normal-
ization, the invertible residual network is not necessarily invertible (or ordinary neural network). Since the
architecture is created for Invertible Mapping, the performance of models initialized with Spectral Normal-
ization has better performance. The ordinary Neural Network is initialized with Spectral Normalization and
then trained without it. Table 9 shows the detailed accuracy metric of each experiments with 3 seeds.

We find that Invertible Backbone helps in optimization as well as provides a reliable backbone for MLP clas-
sifiers as well. Experiments show that Connected Classifiers do not have many disadvantages to MLP classi-
fiers, however, we can be certain that the clusters are connected and hence more interpretable. Furthermore,
connected classifiers when classified using nearest centroids, we get an insignificant drop in performance.

E Requirements for creating Multiple Connected Sets

The algorithm for the Multiple Invex Classifier is shown in the Algorithm 2. The connected classifiers based
classification is our novel approach for classification where every region is connected in the input space. If

37

Under review as submission to TMLR

we transform the data space by an invertible function and apply multiple connected set classifiers, we get
connected classifiers in the data space as well.

f2(x)

S1 S2 S1

f1(x)

f1(x)

f2(x)

x

S1 S2 S1

y

x

y

(a) (b) (c)

Figure 19: Graphical visualization of type of set formed by various classification methods. (a) Disconnected
decision boundary produced by varying convex function. (b) Disconnected decision boundary produced by
Gaussian Clusters. (c) Left: Disconnected decision boundary from decision tree due to a non-linear split,
right: Connected set due to linear split nodes on decision tree.

E.1 Argmax over multiple convex/invex functions

Using a simple collection of a convex function, we can find that argmax over different convex functions can
produce disconnected sets. Figure 19 shows that argmax over multiple convex sets produces disconnected
sets. Hence, we do not use multiple convex functions for multi simply connected set classification.

E.2 Argmax over Gaussian Mixture Model (GMM)

If the Covariance (Σ) is not Identity(I), then GMM may not produce simply-connected sets. This is shown
in Figure 19, where we show that GMM with some covariance can produce disconnected sets. This effect is
more visible when the individual Gaussian are allowed to be scaled. (For 2D GMM producing disconnected
sets, we provide a code to reproduce such case). The authors of paper (Izmailov et al., 2020) argue that
the GMM Flow is interpretable. We believe that the interpretability is due to the connected sets of the
Naive-Bayes classifier with Gaussian Distribution of Identity Covariance. Although they experiment for the
Normalizing Flows problem, overall similarity suggests that the Gaussian Mixture Model based decision
boundaries might not be simply connected and hence not suitable for interpretability.

E.3 Argmax over metric functions

We find that argmax over metric functions creates connected sets. Although we do not go into details of
metric functions, we find that norm-induced metric functions such as l2 and l1 norm work for creating
connected sets, a Voronoi diagram. Similarly, function like dot product also produces connected sets.

E.4 Linear decision trees

We also know that linear decision trees create simply-connected sets. We can also use a linear decision
tree (decision tree with a plane as a decision boundary) in our multiple connected sets experiments. We
find that only linear decision boundaries can guarantee simply connectedness. If we consider convex or
slightly non-linear decision boundaries as shown in Figure 19, we find that disconnected decision boundaries
may be formed in the global view of the data space. Hence, only linear decision trees can guarantee the
1-connectedness of the decision boundaries.

38

Under review as submission to TMLR

F Invex Function for Optimization

Convex functions are crucial in the field of optimization. The question remains how the invex function can
be useful for optimization. Furthermore, gradients of the invex function are also not useful for invertible
transformations as the gradients are not monotonous as compared to Convex Potential Flows (Huang et al.,
2020).

Using the 2D example as shown in Figure 20, we find that the Invex function does not provide an advantage
over the convex function when finding minima. We try Partial Input Invex Neural Network (PIINN) and Par-
tial Input Convex Neural Network (PICNN) for 1D variable optimization. We find that the convex function
is sufficient for finding such optimums. Experiments on the 2D toy dataset with 1D variable optimization
using PICNN and PIINN get MSE of 0.008806 and 0.0081087 respectively (on a single experiment) which
is almost zero. Hence, both of these methods provide a solution to finding minima given partial inputs. An
invex function might have different dynamics of reaching the minima, however, we do not experiment for
such cases.

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

(a) Partial Input Convex Neural Network

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

(b) Partial Input Invex Neural Network

Figure 20: The plots contain contour plots of partial variable optimization. Here, the x-axis is known
and the y-axis is to be optimized. Plot a) and b) show the contour plot of normalized energy function
(En = E − Emin).

G Multi-Invex classifier on 2D manifold

Manifold can be created by composing Invertible and Linear (N → 2) functions (Brehmer & Cranmer,
2020). Furthermore, an invex function can be constructed using rank 2 Jacobian transformation, which is
equivalent to a manifold, and apply a 2D 1-connected set classifier over it. We use a simply-connected set
based multiclass classifier on 2D for the classification of FMNIST and CIFAR-10 datasets. This produces
simply connected decision boundary over input space as well as 2D embeddings. Figure 21 shows the manifold
embedding on 2D, where the classifier is applied along with the classification decision boundary. We find that
2D embedding-based classification also classifies input data efficiently in FMNIST and CIFAR-10 datasets,
however in CIFAR-100, we need a higher embedding dimension for proper classification performance, hence
cannot be visualized.

Many methods such as TSNE (Van der Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018) attempt
to map input data points to 2D/3D space without using labels which makes comparison impossible.

39

Under review as submission to TMLR

(a) FMNIST:Class Decision Boundary (b) CIFAR-10:Class Decision Boundary

(c) FMNIST:Region/Cluster decision boundary (d) CIFAR-10:Region/Cluster decision boundary

(e) FMNIST: Correct-Incorrect classification (f) CIFAR-10: Correct-Incorrect classification

Figure 21: 2D manifold created by invertible transform and linear projection. Top row (a and b) show Class
Decision Boundary whereas middle row (c and d) show Local Regions for classification. Bottom row (e and
f) show correctly vs incorrectly classified data points.

40

Under review as submission to TMLR

H Local Classifiers

We use a local classifier, i.e. invex function classifier (bounded 1-connected set) for classification tasks as well
as to give a local region around data points. The model works by using multi-invex classifiers with continuous
locality scores for classification. An ordinary neural network trained for classification could produce decision
boundaries even where data points do not lie. However, if we use local models as shown in the figure 22, we
find the decreasing value of local models as we move away from the centroids. This helps us define a local
region of influence outside which the model does not predict with confidence, i.e defines that the input is
not local to training points. We use tricks like custom gradient function for classification and training using
Mean Squared Error. The algorithm is under development and unstable, however, it provides a clue to use
bounded 1-connected classifiers to create local regions of influence to detect out-of-distribution data.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 22: (Left) Decision boundary of the classifier on input space for 3 class 2D-toy-dataset. (Right)
Confidence values of local classifiers on the input space.

I Invex Function, Manifolds and Poincairé Conjecture

A simplified statement of Poincairé Conjecture is: every simply connected, closed 3-manifold is homeomorphic
to the 3-sphere (Hosch, 2013). This statement is generalized to n-manifold and n-sphere as: every topological
n-manifold having the same homology and the same fundamental group as an n-dimensional sphere must be
homeomorphic to the n-dimensional sphere.

𝒇(𝒙)

𝒇 -1(𝒙)

Figure 23: Non-Linear Homeomorphism of Input
space; input space has a circular (1-connected)
set/manifold; output space has morphed space along
with a morphed 1-connected set. The homeomorphism
is reversible (and learnable). This property allows
n-Sphere to be homeomorphic to every 1-connected
(closed) n-Manifold.

Let us consider an invertible function f : Y ∈
RN+1 → Z ∈ RN+1 and a convex cone function
g : X ∈ RN+1 → R = ∥X∥. The function h = g ◦ f
is an invex function according to our Property 1 of
invex function.

Let us take the lower contour set of the cone, g(X) ≤
1 which is a bounded (or closed) simply connected
set (inside of an N-Sphere). If we map this set from
Z to Y , we get an (N+1)-dimensional closed simply
connected set. The mapping can be arbitrary and
is defined by the invertible function.

If we take the boundary of the cone, g(X) = 1
which is a closed simply connected manifold (an N-
Sphere). If we map this manifold from Z to Y , we

41

Under review as submission to TMLR

get an N-Dimensional closed simply connected man-
ifold on N+1 Dimensional space. The transformation/mapping is done to the whole space of Z and Y ,
however, if we are only concerned with the manifold, we can get arbitrary homeomorphism as defined by the
invertible function. This is depicted in Figure 23 for 2-D input space.

We use a similar approach of thresholding the invex function to define if points lie inside or outside simply
connected manifold. This allows us to create a simply connected decision boundary for the input space. The
decision boundary itself is a simply connected manifold. A similar idea related to Manifolds using invertible
function has already been studied (Brehmer & Cranmer, 2020), where the authors reduce the dimension of
the invertible backbone using linear projection, which creates a manifold in input space.

J Future Works

Although Local Decision boundaries have multiple applications, we only use them for connected set based
classification in our paper. We believe that our work can be extended to other areas of Machine learning
such as Rejection based classification and rejecting adversarial examples. Furthermore, we believe that our
theoretical work can be extended to normalizing flows and towards the interpretability of data space using
connected sets. We also believe that clustering data points in input space can help us divide the input space
for local learning tasks in Neural Networks . Although we do not find an application of the invex function in
general tasks that convex function has found its application, we believe that the invex function has potential
application in optimization.

We aim to use the invex function and the concept of the locality to understand/interpret already existing
locality in data embeddings (eg. word embeddings in NLP) (Mikolov et al., 2013), and local functions
such as Linear-Softmax, SoLU (Elhage, 2022), Attention and Energy based models, Mixture of Experts
(MoE) (Masoudnia & Ebrahimpour, 2014; Shazeer et al., 2017) and for the interpretation of input space in
general.

42

	Introduction
	Background and Related Works
	Locality and Connected Sets
	Generalized Convex Functions
	Constraints in Neural Networks
	Convex and Invertible Neural Netowrks
	Classification Approaches

	Methodology
	Constructing Invex Function
	Invex Function using GC-GP
	Invex Function using Invertible Neural Networks

	Simply Connected Sets for Classification
	Binary Connected Sets
	Multiple Connected Sets

	Experiments
	Experiments on toy datasets
	Experiments on Large Datasets

	Limitations
	Conclusion
	Appendices
	Gadient-Clipped Gradient Penalty
	How our method solves the problem
	Limitations of our method

	Lipschitz Constraint : Experiment
	Invex Function using GC-GP
	Motivation/Intution for Connected Sets and Invex function
	Theory of Constructing Invex Function
	Algorithm for constructing II-NN
	Modifying II-NN
	II-NN by guiding with invex function

	II-NN Details : Experiment

	Multiple Invex Classifier
	Experiment Details

	Requirements for creating Multiple Connected Sets
	Argmax over multiple convex/invex functions
	Argmax over Gaussian Mixture Model (GMM)
	Argmax over metric functions
	Linear decision trees

	Invex Function for Optimization
	Multi-Invex classifier on 2D manifold
	Local Classifiers
	Invex Function, Manifolds and Poincairé Conjecture
	Future Works

