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Abstract

Accurate protein complex structure modeling is a necessary step in understanding
the behavior of biological pathways and cellular systems. While some works
have attempted to address this challenge, there is still a need for scaling existing
methods to larger protein complexes. To address this need, we propose a novel
diffusion generative model (DGM) that predicts large multimeric protein structures
by learning to rigidly dock its chains together. Additionally, we construct a new
dataset specifically for large protein complexes used to train and evaluate our
DGM. We substantially improve prediction runtime and completion rates while
maintaining competitive accuracy with current methods.

1 Introduction

The structure of proteins determines their function. In recent years, the problem of predicting
protein structure has seen significant improvement with models like AlphaFold2 [13]. While accurate
modeling of proteins is important, proteins rarely operate in isolation. They commonly require
assembling into multimeric complexes to gain function, either in a collection of identically repeating
protein chains (homomers) or a collection of differing protein chains (heteromers). Therefore, the
structure of a protein chain is often insufficient in understanding its behavior without knowledge of
its larger multimeric structure.

Taking inspiration from the recent success of diffusion generative models in structural biology
problems [8, 21, 22], we frame protein complex structure prediction as a generative modeling task.
Given the structure of protein chains (predicted by ESMFold or other protein structure prediction
models), we propose a score-based diffusion model that learns to rigidly dock the chain structures
to form the larger complex. We also develop a new dataset called LPC-Dataset for large protein
complex structures (with complex sizes from 5 to 30 chains).

We train on the LPC-Dataset and evaluate our method on the test set provided by Bryant et al. [2]
(with complex sizes from 10 to 30 chains). Empirically, we achieve comparable prediction quality
while outperforming previous work in inference runtime and completion rates (defined as being able
to predict the structure of the entire complex).

2 Background
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Figure 1: Inference procedure involves multi-
body rigid docking to generate protein com-
plex conformation.

Multimeric Protein Structure Prediction. Current
work on modeling the structure of protein complexes
can be divided into two approaches: (1) traditional
docking [1, 6, 10, 18, 4] and (2) multimeric struc-
ture prediction using deep learning like AlphaFold2-
Multimer [5]. More recent deep learning approaches
address rigid-body docking [14, 7] but have not
scaled beyond dimers. AlphaFold2-Multimer still
largely outperforms these works while covering com-
plexes with up to 9 chains [5].

However, the critical issue that still remains in cur-
rent work is that they can only operate on smaller
complexes (within the range of 2-9 chains), leaving a
need for a model that can scale to larger complexes.

Diffusion Generative Models. Ho et al. [9] have
demonstrated the impressive capabilities of diffu-
sion generative models in creating realistic images.
Excitingly, a recent wave of methods have adopted
this class of generative models outside of images to
structural biology problems, many achieving com-
petitive results in tasks like protein folding [12] and
design [23], protein-ligand docking [3], and others
[11, 15, 19].

These generative models operate by iteratively adding
noise to destruct data to a simple prior distribution
(forward diffusion process) and then learning to restore samples drawn from the prior to the initial
data distribution (reverse diffusion process). Song et al. [20] formulates the forward and reverse
diffusion processes in the continuous case as stochastic differential equations in the form of dx =
f(x, t)dt+ g(t)dw and dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw, respectively. To carry out
the reverse diffusion process, we learn to approximate the ∇x log pt(x) term (aka the score) at all
times t ∈ [0,∞], typically using a neural network that we denote as sθ.

3 Method

We aim to obtain the structure of a large protein complex given each chain’s sequence. We first
assume we have the structure of each chain as input. These structures can be given by the ground-truth
crystal structure or predicted by a protein structure prediction model. Our method then learns to
rigidly and simultaneously dock the individual protein structures together using a diffusion generative
model. We consider the resulting conformation generated by our docking procedure as the final
predicted structure of the protein complex.

3.1 Protein Complex Representation

We conduct a coarse-graining procedure that groups every k residue together based on sequence
proximity. For a given complex s chains, we denote the non-coarse grained complex as G =
{V0, . . . ,Vs} and node features Vi = {v1, . . . ,vni} where vi ∈ R(m+3) (three is the 3D coordinates,
m is the embedding dimension, and ni is the number of residues in chain i). We typically set m as the
dimension of the residue embedding from a protein language model like ESM-2 [16] or OmegaPLM
[24]. We then construct our coarse-grained complex graph, Ĝ, where each coarse-grained node is the
average position and embeddings of the residues grouped to that node:

Ĝ = ({V̂1, . . . , V̂s}, E), V̂i = {v̂1, . . . , v̂⌈ni/k⌉}, v̂j∈1...⌈ni/k⌉ =

∑j(k+1)
l=jk vj

k
(1)

For clarity in the proceeding sections, we will refer to V̂x,i ∈ R3 as the position of chain i and
Ĝx ∈ Rs×3 as the positions of all chains V̂i in the complex Ĝ. Because of our coarse-graining
procedure, we can feasibly construct a complete graph, which is important in diffusion generative
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models—at high noise levels of the diffusion process, nodes need to communicate with physically
distant nodes to learn accurate scores.

3.2 Diffusion Over SE(3)

Since we consider protein complex structure prediction in the many-body rigid-docking setting,
each chain V̂i in a complex Ĝ is constrained to group elements in SE(3)—the group representing
rigid-body motions. Therefore, we aim to learn a density over SE(3)s where s is the number of
chains.

Following the framework established by Yim et al. [25] for diffusion generative models on
SE(3), we define the following forward variance-exploding SDEs separately for translation and
rotation:

dĜx =
√
dσ2

tr(t)/dtdw, dĜx =
√
dσ2

rot(t)/dtdw (2)

where w is the Brownian motion over T (3)s and SO(3)s, respectively. The resulting trans-
lation diffusion kernel is ptr(Ĝx,t|Ĝx,0) = N (Ĝx,t; Ĝx,0, σtr(t)) whose score is defined as

∇ log ptr(Ĝx,t|Ĝx,0) =
−(Ĝx,t−Ĝx,0)

σ2
tr(t)

. We refer readers to Corso et al. [3] for the rotation kernel
and score calculations over SO(3).

3.3 Score-Matching Degeneracy in Complexes w/ Multiple Identical Chains

Homomers and proteins with multiple identical chains commonly appear in nature. These types
of protein complexes pose a unique challenge for denoising score-matching as illustrated in 2. We
introduce two techniques that transform scores to resolve score-matching degeneracy. Recall that the
score-matching objective, in practice, follows

Lθ(Ĝt, Ĝ0) =
∥∥∥sθ(Ĝt)− sgt(Ĝx,t, Ĝx,0)

∥∥∥2
2
, sgt(Ĝx,t, Ĝx,0) = ∇ log ptr(Ĝx,t|Ĝx,0) (3)

Note that the true score sgt is defined only using the positions while the score model sθ takes as
input both the positions and the embeddings. We aim to revise the computation of sgt to eliminate
score-matching degeneracy.

Hungarian Score Assignments. We can view the degeneracy issue as a bipartite matching
problem where we want to match each noised chain with the optimal ground truth chain in the same
set of identical chains. Under this view, for any given noised state of the protein complex, there
is a single possible set of scores. We first define our cost matrix as the negative log-likelihood,
− log(p(V̂x,i,t | V̂x,j,0)), between all pairs of noised and ground truth states, i and j, of the same
identity. We then run the Hungarian algorithm to find the optimal bipartite matching that minimizes
the cost matrix and use that assignment to compute new scores. However, an issue with this technique
is that the resulting score vector field is non-differentiable, which prompts us to propose another
alternative procedure.

Weighted-Sum Score. Instead of using ground truth scores, ∇ log p0t,i(V̂x,i,t | V̂x,i,0), we recalcu-
late the score of chain i as the weighted sum of the potential scores to all other identical chains (we
denote the set of identical chains corresponding to a V̂x,i,t as g).

sgt(V̂x,i,t) =
∑

V̂x,j,t∈g

∇ log p(V̂x,j,t | V̂x,j,0)p(V̂x,j,t | V̂x,j,0)∑
V̂x,k,t∈g p(V̂x,k,t | V̂x,k,0)

(4)

3.4 Training & Inference Procedure

Given the ability to sample and compute scores for the SO(3)s and T (3)s diffusion kernels, we train
our base score model using the following loss:

y(i)r = ∇ log ptr(∆V̂x,t|V̂x,0)), y
(i)
R = ∇ log prot(∆Rt|R0)) (5)

Lθ =

∑s
i=0 ||αi − y

(i)
r ||2 + ||βi − y

(i)
R ||2

s
(6)
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where αi is the predicted translation score, βi is the predicted rotation score for chain i, and R is the
rotation. Note that the Hungarian and weighted-sum scores instead define y(i) as the computation
of sgt. We use ground truth chain structures for training and switch to ESMFold predicted chain
structures for inference.

With a trained score model sθ, we conduct our inference procedure via 1 in the Appendix.

3.5 Architecture

Figure 2: Example of score matching degen-
eracy during the diffusion process for a pro-
tein complex. Given the ground truth state of
two identical chains A, the diffusion process
places them at noised states A′. During the
reverse diffusion process, the score model can
predict two sets of scores (left and right, sig-
nified by the arrows A′ → A), both of which
are valid. This degeneracy can result in high
variance for the score estimator.

We use a SE(3)-equivariant convolutional network
for our score model, sθ, that is adopted from Corso
et al. [3]. The score model, sθ(Ĝ, t), takes as input
the coarse-grained protein complex graph and time.
Since our protein complex graph is complete with
respect to both the nodes within a chain and between
chains, we want to disambiguate by defining two
types of edges: intra-edges (edges in the same chain)
and inter-edges (edges between different chains). We
then have intermediate convolutional layers that al-
ternate between convolving between intra-edges and
inter-edges.

In the final layer, we convolve the node features in
each chain around the chain’s center of mass. For
each chain, we output a translation and rotation score
vector in the tangent space of the associated manifold.
These scores are by construction SE(3)-equivariant
with respect to the input graph.

4 Experiments

We curate a custom dataset (LPC-Dataset) for large
protein complex structures by filtering through all
PDB biological assemblies. We then train and evalu-
ate our model and two variants using the LPC-Dataset. The base model and its variants are trained
for 60 epochs.

4.1 LPC-Dataset Collection Procedure

We begin with collecting our training and validation data. Using the PDB biological assemblies
archive as a starting dataset, we first remove all protein complexes with non-polypeptide subunits.
We then remove any chains with less than 20 residues but keep the rest of the complex. Additionally,
any complexes with a number of chains outside of the range [5, 30] are removed.

A test set with 175 complexes is obtained from MoLPC [2] where all complexes have between
[10, 30] chains. Due to our aforementioned filtering procedure, 5 complexes were removed from
the test set resulting in a final test set of 170 complexes. To ensure that our training and validation
set does not share any similar complexes with the test set, we use MMSeq2 to cluster the chains of
all complexes in the training/validation and test sets by 40% identity (common threshold [17] for
homologous structures). We denote complex A as a subset of complex B if all chains of A have a
similar chain in B. We then remove any complex in the training and validation set that is a subset
of another complex in the test set. We divide the remaining dataset into the respective train and
validation splits by randomly choosing 5% to be our validation set and the remaining complexes to
be our train set. LPC-Dataset constitutes the collective training, validation, and test set.

4.2 Protein Complex Structure Prediction

Our model is evaluated on the test set from LPC-Dataset. Note that since other methods can only
assemble a portion of the entire test set, we penalize the complexes that the methods cannot assemble

4



Table 1: Median/Mean performance metrics evaluated on the test set. We denote the Hungarian
variant as "V1" and the weighted-sum variant as "V2." The asterisk signifies protein model predicted
chain structures as input while non-asterisks use ground-truth chain structures. †Note that the RMSD
reported for MoLPC is only evaluated on the subset of the test set it can completely assemble.

METRICS TM-SCORE ↑ RMSD ↓ % COMPLETE ↑
BASE* 0.19/0.20 9.68/9.91 100.0
BASE 0.28/0.32 9.92/10.05 100.0
V1 0.18/0.20 9.37/9.43 100.0
V2 0.23/0.25 9.93/10.11 100.0
MOLPC* 0.20/0.39 7.12/7.18† 51.8
HD 0.17/0.23 — 45.3

to a default TM-score of 0.17 (max value associated with a random prediction [26]). We also use the
metrics reported in Bryant et al. [2] for both Haddock (HD) and MoLPC. The results are detailed in 1.
Additionally, we include the performance of the two variants (one trained with the Hungarian scores
and the other trained with the weighted-sum scores).

Figure 3: Cumulative density of predicted complexes from
each method with respect to thresholds of TM-score. Dotted
lines denote methods that use ground-truth chain structures.

Assembly Completion. It is impor-
tant that we can obtain the structure
of the entire complex successfully.
However, for both MoLPC and HD,
they were only able to fully assem-
ble around half of the complexes in
the test set either because of superpo-
sition clashes or OOM issues. Due
to the nature of our method, we are
able to completely assemble all of the
complexes included in the test set.

Quality of Prediction. As shown in
1, our method is comparable with the
results of HD and MoLPC. We be-
lieve that the Base Model* can be
improved by training on ESMFold
predicted structures that are RMSD-
aligned with the ground truth posi-
tion and orientation rather than train-
ing on ground truth structures. We
also see that the proposed variants
do not clearly outperform the base
model, which could imply that the
score-matching degeneracy noted earlier is not a significant issue in practice.

Runtime. To predict the individual chains of the complex, we use ESMFold, which roughly takes
a few minutes to predict all chains of a complex. We refer the reader to the ESMFold paper for
precise runtime benchmarking. These chains are then used as input to our base model, which takes on
average 22.67 seconds for inference per complex across the full test set. Collectively, the end-to-end
pipeline for predicting the structure of a large complex is substantially faster than MoLPC (39− 52
hours).

5 Conclusion

Modeling the structure of protein complexes is imperative to better understand the intricacies of our
biology. While not yet state-of-the-art, our method runs significantly faster and can more reliably
predict the entire complex than previous work. Additionally, we identify and attempt to address
key issues with adapting diffusion generative models to large protein complex structure prediction.
There are many fruitful directions for future work that could improve the results of the proposed
method including (1) using a force-field relaxation to obtain more accurate protein interfaces and
local topology and (2) docking dimers/trimers rather than individual chains.
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A Appendix

We highlight the inference procedure of our diffusion model and the distribution of complex sizes in
our training & validation dataset.

Algorithm 1 Multi-Body Docking Inference Procedure

Input: Protein chain structures {V̂i} of size s, steps N , score model sθ
Output: predicted protein complex conformation {x0}
Initialize schedule ϕtr = [σ2

tr(
1
N ), . . . , σ2

tr(
N
N )]

Initialize schedule ϕrot = [σ2
rot(

1
N ), . . . , σ2

rot(
N
N )]

for i = 0 to s do
Center xi at (0, 0, 0)
∆r1 ∼ ptr(∆r1), ∆R1 ∼ prot(∆R1)
Update xi with translation ∆r1 and rotation ∆R1

end for
for i = N to 1 do
t = i

N , ∆t = i
N − i−1

N

α, β = sθ({xi}, t) where α, β ∈ R3s

ztr = N (0, ϕtr,i), zrot = N (0, ϕrot,i)
∆r = α(ϕtr,i − ϕtr,i−1) + ztr
∆R = Rt [β(ϕrot,i − ϕrot,i−1) + zrot]
Update x with translations ∆r and rotations ∆R

end for

Figure 4: Distribution of complex sizes (in the number of chains) of the trainval dataset.
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