
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHAIN OF THOUGHT IN ORDER:
DISCOVERING LEARNING-FRIENDLY ORDERS FOR
ARITHMETIC

Anonymous authors
Paper under double-blind review

ABSTRACT

The chain of thought, i.e., step-by-step reasoning, is one of the fundamental mech-
anisms of Transformers. While the design of intermediate reasoning steps has
been extensively studied and shown to critically influence performance, the order-
ing of these steps has received little attention, despite its significant effect on the
difficulty of reasoning. This study addresses a novel task of unraveling the chain
of thought—reordering decoder input tokens into a learning-friendly sequence for
Transformers, for learning arithmetic tasks. The proposed pipeline first trains a
Transformer on a mixture of target sequences arranged in different orders and
then identifies benign orders as those with fast loss drops in the early stage. As
the search space grows factorially in sequence length, we propose a two-stage
hierarchical approach for inter- and intra-block reordering. Experiments on four
order-sensitive arithmetic tasks show that our method identifies a learning-friendly
order out of a few billion candidates. Notably, on the multiplication task, it recov-
ered the reverse-digit order reported in prior studies.

1 INTRODUCTION

Autoregressive generation is central to the success of the Transformer (Vaswani et al., 2017) in
reasoning tasks, which leads to many successes of the end-to-end learning of arithmetic and hard
symbolic computations, such as (Lample & Charton, 2020; Charton, 2022; Kera et al., 2024; 2025;
Alfarano et al., 2024; Wenger et al., 2022; Li et al., 2023a;b). The autoregressive nature makes each
reasoning step conditioned on the preceding context, and careful design of intermediate reasoning
steps, such as chain of thought (Wei et al., 2022), guides the model’s reasoning toward the final
answer of the target problem. For example, it has been known that learning the parity function—the
prediction of the parity of the input bit string—is challenging (Shalev-Shwartz et al., 2017; Hahn &
Rofin, 2024). However, Kim & Suzuki (2025) recently has shown that the step-by-step prediction
of the parity of the first k bits with k = 1, 2, . . ., makes the learning successful.

One important yet underexplored aspect is the order of the chain of thought—not only which steps
to include, but also the order in which they are arranged can greatly impact learning. For example,
Shen et al. (2023) has shown that Transformers learn multiplication of two integers with better
generalization to larger integers (i.e., those with more digits) when the product is predicted from
least to most significant digits (cf. Figure 1). While this particular case can be explained by the
carries, which flow from least to most significant digits, a systematic way of determining a learning-
friendly order of the chain of thought remains unknown.

In this study, we address a new task of reordering decoder input tokens into a learning-friendly
order for better learning of arithmetic tasks. Exploiting the observation that neural networks tend
to learn from easy to hard instances during training (Arpit et al., 2017; Forouzesh & Thiran, 2024;
Swayamdipta et al., 2020), we train a Transformer on a mixture of target sequences in different
orders and identify those that lead to a faster loss drop in the early stages of training. To better
handle longer sequences, we propose a two-stage hierarchical approach, where the global stage
finds block-level orders, while the local stage reorders tokens within each block.

The experiments demonstrate that the proposed method successfully reorders the target sequences.
We designed three arithmetic tasks that are relatively easy to compute with the (input and) target

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sequence in the forward order, but not with other orders. Starting from random orders, the proposed
method succeeds up to thirteen tokens (i.e., 13! > 6×109 permutations), increasing the success rate
of arithmetic computation from approximately 10 % to 100 %. We also applied our method to the
multiplication task in (Shen et al., 2023) and successfully rediscovered the reverse orders.

Our contributions are summarized as follows:

• We address a novel task, unraveling the chain of thought. This aims at discovering a
learning-friendly order of decoder input tokens, thereby making the learning more suc-
cessful for in-distribution samples and generalizable to out-of-distribution samples.

• We propose a method that efficiently determines learning-friendly orders from the loss
profile at the early stage of training. Empirically, this filters a few thousand candidates in a
single epoch, and combined with a hierarchical strategy, the best order can be found out of
a few billion candidates.

• We introduce order-sensitive arithmetic tasks using non-injective maps, with which one can
evaluate reordering methods. Our extensive experiments present that the proposed method
successfully discovers learning-friendly orders and rediscover the previously reported the
learning-friendly order in the multiplication task.

2 RELATED WORK

Transformers for mathematical tasks. Transformers have recently been applied to mathemati-
cal problem-solving with encouraging results. (Lample & Charton, 2020) has demonstrated that
a Transformer can carry out integral calculus with a high success rate, opening the possibility
that sequence-to-sequence models can handle algebraic tasks. Since that study, applications have
expanded to arithmetic (Charton, 2022), linear algebra (Charton, 2022), computational algebra
(Kera et al., 2024; 2025), and coding theory, as well as cryptography (Wenger et al., 2022; Li
et al., 2023a;b). One reason behind these successes is the autoregressive generation scheme. Al-
though theory has suggested that learning high-sensitive functions such as parity is difficult (Hahn
& Rofin, 2024), recent work achieved a high success rate on parity tasks by applying a chain of
thought prompting (Wei et al., 2022; Kojima et al., 2022; Chen et al., 2023; Yao et al., 2023;
Zhang et al., 2024) to arithmetic and by exploiting the generated output tokens effectively (Kim
& Suzuki, 2025). Positional encoding is also crucial for arithmetic problems; prior work (Jelassi
et al., 2023) has shown that relative-position and abacus-style embeddings improve generalization
to out-of-distribution data. These studies collectively show that task-specific representations and po-
sitional encodings strongly influence performance. In particular, prior work (Shen et al., 2023) ana-
lyzed in detail how digit order affects multiplication success rate and demonstrated that generating
digits from the least significant position upward raises the success rate; however, the ordering was
chosen heuristically rather than by an automated procedure. Systematic optimization of the output
order itself in arithmetic tasks remains unaddressed. This study is the first to exploratively optimize
the output-sequence permutation for each task, automatically discovering a learning-friendly target
order.

Easy-to-hard learning dynamics in deep neural networks. The observation that deep neural
networks can be trained even on randomly assigned labels—while still achieving excellent general-
ization on real data—led to a line of research into how models adapt to data during training (Zhang
et al., 2017). (Arpit et al., 2017) has experimentally shown that networks first pick up simple regular-
ities between inputs and labels and only later transition to memorizing harder, noise-like examples.
More broadly, deep neural networks are known to learn easy instances in a dataset before gradu-
ally fitting the more difficult ones; in image domains, this behavior is often referred to as spectral
bias (Rahaman et al., 2019). This property is now widely exploited in curriculum learning (Jiang
et al., 2018; Han et al., 2018; Baldock et al., 2021) and data-quality control (Swayamdipta et al.,
2020). For example, integrating each sample’s learning curve can reveal mislabeled data (Forouzesh
& Thiran, 2024). Most prior work, however, analyzes such dynamics by injecting noise directly into
the target labels themselves. In contrast, this study focuses on the ordering of the target sequences.
The dataset is rearranged with multiple permutation matrices, and the model is trained on these
reordered versions to investigate how sequence order affects learning.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

<latexit sha1_base64="B4mp9WXmTwSxdMwS3DTgjX5sRq8=">AAACaXichVG7TgJBFD2sb3yA2hBtiERjRQYKNVZEG0sBARMlZHcZcGTZ3ewOJEj8ASs7o1aaGGP8DBt/wIJPMJSa2Fh4WTYxatQ7mZkzZ+65c2ZGsw3hSsY6AWVgcGh4ZHQsOD4xORUKT8/kXavh6DynW4bl7Gqqyw1h8pwU0uC7tsPVumbwglbb7O0XmtxxhWXuyJbNi3W1aoqK0FVJVL4sqkK6pXCMxZkX0Z8g4YMY/Ni2wrfYRxkWdDRQB4cJSdiACpfaHhJgsIkrok2cQ0h4+xzHCJK2QVmcMlRiazRWabXnsyatezVdT63TKQZ1h5RRLLIndsde2CO7Z8/s/ddaba9Gz0uLZq2v5XYpdBLJvv2rqtMscfCp+tOzRAVrnldB3m2P6d1C7+ubR2cv2fXMYnuJXbMu+b9iHfZANzCbr/pNmmcuEaQPSHx/7p8gn4wnVuIr6WQsteF/xSjmsYBleu9VpLCFbeTo3EOc4hwXga4yrUSUuX6qEvA1s/gSSuwD0pCMPw==</latexit>

digits
<latexit sha1_base64="B4mp9WXmTwSxdMwS3DTgjX5sRq8=">AAACaXichVG7TgJBFD2sb3yA2hBtiERjRQYKNVZEG0sBARMlZHcZcGTZ3ewOJEj8ASs7o1aaGGP8DBt/wIJPMJSa2Fh4WTYxatQ7mZkzZ+65c2ZGsw3hSsY6AWVgcGh4ZHQsOD4xORUKT8/kXavh6DynW4bl7Gqqyw1h8pwU0uC7tsPVumbwglbb7O0XmtxxhWXuyJbNi3W1aoqK0FVJVL4sqkK6pXCMxZkX0Z8g4YMY/Ni2wrfYRxkWdDRQB4cJSdiACpfaHhJgsIkrok2cQ0h4+xzHCJK2QVmcMlRiazRWabXnsyatezVdT63TKQZ1h5RRLLIndsde2CO7Z8/s/ddaba9Gz0uLZq2v5XYpdBLJvv2rqtMscfCp+tOzRAVrnldB3m2P6d1C7+ubR2cv2fXMYnuJXbMu+b9iHfZANzCbr/pNmmcuEaQPSHx/7p8gn4wnVuIr6WQsteF/xSjmsYBleu9VpLCFbeTo3EOc4hwXga4yrUSUuX6qEvA1s/gSSuwD0pCMPw==</latexit>

digits

<latexit sha1_base64="B4mp9WXmTwSxdMwS3DTgjX5sRq8=">AAACaXichVG7TgJBFD2sb3yA2hBtiERjRQYKNVZEG0sBARMlZHcZcGTZ3ewOJEj8ASs7o1aaGGP8DBt/wIJPMJSa2Fh4WTYxatQ7mZkzZ+65c2ZGsw3hSsY6AWVgcGh4ZHQsOD4xORUKT8/kXavh6DynW4bl7Gqqyw1h8pwU0uC7tsPVumbwglbb7O0XmtxxhWXuyJbNi3W1aoqK0FVJVL4sqkK6pXCMxZkX0Z8g4YMY/Ni2wrfYRxkWdDRQB4cJSdiACpfaHhJgsIkrok2cQ0h4+xzHCJK2QVmcMlRiazRWabXnsyatezVdT63TKQZ1h5RRLLIndsde2CO7Z8/s/ddaba9Gz0uLZq2v5XYpdBLJvv2rqtMscfCp+tOzRAVrnldB3m2P6d1C7+ubR2cv2fXMYnuJXbMu+b9iHfZANzCbr/pNmmcuEaQPSHx/7p8gn4wnVuIr6WQsteF/xSjmsYBleu9VpLCFbeTo3EOc4hwXga4yrUSUuX6qEvA1s/gSSuwD0pCMPw==</latexit> d
ig

it
s

<latexit sha1_base64="kHWV8Wl04VVf4x4qsP7f/xCYmxI=">AAAC7nichVHPTxNREP5YlR9VoeiFxEtjU1MuzZQDEE5EL14k/CrUtKTZ3U5xw3Z383ZbxEYOxhPePEgCIUQSE3+cPJHg0Yv/gNFevRjjsSZePDi73cQAAWez7837Zr5v5r0xPNvyA6J2j3bh4qXevv6BxOUrVweHksPXlny3oUwumK7tqqKh+2xbDhcCK7C56CnW64bNy8banTC+3GTlW66zGGx4vFLXVx2rZpl6IFAlmcnqo5s1V63rqppyVZVVuZzIGqObikMad7FKMk05iix12snHThqxzbrJNsqowoWJBupgOAjEt6HDl6+EPAieYCtoCabEs6I44zESwm1IFkuGLuiarKtyKsWoI+dQ04/YplSx5VfCTCFDn+kNdegTvaMf9OdMrVakEfayIbvR5bJXGdoaWfj9X1Zd9gAP/rHO7TlADZNRr5b07kVIeAuzy28+2u4sTM1nWrfogH5K/y+pTR/lBk7zl/lqjud3z1GvoimqnsSOv8rDk++CFH8r7TxR9Ly4TU/pPr2lL3RI36kz85XuSYWEDDl/cqSnnaWxXH48Nz43lp6+HY+7HzdwE1mZ6QSmcRezKEj1Z3iPI3zQPO2Ftqftd1O1nphzHcdMe/0X02O0Bw==</latexit>

(a) forward order
(b) reverse order

<latexit sha1_base64="kHWV8Wl04VVf4x4qsP7f/xCYmxI=">AAAC7nichVHPTxNREP5YlR9VoeiFxEtjU1MuzZQDEE5EL14k/CrUtKTZ3U5xw3Z383ZbxEYOxhPePEgCIUQSE3+cPJHg0Yv/gNFevRjjsSZePDi73cQAAWez7837Zr5v5r0xPNvyA6J2j3bh4qXevv6BxOUrVweHksPXlny3oUwumK7tqqKh+2xbDhcCK7C56CnW64bNy8banTC+3GTlW66zGGx4vFLXVx2rZpl6IFAlmcnqo5s1V63rqppyVZVVuZzIGqObikMad7FKMk05iix12snHThqxzbrJNsqowoWJBupgOAjEt6HDl6+EPAieYCtoCabEs6I44zESwm1IFkuGLuiarKtyKsWoI+dQ04/YplSx5VfCTCFDn+kNdegTvaMf9OdMrVakEfayIbvR5bJXGdoaWfj9X1Zd9gAP/rHO7TlADZNRr5b07kVIeAuzy28+2u4sTM1nWrfogH5K/y+pTR/lBk7zl/lqjud3z1GvoimqnsSOv8rDk++CFH8r7TxR9Ly4TU/pPr2lL3RI36kz85XuSYWEDDl/cqSnnaWxXH48Nz43lp6+HY+7HzdwE1mZ6QSmcRezKEj1Z3iPI3zQPO2Ftqftd1O1nphzHcdMe/0X02O0Bw==</latexit>

(a) forward order
(b) reverse order

Figure 1: Success rates for the multiplication of
two integers. Matrix rows and columns indicate
the number of digits in each operand. Evalu-
ation is conducted with 100 samples for each
digit position. (a) The model is trained to output
from the most significant digit. (b) The model is
trained to output from the least significant digit.

<latexit sha1_base64="qM1d13bpV74A81+tU4rsIdmAf9E=">AAAC83ichVG/TxRBFP5Yf8GJcmpDYrPhAjksLu8o0FgRjQmNBjgPztwRsrvM4YbZH5md3YgXKQyVlbEhkUqihRhbLSGx8R8weq0NIZZnYmPhu71NDBDxbXbmzffe99438+xQupEmavcZp06fOXuufyB3fvDCxaH8pcvzURArR1SdQAaqZluRkK4vqtrVUtRCJSzPlmLBXr3djS8kQkVu4N/Xa6FY9KwV3226jqUZWspfK1rj63cSS5oyiCLTiVUiGo1c0R5frwRNbYZCebHOkgtUotTM4045cwrIbCbIt9HAMgI4iOFBwIdmX8JCxF8dZRBCxhbRYkyx56ZxgSfIMTfmLMEZFqOrvK7wqZ6hPp+7NaOU7XAXyb9ipolR+kJvqUOf6R0d0O9/1mqlNbpa1ni3e1wRLg09G678+i/L413j4V/WiZo1mriRanVZe5gi3Vs4PX7yeLNTuTk32hqjbfrB+l9Rmz7xDfzkp/NmVsxtnVB9GQlXDTl2+FUeHX0XmOJ7/eVTRS9qm7RBD2iHvtJH2qfOvW90lzvkeMjloyM97sxPlMqTpcnZicLUrWzc/biKERR5ptcxhWnMoMrdn+MDdrFnxMaWsW287qUafRnnCg6Z8f4P7Nm18g==</latexit>

(a) Eval loss curve
(b) Soft permutation

<latexit sha1_base64="qM1d13bpV74A81+tU4rsIdmAf9E=">AAAC83ichVG/TxRBFP5Yf8GJcmpDYrPhAjksLu8o0FgRjQmNBjgPztwRsrvM4YbZH5md3YgXKQyVlbEhkUqihRhbLSGx8R8weq0NIZZnYmPhu71NDBDxbXbmzffe99438+xQupEmavcZp06fOXuufyB3fvDCxaH8pcvzURArR1SdQAaqZluRkK4vqtrVUtRCJSzPlmLBXr3djS8kQkVu4N/Xa6FY9KwV3226jqUZWspfK1rj63cSS5oyiCLTiVUiGo1c0R5frwRNbYZCebHOkgtUotTM4045cwrIbCbIt9HAMgI4iOFBwIdmX8JCxF8dZRBCxhbRYkyx56ZxgSfIMTfmLMEZFqOrvK7wqZ6hPp+7NaOU7XAXyb9ipolR+kJvqUOf6R0d0O9/1mqlNbpa1ni3e1wRLg09G678+i/L413j4V/WiZo1mriRanVZe5gi3Vs4PX7yeLNTuTk32hqjbfrB+l9Rmz7xDfzkp/NmVsxtnVB9GQlXDTl2+FUeHX0XmOJ7/eVTRS9qm7RBD2iHvtJH2qfOvW90lzvkeMjloyM97sxPlMqTpcnZicLUrWzc/biKERR5ptcxhWnMoMrdn+MDdrFnxMaWsW287qUafRnnCg6Z8f4P7Nm18g==</latexit>

(a) Eval loss curve
(b) Soft permutation

Figure 2: (a) Training-loss curves for a vanilla
Transformer (blue) and for a model trained
with soft-permutation optimization (red). (b)
Permutation matrix learned during permutation
training. Sparse off-diagonal weights clustered
around the main diagonal indicate leakage from
future tokens.

3 UNRAVELING THE CHAIN OF THOUGHT

Let SL be the symmetric group of order L, i.e., the set of all permutations over {1, . . . , L}. We
address the problem of discovering a permutation π ∈ SL over the token sequence (of length L) to
the Transformer decoder that improves the overall learning effectiveness of the Transformer.

The Transformer decoder generates output sequences in an auto-regressive manner. It is widely
known—especially in the context of chain-of-thought prompting—that the order of generation can
have a crucial impact on the reasoning ability of Transformers. For example, Figure 1 shows that, in
the task of multiplying two integers, the digits of the target integer (each treated as a token) should
be presented in reverse order—from lower to higher digits—because this allows the Transformer to
compute carries step by step.

More generally, for example, let X = [x1, . . . , xL] be a sequence of numbers, which is the input
sequence to the Transformer. If the target sequence is defined by a map f(x, y) that is non-injective
with respect to y (e.g., f(x, y) = max{x + y, 0}) as Y = [y1, . . . , yL] with y1 = x1 and yi+1 =
f(xi + yi) for i > 1, learning from reverse order Y r = [yL, . . . , y1] is significantly harder than that
from the forward order because of non-injective f(x, y).

We now introduce our formal problem setup and its challenges.

Formulation. Let Σ be the set of all tokens. We denote the set of all finite token sequences by Σ∗

and its restriction to length-L sequences by ΣL. Let Tθ : Σ∗ × ΣL → ΣL be a Transformer with
parameter θ. Hereinafter, we assume that the target sequence length is fixed. Now, let (X,Y ) ∼ D
be an input–target sequence pair (X,Y ) with |Y | = L from a joint distribution D. The empirical
risk minimizer θERM with finite sample set D = {(Xi, Yi)}mi=1 and permutation π ∈ SL is

θπERM = argmin
θ

1

m

m∑

i=1

ℓ(Tθ, Xi, π(Yi)), (3.1)

with ℓ denotes a loss function. Our goal is to discover a permutation π that minimizes the expected
risk:

π∗ = arg min
π∈SL

E(X,Y )∼D
[
ℓ
(
Tθπ

ERM
, X, π(Y )

)]
. (3.2)

A permutation π(Y ) of a target sequence Y = [y1, . . . , yL] ∈ ΣL can be represented as a matrix
product Y P , where P ∈ {0, 1}L×L is a permutation matrix.

Challenges. The optimization over permutations is challenging because one has to test all possible
permutations, which is L! for those over {1, ..., L}. One may introduce a soft permutation matrix

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

P̃ ∈ [0, 1]L×L and perform empirical risk minimization jointly over θ and P̃ ; namely,

min
θ,P̃

1

m

m∑

i=1

ℓ(Tθ, Xi, YiP̃ ). (3.3)

However, as shown in Figure 2, such an approach leads to an immediate loss drop at the early stage
of training, because the soft permutation P̃ causes information leakage from future tokens; each
token in YiP is a soft mixture of all the tokens in Y , which undermines the next-token prediction.
Introducing an additional loss that strongly penalizes non-dominant entries in P̃ and encourages it to
approximate a hard permutation matrix P can mitigate such leakage. However, training over nearly
hard permutation matrices induces a highly non-convex loss surface, and the optimization process
is prone to getting trapped in local minima (Mena et al., 2018; Jang et al., 2017).

4 PROPOSED METHOD

We introduce our strategy for discovering a suitable permutation of target token sequences. The key
idea is to leverage a characteristic of the training dynamics of deep neural networks: they tend to
learn easy samples in the early stages of training, and gradually adapt to harder samples later. This
phenomenon has been reported in several contexts in the literature, such as Arpit et al. (2017) for
learning with noisy labels and Baldock et al. (2021) for identifying difficult examples.

Figure 3: Evaluation loss
curves when trained with
two different orders.

We discovered this is also the case with the training with different
decoder token orders, see Figure 3. Exploiting this observation, we
proposed to train a Transformer only for a few epochs on a dataset
with various orders in mixture and identify learning-friendly orders
as “easy samples,” for which the loss drops faster.

More formally, let D = {(Xi, Yi)}mi=1 and D′ = {(X ′
i, Y

′
i )}m

′
i=1 be

training and validation sets, respectively. Let P = {P1, . . . , PT } be
the set of T candidate permutation matrices. Let DPt be the set D
with reordered target sequences by Pt, i.e., DPt = {(Xi, YiPt)}mi=1.

We determine learning-friendly orders through the following loss profiling.

P1. Let E ∈ N. Train a Transformer for E epochs on a mixed dataset D̄ :=
⋃T

t=1 D
Pt . Let Tθ′

be the Transformer after training.

P2. Compute the loss on the validation set D′ for each permutation; namely, for t = 1, . . . , T ,
compute

L(D′, Pt) =
1

m′

m′∑

i=1

ℓ(Tθ′ , X ′
i, Y

′
i Pt). (4.1)

Then, the most learning-friendly order P ∗ := Pτ is determined with τ =
argmint L(D′, Pt).

Our experiments empirically observed that a few thousand permutations can be handled at once
through this approach. However, the number of permutations grows factorially, which leads us to in-
troduce the following two-stage hierarchical optimization, where aforementioned loss profiling (i.e.,
P1 and P2) is performed to determine learning-friendly orders at each level.

Figure 4 illustrates our hierarchical method. We start with the initial set of permutation candidates
P0 = {P1, . . . , PT }. The global stage splits each token sequence into several blocks and finds a
good permutation at the block level. The local stage refines this coarse ordering by permuting the
tokens within each block discovered at the global stage. Formally, the two stages operate as follows.

Global stage. Let the search depth be K and T = (K + 1)!. Let P1 := P0. For k = 1, . . . ,K,
we conceptually split each target sequence into k blocks, 1 and apply the loss profiling to the new

1When k = 1, the sequence is not split into blocks

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Global stage (Block-level permutation)

=

Input:  <latexit sha1_base64="dQv3Y/uqgXOAr/kY57TsWuqcm2I=">AAAC83ichVG9axRREP9loyaeHzm1EWwWj4hIOGaDJCIIQRsb5fJxycltWHb3XpIlbz/YfXckLteIlZXYBExl0ELFVksFG/8B0WttRCxPsLFwdm9BkpA4j/fezG/mNzPvjRNJL1FEvSFt+MjRYyOjx0snTp46PVY+c3YxCduxK+puKMO44diJkF4g6spTUjSiWNi+I8WSs34r8y91RJx4YbCgNiOx7NurgbfiubZiyCpfMX1brbm2TGtdi/QbupnqNcuY4GNyQjdlK1RJZiyYXatcoSrlou9XjEKpoJBaWO7BRAshXLThQyCAYl3CRsKrCQOEiLFlpIzFrHm5X6CLEnPbHCU4wmZ0nc9VtpoFGrCd5UxytstVJO+YmTrG6TO9pD59otf0g/4cmCvNc2S9bPLtDLgissYenZ///V+Wz7fC2j/WoT0rrOBa3qvHvUc5kr3CHfA797f689fnxtNLtEM/uf9n1KOP/IKg88t9MSvmtg/J3kKHs0bs2/0rG3v/Bbr41nz6IKYnjS16SPfoFX2hd/Sd+ne/0h2uUOIhG3tHul9ZnKwaU9Wp2auVmZvFuEdxARdxmWc6jRncRg11rv4Yb/EeH7S2tq3taM8HodpQwTmHXaK9+QuuhrQz</latexit>P0 = {P1, P2, . . . , PT }
For                       <latexit sha1_base64="/vOmBQ8X0T2WdsEf+sTPA2gl1bI=">AAAC2nicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQsIZtsa6igY6SjE5KTklxTrKHjHCygb6BmAgQImwxDKUGaAgoB8gZsMMQwpDPkMyQylDLkMqQx5DCVAdg5DIkMxEEYzGDIYMBQAxWIZqoFiRUBWJlg+laGWgQuotxSoKhWoIhEomg0k04G8aKhoHpAPMrMYrDsZaEsOEBcBdSowqBpcNVhp8NnghMFqg5cGf3CaVQ02A+SWSiCdBNGbWhDP3yUR/J2grlwgXcKQgdCF180lDGkMFmC3ZgLdXgAWAfkiGaK/rGr652CrINVqNYNFBq+B7l9ocNPgMNAHeWVfkpcGpgbNxmN6CkMZ0NQCoBxqqFSghwuDQuqj6FlNRQaTIqYbtBhEGqwyuG6w3eC5wWe/Gwa+QBu4gJFsiB6lmIwwIz1DMz2zQBNlBydodHMwSDMoMWgA49ScwYHBgyGAIRRoeznDXIZlDMuZYpiamDqZuiFKmRiheoQZUADTFAD8oapx</latexit>

k = 1, 2, . . . , K

①. Expand each         with block-permutation<latexit sha1_base64="RLoXO5VQluWtU+3E4EAoVNg6Spk=">AAAC2nicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQsIxuQmlmQkJ+ZUB9TGV2frGtbGCygb6BmAgQImwxDKUGaAgoB8gZsMMQwpDPkMyQylDLkMqQx5DCVAdg5DIkMxEEYzGDIYMBQAxWIZqoFiRUBWJlg+laGWgQuotxSoKhWoIhEomg0k04G8aKhoHpAPMrMYrDsZaEsOEBcBdSowqBpcNVhp8NnghMFqg5cGf3CaVQ02A+SWSiCdBNGbWhDP3yUR/J2grlwgXcKQgdCF180lDGkMFmC3ZgLdXgAWAfkiGaK/rGr652CrINVqNYNFBq+B7l9ocNPgMNAHeWVfkpcGpgbNxmN6CkMZ0NQCoBxqqFSghwuDQuqj6FlNRQaTIqYbtBhEGqwyuG6w3eC5wWe/Gwa+QBu4gJFsiB6lmIwwIz1DMz2zQBNlBydodHMwSDMoMWgA49ScwYHBgyGAIRRoeznDXIZlDMuZYpiamDqZuiFKmRiheoQZUADTFACQJqxT</latexit>Pk→1

<latexit sha1_base64="foyGdxdjPeuPzYl83d4luqhj0PM=">AAACzXicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKhcUkp+SXFMcLKBvoGYCBAibDEMpQZoCCgHyBmwwxDCkM+QzJDKUMuQypDHkMJUB2DkMiQzEQRjMYMhgwFADFYhmqgWJFQFYmWD6VoZaBC6i3FKgqFagiESiaDSTTgbxoqGgekA8ysxisOxloSw4QFwF1KjCoGlw1WGnw2eCEwWqDlwZ/cJpVDTYD5JZKIJ0E0ZtaEM/fJRH8naCuXCBdwpCB0IXXzSUMaQwWYLdmAt1eABYB+SIZor+savrnYKsg1Wo1g0UGr4HuX2hw0+Aw0Ad5ZV+SlwamBs3GY3oKQxnQ1AKgHGqoVKCHC4NC6qPoWU1FBpMiphu0GEQarDK4brDd4LnBZ78bBr5AG7iAkWyIHqWYjDAjPUMzPbNAE2UHJ2h0czBIMygxaADj1JzBgcGDIYAhFGh7FsMEhpkMs5j8mUqZapjqIEqZGKF6hBlQAFM7AELkp48=</latexit>· · ·

②. Select nice orders via loss profiling

Get                                       (    perms)

<latexit sha1_base64="UlZCRp6QoSnhqSl4Qa2rAQXEpGk=">AAADCXichVE7bBNBEJ0cv2A+MdAgpTmwgiiCNYdQQFQWNGlA5yROjHzR6W69cVbe++hubRFO1yAq0tFEChVIIEGqVIlo01DQBnBLgxClkWgoGJ9PQkmUMKvdnXkzb2Z2xw2liBVib0Q7dvzEyVOjpwtnzp47P1a8cHE+DjoR4zUWyCCqu07MpfB5TQkleT2MuOO5ki+47fsD/0KXR7EI/Dm1EvJFz2n5YkkwRxFkFyuWK1qsE9qJqVvC1y3PUcvMkYmZ2kn7hpGmupWYVduY1C3ZDFQ8qZOVtK+kFnmswpxdLGEZM9EPKkaulCAXMyj2wIImBMCgAx5w8EGRLsGBmFYDDEAICVuEhLCINJH5OaRQIG6HojhFOIS26WyR1chRn+xBzjhjM6oiaUfE1GECd/Ed9vEjbuAP/HNoriTLMehlhW53yOWhPfb88uzv/7I8uhUs/2Md2bOCJbiT9Sqo9zBDBq9gQ373yVp/9u7MRHINX+NP6v8V9nCHXuB3f7E3VT7z8ojsTehS1pB8e3/l8f5/AZ1/a6w/jfBFfQ2f4SN8j19wC79j/+FXfEAVCjRkY/9IDyrzN8vGVHmqeqtUuZePexTG4Spcp5nehgpMgwk1qv4WPsEufNZWtU1tW/swDNVGcs4l2CPazl/ypL3u</latexit> ⋃

P→Pk→1

{PQ1, . . . , PQk!}

T
<latexit sha1_base64="pXtxI0JkB5EG+PaCY9qrFpQfrxE=">AAADInichVG9axRREJ+sH4nnR05tBJunR8QiHrMSoghC0MZG2UtyyYXbuOzuvVwe+/aD3XeHcdlGrCxtAlopWqh/gKWFjdiJiB5YCSIiaHGCjYVzewsxCcZ5vPdmfjO/mXlvnEiKRCH2RrRdu/fsHR3bV9p/4OCh8fLhIwtJ2IldXndDGcYNx064FAGvK6Ekb0Qxt31H8kXHuzzwL3Z5nIgwmFdrEV/27XYgVoRrK4Ks8pLp22rVtWVqZJZ3PTWjWPg8YxeZ6Yi224ms1GCmCNjfcal3Rs8yZqZGzdInmSlboUomGVmpdyIzyWOW5q1yBauYC9uu6IVSgUKMsNwDE1oQggsd8IFDAIp0CTYktJqgA0JE2DKkhMWkidzPIYMScTsUxSnCJtSjs01Ws0ADsgc5k5ztUhVJOyYmgwl8h0+wj6/wGX7F3//MleY5Br2s0e0MuTyyxu8cm/v1X5ZPt4LVDdaOPStYgfN5r4J6j3Jk8Ap3yO/eXO/PXZidSE/hQ/xG/T/AHr6kFwTdn+7jGp+9v0P2FnQpa0S+zb9yY+u/AOOfmvduxXi3sY63cQmf4nt8jl+wf+0DXqUKJRqyvnWk25WFs1V9ujpdm6rMXCrGPQbH4SScppmegxm4AgbUqfoL+Azf4Yf2SHutvdHeDkO1kYJzFDaJ9vEPeqHIfA==</latexit>

P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

<latexit sha1_base64="IwwOxBFCLczED71GqJoxNad7ZdQ=">AAADuXichVFLb9NAEB7XPEp4NMAFicuWqKiIEsYVKgiEVMGFC8hpkzQoLpbtbBLjp2wnohhfEHDgyKUSnEDiAPwAfgAX/gCCXLkgxAUpSFw4MHYs0bRKGWu9s9/M983sju7bZhghDoQpcc/effunDxQOHjp8ZKZ49Fg99HqBwWuGZ3tBQ9dCbpsur0VmZPOGH3DN0W2+plvX0/hanweh6bnVaMPn647Wcc22aWgRQWrxp+JoUdfQ7FhOVOtOrPiB6fCEXWWKbnaMnq/GMlNMl23Ni61zUpIwJZYrqrTAFLvlReECo1NszSYKRZRCldZk7VhOibK6uIWtVkfMMdbE5Fix27bnBax6ft46K52ZZUqQAXn9SWG1WMIyZsZ2OlLulCA32SsOQIEWeGBADxzg4EJEvg0ahPQ1QQIEn7B1iAkLyDOzOIcECsTtURanDI1Qi/4dOjVz1KVzqhlmbIOq2LQCYjKYw0/4Bof4Ed/hd/wzUSvONNJeNmjXR1zuqzNPT6z+/i/LoT2C7j/Wrj1H0IZLWa8m9e5nSHoLY8Tv398crl5emYtP4yv8Qf2/xAF+oBu4/V/G6wpfebGLegv6pOpTbPxV7m1/F2D8a/P5wwCfNTbxEd7Gt/gZ3+M3HN76gjepQoGGLG0f6U6nvliWlspLlQul5Wv5uKfhJJyCeZrpRViGGyBDDQyhLjwQHgtPxCuiJnbFu6PUKSHnHIcxE8O/XRb3Tg==</latexit>

P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

P →
k = {P1, P2, . . . , PT }

Pk = {P1, P2, . . . , P↓T/(k+1)!↔}
→T/(k + 1)!↑

<latexit sha1_base64="IwwOxBFCLczED71GqJoxNad7ZdQ=">AAADuXichVFLb9NAEB7XPEp4NMAFicuWqKiIEsYVKgiEVMGFC8hpkzQoLpbtbBLjp2wnohhfEHDgyKUSnEDiAPwAfgAX/gCCXLkgxAUpSFw4MHYs0bRKGWu9s9/M983sju7bZhghDoQpcc/effunDxQOHjp8ZKZ49Fg99HqBwWuGZ3tBQ9dCbpsur0VmZPOGH3DN0W2+plvX0/hanweh6bnVaMPn647Wcc22aWgRQWrxp+JoUdfQ7FhOVOtOrPiB6fCEXWWKbnaMnq/GMlNMl23Ni61zUpIwJZYrqrTAFLvlReECo1NszSYKRZRCldZk7VhOibK6uIWtVkfMMdbE5Fix27bnBax6ft46K52ZZUqQAXn9SWG1WMIyZsZ2OlLulCA32SsOQIEWeGBADxzg4EJEvg0ahPQ1QQIEn7B1iAkLyDOzOIcECsTtURanDI1Qi/4dOjVz1KVzqhlmbIOq2LQCYjKYw0/4Bof4Ed/hd/wzUSvONNJeNmjXR1zuqzNPT6z+/i/LoT2C7j/Wrj1H0IZLWa8m9e5nSHoLY8Tv398crl5emYtP4yv8Qf2/xAF+oBu4/V/G6wpfebGLegv6pOpTbPxV7m1/F2D8a/P5wwCfNTbxEd7Gt/gZ3+M3HN76gjepQoGGLG0f6U6nvliWlspLlQul5Wv5uKfhJJyCeZrpRViGGyBDDQyhLjwQHgtPxCuiJnbFu6PUKSHnHIcxE8O/XRb3Tg==</latexit>

P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

P →
k = {P1, P2, . . . , PT }

Pk = {P1, P2, . . . , P↓T/(k+1)!↔}
→T/(k + 1)!↑

Filtered by loss profiling
(    perms)

(               perms)

<latexit sha1_base64="UlZCRp6QoSnhqSl4Qa2rAQXEpGk=">AAADCXichVE7bBNBEJ0cv2A+MdAgpTmwgiiCNYdQQFQWNGlA5yROjHzR6W69cVbe++hubRFO1yAq0tFEChVIIEGqVIlo01DQBnBLgxClkWgoGJ9PQkmUMKvdnXkzb2Z2xw2liBVib0Q7dvzEyVOjpwtnzp47P1a8cHE+DjoR4zUWyCCqu07MpfB5TQkleT2MuOO5ki+47fsD/0KXR7EI/Dm1EvJFz2n5YkkwRxFkFyuWK1qsE9qJqVvC1y3PUcvMkYmZ2kn7hpGmupWYVduY1C3ZDFQ8qZOVtK+kFnmswpxdLGEZM9EPKkaulCAXMyj2wIImBMCgAx5w8EGRLsGBmFYDDEAICVuEhLCINJH5OaRQIG6HojhFOIS26WyR1chRn+xBzjhjM6oiaUfE1GECd/Ed9vEjbuAP/HNoriTLMehlhW53yOWhPfb88uzv/7I8uhUs/2Md2bOCJbiT9Sqo9zBDBq9gQ373yVp/9u7MRHINX+NP6v8V9nCHXuB3f7E3VT7z8ojsTehS1pB8e3/l8f5/AZ1/a6w/jfBFfQ2f4SN8j19wC79j/+FXfEAVCjRkY/9IDyrzN8vGVHmqeqtUuZePexTG4Spcp5nehgpMgwk1qv4WPsEufNZWtU1tW/swDNVGcs4l2CPazl/ypL3u</latexit> ⋃

P→Pk→1

{PQ1, . . . , PQk!}

T

<latexit sha1_base64="IwwOxBFCLczED71GqJoxNad7ZdQ=">AAADuXichVFLb9NAEB7XPEp4NMAFicuWqKiIEsYVKgiEVMGFC8hpkzQoLpbtbBLjp2wnohhfEHDgyKUSnEDiAPwAfgAX/gCCXLkgxAUpSFw4MHYs0bRKGWu9s9/M983sju7bZhghDoQpcc/effunDxQOHjp8ZKZ49Fg99HqBwWuGZ3tBQ9dCbpsur0VmZPOGH3DN0W2+plvX0/hanweh6bnVaMPn647Wcc22aWgRQWrxp+JoUdfQ7FhOVOtOrPiB6fCEXWWKbnaMnq/GMlNMl23Ni61zUpIwJZYrqrTAFLvlReECo1NszSYKRZRCldZk7VhOibK6uIWtVkfMMdbE5Fix27bnBax6ft46K52ZZUqQAXn9SWG1WMIyZsZ2OlLulCA32SsOQIEWeGBADxzg4EJEvg0ahPQ1QQIEn7B1iAkLyDOzOIcECsTtURanDI1Qi/4dOjVz1KVzqhlmbIOq2LQCYjKYw0/4Bof4Ed/hd/wzUSvONNJeNmjXR1zuqzNPT6z+/i/LoT2C7j/Wrj1H0IZLWa8m9e5nSHoLY8Tv398crl5emYtP4yv8Qf2/xAF+oBu4/V/G6wpfebGLegv6pOpTbPxV7m1/F2D8a/P5wwCfNTbxEd7Gt/gZ3+M3HN76gjepQoGGLG0f6U6nvliWlspLlQul5Wv5uKfhJJyCeZrpRViGGyBDDQyhLjwQHgtPxCuiJnbFu6PUKSHnHIcxE8O/XRb3Tg==</latexit>

P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

P →
k = {P1, P2, . . . , PT }

Pk = {P1, P2, . . . , P↓T/(k+1)!↔}
→T/(k + 1)!↑

※
<latexit sha1_base64="440tec6n68tE/JX/thvaQrO8vSw=">AAAC73ichVE7axRRFP4ymoebmKzaCDZDlgSr5YxIDIIQtLFRNo9NVnbjMjO5SS6ZlzN3F+OwjViJlc2CgmggRbSzsYidjX9AzLZpQrBcwcbCs7MDeZF4hrn33O+c75zv3mMFjowUUatHO3e+t69/4EJmcOji8Ej20uX5yK+FtijavuOHJcuMhCM9UVRSOaIUhMJ0LUcsWGv3OvGFuggj6Xtzaj0Qi6654sllaZuKoWp2vOKaatU2nbjQqBqP40oQSlc09Dv64QBVsznKU2L6ScdInRxSK/jZFipYgg8bNbgQ8KDYd2Ai4q8MA4SAsUXEjIXsySQu0ECGuTXOEpxhMrrG6wqfyinq8blTM0rYNndx+A+ZqWOMftAWtek7faJ9+ntqrTip0dGyzrvV5YqgOvLy6uyf/7Jc3hVWD1hnalZYxmSiVbL2IEE6t7C7/PqzZnv29sxYPE4b9Iv1f6AWfeMbePXf9ua0mHl7RvUl1LlqwLGjr/L0+LtAF7vlN89Del1q0gt6RB/pJ32hPWo/3KEH3CHDQzaOj/SkM38jb0zkJ6Zv5qbupuMewDWM4jrP9BamcB8FFLn7K3zGNr5qT7Sm9k57303VelLOFRwxbesfJy607g==</latexit>

P →
1 = P0

Local stage (Intra- and inter-block permutation)

=

Input: The best permutation from global stage
For                                  is block length                               
①. Intra-block permutation followed by loss profiling 

<latexit sha1_base64="foyGdxdjPeuPzYl83d4luqhj0PM=">AAACzXicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKhcUkp+SXFMcLKBvoGYCBAibDEMpQZoCCgHyBmwwxDCkM+QzJDKUMuQypDHkMJUB2DkMiQzEQRjMYMhgwFADFYhmqgWJFQFYmWD6VoZaBC6i3FKgqFagiESiaDSTTgbxoqGgekA8ysxisOxloSw4QFwF1KjCoGlw1WGnw2eCEwWqDlwZ/cJpVDTYD5JZKIJ0E0ZtaEM/fJRH8naCuXCBdwpCB0IXXzSUMaQwWYLdmAt1eABYB+SIZor+savrnYKsg1Wo1g0UGr4HuX2hw0+Aw0Ad5ZV+SlwamBs3GY3oKQxnQ1AKgHGqoVKCHC4NC6qPoWU1FBpMiphu0GEQarDK4brDd4LnBZ78bBr5AG7iAkWyIHqWYjDAjPUMzPbNAE2UHJ2h0czBIMygxaADj1JzBgcGDIYAhFGh7FsMEhpkMs5j8mUqZapjqIEqZGKF6hBlQAFM7AELkp48=</latexit>· · ·

②. Inter-block permutation followed by loss profiling

Get the lowest-loss     from

<latexit sha1_base64="5k43+4osRQNzLhPsY0soCfhaRrI=">AAAC9HichVHPaxNBFP66/qrxR6NeBC+DoSJY4kuUKoJQ9OJBJf2RNpItYXcziUsnu8vsZrEGL+LJm14K6kWlBxW89mrppf+AaK5eRDxG8OLBt5uF0hbrLDvvm++977038+xAuWFE1B8x9u0/cPDQ6OHckaPHjo/lT5ycD/2udmTV8ZWva7YVSuV6shq5kZK1QEurYyu5YC/dTPwLsdSh63tz0XIgFztW23NbrmNFTDXyFyqNtmnmlLguyhPi0oQwVdOPwsS2lO9rcftiWZg6xY18gYqULrEblDJQQLYqfr4PE034cNBFBxIeIsYKFkL+6iiBEDC3iB5zmpGb+iUeIcfaLkdJjrCYXeK9zad6xnp8TnKGqdrhKop/zUqBcfpM72hAm/SBftCff+bqpTmSXpbZ2kOtDBpjT0/P/v6vqsM2wv0t1Z49R2jhatqry70HKZPcwhnq44crg9lrM+O9c/SGfnL/r6lPG3wDL/7lrE7LmZd7ZG8i5qwB+7a/yoOd7wIhv9VfPNb0vLZCT+gevacvtEbfaXD3K93hCjkecmnnSHeD+XKxNFmcnL5cmLqRjXsUZ3AW53mmVzCFW6igytWfYQ2fsG7ExivjrbE6DDVGMs0pbFvGx79FzbQM</latexit>

Pg

l = 2, 3, . . . , →L/2↑

<latexit sha1_base64="5k43+4osRQNzLhPsY0soCfhaRrI=">AAAC9HichVHPaxNBFP66/qrxR6NeBC+DoSJY4kuUKoJQ9OJBJf2RNpItYXcziUsnu8vsZrEGL+LJm14K6kWlBxW89mrppf+AaK5eRDxG8OLBt5uF0hbrLDvvm++977038+xAuWFE1B8x9u0/cPDQ6OHckaPHjo/lT5ycD/2udmTV8ZWva7YVSuV6shq5kZK1QEurYyu5YC/dTPwLsdSh63tz0XIgFztW23NbrmNFTDXyFyqNtmnmlLguyhPi0oQwVdOPwsS2lO9rcftiWZg6xY18gYqULrEblDJQQLYqfr4PE034cNBFBxIeIsYKFkL+6iiBEDC3iB5zmpGb+iUeIcfaLkdJjrCYXeK9zad6xnp8TnKGqdrhKop/zUqBcfpM72hAm/SBftCff+bqpTmSXpbZ2kOtDBpjT0/P/v6vqsM2wv0t1Z49R2jhatqry70HKZPcwhnq44crg9lrM+O9c/SGfnL/r6lPG3wDL/7lrE7LmZd7ZG8i5qwB+7a/yoOd7wIhv9VfPNb0vLZCT+gevacvtEbfaXD3K93hCjkecmnnSHeD+XKxNFmcnL5cmLqRjXsUZ3AW53mmVzCFW6igytWfYQ2fsG7ExivjrbE6DDVGMs0pbFvGx79FzbQM</latexit>

Pg

l = 2, 3, . . . , →L/2↑

<latexit sha1_base64="5k43+4osRQNzLhPsY0soCfhaRrI=">AAAC9HichVHPaxNBFP66/qrxR6NeBC+DoSJY4kuUKoJQ9OJBJf2RNpItYXcziUsnu8vsZrEGL+LJm14K6kWlBxW89mrppf+AaK5eRDxG8OLBt5uF0hbrLDvvm++977038+xAuWFE1B8x9u0/cPDQ6OHckaPHjo/lT5ycD/2udmTV8ZWva7YVSuV6shq5kZK1QEurYyu5YC/dTPwLsdSh63tz0XIgFztW23NbrmNFTDXyFyqNtmnmlLguyhPi0oQwVdOPwsS2lO9rcftiWZg6xY18gYqULrEblDJQQLYqfr4PE034cNBFBxIeIsYKFkL+6iiBEDC3iB5zmpGb+iUeIcfaLkdJjrCYXeK9zad6xnp8TnKGqdrhKop/zUqBcfpM72hAm/SBftCff+bqpTmSXpbZ2kOtDBpjT0/P/v6vqsM2wv0t1Z49R2jhatqry70HKZPcwhnq44crg9lrM+O9c/SGfnL/r6lPG3wDL/7lrE7LmZd7ZG8i5qwB+7a/yoOd7wIhv9VfPNb0vLZCT+gevacvtEbfaXD3K93hCjkecmnnSHeD+XKxNFmcnL5cmLqRjXsUZ3AW53mmVzCFW6igytWfYQ2fsG7ExivjrbE6DDVGMs0pbFvGx79FzbQM</latexit>

Pg

l = 2, 3, . . . , →L/2↑

<latexit sha1_base64="FQVpaz9mdZT/ua9aydjk9nvXl64=">AAACynicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKBQfE58QLKBvoGYCBAibDEMpQZoCCgHyBmwwxDCkM+QzJDKUMuQypDHkMJUB2DkMiQzEQRjMYMhgwFADFYhmqgWJFQFYmWD6VoZaBC6i3FKgqFagiESiaDSTTgbxoqGgekA8ysxisOxloSw4QFwF1KjCoGlw1WGnw2eCEwWqDlwZ/cJpVDTYD5JZKIJ0E0ZtaEM/fJRH8naCuXCBdwpCB0IXXzSUMaQwWYLdmAt1eABYB+SIZor+savrnYKsg1Wo1g0UGr4HuX2hw0+Aw0Ad5ZV+SlwamBs3GY3oKQxnQ1AKgHGqoVKCHC4NC6qPoWU1FBpMiphu0GEQarDK4brDd4LnBZ78bBr5AG7iAkWyIHqWYjDAjPUMzPbNAE2UHJ2h0czBIMygxaADj1JzBgcGDIYAhFGh7OkMvwzSG6Uw+TEVMlUzVEKVMjFA9wgwogKkFAIe7phM=</latexit>

Pl

<latexit sha1_base64="foyGdxdjPeuPzYl83d4luqhj0PM=">AAACzXicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKhcUkp+SXFMcLKBvoGYCBAibDEMpQZoCCgHyBmwwxDCkM+QzJDKUMuQypDHkMJUB2DkMiQzEQRjMYMhgwFADFYhmqgWJFQFYmWD6VoZaBC6i3FKgqFagiESiaDSTTgbxoqGgekA8ysxisOxloSw4QFwF1KjCoGlw1WGnw2eCEwWqDlwZ/cJpVDTYD5JZKIJ0E0ZtaEM/fJRH8naCuXCBdwpCB0IXXzSUMaQwWYLdmAt1eABYB+SIZor+savrnYKsg1Wo1g0UGr4HuX2hw0+Aw0Ad5ZV+SlwamBs3GY3oKQxnQ1AKgHGqoVKCHC4NC6qPoWU1FBpMiphu0GEQarDK4brDd4LnBZ78bBr5AG7iAkWyIHqWYjDAjPUMzPbNAE2UHJ2h0czBIMygxaADj1JzBgcGDIYAhFGh7FsMEhpkMs5j8mUqZapjqIEqZGKF6hBlQAFM7AELkp48=</latexit>· · ·
Get the lowest-loss        from

<latexit sha1_base64="3cZ6eixU0jDj+GPn9x21lmp6AO0=">AAADRXichVFLb9NAEB6bVwiPpuWCxGUhKuJQhXFalapSpQouHAClKWmD4taynU1YdWNbthNRTC6IE0culeAEEgfgB/ADOMAfQJBrL6iqOKWCCxKMHZeorSjrx8x+830zszuWJ0UQIvYU9cjRY8dPZE5mT50+c3YkNzq2FLht3+YV25WuX7XMgEvh8EooQsmrns/NliX5srV2I44vd7gfCNe5G657fKVlNh3RELYZEmTkHpWMpq5nJZtjxQk2OcF0WXfDILYN6bo+u3W1yHQ/8YmnW6Jptz0jEnNadzUakuQuqcv0iJUMWV6NRNfQhgn/YpG8SCR6dSOXxwImix10tNTJQ7pKbq4HOtTBBRva0AIODoTkSzAhoKcGGiB4hK1ARJhPnkjiHLqQJW2bWJwYJqFr9G/SrpaiDu3jnEGitqmKpM8nJYNx/IxvsI+f8B1u4a9/5oqSHHEv62StgZZ7xsjT84s//6tqkQ3h/lB1aM8hNGAm6VVQ716CxKewB/rOw43+4mx5PLqMr3Cb+n+JPfxAJ3A6O/brBV5+cUj2OnQoq0exvbfyYP+9AOObteePfXxW3cAneA/f4hd8j9+wf+cr3qYKWRqytn+kB52lYkGbLkwvTOXnr6fjzsAFuARXaKbXYB5uQgkqVH1TySijypj6Uf2u7qg/BlRVSTXnYM9Sf/8B5QbRJA==</latexit>

Pg

l = 2, 3, . . . , →L/2↑
→L/l↑⋃

i=1

{PlR
i
1, . . . , PlR

i
l!}

<latexit sha1_base64="gm2X5QJ8f0oR/+QeYBri5sTpXHo=">AAADo3ichVHLbtNAFL2ueZTwaIANEpuBKAiJKlwHVBBSpQg2SDyUpE0bFKeW7UzCqBPbsp2IYnmDWLFkUwlWILEAPoAPYMMPIAhLNgixDBIbFlw7oemLMn7MnTPnnHtnruVJEYSIA2VK3bf/wMHpQ5nDR44em8keP7EUuD3f5jXbla5ft8yAS+HwWihCyeuez82uJfmytXoj2V/ucz8QrrMYrnm82TU7jmgL2wwJMrJfykZH1zOSzbPiLLs0y3TZcsMgmdvSdX12+2KR6X4aE0+3RMfueUYk5rV4JZqQ5F9SzPSIlQ1ZXYlEbGgTww0skmeIRK+eKdPighYnxqmoYmhk6vmiy+PZEVDcBGyyqhi7Jt8gUwIjm8MCpoPtDLRxkIPxKLvZAejQAhds6EEXODgQUizBhICeBmiA4BHWhIgwnyKR7nOIIUPaHrE4MUxCV+nfoVVjjDq0TjyDVG1TFkmfT0oGefyIr3GIH/Atfsff//SKUo+kljWarZGWe8bMk1MLv/6r6tIcwv2Jas+aQ2jD1bRWQbV7KZKcwh7p+w/XhwvXqvnoHL7EH1T/CxzgezqB0/9pv6rw6vM93FvQJ1eP9rbeyoPt9wKMf208e+Tj0/o6PsZ7+AY/4Tv8hsO7n/EOZchQk7XtLd0ZLBUL2lxhrnI5V7o+bvc0nIazcJ56egVKcBPKUANbKSltxVU8Na/eUqvq4og6pYw1J2HLUJt/AJx+8JE=</latexit>

Pg

l = 2, 3, . . . , →L/2↑
→L/l↑⋃

i=1

{PlR
i
1, . . . , PlR

i
l!}

Pl+1

{PlQ
↓
1, PlQ

↓
2, . . . , PlQ

↓
→L/l↑}

<latexit sha1_base64="nQ1Laj2BlkejZTMfnpyuiclKPSQ=">AAADHnichVG/b9NAFH41v0r40QALEovbqKiVqvBcoYKYKlgYCkpa0gbFxbKdSzn17LPOl4hiZUFMjCyVygJIDIU/oAMjEmJBTIhmhAVBxyCxdODFsYSaivIs3333vfe99+6eFwkea8TOkHHo8JGjx4aP506cPHV6JH/m7GIsm8pnFV8KqaqeGzPBQ1bRXAtWjRRzA0+wJW/1Rs+/1GIq5jK8o9cithy4KyFvcN/VRDn5ip2YJUeU7yV2pHjA2o41NUBMT5m2qEsdDzqSCVs0hJTKnLskTFuleHK0bbedfAGLmJq5H1gZKEBmJZnvgA11kOBDEwJgEIImLMCFmL4aWIAQEbcMCXGKEE/9DNqQI22TohhFuMSu0rpCp1rGhnTu5YxTtU9VBP2KlCaM42fcxC5+wDf4A3f/mStJc/R6WaPd62tZ5Iw8Ob/w+7+qgHYN9/+qDuxZQwOupr1y6j1Kmd4t/L6+9XC9u3Btfjy5iC9xh/p/gR18RzcIW7/8V2U2/+yA7HVoUdaIfHtf5cHgu4DJvtU2Hil8Wl3Hx3gXX+MX3MLv2L29jbeoQo6GbA2OdD9YnC5aM8WZ8uXC7PVs3MNwAcZggmZ6BWbhJpSgQtXfwlf4CTvGc+O98dH41A81hjLNOdhjxvYfcYzHLw==</latexit>

{PlQ
→
1, PlQ

→
2, . . . , PlQ

→
(↑L/l↓)!}

Figure 4: Search flow of our hierarchical approach. Global stage: The proposed method generates
T candidate permutations by swapping the sequence at the macro-level, exchanging P token blocks
to quickly spot coarse, learning-friendly orders. Local stage: inside each chosen block, the pro-
posed method further permutes the tokens, refining the sequence to discover a final permutation that
maximizes learning ease.

permutation set:
⋃

P∈Pk

{PQ1, . . . , PQk!}, (4.2)

where Qi ∈ [0, 1]L×L are the block-level permutations. The best ⌊T/(k + 1)!⌋ permutations define
the new candidate set Pk+1.

We then apply the loss profiling to the final candidate set Pg := PK+1 and determine the best
permutation Pg. This permutation is then refined with the local stage.

Local stage. Let P1 ∈ Pg be the initial permutation. We again conceptually split each target
sequence into blocks of size l. Let Ri

1, . . . , R
i
l! ∈ [0, 1]L×L be all the permutations inside the i-th

block. These permutations do not change the orders outside the i-th block. For each block length
l = {2, 3, . . . , ⌊L/2⌋}2, we apply the loss profiling to the new candidate set:

⌈L/l⌉⋃

i=1

{PRi
1, . . . , PRi

l!}, (4.3)

and denote the lowest-loss result by Pl. Keeping each block’s internal order fixed, we perform loss
profiling over the ⌊L/l⌋ block-reordering candidates:

{PlQ
′
1, PlQ

′
2, . . . , PlQ

′
⌊L/l⌋}. (4.4)

The best candidate becomes the initial permutation for the next block size l + 1.

Computational overheads. While the proposed framework repeats training to narrow down the
permutations to learning-friendly ones, several aspects keep it practically efficient. First, each of
the training runs only for 800–1,600 steps (equivalently, 1–2 epochs with 105 samples of batch
size 128) as the difference of loss drop speeds between candidate permutations becomes readily
evident in the early stage. Second, a single training can handle a few thousand permutations (up to
7! = 5, 040 in our experiments). Third, our global–local framework provides efficient exploration.
Specifically, with a global-stage depth of K, it needs K runs of training, and the local stage needs
2(⌊L/2⌋ − 1) runs. In our experiments, the longest exploration took 1–7 hours on a single GPU of
the NVIDIA A6000ada to find the learning-friendly permutation. It is also worth noting that using
a small Transformer model in the exploration is sufficient, as the learning-friendly orders must be
universal.

2When l does not divide L, the remaining L mod l tokens are placed in an additional block.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 ORDER-SENSITIVE TASKS

To evaluate the proposed method, we introduce three tasks. They can be learned relatively easily
with the forward order, which however becomes challenging with the reverse or random orders.

Let X = [x1, x2, ...] be an input sequence and Y = [y1, ..., yL] an target sequence of fixed length L.
At a high level, the target sequence of the three tasks is defined by the following recurrence.

yi = f(X, y1, . . . , yi−1), (5.1)

where f( · ) is a non-injective function with respect to y1, . . . , yi−1. Namely, other than the forward
order, one cannot uniquely determine preceding target tokens y1, . . . , yi−1 from X and yi, . . . , yL.
Any disruption of the natural left-to-right order—such as reversing or randomly permuting the
targets—breaks the causal chain and substantially increases the learning difficulty.

RELU. The recurrence performs the rectified sum:

y1 = x1 and yi = ReLU
(
xi + yi−1

)
, i = 2, . . . , L, (5.2)

where ReLU(z) = max(z, 0). The forward order is trivial to learn because each step depends only
on the current input token xi and the immediately preceding output yi−1; in the reverse order, that
dependency becomes latent.

SQUARE-19. The recurrence performs the squared sum modulo 19 of the i-th input token xi and
the previous output token yi values:

y1 = x1 and yi = x2
i + y2i−1 mod 19 ∈ {−9, . . . , 9}, i = 2, . . . , L. (5.3)

The squaring operation is non-injective. The values range in {−9, . . . , 9}, and for any z ∈
{−9, . . . , 9} \ {0}, the preimage of z2 cannot be uniquely determined.

INDEX. The recurrence performs input-element pointing based on the latest target tokens.

y1 = x1 and yi = xp, p =

d∑

j=1

yi−j mod L, i = 2, . . . , L, (5.4)

where d ≤ L is a fixed window size. Forward order enables the model to compute p incrementally,
whereas a reversed or random order destroys the causal chain.
Example 5.1 (SQUARE-19). Given the input sequence X = [7,−2, 4, 1, 3] and the initial value
y1 = x1 = 7, applying the recurrence in (5.3) produces

y1 = 7, y2 = (−2)2 + 72 mod 19 = −4, y3 = 42 + (−4)2 mod 19 = −6,

y4 = 12 + (−6)2 mod 19 = −1, y5 = 32 + (−1)2 mod 19 = −9.

In the forward order, memorizing just 192 = 361 cases suffices to output the target sequence.
In reverse order Y r, however, even with y5 = −9 known, y4 is still ambiguous between 1 and
−1, so learning becomes much harder. Generation examples for the remaining tasks are provided
in Appendix D.

Our experiments will focus on the aforementioned three tasks, but the following PROD task will also
be used to show that our method can reproduce the observation in Shen et al. (2023).

PROD. Given two zero-padded input numbers a and b, the target sequence is their product Y = [ab].
When the digits are emitted from least significant to most significant, we denote the sequence by Y
(forward order); when the digits are emitted in the opposite direction, we denote it by Y r (reverse
order). Unlike the three tasks proposed above, this multiplication task has been examined in earlier
studies. Although it does not satisfy the recurrence in (5.1), it still exhibits moderate order sensitivity.

5.2 EXPERIMENTAL SETUP

Datasets. We generated datasets for the tasks given in Section 5.1. The target length L ranges
between {5, 6, . . . , 100}. The INDEX task introduces a window size d ∈ {2, 4, 8}. The training set

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

contains 100,000 samples, and the evaluation set contains 1,000 samples. Different random seeds
(42 for training and 123 for evaluation) make the two sets disjoint.

Training setup. We use the GPT-2 architecture (Radford et al., 2019) of two sizes, small and large.
The small model consists of one layer and one attention head, and is used for exploration with
the proposed method, while the large one has six layers and is used for the final training with the
discovered learning-friendly order to pursue the accuracy. The other parameters are as follows: the
embedding and feed-forward dimensions are (demb, dffn) = (512, 2048), and dropout is set to 0.1.
Positional embeddings are randomly initialized and optimized throughout training. The model is
trained for 1 and 10 epochs for small and large models, respectively, with AdamW (Loshchilov &
Hutter, 2019) (β1 = 0.9, β2 = 0.999), a linearly decaying learning rate starting from 5.0 × 10−5,
and a batch size of 128.

Exploration setup. The proposed method uses loss profiling in the global–local pipeline. In the loss
profiling, a Transformer is trained on the train set, and then the permutations (i.e., orders) are ranked
by the evaluation loss on the evaluation set. The success rate is the proportion of completely correct
target sequences generated by the Transformer to the total number of samples in the evaluation set.

Initialization. We tested several initializations of the initial candidate set P0 in the loss profiling
(Section 5.4) and global stage (Section 5.5).

• Pg consists of the identity permutation plus random permutations. For example, if the set
size is 100, it includes one identity permutation and 99 random ones.

• Pf consists of permutations obtained by splitting the forward and reverse orders into
column-wise blocks and swapping those blocks.

• Pr consists of permutations chosen uniformly at random.
• Pb consists of permutations formed by splitting the forward and reverse sequence into

length b and permutes those blocks, and fix b = 5 in experiments.

The original target sequences in our dataset are all in the forward order, corresponding to the identity
permutation. Examples of these permutation sets are provided in Appendix E.

5.3 LEARNING WITH FORWARD AND REVERSE ORDERS

Table 1: Success rates for the forward
and the reverse. The forward order is
significantly more learning friendly.

Task Target length Success rate (%)

Forward Reverse

RELU
L = 20 99.6 0.6
L = 50 99.9 5.6
L = 100 99.4 0.0

SQUARE-19
L = 20 100 0.1
L = 50 100 0.0
L = 100 100 0.0

INDEX

L = 13, d = 2 100 9.8
L = 13, d = 4 62.3 1.3
L = 13, d = 8 81.8 2.2
L = 31, d = 2 100 0.8

We first show that the learning is easy with forward order,
while it becomes significantly challenging with the re-
verse order. Table 1 reports the success rate when trained
with the forward and the reverse orders. As explained
in Section 5.1, every task is configured to be learning-
friendly in the forward order but learning-unfriendly in
the reverse order. Consistent with this design, Table 1
shows that the model almost fully learns each task in the
forward order, whereas in the reverse order, the success
rate never exceeds roughly 10 %. A closer look at task-
specific trends reveals that the success rate for the RELU
and SQUARE-19 tasks remains almost unchanged as the
target length grows. By contrast, for INDEX, the forward
order success rate declines with the window size d, in-
dicating that the model struggles when each prediction
depends on a larger number of previous outputs.

5.4 LOSS PROFILING FOR DISCOVERING THE FORWARD ORDER

We next justify the loss profiling before the proposed global–local pipeline. We trained a Trans-
former on a set of permutations, Pg, containing one learning-friendly forward order (ID=0) and 127
randomly generated learning-unfriendly orders. We set L = 50 for the RELU and SQUARE-19
tasks. For the INDEX task, we set L = 31 and d = 4.

Figure 5(a) shows the evaluation loss for each of the 128 permutations at loss profiling. The forward
order (ID=0) achieves the lowest loss among other orders across all tasks, suggesting one can select

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

<latexit sha1_base64="PTibpaH8mjqxbMDd8wI/vt6j1RI=">AAAC6HichVG/TxRREP5Yf+EpcmhjQsHFCwabyxwFEiuCDQ3mAA/OnOSyuzyOhbc/svt2I1ygINBQGZoLUEliobQa/gAa/wGj19oYY3kmNBTM7W1igACz2fe+9818M/PeGJ60AkXU6NBu3Lx1+07n3dS9+10PutM9D6cDN/RNUTRd6folQw+EtBxRVJaSouT5QrcNKWaMpZct/0wk/MBynddq2ROztl51rHnL1BVTlXTfgP5srSB8O1QxkxGRLsM2lG4QVNJZylFsmYsgn4AsEiu46QbeYg4uTISwIeBAMZbQEfBXRh4Ej7lZ1JjzGVmxX2AVKdaGHCU4Qmd2idcqn8oJ6/C5lTOI1SZXkfz7rMygn77TJ2rSNzqgP3Ryaa5anKPVyzLvRlsrvEr31uOp42tVNu8KC/9VV/asMI/huFeLe/dipnULs62PVurNqReT/bWntE9/uf8P1KAjvoET/TM/TojJvSuyzyHirB77zr7Ku/Pvgoz4Vd5d92m7VKcNekOf6Qcd0m9qvvpJ41whxUPOnx/pRTA9mMsP5YYmBrMjo8m4O9GLJxjgmT7HCMZQQJGrb+IAX/BVW9Tea3Vtpx2qdSSaRzhj2v4p/Y+yQA==</latexit>

(a) Permutation evaluation loss
<latexit sha1_base64="7bAfk4Zq5zC0kTdXsdwSZQ71PHU=">AAAC73ichVE7bxNBEP5yvIJ5xECDRHPCShQaa5wiRKkiaGhASYwTIxNFd+txOPle7O1ZBAsKRIWoaCyBhACJItDRUEBHwx9A4JYGIUoj0VAwPp+Ekogwq92Z/Wa+mdkdN/a9xBD1x6x9+w8cPDR+uHDk6LHjE8UTJ1eSKNWKayryI113nYR9L+Sa8YzP9VizE7g+r7rti0P/aod14kXhVbMZ81rgbIRey1OOEWi9ODXtnrtbTZXiJLG1Y9iOWqLDNjftmHWQmjywRGXKxN5tVHKjhFwWo2If19FEBIUUARghjNg+HCSyGqiAEAu2hq5gWiwv8zPuoCDcVKJYIhxB23JuyK2Ro6HchzmTjK2kii9bC9PGJH2iLRrQR3pN3+n3P3N1sxzDXjZFuyMux+sTD05Xf/2XFYg2uPGXtWfPBi3MZb160nucIcNXqBG/c7s3qM4vT3an6AX9kP6fU58+yAvCzk/1comXn+yRvYmOZI3Ft/1Xbu38F9j8tfH4nqZH9R7dp2v0ij7TW/pGgytf6LJUKMiQKztHuttYmSlXZsuzSzOlhQv5uMdxBmcxLTM9jwVcwiJqUv0h3uAd3ls3rZ711Ho2CrXGcs4pbBNr6w+hqbS9</latexit>

(b) Success rate of ranked permutation

Figure 5: (a) Evaluation loss for each permutation obtained via loss profiling. ID=0 corresponds to
the forward order, while the others are randomly generated permutations. (b) Success rate of the
model when retrained on permutations ranked by the loss values from (a). Permutations are ordered
on the x-axis from best (left) to worst (right).

Table 2: The orders discovered by the proposed method in its global and local stages. Depth de-
notes the hierarchy level K reached in the global stage. Each order is listed relative to the forward
sequence; when the list starts at 0, the forward order has been recovered. Forward orders identified
at a given stage are highlighted in bold.

Task Target Length Depth Order after global stage Discovered final order

RELU

L = 7 K = 4 [6, 0, 5, 2, 3, 4, 1] [2, 3, 4, 5, 0, 6, 1]
L = 8 K = 4 [0, 2, 1, 3, 4, 5, 6, 7] [0, 1, 2, 3, 4, 5, 6, 7]
L = 9 K = 5 [0, 1, 2, 3, 4, 5, 6, 7, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8]
L = 10 K = 6 [6, 7, 8, 9, 5, 4, 2, 3, 1, 0] [4, 5, 6, 7, 8, 9, 0, 1, 2, 3]
L = 11 K = 6 [8, 9, 10, 7, 6, 5, 4, 3, 2, 1, 0] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
L = 12 K = 6 [6, 7, 8, 9, 10, 11, 5, 4, 2, 3, 1, 0] [1, 2, 3, 4, 0, 5, 6, 7, 8, 9, 10, 11]
L = 13 K = 6 [11, 12, 10, 9, 8, 7, 6, 5, 4, 2, 3, 1, 0] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

SQUARE-19

L = 7 K = 4 [0, 1, 2, 3, 4, 5, 6] [0, 1, 2, 3, 4, 5, 6]
L = 8 K = 4 [1, 2, 4, 5, 0, 6, 7, 3] [1, 2, 4, 5, 0, 6, 7, 3]
L = 9 K = 5 [0, 1, 2, 3, 4, 5, 6, 7, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8]
L = 10 K = 6 [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
L = 11 K = 6 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
L = 12 K = 6 [1, 2, 3, 4, 5, 6, 7, 11, 10, 9, 0, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
L = 13 K = 6 [0, 1, 2, 3, 12, 11, 10, 4, 5, 6, 7, 8, 9] [8, 9, 0, 1, 2, 3, 4, 10, 11, 12, 5, 6, 7]

INDEX
L = 13, d = 2 K = 6 [1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
L = 13, d = 4 K = 6 [0, 1, 7, 6, 4, 2, 5, 8, 3, 9, 10, 11, 12] [0, 1, 7, 6, 4, 2, 5, 8, 3, 9, 10, 11, 12]
L = 13, d = 8 K = 6 [1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 0, 11] [1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 0, 11]

PROD L = 10 K = 6 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

a learning-friendly permutation via loss profiling if the set contains one. This effect is particularly
pronounced in the INDEX task, which is the hardest task among the three.

Now, we ranked the 128 orders according to the evaluation losses shown in Figure 5 and then trained
a Transformer for each of the top 32 orders. Figure 5(b) shows that the success rate generally aligns
with the rank; training with a highly ranked order leads to a high success rate in the RELU and
SQUARE-19 tasks.

For the INDEX task, which is the hardest task among the three, the success rate was all close to
zero (omitted from the plot). Still, the top-ranked order (i.e., forward order) is the most learning-
friendly order by the construction of the task. This result indicates that the loss profiling is more
advantageous in finding implicit learning-friendly orders than exhaustively repeating full training
and success rate evaluation, even ignoring the computational burden of the latter. The result also
justifies using small Transformers in the exploration stage, even for hard tasks. One only needs to
use large and powerful models in the final training with the discovered order.

5.5 GLOBAL–LOCAL METHOD WITH LOSS PROFILING

We now demonstrate that the proposed method can discover the learning-friendly orders up to L =
13 (i.e., roughly 6 billion possible orders) with random initialization Pr and L = 40 with a structured

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

<latexit sha1_base64="8GoNz54FzUhlh74VQB7MN7N46fc=">AAACcHichVFNLwNBGH66vuujxUXioDQVcWhmHRCnhouDA6VItGl216iN/bI7bdTGH/AHHFyQiIif4eIPOPgJ4qYSFwfvbjcRGryTmXnmmfd555kZ1TF0TzD2FJPa2js6u7p74r19/QOJ5ODQpmdXXY0XNNuw3W1V8bihW7wgdGHwbcfliqkafEs9WAr2t2rc9XTb2hB1h5dMpWLpe7qmCKJKRcGPhKf5eb5SOCkn0yzLwki1AjkCaUSxaidvUMQubGiowgSHBUHYgAKP2g5kMDjEleAT5xLSw32OE8RJW6UsThkKsQc0Vmi1E7EWrYOaXqjW6BSDukvKFDLskd2yBntgd+yZffxayw9rBF7qNKtNLXfKidOR9fd/VSbNAvtfqj89C+xhPvSqk3cnZIJbaE197fissb6Qz/iT7Iq9kP9L9sTu6QZW7U27XuP5c8TpA+Sfz90KNmey8mx2dm0mnVuMvqIbo5jAFL33HHJYxioKdO4hznCBy9irNCKNSePNVCkWaYbxLaTpT3lOj0g=</latexit>

ReLU
<latexit sha1_base64="8GoNz54FzUhlh74VQB7MN7N46fc=">AAACcHichVFNLwNBGH66vuujxUXioDQVcWhmHRCnhouDA6VItGl216iN/bI7bdTGH/AHHFyQiIif4eIPOPgJ4qYSFwfvbjcRGryTmXnmmfd555kZ1TF0TzD2FJPa2js6u7p74r19/QOJ5ODQpmdXXY0XNNuw3W1V8bihW7wgdGHwbcfliqkafEs9WAr2t2rc9XTb2hB1h5dMpWLpe7qmCKJKRcGPhKf5eb5SOCkn0yzLwki1AjkCaUSxaidvUMQubGiowgSHBUHYgAKP2g5kMDjEleAT5xLSw32OE8RJW6UsThkKsQc0Vmi1E7EWrYOaXqjW6BSDukvKFDLskd2yBntgd+yZffxayw9rBF7qNKtNLXfKidOR9fd/VSbNAvtfqj89C+xhPvSqk3cnZIJbaE197fissb6Qz/iT7Iq9kP9L9sTu6QZW7U27XuP5c8TpA+Sfz90KNmey8mx2dm0mnVuMvqIbo5jAFL33HHJYxioKdO4hznCBy9irNCKNSePNVCkWaYbxLaTpT3lOj0g=</latexit>

ReLU
<latexit sha1_base64="92kAKxIsjRcwomU3g1T/3dBODCY=">AAACd3ichVHLSsNAFD2N7/porRvBhWKpdGOZuPC1Et24tK2tgpaSxKmGpklMJsUa/AF/wIUgKIiKn+HGH3DhJ4jLCiK48DYNiIp6h5k5c+aeO2dmVNvQXcHYY0Tq6Ozq7unti/YPDA7F4sOJomt5jsYLmmVYzqaquNzQTV4QujD4pu1wpaYafEOtrrT2N+rccXXLXBcNm5dqyq6pV3RNEUSV44ltwQ+Eq/n5fU9x+LS8cFSOJ1mGBTHxE8ghSCKMNSt+hW3swIIGDzVwmBCEDShwqW1BBoNNXAk+cQ4hPdjnOEKUtB5lccpQiK3SuEurrZA1ad2q6QZqjU4xqDuknECKPbAb1mT37JY9sfdfa/lBjZaXBs1qW8vtcux4NP/6r6pGs8Dep+pPzwIVzAdedfJuB0zrFlpbXz88aeYXcyl/il2wZ/J/zh7ZHd3ArL9ol1meO0WUPkD+/tw/QXEmI89mZrMzyaXl8Ct6MYZJpOm957CEVayhQOce4AxXuI68SePSlJRup0qRUDOCLyHJHzrNkVs=</latexit>

Square-19
<latexit sha1_base64="92kAKxIsjRcwomU3g1T/3dBODCY=">AAACd3ichVHLSsNAFD2N7/porRvBhWKpdGOZuPC1Et24tK2tgpaSxKmGpklMJsUa/AF/wIUgKIiKn+HGH3DhJ4jLCiK48DYNiIp6h5k5c+aeO2dmVNvQXcHYY0Tq6Ozq7unti/YPDA7F4sOJomt5jsYLmmVYzqaquNzQTV4QujD4pu1wpaYafEOtrrT2N+rccXXLXBcNm5dqyq6pV3RNEUSV44ltwQ+Eq/n5fU9x+LS8cFSOJ1mGBTHxE8ghSCKMNSt+hW3swIIGDzVwmBCEDShwqW1BBoNNXAk+cQ4hPdjnOEKUtB5lccpQiK3SuEurrZA1ad2q6QZqjU4xqDuknECKPbAb1mT37JY9sfdfa/lBjZaXBs1qW8vtcux4NP/6r6pGs8Dep+pPzwIVzAdedfJuB0zrFlpbXz88aeYXcyl/il2wZ/J/zh7ZHd3ArL9ol1meO0WUPkD+/tw/QXEmI89mZrMzyaXl8Ct6MYZJpOm957CEVayhQOce4AxXuI68SePSlJRup0qRUDOCLyHJHzrNkVs=</latexit>

Square-19

<latexit sha1_base64="l29iazalSSZT1Z3OrG1Jt0hEewE=">AAADAnichVE7bBNBEH258AnmEwMNEo2FFeQ01jhF+FRRaGhAiY0TR3Zk7Z03YZX7aW/PIrFIgVJR0kSCAoFEQagQBQ0dQqKCCgW3NAhRGomGgvH5JBRHCXO63dn35s3M7tihqyJD1B2xRo8cPXZ87ETm5KnTZ8azZ88tREGsHVl1AjfQNVtE0lW+rBplXFkLtRSe7cpFe+1Gn19sSx2pwL9j1kO57IlVX60oRxiGmtlrBTG5WRZ+K/ByyldGCVdtJFyjkSnYk5sVo2PHxFq2hvhmNk9FSiy33ymlTh6pzQXZLhpoIYCDGB4kfBj2XQhE/NVRAiFkbBkdxjR7KuEl7iPD2pijJEcIRtd4XeVTPUV9PvdzRona4Sou/5qVOUzQF3pJPfpIr+gH/TkwVyfJ0e9lnXd7oJVhc/zhhcrv/6o83g3u/lMd2rPBCq4mvSruPUyQ/i2cgb69sd2rXC9PdC7Tc/rJ/T+jLr3nG/jtX86LeVl+ckj2FtqcNWRu76vcG34X5OS3+uMHmh7VtmmLlmiHduktfafe7a90iytkeMil4ZHudxamiqXp4vT8VH5mNh33GC7iEgo80yuYwU3MocrVn+IDPuGztWXtWK+tN4NQayTVnMces979BeOjvQw=</latexit>

(a) Random initialization
(b) Structured initialization

<latexit sha1_base64="l29iazalSSZT1Z3OrG1Jt0hEewE=">AAADAnichVE7bBNBEH258AnmEwMNEo2FFeQ01jhF+FRRaGhAiY0TR3Zk7Z03YZX7aW/PIrFIgVJR0kSCAoFEQagQBQ0dQqKCCgW3NAhRGomGgvH5JBRHCXO63dn35s3M7tihqyJD1B2xRo8cPXZ87ETm5KnTZ8azZ88tREGsHVl1AjfQNVtE0lW+rBplXFkLtRSe7cpFe+1Gn19sSx2pwL9j1kO57IlVX60oRxiGmtlrBTG5WRZ+K/ByyldGCVdtJFyjkSnYk5sVo2PHxFq2hvhmNk9FSiy33ymlTh6pzQXZLhpoIYCDGB4kfBj2XQhE/NVRAiFkbBkdxjR7KuEl7iPD2pijJEcIRtd4XeVTPUV9PvdzRona4Sou/5qVOUzQF3pJPfpIr+gH/TkwVyfJ0e9lnXd7oJVhc/zhhcrv/6o83g3u/lMd2rPBCq4mvSruPUyQ/i2cgb69sd2rXC9PdC7Tc/rJ/T+jLr3nG/jtX86LeVl+ckj2FtqcNWRu76vcG34X5OS3+uMHmh7VtmmLlmiHduktfafe7a90iytkeMil4ZHudxamiqXp4vT8VH5mNh33GC7iEgo80yuYwU3MocrVn+IDPuGztWXtWK+tN4NQayTVnMces979BeOjvQw=</latexit>

(a) Random initialization
(b) Structured initialization

Figure 6: Success rates of orders found by our hierarchical search using different search-space
initializations. (a) Search initialized with a fully random permutation set Pr. (b) Search initialized
with a structured, block-restricted set Pb. The colors represent the forward (blue), reverse (red), and
our discovered (yellow) orders.

initialization Pb. One should use the former if no prior knowledge of the ordering is available, while
the latter (or something similar) can be designed for some tasks. For example, on polynomial tasks,
one may permute the tokens at a monomial level, which naturally leads to initialization with block-
level permutations.

Initialization with Pr. Table 2 shows the permutation discovered at the global stage and the final
one. After the global stage, tokens that are neighbors in the input usually remain adjacent, showing
that the method first captures coarse structure. The subsequent local stage then fine-tunes this order
and moves the order closer to the optimal forward arrangement. For the RELU and SQUARE-19
tasks, global orders were often already learning-friendly, and retraining a model on them always
produces a higher success rate than training on the reverse order (see Figure 6(a)). The INDEX
task proves harder: as the reference width d grows, learning is difficult even in the forward order
(see Section 5.1), which flattens the loss landscape and makes good permutations harder to rank.
In the PROD, the proposed method succeeds in rediscovering the least-significant-digit first order
reported by Shen et al. (2023), and it finds the optimal order for target lengths up to 13, identifying
a single solution among roughly 13! ≈ 6× 109 possibilities.

Structured initialization with Pb. When the search is initialized with Pb, the proposed method
scales to much longer target sequences. Figure 6(b) shows the resulting success rate curves for
RELU and SQUARE-19: the optimal order is found for both tasks up to L = 30, and for RELU
even at L = 40. At L = 40, the theoretical permutation space still contains about 1047 elements,
indicating that once implausible candidates are pruned, the proposed method can explore the remain-
ing space far more effectively. These results demonstrate that our hierarchical search can recover
optimal orders in both the most challenging fully random scenario and the more realistic, block-
restricted setting, and that its advantage grows as the candidate space is made more coherent.

6 CONCLUSION

This study addressed a new task of reordering decoder input tokens for Transformers in learning
arithmetic tasks. In essence, the proposed method performs short-term training on a mixture of target
sequences in different orders and discovers easy samples for which the loss drops faster, as learning-
friendly orders. To search the factorially large space efficiently, we propose a two-stage hierarchical
approach combining global block-level exploration with local refinement. The experiments on three
order-sensitive arithmetic tasks (RELU, SQUARE-19, and INDEX) demonstrated that the proposed
method discovers a learning-friendly order, improving the success rate from about 10 % to near
100 % and works for target lengths up to 13 tokens (13! > 6 × 109 permutations). Moreover, it
rediscovered the reverse-digit order reported in earlier work on the PROD task. This study presents
an automatically unraveling chain of thought that markedly enhances a Transformer’s reasoning
ability. The extension to longer sequences and target sequences at a variable length will be future
work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement and the Use of LLMs. Common details of our experimental setup are
described in Section 5.2, while any parameters or settings specific to each experiment are provided
at the beginning of each experiment in Section 5. The source code used for experiments is provided
as supplemental material and will be publicly available after clean-up.

The LLMs were used for assistance purposes only. We used them to improve our writing, speed up
coding, and to assist in part of our literature search by listing papers with OpenAI’s ChatGPT (Ope-
nAI, 2024). No essential contributions were made by the LLMs.

REFERENCES

Alberto Alfarano, Francois Charton, and Amaury Hayat. Global lyapunov functions: a long-standing
open problem in mathematics, with symbolic transformers. In Advances in Neural Information
Processing Systems, 2024.

Devansh Arpit, Stanisław Jastrzundefinedbski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon
Lacoste-Julien. A closer look at memorization in deep networks. In International Conference on
Machine Learning, 2017.

Robert J. N. Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. In Advances in Neural Information Processing Systems, 2021.

François Charton. Linear algebra with transformers. Transactions on Machine Learning Research,
2022.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023.

Mahsa Forouzesh and Patrick Thiran. Differences between hard and noisy-labeled samples: An
empirical study. In Proceedings of the 2024 SIAM International Conference on Data Mining
(SDM), pp. 91–99, 2024.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, 2024.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
Advances in Neural Information Processing Systems, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers, 2023.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In International Conference
on Machine Learning, 2018.

Hiroshi Kera, Yuki Ishihara, Yuta Kambe, Tristan Vaccon, and Kazuhiro Yokoyama. Learning to
compute gröbner bases. In Advances in Neural Information Processing Systems, 2024.

Hiroshi Kera, Nico Pelleriti, Yuki Ishihara, Max Zimmer, and Sebastian Pokutta. Computational
algebra with attention: Transformer oracles for border basis algorithms. arXiv:2505.23696, 2025.

Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought. In
International Conference on Learning Representations, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2020.

Cathy Yuanchen Li, Jana Sotáková, Emily Wenger, Mohamed Malhou, Evrard Garcelon, François
Charton, and Kristin Lauter. Salsapicante: A machine learning attack on lwe with binary secrets.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security,
2023a.

Cathy Yuanchen Li, Emily Wenger, Zeyuan Allen-Zhu, Francois Charton, and Kristin E. Lauter.
Salsa verde: a machine learning attack on learning with errors with sparse small secrets. In
Advances in Neural Information Processing Systems, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In International Conference on Learning Representations, 2018.

OpenAI. Chatgpt. https://openai.com/chatgpt, 2024. Model: GPT-4. Accessed: 2025-
09-25.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI, 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, 2019.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
In International Conference on Machine Learning, 2017.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv:2311.14737, 2023.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. In Proceedings of EMNLP, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, 2022.

Emily Wenger, Mingjie Chen, François Charton, and Kristin E. Lauter. SALSA: attacking lattice
cryptography with transformers. In Advances in Neural Information Processing Systems, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Ad-
vances in Neural Information Processing Systems, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference op-
timization: Improving chain-of-thought reasoning in LLMs. In Advances in Neural Information
Processing Systems, 2024.

11

https://openai.com/chatgpt


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A VISUALIZING ATTENTION MAP

We present the attention maps obtained when training a Transformer on our proposed RELU task
with datasets reordered in different ways. For this analysis, we use a GPT-2 model with a single layer
and a single attention head. Figure 7 shows the attention maps for target length L = 20 under four
target orders. The forward and reverse orders are defined in Section 5.1. The one-permuted order
swaps exactly one pair of adjacent target tokens, whereas the random order is a random permutation
of the forward sequence. Figure 8 illustrates how the attention maps change as the target length
increases.

(a) Forward order (b) one permuted order

(c) Random order (d) Reverse order

Figure 7: Attention matrices from models trained with four different target orders in the RELU task.

Table 3: Attention sparsity S across target orders. A smaller value of S indicates greater sparsity.

Task Target length Sparsity
Forward Reverse

RELU
L = 20 1.160 1.640
L = 50 1.462 4.319
L = 100 1.687 3.195

SQUARE-19
L = 20 1.117 1.531
L = 50 1.773 1.914
L = 100 1.407 1.990

INDEX
L = 13, d = 2 0.848 2.574
L = 13, d = 4 0.887 1.486
L = 13, d = 8 1.116 1.596

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 8: Differences in the attention matrices for the RELU task between forward and reverse
orderings. The top three matrices correspond to models trained with forward order, and the bottom
three with reverse order. Each pair of matrices shows results for input lengths n = 20, 50, and 100,
respectively.

B SOFT-PERMUTATION OPTIMIZATION VIA ATTENTION SPARSITY

Analysis of attention sparsity. To address the challenges of permutation optimization, we un-
dertake a more detailed analysis. Intuitively, when the target order is learning-friendly, the causal
structure of the sequence is broken: more input and output tokens become relevant to predicting the
next token. Conversely, for an learning-friendly order we expect the attention map to be sparser.

Let the query and key matrices be Q,K ∈ RL′×demb , where L′ is the decoder-input length and
demb the embedding dimension. The self-attention weights are

A = Softmax

(
QK⊤
√
demb

)
∈ RL′×L′

, (B.1)

where Softmax(·) is applied row-wise. Because each row of A = (aij)ij is a probability vector, we
define the mean sparsity S by the Shannon entropy:

S = − 1

L′

L′∑

i,j=1

aij log aij . (B.2)

We compute S for models trained on both the forward (learning-friendly) and reverse (learning-
unfriendly) orders of the order-sensitive tasks (section 5.1). table 3 shows that the forward order
consistently yields lower S, and—since a smaller S directly means higher sparsity—this confirms
that learning-friendly orders produce sparser attention. Representative heat maps are provided in
appendix A.

Because S is derived from the learned attention weights, it is independent of the language-model
loss and can serve as an orthogonal diagnostic metric. We also experimented with optimizing permu-
tations under an additional sparsity regularizer that rewards low-entropy attention (cf. appendix B).
Even with this bias, the optimizer failed to discover the learning-friendly order and instead converged
to interleaved permutations, suggesting that sparsity alone is insufficient to solve the permutation
search in difficult regimes.

We present a soft-permutation optimization method based on attention sparsity. In our two-stage
strategy, we first optimize the Transformer parameters θ by minimizing the standard sequence-
modeling loss over the training set:

min
θ

1

m

m∑

i=1

ℓ
(
Tθ, Xi, Yi

)
. (B.3)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

<latexit sha1_base64="KEYnyuAhCRo63kSGtgzJ9Ip00v8=">AAACjnichVG/TxsxGH05SqEHlCsslVhOjUDJEjkZUlQJgcqSMQESkAiKfIdJLe6Xzk4ERPwDLB0ZmFqpqqrOrO3QhX+AIX8C6ggSCwNfLichitp+lu3n5+99fradyJNKM9bPGCPPRp+Pjb8wJyanXk5br2YaKuzErqi7oRfGWw5XwpOBqGupPbEVxYL7jic2nf3Vwf5mV8RKhsGGPozEjs/bgdyTLtdEtax8judtpXlblGwvVMpuNs2ck7cjEfsdnSTZPtexPGhZWVZgSdhPQTEFWaRRDa2vaGIXIVx04EMggCbsgUNR20YRDBFxO+gRFxOSyb7AMUzSdihLUAYndp/GNq22Uzag9aCmStQuneJRj0lpY55dsm/sml2w7+yK3f21Vi+pMfBySLMz1IqoNX3yev32vyqfZo0PD6p/etbYw2LiVZL3KGEGt3CH+u7R6fX6u7X53gL7zH6T/0+sz37RDYLujfulJtbOYNIHFP987qegUSoUy4VyrZRdeZ9+xTjm8AY5eu+3WEEFVdTp3I84xw/8NCyjbCwZy8NUI5NqZvEojMo9hsGYZg==</latexit>

(a) stage2 loss
(b) permutation matrix

<latexit sha1_base64="KEYnyuAhCRo63kSGtgzJ9Ip00v8=">AAACjnichVG/TxsxGH05SqEHlCsslVhOjUDJEjkZUlQJgcqSMQESkAiKfIdJLe6Xzk4ERPwDLB0ZmFqpqqrOrO3QhX+AIX8C6ggSCwNfLichitp+lu3n5+99fradyJNKM9bPGCPPRp+Pjb8wJyanXk5br2YaKuzErqi7oRfGWw5XwpOBqGupPbEVxYL7jic2nf3Vwf5mV8RKhsGGPozEjs/bgdyTLtdEtax8judtpXlblGwvVMpuNs2ck7cjEfsdnSTZPtexPGhZWVZgSdhPQTEFWaRRDa2vaGIXIVx04EMggCbsgUNR20YRDBFxO+gRFxOSyb7AMUzSdihLUAYndp/GNq22Uzag9aCmStQuneJRj0lpY55dsm/sml2w7+yK3f21Vi+pMfBySLMz1IqoNX3yev32vyqfZo0PD6p/etbYw2LiVZL3KGEGt3CH+u7R6fX6u7X53gL7zH6T/0+sz37RDYLujfulJtbOYNIHFP987qegUSoUy4VyrZRdeZ9+xTjm8AY5eu+3WEEFVdTp3I84xw/8NCyjbCwZy8NUI5NqZvEojMo9hsGYZg==</latexit>

(a) stage2 loss
(b) permutation matrix

Figure 9: (a) Comparison of Stage 2 loss under fixed learning-friendly order, fixed learning-
unfriendly order, and learned soft permutation. (b) shows a visualization of the learned soft per-
mutation.

Next, denoting by A = [aij ] ∈ RL′×L′
the attention map produced when the target sequence is fed

as Yi P̃ into the Transformer, we optimize the soft permutation P̃ by minimizing the total attention
entropy:

min
P̃

1

L′

L′∑

i=1

L′∑

j=1

aij . (B.4)

In the experiments, we alternate between the two-stage optimizations at each step. Figure 9 com-
pares the stage 2 loss under three conditions: the fixed, learning-friendly order, the fixed, learning-
unfriendly (reverse) order, and the learned soft permutation. We observe that the soft permutation
does not reduce the entropy-based loss (B.4) relative to the fixed orders, nor does it yield a genuinely
hard ordering. Because attention sparsity—as measured by total attention mass—decreases even for
static orders, it cannot serve as a reliable objective for permutation optimization.

C PERMUTATION SEARCH VIA EVOLUTIONARY STRATEGY

This section summarizes the evolutionary strategy (ES) baseline that we ran in parallel with our
proposed method to search the permutation space. Each individual is a permutation P ; its fitness is
the (negative) early-stage training loss of a Transformer trained with that order, so that permutations
that are easier to learn receive higher scores. The ES is controlled by the population size Np,
crossover probability Nc, mutation probability Nm, number of generations Ng , tournament size Nt,
and elitism ratio Nr, and proceeds as follows:

(1) Population initialization: sample Np random permutations.

(2) Selection: pick parents via tournament selection with size Nt.

(3) Crossover: with probability Nc, apply partially–mapped crossover to each selected pair.

(4) Mutation: with probability Nm, swap two positions in the offspring permutation.

(5) Elitism: evaluate every individual by

fitness(P ) = − 1

m′

m′∑

i=1

ℓ
(
Tθ, Xi, YiP

)
,

and copy the top Nr fraction to the next generation.

(6) Termination: stop when Ng generations have been processed.

Table 4 lists the permutation identified by the evolution strategy (ES) and the performance obtained
when the model is retrained using that order.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Success rate obtained when the Transformer is retrained on the permutations discovered by
the ES.

Task Input length ES-discovered order Success rate (%)

Retrain Reverse

RELU
L = 5 [2, 1, 0, 4, 3] 26.9 10.4
L = 10 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 100 3.5
L = 20 [6, 7, 9, 8, 12, 11, 13, 18, 17, 14, 16, 15, 19, 5, 10, 1, 0, 3, 4, 2] 9.2 0.7

SQUARE-M19
L = 5 [1, 2, 3, 4, 0] 100 21.5
L = 10 [3, 4, 5, 6, 7, 8, 9, 1, 0, 2] 99.9 13.5
L = 20 [9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 15, 16, 17, 18, 19, 0, 1, 7, 8] 5.2 1.2

INDEX (m = 2) L = 13 [0, 1, 2, 3, 4, 10, 9, 5, 6, 12, 11, 7, 8] 27.6 7.8

D EXAMPLE DATASET

This section provides concrete examples for the four tasks introduced in Section 5.1. Table 5 sum-
marizes the correspondence between the input X and the target Y , with every Y given in the for-
ward—that is, learning-friendly—order. For the PROD task only, the input consists of two integers,
a and b.

Table 5: Representative input–output samples for each task

Task Input Target

RELU, L = 50

X = (4, −7, −7, −3, 8, 1, −8, −9, 8, 6 Y = (4, 0, 0, 0, 8, 9, 1, 0, 8, 14
0, −9, 5, −9, 6, 5, −5, −9, 7, −5 14, 5, 10, 1, 7, 12, 7, 0, 7, 2
8, −6, −7, −2, −7, 6, 7, −2, 0, −6 10, 4, 0, 0, 0, 6, 13, 11, 11, 5
−3, −8, −7, −8, 3, −1, −6, 1, −4, −9 2, 0, 0, 0, 3, 2, 0, 1, 0, 0
2, −7, 1, 4, 9, −5, 6, 2, 3, −3) 2, 0, 1, 5, 14, 9, 15, 17, 20, 17)

SQUARE-M19, L = 50

X = (−5, −9, 8, 7, 8, −7, 5, −9, −6, 9 Y = (−5, 2, 2, 6, −4, −1, −2, 0, 8, 3
−2, −8, 6, −7, 2, −7, −6, −5, −5, 7 4, −5, −5, 8, 2, 6, 6, −5, 3, −8
3, 6, −9, 1, 7, 0, −7, 7, −5, 0 7, 0, −4, 8, 9, −4, −1, 3, 6, 8
−2, 6, −1, −9, −6, −7, 0, 2, 7, −1 2, −7, 3, 5, −5, 8, −2, −1, 3, 1
1, −2, −6, −7, 5, 1, 9, −6, −3, −3) −7, 6, 6, 0, −3, 1, −3, −2, 4, −3)

INDEX, L = 13, d = 2
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

INDEX, L = 13, d = 4
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

INDEX, L = 13, d = 8
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

PROD, L = 10
a = (0, 0, 2, 0, 3) Y = (1, 1, 3, 5, 3, 5, 0, 0, 0, 0)
b = (0, 2, 6, 3, 7)

E EXAMPLE SET OF PERMUTATIONS

This section describes the four permutation sets introduced in Section 5.2. Figure 10 visualizes
every permutation P in those four sets. Each set contains 32 elements.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

<latexit sha1_base64="9bxXKrJgS/WZEbeWenYRRBDU95Q=">AAACi3ichVFNLwRBEH07vtfX4iJx2dgQLpteBBEHIRLHXSwSZNMzetfEfGWmdxMm4weIu4MTiYi4uXJz8Qcc/ARxJHFxUDs7Igiq091Vr+pVv+5WHUP3JGMPMaWuvqGxqbkl3trW3tGZ6Ope8eyyq4m8Zhu2u6ZyTxi6JfJSl4ZYc1zBTdUQq+rOXDW/WhGup9vWstx1xKbJS5Ze1DUuCSokBjdMLrdd0x/iw8F+GGjc8LNBwf/IFIMgWUikWJqFlvzpZCInhciyduIcG9iCDQ1lmBCwIMk3wOHRWEcGDA5hm/AJc8nTw7xAgDhxy1QlqIITukNriaL1CLUorvb0QrZGpxg0XWImMcDu2QV7Znfskj2yt197+WGPqpZd2tUaVziFzoPepdd/WSbtEtufrD81SxQxGWrVSbsTItVbaDV+Ze/oeWlqccAfZKfsifSfsAd2SzewKi/aWU4sHiNOH5D5/tw/nZWRdGY8PZ4bS83MRl/RjD70Y4jeewIzWEAWeTr3EFe4xo3SrowqU8p0rVSJRZwefDFl/h180Jl0</latexit>

(a) Pf

<latexit sha1_base64="lL6O4zMX/y9h/9eC3Z7N9FPgxjQ=">AAACi3ichVG7SgNBFD2u7/iK2gg2wRDRJkxUVMRCFMEyPvIAlbC7TuLivtidBHRZP0DsLawURMTOVjsbf8AinyCWEWwsvNmsiIp6h5m599x77pyZUWxdcwVj1SapuaW1rb2jM9LV3dPbF+0fyLpW2VF5RrV0y8krsst1zeQZoQmd522Hy4ai85yyt1TP5yrccTXL3BD7Nt825JKpFTVVFgQVoqNbhix2HcMbU8b9wyBQZd1L+wXvI+P4fqwQjbMkCyz200mFThyhpa3oJbawAwsqyjDAYUKQr0OGS2MTKTDYhG3DI8whTwvyHD4ixC1TFacKmdA9WksUbYaoSXG9pxuwVTpFp+kQM4YEe2RXrMYe2DV7Ym+/9vKCHnUt+7QrDS63C31HQ+uv/7IM2gV2P1l/ahYoYjbQqpF2O0Dqt1Ab/MrBSW19bi3hjbJz9kz6z1iV3dMNzMqLerHK104RoQ9IfX/un052IpmaTk6vTsUXFsOv6MAwRjBG7z2DBawgjQyde4wb3OJO6pEmpTlpvlEqNYWcQXwxafkdlxCZgQ==</latexit>

(b) Pr

<latexit sha1_base64="xMaaZ2uwng2TzE0uEaGmx+NP/6k=">AAACi3ichVHLLgRBFD3aa4zXYCOxmZgQNpMaBBELIRLL8RgkyKS71IyOfqW7ZpLRaR8g9hZWJCJiZ8vOxg9Y+ASxJLGxcKenRRDcSlXde+49t05VaY6he5KxhzqlvqGxqTnWEm9ta+/oTHR1r3p2yeUix23Ddtc11ROGbomc1KUh1h1XqKZmiDVtd66aXysL19Nta0VWHLFlqkVLL+hclQTlE4Obpip3XNMf4sPBfhhw1fCzQd7/yBSDIJlPpFiahZb86WQiJ4XIsnbiHJvYhg2OEkwIWJDkG1Dh0dhABgwOYVvwCXPJ08O8QIA4cUtUJahCJXSX1iJFGxFqUVzt6YVsTqcYNF1iJjHA7tkFe2Z37JI9srdfe/lhj6qWCu1ajSucfOdB7/LrvyyTdomdT9afmiUKmAy16qTdCZHqLXiNX947el6eWhrwB9kpeyL9J+yB3dINrPILP1sUS8eI0wdkvj/3T2d1JJ0ZT48vjqVmZqOviKEP/Rii957ADBaQRY7OPcQVrnGjtCujypQyXStV6iJOD76YMv8OgwuZdw==</latexit>

(c) Pg

<latexit sha1_base64="1DlXU2xUo5VXqqpmFzoeZpLk/OU=">AAACinichVHLLgRBFD3aewwGG4mNmIyMzaRaxHMjWFgOY5DMyKS7FTr6le6aSei0D+ADLKxIRMTKlqWNH7CYTxBLEhsLd3paBMGtVNW9595z61SV6hi6JxirNkiNTc0trW3tsY54Z1d3oqd31bPLrsbzmm3Y7rqqeNzQLZ4XujD4uuNyxVQNvqbuztfyaxXuerptrYg9h2+Yyralb+maIggqJVJFUxE7rumnN0eCgzDQFMPPBiX/I6MGQSmRZBkW2uBPR46cJCLL2okLFLEJGxrKMMFhQZBvQIFHowAZDA5hG/AJc8nTwzxHgBhxy1TFqUIhdJfWbYoKEWpRXOvphWyNTjFousQcRIo9sEv2zO7ZFXtkb7/28sMeNS17tKt1LndK3Yf9udd/WSbtAjufrD81C2xhMtSqk3YnRGq30Or8yv7xc256OeUPszP2RPpPWZXd0Q2syot2vsSXTxCjD5C/P/dPZ3U0I49nxpfGkrNz0Ve0YQBDSNN7T2AWi8giT+ce4Ro3uJXi0qg0Jc3US6WGiNOHLyYtvAMGLZlJ</latexit>

(d) Pb

Figure 10: Visualization of the elements in the four permutation sets.

16


	Introduction
	Related work
	Unraveling the Chain of Thought
	Proposed method
	Experiments
	Order-sensitive tasks
	Experimental setup
	Learning with forward and reverse orders
	Loss profiling for discovering the forward order
	Global–local method with loss profiling 

	Conclusion
	Visualizing attention map
	Soft-permutation optimization via attention sparsity
	Permutation search via evolutionary strategy
	Example dataset
	Example set of permutations

