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ABSTRACT

The chain of thought, i.e., step-by-step reasoning, is one of the fundamental mech-
anisms of Transformers. While the design of intermediate reasoning steps has
been extensively studied and shown to critically influence performance, the order-
ing of these steps has received little attention, despite its significant effect on the
difficulty of reasoning. This study addresses a novel task of unraveling the chain
of thought—reordering decoder input tokens into a learning-friendly sequence for
Transformers, for learning arithmetic tasks. The proposed pipeline first trains a
Transformer on a mixture of target sequences arranged in different orders and
then identifies benign orders as those with fast loss drops in the early stage. As
the search space grows factorially in sequence length, we propose a two-stage
hierarchical approach for inter- and intra-block reordering. Experiments on four
order-sensitive arithmetic tasks show that our method identifies a learning-friendly
order out of a few billion candidates. Notably, on the multiplication task, it recov-
ered the reverse-digit order reported in prior studies.

1 INTRODUCTION

Autoregressive generation is central to the success of the Transformer (Vaswani et al., 2017) in
reasoning tasks, which leads to many successes of the end-to-end learning of arithmetic and hard
symbolic computations, such as (Lample & Charton, 2020; Charton, 2022; Kera et al., 2024; 2025;
Alfarano et al., 2024; Wenger et al., 2022; Li et al., 2023a;b). The autoregressive nature makes each
reasoning step conditioned on the preceding context, and careful design of intermediate reasoning
steps, such as chain of thought (Wei et al., 2022), guides the model’s reasoning toward the final
answer of the target problem. For example, it has been known that learning the parity function—the
prediction of the parity of the input bit string—is challenging (Shalev-Shwartz et al., 2017; Hahn &
Rofin, 2024). However, Kim & Suzuki (2025) recently has shown that the step-by-step prediction
of the parity of the first k bits with k = 1, 2, . . ., makes the learning successful.

One important yet underexplored aspect is the order of the chain of thought—not only which steps
to include, but also the order in which they are arranged can greatly impact learning. For example,
Shen et al. (2023) has shown that Transformers learn multiplication of two integers with better
generalization to larger integers (i.e., those with more digits) when the product is predicted from
least to most significant digits (cf. Figure 1). While this particular case can be explained by the
carries, which flow from least to most significant digits, a systematic way of determining a learning-
friendly order of the chain of thought remains unknown.

In this study, we address a new task of reordering decoder input tokens into a learning-friendly
order for better learning of arithmetic tasks. Exploiting the observation that neural networks tend
to learn from easy to hard instances during training (Arpit et al., 2017; Forouzesh & Thiran, 2024;
Swayamdipta et al., 2020), we train a Transformer on a mixture of target sequences in different
orders and identify those that lead to a faster loss drop in the early stages of training. To better
handle longer sequences, we propose a two-stage hierarchical approach, where the global stage
finds block-level orders, while the local stage reorders tokens within each block.

The experiments demonstrate that the proposed method successfully reorders the target sequences.
We designed three arithmetic tasks that are relatively easy to compute with the (input and) target
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sequence in the forward order, but not with other orders. Starting from random orders, the proposed
method succeeds up to thirteen tokens (i.e., 13! > 6×109 permutations), increasing the success rate
of arithmetic computation from approximately 10 % to 100 %. We also applied our method to the
multiplication task in (Shen et al., 2023) and successfully rediscovered the reverse orders.

Our contributions are summarized as follows:

• We address a novel task, unraveling the chain of thought. This aims at discovering a
learning-friendly order of decoder input tokens, thereby making the learning more suc-
cessful for in-distribution samples and generalizable to out-of-distribution samples.

• We propose a method that efficiently determines learning-friendly orders from the loss
profile at the early stage of training. Empirically, this filters a few thousand candidates in a
single epoch, and combined with a hierarchical strategy, the best order can be found out of
a few billion candidates.

• We introduce order-sensitive arithmetic tasks using non-injective maps, with which one can
evaluate reordering methods. Our extensive experiments present that the proposed method
successfully discovers learning-friendly orders and rediscover the previously reported the
learning-friendly order in the multiplication task.

2 RELATED WORK

Transformers for mathematical tasks. Transformers have recently been applied to mathemati-
cal problem-solving with encouraging results. (Lample & Charton, 2020) has demonstrated that
a Transformer can carry out integral calculus with a high success rate, opening the possibility
that sequence-to-sequence models can handle algebraic tasks. Since that study, applications have
expanded to arithmetic (Charton, 2022), linear algebra (Charton, 2022), computational algebra
(Kera et al., 2024; 2025), and coding theory, as well as cryptography (Wenger et al., 2022; Li
et al., 2023a;b). One reason behind these successes is the autoregressive generation scheme. Al-
though theory has suggested that learning high-sensitive functions such as parity is difficult (Hahn
& Rofin, 2024), recent work achieved a high success rate on parity tasks by applying a chain of
thought prompting (Wei et al., 2022; Kojima et al., 2022; Chen et al., 2023; Yao et al., 2023;
Zhang et al., 2024) to arithmetic and by exploiting the generated output tokens effectively (Kim
& Suzuki, 2025). Positional encoding is also crucial for arithmetic problems; prior work (Jelassi
et al., 2023) has shown that relative-position and abacus-style embeddings improve generalization
to out-of-distribution data. These studies collectively show that task-specific representations and po-
sitional encodings strongly influence performance. In particular, prior work (Shen et al., 2023) ana-
lyzed in detail how digit order affects multiplication success rate and demonstrated that generating
digits from the least significant position upward raises the success rate; however, the ordering was
chosen heuristically rather than by an automated procedure. Systematic optimization of the output
order itself in arithmetic tasks remains unaddressed. This study is the first to exploratively optimize
the output-sequence permutation for each task, automatically discovering a learning-friendly target
order.

Easy-to-hard learning dynamics in deep neural networks. The observation that deep neural
networks can be trained even on randomly assigned labels—while still achieving excellent general-
ization on real data—led to a line of research into how models adapt to data during training (Zhang
et al., 2017). (Arpit et al., 2017) has experimentally shown that networks first pick up simple regular-
ities between inputs and labels and only later transition to memorizing harder, noise-like examples.
More broadly, deep neural networks are known to learn easy instances in a dataset before gradu-
ally fitting the more difficult ones; in image domains, this behavior is often referred to as spectral
bias (Rahaman et al., 2019). This property is now widely exploited in curriculum learning (Jiang
et al., 2018; Han et al., 2018; Baldock et al., 2021) and data-quality control (Swayamdipta et al.,
2020). For example, integrating each sample’s learning curve can reveal mislabeled data (Forouzesh
& Thiran, 2024). Most prior work, however, analyzes such dynamics by injecting noise directly into
the target labels themselves. In contrast, this study focuses on the ordering of the target sequences.
The dataset is rearranged with multiple permutation matrices, and the model is trained on these
reordered versions to investigate how sequence order affects learning.
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Figure 1: Success rates for the multiplication of
two integers. Matrix rows and columns indicate
the number of digits in each operand. Evalu-
ation is conducted with 100 samples for each
digit position. (a) The model is trained to output
from the most significant digit. (b) The model is
trained to output from the least significant digit.
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(a) Eval loss curve
(b) Soft permutation

Figure 2: (a) Training-loss curves for a vanilla
Transformer (blue) and for a model trained
with soft-permutation optimization (red). (b)
Permutation matrix learned during permutation
training. Sparse off-diagonal weights clustered
around the main diagonal indicate leakage from
future tokens.

3 UNRAVELING THE CHAIN OF THOUGHT

Let SL be the symmetric group of order L, i.e., the set of all permutations over {1, . . . , L}. We
address the problem of discovering a permutation π ∈ SL over the token sequence (of length L) to
the Transformer decoder that improves the overall learning effectiveness of the Transformer.

The Transformer decoder generates output sequences in an auto-regressive manner. It is widely
known—especially in the context of chain-of-thought prompting—that the order of generation can
have a crucial impact on the reasoning ability of Transformers. For example, Figure 1 shows that, in
the task of multiplying two integers, the digits of the target integer (each treated as a token) should
be presented in reverse order—from lower to higher digits—because this allows the Transformer to
compute carries step by step.

More generally, for example, let X = [x1, . . . , xL] be a sequence of numbers, which is the input
sequence to the Transformer. If the target sequence is defined by a map f(x, y) that is non-injective
with respect to y (e.g., f(x, y) = max{x + y, 0}) as Y = [y1, . . . , yL] with y1 = x1 and yi+1 =
f(xi + yi) for i > 1, learning from reverse order Y r = [yL, . . . , y1] is significantly harder than that
from the forward order because of non-injective f(x, y).

We now introduce our formal problem setup and its challenges.

Formulation. Let Σ be the set of all tokens. We denote the set of all finite token sequences by Σ∗

and its restriction to length-L sequences by ΣL. Let Tθ : Σ∗ × ΣL → ΣL be a Transformer with
parameter θ. Hereinafter, we assume that the target sequence length is fixed. Now, let (X,Y ) ∼ D
be an input–target sequence pair (X,Y ) with |Y | = L from a joint distribution D. The empirical
risk minimizer θERM with finite sample set D = {(Xi, Yi)}mi=1 and permutation π ∈ SL is

θπERM = argmin
θ

1

m

m∑

i=1

ℓ(Tθ, Xi, π(Yi)), (3.1)

with ℓ denotes a loss function. Our goal is to discover a permutation π that minimizes the expected
risk:

π∗ = arg min
π∈SL

E(X,Y )∼D
[
ℓ
(
Tθπ

ERM
, X, π(Y )

)]
. (3.2)

A permutation π(Y ) of a target sequence Y = [y1, . . . , yL] ∈ ΣL can be represented as a matrix
product Y P , where P ∈ {0, 1}L×L is a permutation matrix.

Challenges. The optimization over permutations is challenging because one has to test all possible
permutations, which is L! for those over {1, ..., L}. One may introduce a soft permutation matrix
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P̃ ∈ [0, 1]L×L and perform empirical risk minimization jointly over θ and P̃ ; namely,

min
θ,P̃

1

m

m∑

i=1

ℓ(Tθ, Xi, YiP̃ ). (3.3)

However, as shown in Figure 2, such an approach leads to an immediate loss drop at the early stage
of training, because the soft permutation P̃ causes information leakage from future tokens; each
token in YiP is a soft mixture of all the tokens in Y , which undermines the next-token prediction.
Introducing an additional loss that strongly penalizes non-dominant entries in P̃ and encourages it to
approximate a hard permutation matrix P can mitigate such leakage. However, training over nearly
hard permutation matrices induces a highly non-convex loss surface, and the optimization process
is prone to getting trapped in local minima (Mena et al., 2018; Jang et al., 2017).

4 PROPOSED METHOD

We introduce our strategy for discovering a suitable permutation of target token sequences. The key
idea is to leverage a characteristic of the training dynamics of deep neural networks: they tend to
learn easy samples in the early stages of training, and gradually adapt to harder samples later. This
phenomenon has been reported in several contexts in the literature, such as Arpit et al. (2017) for
learning with noisy labels and Baldock et al. (2021) for identifying difficult examples.

Figure 3: Evaluation loss
curves when trained with
two different orders.

We discovered this is also the case with the training with different
decoder token orders, see Figure 3. Exploiting this observation, we
proposed to train a Transformer only for a few epochs on a dataset
with various orders in mixture and identify learning-friendly orders
as “easy samples,” for which the loss drops faster.

More formally, let D = {(Xi, Yi)}mi=1 and D′ = {(X ′
i, Y

′
i )}m

′
i=1 be

training and validation sets, respectively. Let P = {P1, . . . , PT } be
the set of T candidate permutation matrices. Let DPt be the set D
with reordered target sequences by Pt, i.e., DPt = {(Xi, YiPt)}mi=1.

We determine learning-friendly orders through the following loss profiling.

P1. Let E ∈ N. Train a Transformer for E epochs on a mixed dataset D̄ :=
⋃T

t=1 D
Pt . Let Tθ′

be the Transformer after training.

P2. Compute the loss on the validation set D′ for each permutation; namely, for t = 1, . . . , T ,
compute

L(D′, Pt) =
1

m′

m′∑

i=1

ℓ(Tθ′ , X ′
i, Y

′
i Pt). (4.1)

Then, the most learning-friendly order P ∗ := Pτ is determined with τ =
argmint L(D′, Pt).

Our experiments empirically observed that a few thousand permutations can be handled at once
through this approach. However, the number of permutations grows factorially, which leads us to in-
troduce the following two-stage hierarchical optimization, where aforementioned loss profiling (i.e.,
P1 and P2) is performed to determine learning-friendly orders at each level.

Figure 4 illustrates our hierarchical method. We start with the initial set of permutation candidates
P0 = {P1, . . . , PT }. The global stage splits each token sequence into several blocks and finds a
good permutation at the block level. The local stage refines this coarse ordering by permuting the
tokens within each block discovered at the global stage. Formally, the two stages operate as follows.

Global stage. Let the search depth be K and T = (K + 1)!. Let P1 := P0. For k = 1, . . . ,K,
we conceptually split each target sequence into k blocks, 1 and apply the loss profiling to the new

1When k = 1, the sequence is not split into blocks
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Global stage (Block-level permutation)

=

Input:  <latexit sha1_base64="dQv3Y/uqgXOAr/kY57TsWuqcm2I="></latexit>P0 = {P1, P2, . . . , PT }
For                       <latexit sha1_base64="/vOmBQ8X0T2WdsEf+sTPA2gl1bI="></latexit>

k = 1, 2, . . . , K

①. Expand each         with block-permutation<latexit sha1_base64="RLoXO5VQluWtU+3E4EAoVNg6Spk="></latexit>Pk→1

<latexit sha1_base64="foyGdxdjPeuPzYl83d4luqhj0PM="></latexit>· · ·

②. Select nice orders via loss profiling

Get                                       (    perms)

<latexit sha1_base64="UlZCRp6QoSnhqSl4Qa2rAQXEpGk="></latexit> ⋃

P→Pk→1

{PQ1, . . . , PQk!}

T
<latexit sha1_base64="pXtxI0JkB5EG+PaCY9qrFpQfrxE="></latexit>

P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

<latexit sha1_base64="IwwOxBFCLczED71GqJoxNad7ZdQ="></latexit>

P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

P →
k = {P1, P2, . . . , PT }

Pk = {P1, P2, . . . , P↓T/(k+1)!↔}
→T/(k + 1)!↑

<latexit sha1_base64="IwwOxBFCLczED71GqJoxNad7ZdQ="></latexit>

P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

P →
k = {P1, P2, . . . , PT }

Pk = {P1, P2, . . . , P↓T/(k+1)!↔}
→T/(k + 1)!↑

Filtered by loss profiling
(    perms)

(               perms)
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{PQ1, . . . , PQk!}

T
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P →
k =

⋃

P↑Pk→1

{PQ1, . . . , PQk!}

T

P →
k = {P1, P2, . . . , PT }

Pk = {P1, P2, . . . , P↓T/(k+1)!↔}
→T/(k + 1)!↑

※
<latexit sha1_base64="440tec6n68tE/JX/thvaQrO8vSw="></latexit>

P →
1 = P0

Local stage (Intra- and inter-block permutation)

=

Input: The best permutation from global stage
For                                  is block length                               
①. Intra-block permutation followed by loss profiling 

<latexit sha1_base64="foyGdxdjPeuPzYl83d4luqhj0PM="></latexit>· · ·

②. Inter-block permutation followed by loss profiling

Get the lowest-loss     from
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Pg

l = 2, 3, . . . , →L/2↑
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Get the lowest-loss        from
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Pg

l = 2, 3, . . . , →L/2↑
→L/l↑⋃

i=1

{PlR
i
1, . . . , PlR

i
l!}
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Pg

l = 2, 3, . . . , →L/2↑
→L/l↑⋃

i=1

{PlR
i
1, . . . , PlR

i
l!}

Pl+1

{PlQ
↓
1, PlQ

↓
2, . . . , PlQ

↓
→L/l↑}

<latexit sha1_base64="nQ1Laj2BlkejZTMfnpyuiclKPSQ="></latexit>

{PlQ
→
1, PlQ

→
2, . . . , PlQ

→
(↑L/l↓)!}

Figure 4: Search flow of our hierarchical approach. Global stage: The proposed method generates
T candidate permutations by swapping the sequence at the macro-level, exchanging P token blocks
to quickly spot coarse, learning-friendly orders. Local stage: inside each chosen block, the pro-
posed method further permutes the tokens, refining the sequence to discover a final permutation that
maximizes learning ease.

permutation set:
⋃

P∈Pk

{PQ1, . . . , PQk!}, (4.2)

where Qi ∈ [0, 1]L×L are the block-level permutations. The best ⌊T/(k + 1)!⌋ permutations define
the new candidate set Pk+1.

We then apply the loss profiling to the final candidate set Pg := PK+1 and determine the best
permutation Pg. This permutation is then refined with the local stage.

Local stage. Let P1 ∈ Pg be the initial permutation. We again conceptually split each target
sequence into blocks of size l. Let Ri

1, . . . , R
i
l! ∈ [0, 1]L×L be all the permutations inside the i-th

block. These permutations do not change the orders outside the i-th block. For each block length
l = {2, 3, . . . , ⌊L/2⌋}2, we apply the loss profiling to the new candidate set:

⌈L/l⌉⋃

i=1

{PRi
1, . . . , PRi

l!}, (4.3)

and denote the lowest-loss result by Pl. Keeping each block’s internal order fixed, we perform loss
profiling over the ⌊L/l⌋ block-reordering candidates:

{PlQ
′
1, PlQ

′
2, . . . , PlQ

′
⌊L/l⌋}. (4.4)

The best candidate becomes the initial permutation for the next block size l + 1.

Computational overheads. While the proposed framework repeats training to narrow down the
permutations to learning-friendly ones, several aspects keep it practically efficient. First, each of
the training runs only for 800–1,600 steps (equivalently, 1–2 epochs with 105 samples of batch
size 128) as the difference of loss drop speeds between candidate permutations becomes readily
evident in the early stage. Second, a single training can handle a few thousand permutations (up to
7! = 5, 040 in our experiments). Third, our global–local framework provides efficient exploration.
Specifically, with a global-stage depth of K, it needs K runs of training, and the local stage needs
2(⌊L/2⌋ − 1) runs. In our experiments, the longest exploration took 1–7 hours on a single GPU of
the NVIDIA A6000ada to find the learning-friendly permutation. It is also worth noting that using
a small Transformer model in the exploration is sufficient, as the learning-friendly orders must be
universal.

2When l does not divide L, the remaining L mod l tokens are placed in an additional block.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 ORDER-SENSITIVE TASKS

To evaluate the proposed method, we introduce three tasks. They can be learned relatively easily
with the forward order, which however becomes challenging with the reverse or random orders.

Let X = [x1, x2, ...] be an input sequence and Y = [y1, ..., yL] an target sequence of fixed length L.
At a high level, the target sequence of the three tasks is defined by the following recurrence.

yi = f(X, y1, . . . , yi−1), (5.1)

where f( · ) is a non-injective function with respect to y1, . . . , yi−1. Namely, other than the forward
order, one cannot uniquely determine preceding target tokens y1, . . . , yi−1 from X and yi, . . . , yL.
Any disruption of the natural left-to-right order—such as reversing or randomly permuting the
targets—breaks the causal chain and substantially increases the learning difficulty.

RELU. The recurrence performs the rectified sum:

y1 = x1 and yi = ReLU
(
xi + yi−1

)
, i = 2, . . . , L, (5.2)

where ReLU(z) = max(z, 0). The forward order is trivial to learn because each step depends only
on the current input token xi and the immediately preceding output yi−1; in the reverse order, that
dependency becomes latent.

SQUARE-19. The recurrence performs the squared sum modulo 19 of the i-th input token xi and
the previous output token yi values:

y1 = x1 and yi = x2
i + y2i−1 mod 19 ∈ {−9, . . . , 9}, i = 2, . . . , L. (5.3)

The squaring operation is non-injective. The values range in {−9, . . . , 9}, and for any z ∈
{−9, . . . , 9} \ {0}, the preimage of z2 cannot be uniquely determined.

INDEX. The recurrence performs input-element pointing based on the latest target tokens.

y1 = x1 and yi = xp, p =

d∑

j=1

yi−j mod L, i = 2, . . . , L, (5.4)

where d ≤ L is a fixed window size. Forward order enables the model to compute p incrementally,
whereas a reversed or random order destroys the causal chain.
Example 5.1 (SQUARE-19). Given the input sequence X = [7,−2, 4, 1, 3] and the initial value
y1 = x1 = 7, applying the recurrence in (5.3) produces

y1 = 7, y2 = (−2)2 + 72 mod 19 = −4, y3 = 42 + (−4)2 mod 19 = −6,

y4 = 12 + (−6)2 mod 19 = −1, y5 = 32 + (−1)2 mod 19 = −9.

In the forward order, memorizing just 192 = 361 cases suffices to output the target sequence.
In reverse order Y r, however, even with y5 = −9 known, y4 is still ambiguous between 1 and
−1, so learning becomes much harder. Generation examples for the remaining tasks are provided
in Appendix D.

Our experiments will focus on the aforementioned three tasks, but the following PROD task will also
be used to show that our method can reproduce the observation in Shen et al. (2023).

PROD. Given two zero-padded input numbers a and b, the target sequence is their product Y = [ab].
When the digits are emitted from least significant to most significant, we denote the sequence by Y
(forward order); when the digits are emitted in the opposite direction, we denote it by Y r (reverse
order). Unlike the three tasks proposed above, this multiplication task has been examined in earlier
studies. Although it does not satisfy the recurrence in (5.1), it still exhibits moderate order sensitivity.

5.2 EXPERIMENTAL SETUP

Datasets. We generated datasets for the tasks given in Section 5.1. The target length L ranges
between {5, 6, . . . , 100}. The INDEX task introduces a window size d ∈ {2, 4, 8}. The training set
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contains 100,000 samples, and the evaluation set contains 1,000 samples. Different random seeds
(42 for training and 123 for evaluation) make the two sets disjoint.

Training setup. We use the GPT-2 architecture (Radford et al., 2019) of two sizes, small and large.
The small model consists of one layer and one attention head, and is used for exploration with
the proposed method, while the large one has six layers and is used for the final training with the
discovered learning-friendly order to pursue the accuracy. The other parameters are as follows: the
embedding and feed-forward dimensions are (demb, dffn) = (512, 2048), and dropout is set to 0.1.
Positional embeddings are randomly initialized and optimized throughout training. The model is
trained for 1 and 10 epochs for small and large models, respectively, with AdamW (Loshchilov &
Hutter, 2019) (β1 = 0.9, β2 = 0.999), a linearly decaying learning rate starting from 5.0 × 10−5,
and a batch size of 128.

Exploration setup. The proposed method uses loss profiling in the global–local pipeline. In the loss
profiling, a Transformer is trained on the train set, and then the permutations (i.e., orders) are ranked
by the evaluation loss on the evaluation set. The success rate is the proportion of completely correct
target sequences generated by the Transformer to the total number of samples in the evaluation set.

Initialization. We tested several initializations of the initial candidate set P0 in the loss profiling
(Section 5.4) and global stage (Section 5.5).

• Pg consists of the identity permutation plus random permutations. For example, if the set
size is 100, it includes one identity permutation and 99 random ones.

• Pf consists of permutations obtained by splitting the forward and reverse orders into
column-wise blocks and swapping those blocks.

• Pr consists of permutations chosen uniformly at random.
• Pb consists of permutations formed by splitting the forward and reverse sequence into

length b and permutes those blocks, and fix b = 5 in experiments.

The original target sequences in our dataset are all in the forward order, corresponding to the identity
permutation. Examples of these permutation sets are provided in Appendix E.

5.3 LEARNING WITH FORWARD AND REVERSE ORDERS

Table 1: Success rates for the forward
and the reverse. The forward order is
significantly more learning friendly.

Task Target length Success rate (%)

Forward Reverse

RELU
L = 20 99.6 0.6
L = 50 99.9 5.6
L = 100 99.4 0.0

SQUARE-19
L = 20 100 0.1
L = 50 100 0.0
L = 100 100 0.0

INDEX

L = 13, d = 2 100 9.8
L = 13, d = 4 62.3 1.3
L = 13, d = 8 81.8 2.2
L = 31, d = 2 100 0.8

We first show that the learning is easy with forward order,
while it becomes significantly challenging with the re-
verse order. Table 1 reports the success rate when trained
with the forward and the reverse orders. As explained
in Section 5.1, every task is configured to be learning-
friendly in the forward order but learning-unfriendly in
the reverse order. Consistent with this design, Table 1
shows that the model almost fully learns each task in the
forward order, whereas in the reverse order, the success
rate never exceeds roughly 10 %. A closer look at task-
specific trends reveals that the success rate for the RELU
and SQUARE-19 tasks remains almost unchanged as the
target length grows. By contrast, for INDEX, the forward
order success rate declines with the window size d, in-
dicating that the model struggles when each prediction
depends on a larger number of previous outputs.

5.4 LOSS PROFILING FOR DISCOVERING THE FORWARD ORDER

We next justify the loss profiling before the proposed global–local pipeline. We trained a Trans-
former on a set of permutations, Pg, containing one learning-friendly forward order (ID=0) and 127
randomly generated learning-unfriendly orders. We set L = 50 for the RELU and SQUARE-19
tasks. For the INDEX task, we set L = 31 and d = 4.

Figure 5(a) shows the evaluation loss for each of the 128 permutations at loss profiling. The forward
order (ID=0) achieves the lowest loss among other orders across all tasks, suggesting one can select
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(a) Permutation evaluation loss
<latexit sha1_base64="7bAfk4Zq5zC0kTdXsdwSZQ71PHU="></latexit>

(b) Success rate of ranked permutation

Figure 5: (a) Evaluation loss for each permutation obtained via loss profiling. ID=0 corresponds to
the forward order, while the others are randomly generated permutations. (b) Success rate of the
model when retrained on permutations ranked by the loss values from (a). Permutations are ordered
on the x-axis from best (left) to worst (right).

Table 2: The orders discovered by the proposed method in its global and local stages. Depth de-
notes the hierarchy level K reached in the global stage. Each order is listed relative to the forward
sequence; when the list starts at 0, the forward order has been recovered. Forward orders identified
at a given stage are highlighted in bold.

Task Target Length Depth Order after global stage Discovered final order

RELU

L = 7 K = 4 [6, 0, 5, 2, 3, 4, 1] [2, 3, 4, 5, 0, 6, 1]
L = 8 K = 4 [0, 2, 1, 3, 4, 5, 6, 7] [0, 1, 2, 3, 4, 5, 6, 7]
L = 9 K = 5 [0, 1, 2, 3, 4, 5, 6, 7, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8]
L = 10 K = 6 [6, 7, 8, 9, 5, 4, 2, 3, 1, 0] [4, 5, 6, 7, 8, 9, 0, 1, 2, 3]
L = 11 K = 6 [8, 9, 10, 7, 6, 5, 4, 3, 2, 1, 0] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
L = 12 K = 6 [6, 7, 8, 9, 10, 11, 5, 4, 2, 3, 1, 0] [1, 2, 3, 4, 0, 5, 6, 7, 8, 9, 10, 11]
L = 13 K = 6 [11, 12, 10, 9, 8, 7, 6, 5, 4, 2, 3, 1, 0] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

SQUARE-19

L = 7 K = 4 [0, 1, 2, 3, 4, 5, 6] [0, 1, 2, 3, 4, 5, 6]
L = 8 K = 4 [1, 2, 4, 5, 0, 6, 7, 3] [1, 2, 4, 5, 0, 6, 7, 3]
L = 9 K = 5 [0, 1, 2, 3, 4, 5, 6, 7, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8]
L = 10 K = 6 [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
L = 11 K = 6 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
L = 12 K = 6 [1, 2, 3, 4, 5, 6, 7, 11, 10, 9, 0, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
L = 13 K = 6 [0, 1, 2, 3, 12, 11, 10, 4, 5, 6, 7, 8, 9] [8, 9, 0, 1, 2, 3, 4, 10, 11, 12, 5, 6, 7]

INDEX
L = 13, d = 2 K = 6 [1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
L = 13, d = 4 K = 6 [0, 1, 7, 6, 4, 2, 5, 8, 3, 9, 10, 11, 12] [0, 1, 7, 6, 4, 2, 5, 8, 3, 9, 10, 11, 12]
L = 13, d = 8 K = 6 [1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 0, 11] [1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 0, 11]

PROD L = 10 K = 6 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

a learning-friendly permutation via loss profiling if the set contains one. This effect is particularly
pronounced in the INDEX task, which is the hardest task among the three.

Now, we ranked the 128 orders according to the evaluation losses shown in Figure 5 and then trained
a Transformer for each of the top 32 orders. Figure 5(b) shows that the success rate generally aligns
with the rank; training with a highly ranked order leads to a high success rate in the RELU and
SQUARE-19 tasks.

For the INDEX task, which is the hardest task among the three, the success rate was all close to
zero (omitted from the plot). Still, the top-ranked order (i.e., forward order) is the most learning-
friendly order by the construction of the task. This result indicates that the loss profiling is more
advantageous in finding implicit learning-friendly orders than exhaustively repeating full training
and success rate evaluation, even ignoring the computational burden of the latter. The result also
justifies using small Transformers in the exploration stage, even for hard tasks. One only needs to
use large and powerful models in the final training with the discovered order.

5.5 GLOBAL–LOCAL METHOD WITH LOSS PROFILING

We now demonstrate that the proposed method can discover the learning-friendly orders up to L =
13 (i.e., roughly 6 billion possible orders) with random initialization Pr and L = 40 with a structured
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(a) Random initialization
(b) Structured initialization

Figure 6: Success rates of orders found by our hierarchical search using different search-space
initializations. (a) Search initialized with a fully random permutation set Pr. (b) Search initialized
with a structured, block-restricted set Pb. The colors represent the forward (blue), reverse (red), and
our discovered (yellow) orders.

initialization Pb. One should use the former if no prior knowledge of the ordering is available, while
the latter (or something similar) can be designed for some tasks. For example, on polynomial tasks,
one may permute the tokens at a monomial level, which naturally leads to initialization with block-
level permutations.

Initialization with Pr. Table 2 shows the permutation discovered at the global stage and the final
one. After the global stage, tokens that are neighbors in the input usually remain adjacent, showing
that the method first captures coarse structure. The subsequent local stage then fine-tunes this order
and moves the order closer to the optimal forward arrangement. For the RELU and SQUARE-19
tasks, global orders were often already learning-friendly, and retraining a model on them always
produces a higher success rate than training on the reverse order (see Figure 6(a)). The INDEX
task proves harder: as the reference width d grows, learning is difficult even in the forward order
(see Section 5.1), which flattens the loss landscape and makes good permutations harder to rank.
In the PROD, the proposed method succeeds in rediscovering the least-significant-digit first order
reported by Shen et al. (2023), and it finds the optimal order for target lengths up to 13, identifying
a single solution among roughly 13! ≈ 6× 109 possibilities.

Structured initialization with Pb. When the search is initialized with Pb, the proposed method
scales to much longer target sequences. Figure 6(b) shows the resulting success rate curves for
RELU and SQUARE-19: the optimal order is found for both tasks up to L = 30, and for RELU
even at L = 40. At L = 40, the theoretical permutation space still contains about 1047 elements,
indicating that once implausible candidates are pruned, the proposed method can explore the remain-
ing space far more effectively. These results demonstrate that our hierarchical search can recover
optimal orders in both the most challenging fully random scenario and the more realistic, block-
restricted setting, and that its advantage grows as the candidate space is made more coherent.

6 CONCLUSION

This study addressed a new task of reordering decoder input tokens for Transformers in learning
arithmetic tasks. In essence, the proposed method performs short-term training on a mixture of target
sequences in different orders and discovers easy samples for which the loss drops faster, as learning-
friendly orders. To search the factorially large space efficiently, we propose a two-stage hierarchical
approach combining global block-level exploration with local refinement. The experiments on three
order-sensitive arithmetic tasks (RELU, SQUARE-19, and INDEX) demonstrated that the proposed
method discovers a learning-friendly order, improving the success rate from about 10 % to near
100 % and works for target lengths up to 13 tokens (13! > 6 × 109 permutations). Moreover, it
rediscovered the reverse-digit order reported in earlier work on the PROD task. This study presents
an automatically unraveling chain of thought that markedly enhances a Transformer’s reasoning
ability. The extension to longer sequences and target sequences at a variable length will be future
work.
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Reproducibility Statement and the Use of LLMs. Common details of our experimental setup are
described in Section 5.2, while any parameters or settings specific to each experiment are provided
at the beginning of each experiment in Section 5. The source code used for experiments is provided
as supplemental material and will be publicly available after clean-up.

The LLMs were used for assistance purposes only. We used them to improve our writing, speed up
coding, and to assist in part of our literature search by listing papers with OpenAI’s ChatGPT (Ope-
nAI, 2024). No essential contributions were made by the LLMs.

REFERENCES

Alberto Alfarano, Francois Charton, and Amaury Hayat. Global lyapunov functions: a long-standing
open problem in mathematics, with symbolic transformers. In Advances in Neural Information
Processing Systems, 2024.

Devansh Arpit, Stanisław Jastrzundefinedbski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon
Lacoste-Julien. A closer look at memorization in deep networks. In International Conference on
Machine Learning, 2017.

Robert J. N. Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. In Advances in Neural Information Processing Systems, 2021.

François Charton. Linear algebra with transformers. Transactions on Machine Learning Research,
2022.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023.

Mahsa Forouzesh and Patrick Thiran. Differences between hard and noisy-labeled samples: An
empirical study. In Proceedings of the 2024 SIAM International Conference on Data Mining
(SDM), pp. 91–99, 2024.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, 2024.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
Advances in Neural Information Processing Systems, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.
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A VISUALIZING ATTENTION MAP

We present the attention maps obtained when training a Transformer on our proposed RELU task
with datasets reordered in different ways. For this analysis, we use a GPT-2 model with a single layer
and a single attention head. Figure 7 shows the attention maps for target length L = 20 under four
target orders. The forward and reverse orders are defined in Section 5.1. The one-permuted order
swaps exactly one pair of adjacent target tokens, whereas the random order is a random permutation
of the forward sequence. Figure 8 illustrates how the attention maps change as the target length
increases.

(a) Forward order (b) one permuted order

(c) Random order (d) Reverse order

Figure 7: Attention matrices from models trained with four different target orders in the RELU task.

Table 3: Attention sparsity S across target orders. A smaller value of S indicates greater sparsity.

Task Target length Sparsity
Forward Reverse

RELU
L = 20 1.160 1.640
L = 50 1.462 4.319
L = 100 1.687 3.195

SQUARE-19
L = 20 1.117 1.531
L = 50 1.773 1.914
L = 100 1.407 1.990

INDEX
L = 13, d = 2 0.848 2.574
L = 13, d = 4 0.887 1.486
L = 13, d = 8 1.116 1.596

12
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Figure 8: Differences in the attention matrices for the RELU task between forward and reverse
orderings. The top three matrices correspond to models trained with forward order, and the bottom
three with reverse order. Each pair of matrices shows results for input lengths n = 20, 50, and 100,
respectively.

B SOFT-PERMUTATION OPTIMIZATION VIA ATTENTION SPARSITY

Analysis of attention sparsity. To address the challenges of permutation optimization, we un-
dertake a more detailed analysis. Intuitively, when the target order is learning-friendly, the causal
structure of the sequence is broken: more input and output tokens become relevant to predicting the
next token. Conversely, for an learning-friendly order we expect the attention map to be sparser.

Let the query and key matrices be Q,K ∈ RL′×demb , where L′ is the decoder-input length and
demb the embedding dimension. The self-attention weights are

A = Softmax

(
QK⊤
√
demb

)
∈ RL′×L′

, (B.1)

where Softmax(·) is applied row-wise. Because each row of A = (aij)ij is a probability vector, we
define the mean sparsity S by the Shannon entropy:

S = − 1

L′

L′∑

i,j=1

aij log aij . (B.2)

We compute S for models trained on both the forward (learning-friendly) and reverse (learning-
unfriendly) orders of the order-sensitive tasks (section 5.1). table 3 shows that the forward order
consistently yields lower S, and—since a smaller S directly means higher sparsity—this confirms
that learning-friendly orders produce sparser attention. Representative heat maps are provided in
appendix A.

Because S is derived from the learned attention weights, it is independent of the language-model
loss and can serve as an orthogonal diagnostic metric. We also experimented with optimizing permu-
tations under an additional sparsity regularizer that rewards low-entropy attention (cf. appendix B).
Even with this bias, the optimizer failed to discover the learning-friendly order and instead converged
to interleaved permutations, suggesting that sparsity alone is insufficient to solve the permutation
search in difficult regimes.

We present a soft-permutation optimization method based on attention sparsity. In our two-stage
strategy, we first optimize the Transformer parameters θ by minimizing the standard sequence-
modeling loss over the training set:

min
θ

1

m

m∑

i=1

ℓ
(
Tθ, Xi, Yi

)
. (B.3)
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(a) stage2 loss
(b) permutation matrix

Figure 9: (a) Comparison of Stage 2 loss under fixed learning-friendly order, fixed learning-
unfriendly order, and learned soft permutation. (b) shows a visualization of the learned soft per-
mutation.

Next, denoting by A = [aij ] ∈ RL′×L′
the attention map produced when the target sequence is fed

as Yi P̃ into the Transformer, we optimize the soft permutation P̃ by minimizing the total attention
entropy:

min
P̃

1

L′

L′∑

i=1

L′∑

j=1

aij . (B.4)

In the experiments, we alternate between the two-stage optimizations at each step. Figure 9 com-
pares the stage 2 loss under three conditions: the fixed, learning-friendly order, the fixed, learning-
unfriendly (reverse) order, and the learned soft permutation. We observe that the soft permutation
does not reduce the entropy-based loss (B.4) relative to the fixed orders, nor does it yield a genuinely
hard ordering. Because attention sparsity—as measured by total attention mass—decreases even for
static orders, it cannot serve as a reliable objective for permutation optimization.

C PERMUTATION SEARCH VIA EVOLUTIONARY STRATEGY

This section summarizes the evolutionary strategy (ES) baseline that we ran in parallel with our
proposed method to search the permutation space. Each individual is a permutation P ; its fitness is
the (negative) early-stage training loss of a Transformer trained with that order, so that permutations
that are easier to learn receive higher scores. The ES is controlled by the population size Np,
crossover probability Nc, mutation probability Nm, number of generations Ng , tournament size Nt,
and elitism ratio Nr, and proceeds as follows:

(1) Population initialization: sample Np random permutations.

(2) Selection: pick parents via tournament selection with size Nt.

(3) Crossover: with probability Nc, apply partially–mapped crossover to each selected pair.

(4) Mutation: with probability Nm, swap two positions in the offspring permutation.

(5) Elitism: evaluate every individual by

fitness(P ) = − 1

m′

m′∑

i=1

ℓ
(
Tθ, Xi, YiP

)
,

and copy the top Nr fraction to the next generation.

(6) Termination: stop when Ng generations have been processed.

Table 4 lists the permutation identified by the evolution strategy (ES) and the performance obtained
when the model is retrained using that order.
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Table 4: Success rate obtained when the Transformer is retrained on the permutations discovered by
the ES.

Task Input length ES-discovered order Success rate (%)

Retrain Reverse

RELU
L = 5 [2, 1, 0, 4, 3] 26.9 10.4
L = 10 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 100 3.5
L = 20 [6, 7, 9, 8, 12, 11, 13, 18, 17, 14, 16, 15, 19, 5, 10, 1, 0, 3, 4, 2] 9.2 0.7

SQUARE-M19
L = 5 [1, 2, 3, 4, 0] 100 21.5
L = 10 [3, 4, 5, 6, 7, 8, 9, 1, 0, 2] 99.9 13.5
L = 20 [9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 15, 16, 17, 18, 19, 0, 1, 7, 8] 5.2 1.2

INDEX (m = 2) L = 13 [0, 1, 2, 3, 4, 10, 9, 5, 6, 12, 11, 7, 8] 27.6 7.8

D EXAMPLE DATASET

This section provides concrete examples for the four tasks introduced in Section 5.1. Table 5 sum-
marizes the correspondence between the input X and the target Y , with every Y given in the for-
ward—that is, learning-friendly—order. For the PROD task only, the input consists of two integers,
a and b.

Table 5: Representative input–output samples for each task

Task Input Target

RELU, L = 50

X = (4, −7, −7, −3, 8, 1, −8, −9, 8, 6 Y = (4, 0, 0, 0, 8, 9, 1, 0, 8, 14
0, −9, 5, −9, 6, 5, −5, −9, 7, −5 14, 5, 10, 1, 7, 12, 7, 0, 7, 2
8, −6, −7, −2, −7, 6, 7, −2, 0, −6 10, 4, 0, 0, 0, 6, 13, 11, 11, 5
−3, −8, −7, −8, 3, −1, −6, 1, −4, −9 2, 0, 0, 0, 3, 2, 0, 1, 0, 0
2, −7, 1, 4, 9, −5, 6, 2, 3, −3) 2, 0, 1, 5, 14, 9, 15, 17, 20, 17)

SQUARE-M19, L = 50

X = (−5, −9, 8, 7, 8, −7, 5, −9, −6, 9 Y = (−5, 2, 2, 6, −4, −1, −2, 0, 8, 3
−2, −8, 6, −7, 2, −7, −6, −5, −5, 7 4, −5, −5, 8, 2, 6, 6, −5, 3, −8
3, 6, −9, 1, 7, 0, −7, 7, −5, 0 7, 0, −4, 8, 9, −4, −1, 3, 6, 8
−2, 6, −1, −9, −6, −7, 0, 2, 7, −1 2, −7, 3, 5, −5, 8, −2, −1, 3, 1
1, −2, −6, −7, 5, 1, 9, −6, −3, −3) −7, 6, 6, 0, −3, 1, −3, −2, 4, −3)

INDEX, L = 13, d = 2
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

INDEX, L = 13, d = 4
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

INDEX, L = 13, d = 8
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

PROD, L = 10
a = (0, 0, 2, 0, 3) Y = (1, 1, 3, 5, 3, 5, 0, 0, 0, 0)
b = (0, 2, 6, 3, 7)

E EXAMPLE SET OF PERMUTATIONS

This section describes the four permutation sets introduced in Section 5.2. Figure 10 visualizes
every permutation P in those four sets. Each set contains 32 elements.
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(d) Pb

Figure 10: Visualization of the elements in the four permutation sets.
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