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ABSTRACT

Current state-of-the-art self-supervised learning methods for graph neural networks
are based on contrastive learning. As such, they heavily depend on the construction
of augmentations and negative examples. Increasing the number of negative pairs
improves performance, thereby requiring quadratic computation and memory cost
to achieve peak performance. Inspired by BYOL, a recently introduced method
for self-supervised learning that does not require negative pairs, we present Boot-
strapped Graph Latents, BGRL, a self-supervised graph representation method that
gets rid of this potentially quadratic bottleneck. BGRL outperforms or matches the
previous unsupervised state-of-the-art results on several established benchmarks.
Moreover, it enables the effective usage of graph attentional (GAT) encoders, al-
lowing us to further improve the state of the art, in particular achieving 70.49%
Micro-F1 on the PPI dataset using the linear evaluation protocol.

1 INTRODUCTION

Self-supervised learning is a promising path towards eliminating the need for costly label information
in representation learning on many domains, including images, video, speech and text. This is
especially relevant in the graph domain, where unsupervised data is abundant, but label information
is scarce. Most of the best performing self-supervised learning methods are contrastive (Hjelm et al.,
2019; Oord et al., 2018). Specifically, contrastive methods build representations by pulling together
representations of related objects and pushing apart representations of unrelated pairs. They have
displayed performance that matches or improves over equivalent methods trained with labeled data
(Tian et al., 2020; Bachman et al., 2019; Mitrovic et al., 2021; Caron et al., 2020; Xu et al., 2020).

Inspired by the success of contrastive methods in vision and elsewhere, contrastive learning methods
were adapted to graphs (Veličković et al., 2019; Peng et al., 2020; Hassani & Khasahmadi, 2020;
Zhu et al., 2020b). The first such method, DGI (Veličković et al., 2019), is closely aligned with
Deep InfoMax (Hjelm et al., 2019). More recently, GRACE (Zhu et al., 2020b) adapts the SimCLR
(Chen et al., 2020a;b) method to graphs and achieves state-of-the-art performance. GRACE learns node
representations by creating two augmented versions of a graph, pulling together representations of
the same node in the two graphs, and pushing apart representations of every other node. Appendix A
contains further discussion of self-supervised learning methods on graphs.

However, the practical efficiency of contrastive methods relies on the ability to compare each object
to a large number of negative examples (He et al., 2020). This is especially prohibitive for large
graphs as this requires a worst-case time and space complexity quadratic in the number of nodes. In
general, relying on negative examples seems undesirable, particularly for graphs, where negative
examples are difficult to define in a principled way.

Introduced in the vision domain, BYOL (Grill et al., 2020) is a method competitive with the best
contrastive approaches while avoiding the need for negative examples (Richemond et al., 2020).
We adapt BYOL to graphs, and propose Bootstrapped Graph Latents (BGRL). BGRL maintains two
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~̃x2

(X̃2, Ã2)
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Figure 1: Overview of our proposed BGRL method.

distinct graph encoders, and learns a node representation by training an online encoder to predict the
representation of a target one. By removing the need to contrast different node representations, BGRL
relieves self-supervised learning in graphs from its reliance on negative examples.

2 BOOTSTRAPPED GRAPH LATENTS

2.1 BGRL COMPONENTS

We consider a graph G = (X,A), with node features X ∈ RN×F and adjacency matrix A ∈ RN×N .
Here N represents the number of nodes and F the number of features. BGRL maintains two graph
encoders, an online encoder Eθ and a target encoder Eφ, where θ and φ denote distinct parameters.

BGRL first produces two alternate views of G: G1 = (X̃1, Ã1) and G2 = (X̃2, Ã2), by applying
stochastic graph augmentation functions A1 and A2 respectively. We consider simple augmentations
used previously (You et al., 2020; Zhu et al., 2020b), stochastic node feature masking and edge
masking. These augmentations are graph-level: they do not operate on each node independently, and
leverage graph topology information. Further details are available in Appendix B.

The online encoder produces an online representation from the first augmented graph, H̃1 :=

Eθ(X̃1, Ã1); similarly the target encoder produces a target representation of the second augmented
graph, H̃2 := Eφ(X̃2, Ã2). The online representation is fed into a predictor pθ that outputs a
prediction of the target representation, Z̃1 := pθ(H̃1, Ã1). Unless otherwise specified, the predictor
works at the node level, without using graph information (ie. operating over H̃1 only, and not Ã1).
Note that a contrastive approach would instead encourage H̃(1,i) and H̃(2,j) to be far apart for node
pairs (i, j) that are dissimilar. However, in the absence of a principled way of choosing negative
examples, the naı̈ve approach of simply contrasting all pairs {(i, j) | i 6= j} (as done by GRACE),
scales quadratically causing memory issues, and sampling negatives randomly worsens performance.
BGRL’s computation scales linearly and does not require arbitrary choices on sampling nodes.

2.2 BGRL UPDATE STEP

The online parameters θ (and not φ), are updated to make the predictions Z̃1 closer to the true targets
H̃2 for each node, following the gradient of the cosine similarity w.r.t. θ, i.e.,

`(θ, φ) = − 2

N

N−1∑
i=0

Z̃(1,i)H̃
>
(2,i)

‖Z̃(1,i)‖‖H̃(2,i)‖

θ ← optimize(θ, η, ∂θ`(θ, φ))

where η is the learning rate and the final updates are computed from the gradients of the objective with
respect to θ only. In practice, we symmetrize the training, by also predicting the target representation
of the first view using the online representation of the second. The target parameters φ are updated as
an exponential moving average of the online parameters θ, i.e.

φ← τφ+ (1− τ)θ
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WikiCS Am. Computers Am. Photos CoauthorCS CoauthorPhy
Raw features 71.98± 0.00 73.81± 0.00 78.53± 0.00 90.37± 0.00 93.58± 0.00
DeepWalk 74.35± 0.06 85.68± 0.06 89.44± 0.11 84.61± 0.22 91.77± 0.15
DeepWalk + features 77.21± 0.03 86.28± 0.07 90.05± 0.08 87.70± 0.04 94.90± 0.09
DGI 75.35± 0.14 83.95± 0.47 91.61± 0.22 92.15± 0.63 94.51± 0.52
GMI 74.85± 0.08 82.21± 0.31 90.68± 0.17 OOM OOM
MVGRL 77.52± 0.08 87.52± 0.11 91.74± 0.07 92.11± 0.12 95.33± 0.03
GRACE 78.19± 0.01 87.46± 0.22 92.15± 0.24 92.93± 0.01 95.26± 0.02
Random-Init? 78.95± 0.58 86.46± 0.38 92.08± 0.48 91.64± 0.29 93.71± 0.29
GRACE (ours)? 80.14± 0.48 89.53± 0.35 92.78± 0.45 91.12± 0.20 OOM
BGRL? 79.36± 0.53 89.68± 0.31 92.87± 0.27 93.21± 0.18 95.56± 0.12
GCA (stronger augmentations) 78.35± 0.05 88.94± 0.15 92.53± 0.16 93.10± 0.01 95.73± 0.03
Supervised GCN 77.19± 0.12 86.51± 0.54 92.42± 0.22 93.03± 0.31 95.65± 0.16

Table 1: Performance measured as classification accuracy with standard deviations. Our experiments, marked as ?, are over 20 random dataset
splits and model initializations. Other results are from previous reports. OOM indicates out-of-memory on a 16GB V100 GPU.

where τ is a decay rate controlling how close φ remains to θ.

Note that although the objective `(θ, φ) has undesirable or trivial solutions, the BGRL update as a
whole does not optimize this loss. Only the online parameters θ are updated to reduce this loss, while
the target parameters φ follow a different objective. Empirically, similarly to BYOL, BGRL does not
collapse to trivial solutions, and `(θ, φ) does not converge to 0 (see Appendix F).

2.3 DISCUSSION OF COMPUTATIONAL COSTS

The BGRL step takes time and space only linear in the size of the input graph, as opposed to contrastive
methods such as GRACE, which are quadratic. Consider a graph with N nodes and M edges, and
simple graph models that compute embeddings in time and space O(N +M). BGRL does 4 encoder
computations per update step (2 for target/online encoders, and 2 for each augmentation) plus a
prediction step; GRACE does 2 (one for each augmentation), plus a projection step. Both methods
have the same cost for computing the augmentations, which we ignore in this comparison. Both
methods backpropagate the learning signal 2 times (once for each augmentation), and we assume
the backward pass to be approximately as costly as a forward pass. Thus the total time complexity
per update step for BGRL is 6Cencoder(M + N) + 4CpredictionN + CBGRLN , and for GRACE is
4Cencoder(M+N)+4CprojectionN+CGRACEN

2, whereC· are constants depending on architecture
of the different components. A similar analysis applies to the memory complexities.

We further provide an empirical analysis and comparison of runtime and memory requirements in
Section 3.3.

3 EXPERIMENTS

We evaluate representation learning methods following the standard linear evaluation proto-
col (Veličković et al., 2019): we first learn node representations in a fully unsupervised manner, and a
linear model is then trained on top of these frozen embeddings without flowing any gradients back to
the graph encoder network. Our training and evaluation process is implemented in JAX (Babuschkin
et al., 2020) and Scikit-Learn (Pedregosa et al., 2011) . Details about the datasets used, our GNN
models, and training and evaluation setup are provided in Appendix C, D, and E respectively.

3.1 EXPERIMENTS ON TRANSDUCTIVE TASKS

WikiCS, Amazon Computers/Photos, Coauthor CS/Physics We first evaluate our method on a
set of 5 recent real-world datasets (Mernyei & Cangea, 2020; Shchur et al., 2018) for evaluating node
classification in the transductive setting. In our experiments, we primarily compare BGRL against
GRACE (Zhu et al., 2020b), the current state-of-the-art contrastive representation learning approach
that relies on negative samples. For fair comparison, we also report results of running GRACE using
our training setup, improving over previously published results on 3 datasets. Where available, we
also report performances of other methods from previously published results. Finally, we report
the performance of Random-Init (Veličković et al., 2019), a randomly initialized encoder with
an identical architecture, showing that this simple baseline can lead to very strong embeddings in
particular outperforming all previously reported baselines on the WikiCS dataset. Table 1 shows
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that BGRL performs competitively both with our unsupervised and fully supervised baselines using
comparable architectures.

Validation Test
MLP 57.65± 0.12 55.50 ± 0.23
node2vec 71.29 ± 0.13 70.07 ± 0.13
Random-Init? 69.90 ± 0.11 68.94 ± 0.15
DGI? 71.26 ± 0.11 70.34 ± 0.16
GRACE full-graph? OOM OOM
GRACE (k = 2)? 60.49 ± 3.72 60.24 ± 4.06
GRACE (k = 8)? 71.30 ± 0.17 70.33 ± 0.18
GRACE (k = 32)? 72.18 ± 0.16 71.18 ± 0.16
GRACE (k = 2048)? 72.61 ± 0.15 71.51 ± 0.11
BGRL? 72.53 ± 0.09 71.64 ± 0.12
Supervised GCN 73.00 ± 0.17 71.74 ± 0.29

Table 2: Performance on the ogbn-arXiv task as classification accuracy with standard deviations. Our experiments, marked as ?, are averaged
over 20 random model initializations. Other results are from previous reports. OOM indicates out-of-memory on a 16GB V100 GPU.

ogbn-arXiv We consider a much larger dataset from the OGB benchmark (Hu et al., 2020a), and
show in Table 2 that BGRL still performs well. We implement and compare against two representative
contrastive learning approaches, DGI and GRACE. We also report results for node2vec (Grover &
Leskovec, 2016) and a supervised learning baseline. For GRACE, since taking negative examples from
the entire graph consumes O(N2) memory and is impractical for a dataset of this size, we subsample
k nodes as negative examples per gradient step, seeing that GRACE requires high k to be competitive.

3.2 EXPERIMENTS ON AN INDUCTIVE TASK WITH MULTIPLE GRAPHS

Finally, we examine the PPI (Protein-Protein Interaction) inductive task, and show in Table 3 that our
proposed changes to the training process improve the performance of both BGRL and GRACE to set a
new state-of-the-art while maintaining training stability for thousands of epochs.

Effect of subsampling on GRACE The high performance of GRACE is due in part to providing a
rich contrastive learning signal that considers every pair of nodes in a graph. In Figure 2 we more
closely analyze the effect of subsampling fewer negative examples per gradient step, to study how
this contrastive loss behaves in the absence of being able to provide a rich enough signal. In our
experiments, we sample k random nodes to use as negative examples, and measure how performance
is affected by varying k from 1 to 4096. Note that since the average number of nodes in each graph is
2372, the higher values of k we consider are very close to a quadratic computation. GRACE requires
high k to be competitive, making BGRL promising to apply to larger graphs with memory constraints.

GNN-based BGRL predictor Next, we examine ways to improve the performance of BGRL by
strengthening the predictor pθ used in the BGRL loss. Unlike the case of applying BYOL to images,
where the predictor must learn to predict the projection of each image in the minibatch independently,
here our graph augmentations are applied to all the nodes in the graph in a coherent way. Thus, it is
intuitive that a model that makes use of all the node embeddings in one view, would be better able to
predict the embeddings of nodes in the second view. Thus, we compare using an MLP to predict each
target independently, or a GNN that uses all the node embeddings at once. Table 3 shows this more
powerful graph-based predictor further increases BGRL’s performance.

GAT encoder models GAT models are known to outperform MeanPooling encoders on PPI task
in supervised learning, but have thus far not been trained to a similarly higher performance through
unsupervised techniques. Table 3 shows that BGRL can more effectively train the more complex GAT
model to achieve a new state-of-the-art on this dataset. We also report the performance of a ConstGAT
model (i.e. using constant attention weights) trained with BGRL, showing that the non-contrastive loss
is able to provide enough signal to allow nodes to aggregate over their neighbors in a non-uniform
way. Interestingly, the more complex GRACE contrastive loss is unable to improve performance of a
GAT model over the standard, smaller MeanPooling encoder. The all-vs-all loss provided by GRACE
is less guided than the targeted bootstrapping objective of BGRL, meaning that it is also less suited to
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PPI
Raw features 42.20
DGI 63.80 ± 0.20
GMI 65.00 ± 0.02
GRACE 66.20 ± 0.10
Random-Init 62.60 ± 0.20
GRACE (ours)? 69.66 ± 0.15
BGRL MLP predictor? 68.90 ± 0.21
BGRL GCN predictor? 69.55 ± 0.21
GRACE GAT encoder? 69.71 ± 0.17
BGRL ConstGAT encoder? 67.67 ± 0.22
BGRL GAT encoder? 70.49 ± 0.05
Supervised MeanPooling 96.90 ± 0.20
Supervised GAT 97.30 ± 0.20

Table 3: Performance on the PPI task measured in terms of
Micro-F1 across the 121 labels along with standard deviations.
Our experiments, marked as ?, are averaged over 20 random
model initializations. Other results are taken from previously
published reports.
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Figure 2: Studying the effect of subsampling k nodes as negative ex-
amples for GRACE loss on PPI dataset, averaged over 5 random model
initializations.

guiding the (often brittle) attentional coefficients. This aligns with recent observations that carefully
chosen auxiliary losses are often paramount for stability of GAT models (Kim & Oh, 2021; Wang
et al., 2019). We provide further analyses of unsupervised training of GAT models in Appendix G.

3.3 EMPIRICAL COMPUTATION COST ANALYSIS

We provide empirical comparisons of BGRL and GRACE on the datasets from Section 3.1 in Table 4.

As noted in Section 2.3, theoretical analysis of the BGRL update step shows a linear dependence on
graph size, whereas GRACE is quadratic. In practice, runtime is affected by factors such as different
operations parallelizing, or implementations trading off memory requirements for higher runtime
costs. We show that an advantage of BGRL is reducing memory requirements sufficiently to allow
scaling to larger datasets easily. This is particularly significant for graph-based applications in
practice, where the bottleneck is often memory rather than speed.

Amazon Photos WikiCS Amazon Computers Coauthor CS Coauthor Physics
BGRL steps/second 3.04 3.24 3.64 1.47 0.73
GRACE steps/second 3.24 3.28 3.86 1.07 OOM on 16GB GPU
BGRL Memory 0.47 GB 0.63 GB 0.58 GB 2.86 GB 5.50 GB
GRACE Memory 1.81 GB 3.82 GB 5.14 GB 11.78 GB OOM on 16GB GPU

Table 4: Comparison of computational requirements.

4 CONCLUSION

We have introduced BGRL, a new method for self-supervised graph representation learning. Through
a wide range of experiments, we have shown that our method is competitive with state-of-the-art
approaches, in spite of not requiring negative examples and substantially reducing computational
requirements. Moreover, our approach can be naturally extended to learn graph-level embeddings,
where defining negative examples is challenging, and an all-vs-all objective does not scale.
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Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=r1ZdKJ-0W.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Neural Information
Processing Systems, 2020.

Feihu Che, Guohua Yang, Dawei Zhang, Jianhua Tao, Pengpeng Shao, and Tong Liu. Self-supervised
graph representation learning via bootstrapping. arXiv preprint arXiv:2011.05126, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
2020a. URL http://proceedings.mlr.press/v119/chen20j.html.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hinton.
Big self-supervised models are strong semi-supervised learners. In Neural Information Pro-
cessing Systems, 2020b. URL https://proceedings.neurips.cc/paper/2020/hash/
fcbc95ccdd551da181207c0c1400c655-Abstract.html.
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Brock, Samuel Smith, Soham De, Razvan Pascanu, Bilal Piot, and Michal Valko. BYOL works
even without batch statistics. In NeurIPS 2020 Workshop on Self-Supervised Learning: Theory
and Practice, 2020. URL http://arxiv.org/abs/2010.10241.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
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A RELATED WORK

Prior to using graph neural networks (GNNs) as graph encoders, dominant methods in the area
relied on random-walk objectives such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover &
Leskovec, 2016). Even though GNNs have an inductive bias that aligns with these objectives, compos-
ing GNNs and random-walks does not work very well – randomly-initialised GNNs (Veličković et al.,
2019; Kipf & Welling, 2017) and nonparametric GNNs (Wu et al., 2019) are both competitive with
DeepWalk, with no training necessary. Moreover, training GNN encoders with such loss functions
(as done by Hamilton et al., 2017) can even degrade performance relatively to an untrained encoder.

Earlier combinations of GNNs and self-supervised learning involve Embedding Propagation
(Garcı́a-Durán & Niepert, 2017), Variational Graph Autoencoders (Kipf & Welling, 2016)
and Graph2Gauss (Bojchevski & Günnemann, 2018). While all of these are effectively variations of
a random-walk style objective, they are enhanced by relevant additions that are still applicable for
current methods, such as edge-wise corruption or explicitly incorporating embedding uncertainty. Yet
another but tangential direction for training encoders for representation is re-using inspiration from
BERT-style (Devlin et al., 2019) losses in graph-structured inputs, as leveraged by Hu et al. (2020b).
In particular, the strategies of Hu et al. (2020b) assume that the input graph is attributed in a way that
would make feature masking objectives viable.

Recently, contrastive methods effective on images have also been adapted to graphs using GNNs.
This includes DGI (Veličković et al., 2019), inspired by Deep InfoMax (Hjelm et al., 2019), which
contrasts node-local patches against global graph representations. Next, InfoGraph (Sun et al., 2020)
provided modifications to DGI’s pipeline to make the global embedding useful for graph classification
tasks. DGI was also generalized to spatiotemporal graphs by ST-DGI (Opolka et al., 2019), and
multiplex networks by DMGI (Park et al., 2020). GMI (Peng et al., 2020) directly maximizes a notion
of graphical mutual information inspired by MINE (Belghazi et al., 2018), allowing for a more
fine-grained contrastive loss than DGI’s. Furthermore, the SimCLR method of Chen et al. (2020a)
has been specialized for graphs by GRACE and variants such as GCA (Zhu et al., 2020b;a). GraphCL
(You et al., 2020) adapts GRACE to learn graph-level embeddings using a contrastive objective.
Additionally, MVGRL method (Hassani & Khasahmadi, 2020) generalizes CMC (Tian et al., 2020)
to graphs. GRACE and MVGRL have emerged as state-of-the-art methods, contrasting nodes across
various graph views. Finally, concurrently to our work, Che et al. (2020) have explored the possibility
of using bootstrapping for self-supervised learning in graphs. However, they only consider small
citations datasets with fixed train/test splits, known to be saturated and unreliable to evaluate GNN
methods (Shchur et al., 2018).

B GRAPH AUGMENTATIONS

In this work, we consider the standard graph augmentation pipeline that has been used in previous
works on representation learning (You et al., 2020; Zhu et al., 2020b). We use the term “augmentation”
as opposed to “corruption” as has been used before (Veličković et al., 2019), as our intention is to
produce two views which are semantically similar. This differs from, e.g. DGI, where semantically
dissimilar views are constructed and used to contrast against the original one.

We consider two simple graph augmentation functions — node feature masking and edge masking.
These augmentations are graph-wise: they do not operate on each node independently, and leverage
graph topology information through edge masking. This contrasts with transformations used in BYOL,
which operate on each image independently.

First, we generate a single random binary mask of size F , each element of which follows a Bernoulli
distribution B(1− pf ), and use it to mask the features of all nodes in the graph (i.e., all nodes have
the same features masked).

In addition to this node-level attribute transformation, we then also compute a binary mask of size E
(where E is the number of edges in the original graph), each element of which follows a Bernoulli
distribution B(1− pe), and use it to mask edges in the augmented graph.

To compute our final augmented graphs, we make use of both augmentation functions with different
hyperparameters for each graph, i.e. pf1 and pe1 for the first view, and pf2 and pe2 for the second
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view. The exact values of these hyperparameters follow very closely those reported in prior works
and are summarized in Table 6.

Some prior works have also investigated adaptive augmentations (Zhu et al., 2020a; Che et al., 2020),
using heuristics such as node centrality or PageRank centrality (Page et al., 1999) to mask different
edges with different probabilities. This improves the quality of the augmented graphs by helping
these transformations preserve semantic similarity (e.g. by making it less likely to mask critical edges
that connect otherwise disjoint parts of the graph). We consider only simple, standard augmentations
in order to isolate and study the effect of BGRL as a representation learning method, as it is known
that stronger augmentations can have a large impact on the quality of representations learned (Grill
et al., 2020). However, as we show in Table 1, our method is competitive with baselines that use
adaptive augmentations.

C DATASET DETAILS

Task Nodes Edges Features Classes
WikiCS Transductive 11,701 216,123 300 10
Amazon Computers Transductive 13,752 245,861 767 10
Amazon Photos Transductive 7,650 119,081 745 8
Coauthor CS Transductive 18,333 81,894 6,805 15
Coauthor Physics Transductive 34,493 247,962 8,415 5
ogbn-arxiv Transductive 169,343 1,166,243 128 40
PPI (24 graphs) Inductive 56,944 818,716 50 121 (multilabel)

Table 5: Statistics of datasets used in our experiments.

WikiCS This graph is constructed from Wikipedia references, with nodes representing articles
about Computer Science and edges representing links between them. Articles are classified into 10
classes based on their subfield, and node features are the average of GloVE (Pennington et al., 2014)
embeddings of all words in the article. This dataset comes with 20 canonical train/valid/test splits,
which we use directly.

Amazon Computers, Amazon Photos These graphs are from the Amazon co-purchase graph
(McAuley et al., 2015) with nodes representing products and edges being between pairs of goods
frequently purchased together. Products are classified into 10 (for Computers) and 8 (for Photos)
classes based on product category, and node features are a bag-of-words representation of a product’s
reviews. We use a random split of the nodes into (10/10/80%) train/validation/test nodes respectively
as these datasets do not come with a standard dataset split.

Coauthor CS, Coauthor Physics These graphs are from the Microsoft Academic Graph (Sinha
et al., 2015), with nodes representing authors and edges between authors who have co-authored
a paper. Authors are classified into 15 (for CS) and 5 (for Physics) classes based on the author’s
research field, and node features are a bag-of-words representation of the keywords of an author’s
papers. We again use a random (10/10/80%) split for these datasets.

ogbn-arXiv This is another citation network, where nodes represent CS papers on arXiv indexed
by the Microsoft Academic Graph (Sinha et al., 2015). In our experiments, we symmetrize this graph
and thus there is an edge between any pair of nodes if one paper has cited the other. Papers are
classified into 40 classes based on arXiv subject area. The node features are computed as the average
word-embedding of all words in the paper, where the embeddings are computed using a skip-gram
model (Mikolov et al., 2013) over the entire corpus.

PPI is a protein-protein interaction network (Zitnik & Leskovec, 2017; Hamilton et al., 2017),
comprised of multiple (24) graphs each corresponding to different human tissues. We use the standard
dataset split as 20 graphs for training, 2 for validation, and 2 for testing. Each node has 50 features
computed from various biological properties. This is a multilabel classification task, where each node
can possess up to 121 labels.
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D GNN MODELS

GCN for transductive experiments We use a GCN model (Kipf & Welling, 2017) as our graph
encoder E in these experiments. Formally, the GCN propagation rule for a single layer is as follows,

GCNi(X,A) = σ
(
D̂−

1
2 ÂD̂−

1
2XWi

)
, (1)

where Â = A+ I is the adjacency matrix with self-loops, D̂ is the degree matrix, σ is a non-linearity
such as ReLU, and Wi is a learned weight matrix for the i’th layer.

MeanPooling encoder for inductive experiments Here we use a simple mean-pooling propaga-
tion rule from the GraphSAGE-GCN model (Hamilton et al., 2017):

MPi(X,A) = σ(D̂−1ÂXWi) (2)

As proposed by Veličković et al. (2019), our exact encoder E is a 3-layer mean-pooling network
with skip connections. We use a layer size of 512 and PReLU (He et al., 2015) activation. Thus, we
compute:

H1 = σ(MP1(X,A)) (3)
H2 = σ(MP2(H1 +XWskip,A)) (4)

E(X,A) = σ(MP3(H2 +H1 +XWskip′ ,A)) (5)

Graph Attention Networks We also consider GAT (Veličković et al., 2018) models where each
node aggregates features from its neighbors non-uniformly using a learned attention weight. The GAT
layer consists of a learned matrix W that transforms each node features. We then use self-attention
to compute attention coefficient for a pair of nodes i and j as eij = a(hi,hj). The attention function
a is computed as LeakyReLU(a[Whi||Whj ]), where a is a learned matrix transforming a pair of
concatenated attention queries into a single scalar attention logit. The weight of the edge between
nodes i and j is computed as αij = softmaxj(eij).

E IMPLEMENTATION DETAILS

We use GCN (Kipf & Welling, 2017) encoders in our experiments on the transductive tasks, while
on the inductive task of PPI we use MeanPooling encoders with residual connections. The BGRL
predictor pθ is implemented as a mutilayer perceptron (MLP). We also used stabilization techniques
like batch normalization (Ioffe & Szegedy, 2015), layer normalization (Ba et al., 2016), and weight
standardization (Qiao et al., 2019), as suggested in prior works (Grill et al., 2020; Richemond et al.,
2020). The decay rate use for statistics in the batch normalization is fixed to 0.99. We use PReLU
activation (He et al., 2015) in all experiments except those using a GAT encoder, where we use the
ELU activation (Clevert et al., 2016). In all our models, at each layer including the final layer, we
apply first the batch/layer normalization as applicable, and then the activation function. Table 6
describes hyperparameter and architectural details for most of our experimental setups with BGRL.

In addition to these standard settings, we perform two additional experiments on the PPI dataset—
using a GNN-based predictor pθ, and using a GAT (Veličković et al., 2018) model as the encoder.

When experimenting on PPI with graph-based predictors, we define pθ to be an MLP with one hidden
layer of size 512, plus a stacked MeanPooling model with the same structure as the encoder E . We
found this combination of the node-based MLP and graph-based GNN to provide the best results.

When using the GAT encoder on PPI, we use 3 attention layers — the first two with 4 attention heads
of size 256 each, and the final with 6 attention heads of size 512, following a very similar model
proposed by Veličković et al. (2018). We concatenate the attention head outputs for the first 2 layers,
and use the mean for the final output. We also use the ELU activation (Clevert et al., 2016), and skip
connections in the intermediate attention layers, as suggested by Veličković et al. (2018).
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WikiCS Am. Computers Am. Photos Co. CS Co. Physics ogbn-arXiv PPI
pf,1 0.2 0.2 0.1 0.3 0.1 0.0 0.25
pf,2 0.1 0.1 0.2 0.4 0.4 0.0 0.00
pe,1 0.2 0.5 0.4 0.3 0.4 0.6 0.30
pe,2 0.3 0.4 0.1 0.2 0.1 0.6 0.25
η base 5 · 10−4 5 · 10−4 10−4 10−5 10−5 10−2 5 · 10−3

embedding size 256 128 256 256 128 256 512
E hidden sizes 512 256 512 512 256 256, 256 512, 512
pθ hidden sizes 512 512 512 512 512 256 512
batch norm Y Y Y Y Y N N
layer norm N N N N N Y Y
weight standard. N N N N N Y N

Table 6: Hyperparameter settings for unsupervised BGRL learning.

Optimization settings We perform full-graph training at each gradient step on all experiments,
with the exception of experiments using GAT encoders on the PPI dataset. Here, due to memory
constraints, we perform training with a batch size of 1 graph. Since the PPI dataset consists of
multiple smaller, disjoint subgraphs, we do not have to perform any graph subsampling at training
time.

All experiments use Glorot initialization (Glorot & Bengio, 2010) the AdamW optimizer (Kingma
& Ba, 2015; Gugger & Howard, 2018) with a base learning rate η base and weight decay set to 10−5.
The learning rate is annealed using a cosine schedule over the course of learning of ntotal total steps
with an initial warmup period of nwarmup steps. Hence, the learning rate at step i is computed as

ηi ,

{ i×η base
nwarmup

if i ≤ nwarmup,

η base ×
(
1 + cos

(i−nwarmup)×π
ntotal−nwarmup

)
× 0.5 if nwarmup ≤ i ≤ ntotal.

We fix ntotal to be 10,000 total steps and nwarmup to 1,000 warmup steps, with the exception of
experiments on the GAT encoder that requires using a batch size of 1 graph on the PPI dataset. In this
case, we increase the number of total steps to 20,000 and warmup to 2,000 steps.

The target network parameters φ are initialized randomly from the same distribution of the online
parameters θ but with a different random seed. The decay parameter τ is also updated using a cosine
schedule starting from an initial value of τbase = 0.99 and is computed as

τi , 1− (1− τbase)

2
×
(
cos

(
i× π
ntotal

)
+ 1

)
.

These annealing schedules for both η and τ follow the procedure used by Grill et al. (2020).

Evaluation of embeddings The final evaluation is done by fitting a linear classifier on top of the
frozen learned embeddings without flowing any gradients back to the encoder. For the smaller datasets
of WikiCS, Amazon Computers/Photos, and Coauthor CS/Physics, we use an `2-regularized Logisti-
cRegression classifier from Scikit-Learn (Pedregosa et al., 2011) using the ‘liblinear’ solver. We do a
hyperparameter search over the regularization strength to be between {2−10, 2−9, . . . 29, 210}.
For larger PPI and ogbn-arXiv datasets, where the liblinear solver takes too long to converge, we
instead perform 100 steps of gradient descent using AdamW with learning rate 0.01, with a smaller
hyperparameter search on the weight decay between {2−10, 2−8, 2−6, . . . 26, 28, 210}.

F BGRL DOES NOT CONVERGE TO TRIVIAL SOLUTIONS

In Figure 3 we show the BGRL loss curve throughout training for all the datasets considered. As we
see, the loss does not converge to zero, indicating that the training does not result in a trivial solution.

In Figure 4 we plot the spread of the node embeddings, i.e., the standard deviation of the represen-
tations learned across all nodes, divided by the average norm. As we see, the embeddings learned
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across all datasets have a standard deviation that is a similar order of magnitude as the norms of the
embeddings themselves, further indicating that the training dynamics do not converge to a constant
solution.

Further, Figure 5 shows that the embeddings do not collapse to zero or blow up as training progresses.

0 2000 4000 6000 8000
Training Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BG
RL

 L
os

s

amazon-computers
amazon-photos
coauthor-cs
coauthor-phy
wiki-cs
ogbn-arXiv
PPI

Figure 3: BGRL Loss

0 2000 4000 6000 8000
Training Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Em
be

dd
in

g 
Sp

re
ad

amazon-computers
amazon-photos
coauthor-cs
coauthor-phy
wiki-cs
ogbn-arXiv
PPI

Figure 4: Embedding spread
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Figure 5: Average embedding norm
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Figure 6: GAT model performance
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Figure 7: Histogram of GAT attention entropies

In this section, we analyze the training of GAT encoders on the PPI dataset more closely. For this
purpose, we additionally evaluate the effect of subsampling negative examples when training with
GRACE. All other experimental settings are unchanged.

Figure 6 shows that, similar to the MeanPooling models, GAT models are negatively affected
by subsampling of negative examples in the GRACE contrastive loss. We see a steady increase in
performance when more negative examples are used, with the peak reached by the version that does
not do any subsampling.

Next, we study the entropy of the attention weights learned. Specifically, for each node in the PPI
training graphs, we compute the average entropy of its attention weights across all GAT layers and
attention heads. Since this entropy depends on the number of neighbors this node has, we subtract as
a baseline the entropy of a uniform distribution at the node (i.e., taking the ConstGAT model as a
reference point for studying the GAT model).

In Figure 7, we observe that there is a significant correlation between model performance and GAT
attention entropies. We see that GAT models learned using GRACE, particularly when subsampling
few negative examples, tend to have very low attention entropies. This provides further evidence
that training GAT models can be difficult. On the other hand, BGRL is able to train the model to have
meaningful attention weights, striking a balance between the low-entropy models learned through
GRACE and the maximum-entropy ConstGAT model, thus achieving the best performance.
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