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Abstract

For its involvement in cognitive deterioration and dementia, assessment of enlarged
perivascular spaces (PVSs) has become a major area of interest. We implemented a deep
learning model for the 3D segmentation of PVSs in deep white matter. It was trained and
tested using T1-weighted magnetic resonance imaging data from 1,832 young adults. The
model was trained first based on a CNN autoencoder with the full dataset then with a
U-net like architecture trained with a subset of 40 T1-weighted MRI manually annotated
images. The Dice coefficient (from a separate test subset of 10 images) was 0.64 for cluster
detection. Dice values above 0.90 were reached for detecting PVSs larger than 10 mm3.
Using the full dataset, the predicted PVS load showed a high degree of agreement with a
semi-quantitative visual rating. Finally, we demonstrated the interoperability of this model
using a second dataset.
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1. Introduction

Our goal was develop an interoperable, unsupervised, and validated deep learning (DL)
model for the detection and quantification of PVSs (Kubie, 1927) in the entire brain white
matter volume using the most commonly acquired T1-weighted brain MRI images. The
implemented DL model is based on fully convolutional autoencoders and U-shaped networks.
The model performance was assessed 1) using a sparse (from 20 to 40) number of manually
traced data for the training 2) for increasing VRS sizes. The VRS load prediction computed
on 1,782 individuals was compared 1) to a visual rating given by a trained rater and 2) to
VRS load predicted on another dataset.
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2. Methods

Brain T1-weighted images acquired on a 3-Tesla MRI scanner using a three-dimensional
MPRAGE sequence MRI data were taken from the MRi-Share database (Tsuchida et al.,
2020). A trained investigator performed a voxelwise manual delineation of each deep white
matter (DWM) PVS on the raw T1w images of each of 50 individuals. Another investigator
visually rated on a 4-level severity scores the global PVS burden for each of the 1,832
individuals of the sample (Zhu et al., 2011).
The DL segmentation model used is a U-shaped convolutional neural network similar to
U-net. Encoding and decoding blocks are composed by two 3D convolutions with a 3x3x3
kernel, batch normalization, and a swish activation then a maxpooling layer and a dropout
layer (0.1). The full 3D images (batch size 4) are used as inputs, the first encoding
block generates 8 images before maxpooling then 16, 32. . . for a depth of 7 blocks then
the decoding blocks use upsampling and convolutional blocks to get back to the original
images size (segmentation masks) with cropping and resizing to match the shape of inputs
coming from the skip connections from the encoding blocks. An autoencoder with the same
architecture (w/o the skip connections) was used to pre-train the layers of the model with
non-annotated images, to speed up and to facilitate convergence of the training. Dice loss
was used with the Adam optimizer. To prevent overfitting, we used augmentations (flip
around the symmetry axis of the brain and small translations) and used dropout in the
model architecture. Using a 10 participant’s images fully traced testing set we computed
the Sorensen-Dice coefficient for 9 thresholds of the prediction map (Pthr = 0.1 to 0.9 in
step of 0.1) for both voxel and cluster levels and by thresholding on the cluster size from 0
to 15mm3.

3. Results

Training set size effect. Training the model was initially with only 10 available annotated
subjects (using 5 folds CV) and had difficulty to converge without the autoencoder pre-
training, stability of results was attained with the availability of 20 subjects (dice 0.48),
then increased with 30 subjects to dice 0.5. Performance tuning. Using 40-subject
training prediction algorithm, Figure 1.A shows the dice value for each threshold P-thr while
filtering the data on the cluster size. Without filtering, the maximum dice was measured at
0.51 / 0.54 (voxel / cluster metrics, respectively, for P-thr at 0.6) and the cluster indexes
increased to 0.9 for detecting PVS larger than 10mm3. Prediction compared to visual
rating. The logistic regression between the number of DWM PVS clusters and the visual
grading rating was highly significant (R2

0.5 = 0.45, p < 0.001, N=1,782, see Figure 1.B).
Assessment of the prediction database interoperability. Prediction distribution of
the 1,782 subjects (Figure 1.C) was not different from the distribution of 354 subjects of
another age- and sex-matched database (Mazoyer et al., 2016) when clusters below 5mm3

where filtered out (Kolmogorov-Smirnov test, d = 0.077, p-value = 0.058).

4. Discussion and Conclusion

The segmentation model used in our work were based on the U-net architecture described
in (Ronneberger et al., 2015) adapted for 3D images, the main parameters of the model
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Figure 1: A) Dice versus prediction-threshold and cluster size (10 subjects), B) Logistic
regression with visual grading (1782 subjects), C) Interoperability with BIL&GIN
database.

(depth, width and number of convolutions) were tuned to fit the constraints imposed by
the GPU RAM. The dataset used for training was very limited since the subjects were from
a dataset of young adults with very few PVS per subject. Pre-training the model through
an autoencoder with the same architecture as the segmentation model was very helpful to
ensure a stable convergence of the training with the limited set of annotated images.
To conclude, we implemented and validated an interoperable predictive model for the
quantification of PVS using T1-weighted MRI images only that could be used both for
routine clinical analysis and for mega- or meta-analysis across datasets.
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Y-C Zhu, C Dufouil, B Mazoyer, A Soumaré, F Ricolfi, C Tzourio, and H Chabriat.
Frequency and location of dilated virchow-robin spaces in elderly people: a population-
based 3d mr imaging study. American Journal of Neuroradiology, 32(4):709–713, 2011.

3


	Introduction
	Methods
	Results
	Discussion and Conclusion



