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ABSTRACT

Heterogeneous graphs contain rich semantic information that can be exploited by
heterogeneous graph neural networks (HGNNs). However, scaling HGNNs to
large graphs is challenging due to the high computational cost. Existing scalable
HGNNs use general subgraph construction method and mean aggregator to reduce
the complexity. Despite their high scalability, they ignore two key characteristics
of heterogeneous graphs, leading to low predictive performance. First, they adopt
a fixed knowledge extractor during the local feature aggregation and the global
semantic fusion of multiple meta-paths. Besides, they bury the graph structure in-
formation of the higher-order meta-paths and fail to fully leverage the higher-order
global information. In this paper, we address these two limitations and propose
a scalable HGNN framework called Heterogeneous Graph Attention Multi-Layer
Perceptron (HGAMLP). Our framework employs a local multi-knowledge extrac-
tor to enhance the node representation, and leverages the de-redundancy mecha-
nism to extract the pure graph structure information from higher-order meta-paths.
Besides, it also adopts a node-adaptive weight adjustment mechanism to fuse the
global knowledge from each local knowledge extractor. We evaluate our frame-
work on five commonly used heterogeneous graph datasets and show that it out-
performs the state-of-the-art baselines in both accuracy and speed. Notably, our
framework achieves the best performance on the large public heterogeneous graph
dataset (i.e., Ogbn-mag) of Open Graph Benchmark 1.

1 INTRODUCTION

Heterogeneous graphs have different types of nodes and edges and rich semantic information. They
are ubiquitous in many domains, such as traffic network Hu et al. (2019); Li et al. (2019), biol-
ogy Vretinaris et al. (2021); Do et al. (2019), and relational databases Cvitkovic (2020); Cai et al.
(2021), etc. As powerful models for learning from heterogeneous graphs, heterogeneous graph neu-
ral networks (HGNNs) have aroused lots of concern in both academia and industry in recent years.
Despite the success of HGNNs Wang et al. (2019); Hu et al. (2020); Lv et al. (2021); Schlichtkrull
et al. (2018) on small or medium-scale graphs, scaling them to large graphs is challenging due to the
high computational and storage costs of feature propagation and attention mechanisms.

Existing scalable GNNs for homogeneous graphs Wu et al. (2019); Zhu & Koniusz (2021); Chen
et al. (2020); Zhang et al. (2021); Sun et al. (2020) are not suitable for heterogeneous graphs, as
they lose important semantic information. To address this issue, recent works such as Nars Yu et al.
(2020) and SeHGNN Yang et al. (2023) decouple feature aggregation from model training by using
mean aggregator instead of attention. This way, they only need to perform feature aggregation once
before training, which reduces the computational overhead significantly. However, these methods
also suffer from two major limitations:

Fixed knowledge extractor. HGNNs generally use the attention mechanism to aggregate neighbor
information, but this mechanism is not scalable to large graphs due to its high computational and
memory costs. SeHGNN and Nars have proposed to use the fixed mean aggregator instead of the
attention mechanism (HAN, HGB) in neighbor aggregation, which they call the fixed local knowl-
edge extractor. However, this approach ignores the fact that diverse local knowledge extractors

1https://ogb.stanford.edu/docs/leader_nodeprop
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Figure 1: Fixed local and global knowledge ex-
tractor.
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Figure 2: The effectiveness of de-redundancy
mechanism.

can acquire varying graph structural information. Figure 1 (a) illustrates this problem. For each
meta-path, existing methods only use mean aggregator without considering the personalized neigh-
borhood feature aggregation. Moreover, most existing HGNNs Schlichtkrull et al. (2018); Zhang
et al. (2019); Wang et al. (2019); Fu et al. (2020); Yu et al. (2020) fuse the semantic information
in a coarse-grained manner. As shown in Figure 1 (b), they usually assign weights from the meta-
path/hop level without considering the personalized combination of semantic information for each
node. The above methods ignore the semantic fusion from a finer-grained node level, which we call
the fixed global knowledge extractor. As the receptive field expands, each node receives more global
information. However, it is hard for them to find the optimal combination of global information for
each node.

Buried global information. Existing scalable HGNNs employ a general subgraph construction
method that pre-defines the hop length and expands the receptive field by utilizing all proper meta-
paths that are no longer than this length. However, this method has a limitation in capturing global
information and further expanding the receptive field, ultimately failing to fully exploit the higher-
order meta-paths. As Figure 2 shows, the accuracy of these methods either drops or plateaus as the
number of hops increases. The reason is that the meta-paths generated by this method contain not
only the current order information but also all the lower-order information related to that meta-path.
Thus, existing scalable methods essentially amplify low-order graph structure information as they
iteratively generate higher-order meta-paths. As the meta-path order increases, a significant amount
of redundant low-order information is introduced, which buries the pure graph structure information
of the higher-order meta-paths.

To address the above two limitations, we propose a new scalable HGNN framework, Heterogeneous
Graph Attention Multi-Layer Perceptron (HGAMLP). HGAMLP is based on two observations: 1)
the high-order meta-path information is obscured by a large number of low-order sub-meta-paths,
and 2) each node should have adaptive extractions of both local and global knowledge. We analyze
these two observations in depth in Section 3. Through these two observations, HGAMLP introduces
a de-redundancy mechanism that masks all relevant low-order meta-path information and eliminates
redundant graph structure information in high-order meta-paths. Besides, HGAMLP proposes local
multi-knowledge extractors and a simple yet effective node-adaptive weight adjustment mechanism
for local and global knowledge.

In summary, the core contributions of this paper are 1) New Findings. To the best of our knowledge,
we are the first to explore the redundancy properties of high-order meta-paths and the limitations of
fixed local/global knowledge extractors in existing scalable HGNNs. 2) New Method. We propose
a scalable HGNN training framework named HGAMLP with a de-redundancy mechanism to extract
the pure high-order graph structure information. Besides, we employ a local multi-knowledge ex-
tractor and a node-adaptive weight adjustment mechanism to fuse local and global knowledge. 3)
SOTA Performance: HGAMLP outperforms state-of-the-art scalable HGNNs in both accuracy and
training speed on four middle-scale datasets and one large-scale dataset.

2 PRELIMINARIES

In this section, we first introduce the notations and problem formulation, then review some existing
works related to HGNNs and the scalability of GNNs.
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2.1 NOTATIONS AND PROBLEM FORMULATION

In this paper, we consider a heterogeneous graph G = (V,E, ϕ, ψ), where V is the set of nodes and
E is the set of edges. ϕ(v) denotes the node type of each node v, ψ(e) denotes the edge type of each
edge e. The set of all node types is denoted by Tv = {ϕ(v),∀v ∈ V }, the set of all edge types is
denoted by Te = {ψ(e),∀e ∈ E}. Each node has a associated node type object on = {ϕ(vn) : vn ∈
V } ∈ Tv . Each edge has a associated relation type oi, oj = {oi ← oj : oi, oj ∈ Tv} ∈ Te, where
←indicates the node type oj to the target node type oi. A graph is considered as heterogeneous
when |ϕ|+ |ψ| > 2.

Given a relation type oi ← oj inG, the corresponding subgraph can be represented by the adjacency
matrix Aoi,oj ∈ R|Voi

|×|Voj
|, where |Voi | and |Voj | denotes the number of nodes of node type oi

and oj . The index of each non-zero element in the adjacency matrix Aoi,oj implies there exists an
edge. To capture more semantic information for the target node type, researchers can either manually
specify the meta-path list Φ or repeatedly iterate over different relation types to generate the meta-
path list Φ. Specifically, each meta-path in Φ with k hops between target node type and source
node type is defined in the form ot←· · ·←ok−1←os (abbreviated as ot, ..., os). For instance, an
academic graph has the meta-path “conference ← paper ← author”, which could indicate “the
author writes the paper and published it in the conferenc”. We follow the meta-path-based method
to generate the node embedding and evaluate it for the node classification task.

2.2 HETEROGENEOUS GRAPH NEURAL NETWORKS

Heterogeneous Graph Neural Networks (HGNNs) can be broadly classified into two categories:
meta-path-based method and meta-path-free method. The meta-path-based methods explicitly spec-
ify the path for message propagation, they use predefined paths that specify the type of relationships
between nodes to guide the message-passing process between nodes, such as RGCN Schlichtkrull
et al. (2018), HetGNN Zhang et al. (2019), HAN Wang et al. (2019), MAGNN Fu et al. (2020). On
the other hand, the meta-path-free methods implicitly embed edge and node-type information into
the propagated messages, they do not use predefined meta-paths for message propagation. Instead,
they learn to combine the embeddings of node and edge types in the graph, such as RSHN Zhu
et al. (2019), HetSANN Hong et al. (2020), HGT Hu et al. (2020), Lv et al. (2021). More related
works and additional training techniques about HGNN are shown in Appendix A. However, both
meta-path-based and meta-path-free methods require expensive computational overhead for mes-
sage propagation and aggregation in each training epoch.

2.3 SCALABLE GNNS AND HGNNS

Scalable GNNs. Scalable Graph Neural Networks (GNNs) are built upon the finding that the non-
linear transformation is unnecessary and the weight matrices between consecutive layers can be col-
lapsed Wu et al. (2019). Different from commonly used GNNs (i.e., GCN Kipf & Welling (2017),
GraphSAGE Hamilton et al. (2017) and GAT Velickovic et al. (2018)) which adopt recursive fea-
ture propagation and non-linear transformation in each GNN layer, scalable GNNs treat the time-
consuming feature propagation as a pre-processing step. Specifically, this pre-processing step can
be expressed as follows:

X(k) = (D̃r−1ÃD̃−r)kX(0) (1)

In this equation, X(0) represents the raw feature, and Â = D̃r−1ÃD̃−r represents the normalized
adjacency matrix Ã, where D̃ is the degree matrix of Ã. After generating X(k), the prediction
results are obtained through a linear logistic regression classifier. Based on Eq. 1, several recent
works have been proposed Wu et al. (2019); Zhu & Koniusz (2021); Chen et al. (2020) for scal-
able GNNs, which combine features at a finer granularity, i.e., hop-wise. For example, SIGN con-
catenates neighbor-aggregated features from different propagation layers:[X(0)W0, · · · ,X(k)Wk],
while S2GC proposes a simple spectral graph convolution to average the propagated features in dif-
ferent propagation layers: X(k) =

∑k
i=0 Â

iX(0). In contrast to these methods, GAMLP Zhang
et al. (2021) further considers feature propagation from a node-wise perspective, with each node
having a personalized combination of the different layers of propagated features.
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Scalable HGNNs. Inspired by the advancements of scalable GNNs, current scalable HGNNs av-
eragely aggregate the neighbor features of each target node in the pre-processing step and combine
them in different ways during model training. In contrast to scalable GNNs, these works require
the generation of path-based subgraphs to guide the propagation of graph structure information.
Based on different subgraph generation methods, existing scalable HGNNs can be classified into
two categories: relation-based propagation and meta-path-based propagation.

Nars Yu et al. (2020) is the relation-based propagation method that attempts to apply scalable homo-
geneous graph work Rossi et al. (2020) to HGNNs. Specifically, it repeatedly samples a subset of
relation types to generate corresponding relation subgraphs. Then it performs neighbor averaging on
these relation subgraphs, and the generated features are concatenated in a hop-wise manner, similar
to SIGN. These features are then trained with a simple MLP model. Given the hop k, its entire
procedure can be expressed as:

X(n) = Ân
oi,ojX

(0), n ∈ k Y = softmax(SIGN([X(0)W0, · · · ,X(k)Wk])) (2)

where X(0) = Xoj , X(n) is the aggregated features after n-hops, , and Âoi,oj is the mean aggregator.
W0,W1, · · · ,Wk are learnable weight matrices, Y is the prediction result.

Unlike the relation-based propagation method, the meta-path-based propagation method Se-
HGNN Yang et al. (2023) repeatedly iterates over different relation types to generate general meta-
paths that contain all paths within a specified hop. Same as Nars, SeHGNN also proposes the mean
aggregator of neighbor features to replace the attention mechanism. Then it uses the transformer
model to fuse the semantic information. Given the hop k, the entire procedure of SeHGNN can be
expressed as:

X(p) = Âot,o1Âo1,o2 , · · · , Âok−1,osX
(0), p ∈ Φ Y = softmax(Trans([X′(p), p ∈ Φ])) (3)

where X(0) = Xos , X′(p) is X(p) after feature projection, and each Âoi,oj is the mean aggregator.

3 OBSERVATION AND INSIGHT

Existing HGNNs usually adopt two key techniques for scalability: fixed mean aggregator and gen-
eral subgraph construction. These techniques, however, may also lead to some potential issues, such
as the fixed knowledge extraction and the buried graph structure information. In this section, we
conduct a quantitative analysis of these two techniques and their issues and offer insights into how
HGAMLP overcomes them.

3.1 INSIGHT ON KNOWLEDGE EXTRACTOR
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Figure 3: The box plot of standard deviations of attention
values for different relations in HGB. The X-axis repre-
sents different relationship types.

The existing scalable HGNNs uniformly
employ the fixed mean aggregator for
local knowledge extraction. For each
target node, they assume that the differ-
ence in weight values within the same
type of relationship is similar. How-
ever, in real-world graphs, the impor-
tance of neighbor features to the tar-
get node varies, and this phenomenon
becomes more prominent when dealing
with heterogeneous graph scenes. To in-
vestigate this problem, we use HGB (a
node-level attention-based method) to observe the attention value of all relation types in the ACM
and DBLP datasets. For each type of relation, we calculate the standard deviation of attention val-
ues for each target node and illustrate it with box plots. As shown in Figure 3, the difference in
attention value within the same type of relationship is variable and has many outliers. Besides, the
difference in attention value in different relationships is variable, some are small and some are very
large. Based on this observation, the mean aggregator can only approximately reflect the similarity
of some relationship types and cannot represent the similarity of all types.
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On the other hand, for global knowledge extractors, existing methods aim at combining the semantic
information of all relevant meta-paths in a coarse-grained manner to obtain the final embedding.
In practice, each meta-path contributes differently to each node, indicating that each node should
have a personalized combination of global information. As shown in Figure 4(a), different nodes
require different meta-paths to achieve high accuracy. However, current scalable approaches such
as Nars and SeHGNN do not explicitly consider this issue and typically follow the well-established
GNN/NLP model to do a semantic fusion of heterogeneous graphs, which may lead to sub-optimal
performance.

Insight: Existing approaches use a fixed mean aggregator to extract local knowledge, however, the
weight distribution on heterogeneous graphs is naturally uneven and this approach cannot capture
richer weight distribution. Therefore, we expect to employ a local multi-knowledge extractor to
enhance the express power of the captured graph structure information. Besides, to enable the node-
adaptive fusion of local and global knowledge, we require a general and efficient method that can
explicitly encode the importance of different knowledge present in heterogeneous graphs.

3.2 INSIGHT ON GENERAL SUBGRAPH CONSTRUCTION
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Figure 4: (Left) Test accuracy of SeHGNN on 10 ran-
domly sampled nodes on DBLP. The color from green
to blue represents the correct prediction ratio in 100 dif-
ferent runs. (Right) Path tracing of high-order meta-path
PPAPA on a random sample 8×10 subgraph on ACM.

To capture higher-order semantics, the
general subgraph construction method
iterates over the initial relation type,
generating higher-order graph structure
information through the adjacency ma-
trix multiplication. For instance, given
the relation types “Author writes Paper”
(i.e., P ← A) and “Paper written by Au-
thor” (i.e., A ← P ) as two first-order
meta-paths, we can use APA × AAP to
obtain a second-order meta-path APAP .

However, this approach has some limi-
tations. As described in Section 1, when
the number of hops increases in existing
methods, the accuracy rate gradually de-
creases. We can explore the reason be-
hind this issue by revisiting cumulative
matrix multiplication. During this pro-
cess, we obtain a resulting matrix where each non-zero element denotes the total number of paths
that start from the source node to the destination node within up to k steps. Therefore, the resulting
matrix encompasses not only the paths that precisely take k steps but also those that take fewer than
k steps.

As further explained in Figure 4(b), we utilize the relationship types P ← P and P ← A to conduct
matrix multiplication within 4 hops on the ACM dataset, aiming to acquire the graph structure
information of the meta-path PPAPA. We randomly sample a subgraph of PPAPA, containing 10
nodes of type A and 8 nodes of type P. Each cell in the figure represents the redundant information
contained in each node pair of PPAPA. Specifically, for the meta-path PPAPA, starting from the
rightmost starting point A can reach the leftmost end point P through various paths such as PA, PPA,
PAPA, PPPA, and PPAPA. We track and compare the adjacency matrix generated by PPAPA with
other low-order meta-paths from A to P. If the cells of the two compared matrices are both non-none,
it means that node P can capture the information of node A through a low-order path. Moreover,
PPA, PAPA, and PPPA also have the same redundancy problem. Therefore, the high-order meta-path
obtained by this method contains a significant amount of redundant information from lower-order
meta-paths.

Insight: As the propagation hop increases, numerous redundant higher-order meta-paths are gener-
ated. The previous methods generate meta-paths by iterating 1-hop relation, resulting in redundant
information for higher-order meta-paths. Although they continuously enhance low-order informa-
tion, they also bury valuable graph structure information in higher-order meta-paths. Consequently,
a de-redundancy method is necessary to extract the structure of the high-order meta-path itself, and
we propose to utilize mask matrices to achieve this goal.
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Figure 5: The architecture of HGAMLP

4 METHOD

This section introduces HGAMLP, a scalable and efficient framework for HGNNs as illustrated in
Figure 5. It consists of three main components: a local multi-knowledge extractor, a de-redundancy
mechanism, and a node-adaptive weight adjustment mechanism. The local multi-knowledge ex-
tractor enhances the node representation by using various local knowledge extractors. The de-
redundancy mechanism refines graph structure information by eliminating redundant information
for each meta-path. After feature projection through MLP block, the node-adaptive weight adjust-
ment mechanism provides each node with a personalized combination of local and global knowledge
simply and efficiently. The algorithm for our overall training procedures is shown in Appendix B.1.

4.1 LOCAL MULTI-KNOWLEDGE EXTRACTOR

The feature propagation with k hops in GNNs can be represented by Âk = (D̃r−1ÃD̃−r)k, where
D̃ is the degree matrix of Ã, and different values of r can generate different normalized adjacency
matrices Kipf & Welling (2017); Xu et al. (2018); Zeng et al. (2020). Inspired by the normalization
method in these previous works, normalization on heterogeneous graphs can also be expressed by
setting different values of r. Specifically, we can set different r values as corresponding knowledge
extractors to capture various information from the graph structure, the formula can be expressed as:

Âr
oi,oj = D̃r−1

oi,ojAoi,ojD̃
−r
oj ,oi (4)

where D̃r−1
oi,oj represents the degree matrix of the target node type oi for the meta-path oi, oj , D̃−r

oj ,oi

represents the degree matrix of the source node type oj corresponding to the meta-path oj , oi. Fol-
lowing Eq. 4, the mean aggregator in SeHGNN Yang et al. (2023) and Nars Yu et al. (2020) can be
regarded as the case of r = 0.0, i.e., Â0.0

oi,oj = D̃−1
oi,ojAoi,oj . Based on Eq. 4, the graph structure

information propagation for a k-hop meta-path in scalable HGNNs can be expressed as:

Âr
ot,··· ,os = Âr

ot,o1Â
r
o1,o2 , · · · , Â

r
ok−1,os

(5)

with Eq. 4 and Eq. 5, we can capture richer local knowledge for each node. Specifically, during the
pre-processing step, we utilize various knowledge extractor factors denoted as R = r0, r1, · · · , rn
to perform the multi-knowledge extraction operation, where n represents the number of local knowl-
edge extractors. Each local knowledge extractor employs Eq. 4 to generate the corresponding nor-
malized weight matrices, obtaining different local knowledge. Subsequently, Eq. 5 is used to gener-
ate the adjacency matrix corresponding to each meta-path.

4.2 DE-REDUNDANCY MECHANISM

As mentioned earlier, scalable HGNNs typically employ the general subgraph construction method
to generate graph structure information for the target meta-path. However, this approach results
in a significant amount of redundant information in the generated adjacency matrix. For instance,
consider the toy graph in Figure 6, which contains two node types (p and q) and edge relations
(p ← q and q ← p). If we want to obtain the graph structure information of p ← q ← p, the
existing subgraphs construction method (shown in Figure 6(a)) multiplies the normalized adjacency
matrix Âpq × Âqp to obtain Âpqp. However, Âpqp also includes information from p ← p, not just
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Figure 6: De-redundancy mechanism

the specified meta-path p ← q ← p. This redundancy worsens as the meta-path length increases.
To eliminate this redundancy and obtain purely specified meta-path graph structure information,
we adopt the de-redundancy method depicted in Figure 6(b). In general, we identify all lower-
order meta-paths of the specified high-order meta-path and use these lower-order meta-paths as
mask matrices to de-redundant (set zero) the specified high-order meta-path adjacency matrix. The
algorithm for our de-redundancy mechanism is shown in Appendix B.1.

4.3 NODE-ADAPTIVE WEIGHT ADJUSTMENT MECHANISM

After completing the preprocessing step, each local knowledge extractor obtains multiple de-
redundant global knowledge. During the model training step, we employ the node-adaptive weight
adjustment mechanism to fuse the global knowledge from each local knowledge extractor, resulting
in different fused local knowledge. This knowledge is further fused to obtain node embeddings.

Adaptive Global Knowledge Fusion. For a heterogeneous graph, it would be desirable to cus-
tomize the receptive field of each node. However, existing approaches either rely on simple hop-
level semantic fusion methods or node-level complex models. Unfortunately, neither approach is
both simple and efficient. To address this issue, we propose a novel and efficient node-adaptive
weight adjustment mechanism that can explicitly formulate a suitable receptive field for each node,
thereby enhancing the expressiveness of each node. An illustration of our proposed mechanism is
provided in Appendix B.2. Our approach only requires a trainable shared vector s to generate a
global attention pool for all nodes. For each local knowledge extractor r, the formulation of global
knowledge fusion method is expressed as follows:
Hr = hr

1||hr
2|| · · · ||hr

k, k ∈ |Φ| Sr = Sigmoid(squeeze(Hrs))

Globalatt =
exp(Sr

i )∑k
i=1 exp(S

r
i )
, k ∈ |Φ| Xr

local = ⊕i∈nH
r[:, i, :]⊙Globalatt[:, i], k ∈ |Φ|

(6)

where hr
k is the semantic vector correspond to each meta-path k. Globalatt represents a global

attention pool that stores the importance of different meta-paths (i.e., global knowledge) to each
node. After that, we use different ensemble strategies ⊕ to fuse Hr. For medium-scale datasets,
we adopt a “weight-sum” strategy that involves summing the dot product of Globalatt with Hr

to derive the fused node embeddings. For large-scale datasets like Ogbn-mag, we adopt a “weight-
concat-MLP” strategy, which concatenates the dot product of Globalatt with Hr and passes the
result through a Multi-Layer Perceptron to derive the node embeddings.

Adaptive Local Knowledge Fusion. Additionally, the node-adaptive weight adjustment mechanism
can provide personalized local knowledge to each node. Specifically, We take the output results
Xr

local as the input for local knowledge fusion. The formulation of the local knowledge fusion
method is expressed as follows:

XR = Xr0
local||X

r1
local||· · · ||X

rn
local W = Sigmoid(squeeze(XRw))

Localatt =
exp(Wi)∑n
i=1 exp(Wi)

output =
∑
i∈n

XR[:, i, :]⊙ Localatt[:, i]
(7)

where w is a shared learnable vector, Localatt represents an attention pool that stores the impor-
tance of different local knowledge to each node. With this approach, each node is endowed with
personalized local knowledge, enhancing its expressiveness. output represents the generated node
embeddings for downstream tasks such as node classification, we then use MLP to generate the
final embeddings. The difference between HGAMLP and other scalable methods can be found in
Appendix B.3. Besides, HGAMLP can maintain high efficiency, and its time complexity analysis is
in Appendix C.
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Table 1: Experiment results on the four datasets, where “-” means run out of memory.
DBLP IMDB ACM Freebase

macro-F1 micro-F1 macro-F1 micro-F1 macro-F1 micro-F1 macro-F1 micro-F1

RGCN 91.52± 0.50 92.07± 0.50 58.85± 0.26 62.05± 0.15 91.55± 0.74 91.41± 0.75 46.78± 0.77 58.33± 1.57
HAN 91.67± 0.49 92.05± 0.62 57.74± 0.96 64.63± 0.58 90.89± 0.43 90.79± 0.43 21.31± 1.68 54.77± 1.40
RSHN 93.34± 0.58 93.81± 0.55 59.85± 3.21 64.22± 1.03 90.50± 1.51 90.32± 1.54 - -
HetGNN 91.76± 0.43 92.33± 0.41 48.25± 0.67 51.16± 0.65 85.91± 0.25 86.05± 0.25 - -
MAGNN 93.28± 0.51 93.76± 0.45 56.49± 3.20 64.67± 1.67 90.88± 0.64 90.77± 0.65 - -
HetSANN 78.55± 2.42 80.56± 1.50 49.47± 1.21 57.68± 0.44 90.02± 0.35 89.91± 0.37 - -
HGT 93.01± 0.23 93.49± 0.25 63.00± 1.19 67.20± 0.57 91.12± 0.76 91.00± 0.76 29.28± 2.52 60.51± 1.16
HGB 94.01± 0.24 94.46± 0.22 63.53± 1.36 67.36± 0.57 93.42± 0.44 93.35± 0.45 47.72± 1.48 66.29± 0.45
SeHGNN 94.86± 0.14 95.24± 0.13 66.63± 0.34 68.21± 0.32 93.95± 0.48 93.87± 0.50 50.71± 0.44 63.41± 0.47

HGAMLP 95.49± 0.1195.49± 0.1195.49± 0.11 95.83± 0.0895.83± 0.0895.83± 0.08 67.17± 0.2967.17± 0.2967.17± 0.29 69.40± 0.4669.40± 0.4669.40± 0.46 94.53± 0.1294.53± 0.1294.53± 0.12 94.46± 0.1094.46± 0.1094.46± 0.10 51.70± 0.3551.70± 0.3551.70± 0.35 66.57± 0.2166.57± 0.2166.57± 0.21

Table 2: Experiment results on the Ogbn-mag compared with other methods on the OGB
leaderboard, using “emb” for extra embeddings and “ms” for multi-stage training.

Methods Val acc Test acc Trick Val acc Test acc

SAGN 52.25± 0.30 51.17± 0.32
+emb
+ms

55.91± 0.17 54.40± 0.15
GAMLP 53.23± 0.23 51.63± 0.22 57.02± 0.41 55.90± 0.27
SeHGNN 55.95± 0.11 53.99± 0.18 59.17± 0.09 57.19± 0.12
PSHGCN 56.16± 0.21 54.57± 0.16 59.43± 0.15 57.52± 0.11
HGAMLP 56.32± 0.0656.32± 0.0656.32± 0.06 54.61± 0.1054.61± 0.1054.61± 0.10 59.60± 0.1159.60± 0.1159.60± 0.11 57.60± 0.1057.60± 0.1057.60± 0.10

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Datasets. Four middle-scale datasets from the HGB benchmark and a large-scale dataset Ogbn-mag
from OGB Challenge Hu et al. (2021) are used for the node classification task.

Baselines and Settings. For middle-scale datasets, we compare HGAMLP with RGCN, HetGNN,
HAN, MAGNN, RSHN, HetSANN, HGT, HGB, and the SOTA scalable HGNN SeHGNN. All
results are repeated five times and report the mean performance and the standard deviations. For
large-scale datasets, we compare the methods SAGN, GAMLP, SeHGNN, and PSHGCN He et al.
(2023) on the Ogbn-mag leaderboard. To ensure fairness, we follow the rules of the Ogbn-mag
leaderboard run HGAMLP 10 times, and report the average performance. Datasets properties and
setup details are shown in Appendix D. The source code of HGAMLP can be found in https:
//anonymous.4open.science/r/HGAMLP_ICLR_2024/.

5.2 EXPERIMENT RESULTS

Experiments on HGB Benchmark. We present the evaluation results of our node classification
predictions on four middle-scale heterogeneous graph datasets. Considering that only SeHGNN
utilizes the label propagation trick, we compare the version of SeHGNN that does not employ label
propagation in the experiment. Table 1 shows that HGAMLP method outperforms all advanced
HGNN methods on all the datasets. Notably, the previous work on the Freebase dataset fails to
maintain high accuracy in both macro-F1 and micro-F1 simultaneously. In contrast, HGAMLP
maintains the highest accuracy in both micro-F1 and macro-F1.

Experiments on Ogbn-mag. Achieving good prediction performance on large-scale graphs is a
challenging task in HGNN. To evaluate the scalability of HGAMLP, we test it on a large-scale
heterogeneous graph dataset Ogbn-mag. Due to the lack of node features and unbalanced data dis-
tribution in the Ogbn-mag, existing methods often rely on extra embedding and multi-stage training
techniques (more details in Appendix A.2). To ensure a fair comparison, we conduct ablation ex-
periments with and without these tricks. Table 2 shows that HGAMLP outperforms other baselines
with and without tricks. Our excellent performance on Ogbn-mag stems from our node-adaptive
weight adjustment mechanism, which highlights the superiority of our semantic fusion model.

Efficiency Analysis. To further demonstrate the exceptional efficiency of HGAMLP, we conducted
a comprehensive comparison with previous HGNNs. Figure 7 compares the total training time
using the early-stop strategy on the DBLP dataset. For HGAMLP, SeHGNN, and Nars, we take
the precomputation time into account when measuring the total training time. Figure 7 reflects that
HGAMLP offers faster training speed and higher accuracy than existing state-of-the-art methods.
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Table 3: Ablation study to verify the effectiveness of local multi-knowledge extractors.
r=0.0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5 rfuse

ACM macro-F1 94.40± 0.14 94.31± 0.19 94.25± 0.24 94.18± 0.20 94.03± 0.32 94.19± 0.17 94.53± 0.1294.53± 0.1294.53± 0.12

micro-F1 94.37± 0.14 94.23± 0.19 94.17± 0.25 94.37± 0.20 93.96± 0.33 94.11± 0.17 94.46± 0.1094.46± 0.1094.46± 0.10

DBLP macro-F1 95.18± 0.12 95.17± 0.19 95.21± 0.32 94.98± 0.23 94.88± 0.25 94.84± 0.36 95.49± 0.1695.49± 0.1695.49± 0.16

micro-F1 95.53± 0.11 95.51± 0.17 95.54± 0.28 95.37± 0.20 95.25± 0.23 95.22± 0.32 95.83± 0.1595.83± 0.1595.83± 0.15

Table 4: Ablation study on the effectiveness of node-adaptive weight adjustment mechanism.
ACM DBLP

macro-F1 micro-F1 macro-F1 micro-F1

mean 93.72± 0.25 93.63± 0.26 94.89± 0.21 95.13± 0.18
tf 94.21± 0.30 94.15± 0.24 95.06± 0.14 95.31± 0.17
ours 94.49± 0.1594.49± 0.1594.49± 0.15 94.42± 0.1094.42± 0.1094.42± 0.10 95.38± 0.1695.38± 0.1695.38± 0.16 95.61± 0.1595.61± 0.1595.61± 0.15

Ablation Study. We conduct ablation studies on the ACM and DBLP datasets to thoroughly an-
alyze the effectiveness of our three essential components: local multi-knowledge extractors, de-
redundancy mechanism, and node-adaptive weight adjustment mechanism.

Different Local Knowledge Extractors. We use different local knowledge extractors by varying the
r values. Table 3 shows that the performance varies across datasets for different r values, indicating
that each local knowledge extractor captures different knowledge. To enrich each node with more
knowledge, we adaptively fuse the local multi-knowledge, creating fusion knowledge denoted as
rfuse. Consequently, this approach yields better results compared to using a single extractor.

Different Subgraph Construction Methods. We compare HGAMLP with the de-redundancy method
(“HGAMLP w de-redundancy”) and with the general subgraph construction method (“HGAMLP
w/o de-redundancy”) and evaluate the accuracy trend. As depicted in Figure 8, “HGAMLP w de-
redundancy” consistently outperforms “HGAMLP w/o de-redundancy” in accuracy, and gradually
improves as the number of hops increases. This observation validates the redundancy issue in the
previous general subgraph construction method, which hinders the effective utilization of high-order
meta-paths. Further experimental explanation of redundancy can be found in Appendix D.3.

Different Knowledge Fusion Models. To validate the effectiveness of our node-adaptive weight ad-
justment mechanism for global knowledge fusion, we compared our method “Ours” with the “mean”
model (direct averaging of semantic information) and the “tf” model (Transformer model). Table 4
demonstrates that our method outperforms the others, highlighting the simplicity and effectiveness
of our approach, which uses only one learnable vector for improved semantic fusion.

6 CONCLUSION

This paper presents HGAMLP, a novel, scalable, and efficient method for learning heterogeneous
graph representations. HGAMLP refines graph structure information through the de-redundancy
mechanism and captures richer graph structure information using local multi-knowledge extractors.
It incorporates a node-adaptive weight adjustment mechanism that assigns varying attention values
to semantic information associated with each node. This mechanism is also applicable to the node-
level fusion of local multi-knowledge. Finally, HGAMLP achieves excellent results using a simple
Multi-Layer Perceptron. Experimental results on node classification demonstrate that HGAMLP
outperforms state-of-the-art HGNNs in terms of efficiency and accuracy.
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The appendix is organized as follows:

A. More related works.

B. More details about HGAMLP.

C. Time complexity analysis.

D. Experiment details.

A MORE RELATED WORKS

A.1 HETEROGENEOUS GRAPH NEURAL NETWORKS

Meta-path-based Methods. Meta-path-based HGNNs use predefined paths that specify the type
of relationships between nodes to guide the message-passing process between nodes. Specifically,
they first aggregate neighbor features along the meta-path and then fuse the semantic information
generated by different meta-paths to obtain the final node embedding. RGCN Schlichtkrull et al.
(2018) is an extension of GCN that handles graphs with multiple edge types. It applies the GCN
framework to relational data modeling, and support link prediction and entity classification tasks.
HetGNN Zhang et al. (2019) utilizes neighbors of varying hop distances by employing a random
walk with restart strategy to sample a fixed-sized group of neighbors, which are then grouped by
node type. Next, a novel architecture is utilized to aggregate feature information from the sampled
neighbors. HAN Wang et al. (2019) utilizes meta-path to incorporate both node-level and semantic-
level attention. It first uses node-level attention to learn the attention values for each neighbor along
the meta-path. Then it uses semantic-level attention to learn the attention values of different meta-
paths. The outputs are fused for node classification tasks. MAGNN Fu et al. (2020) introduces a
novel meta-path-aggregated graph neural network for heterogeneous graph embedding. It devises
multiple candidate encoder functions for extracting information from meta-path instances. However,
both meta-path-based and meta-path-free methods require expensive computational overhead for
message propagation and aggregation in each training epoch.

Meta-path-free Methods. Meta-path-free HGNNs do not use predefined meta-paths for message
propagation. Instead, they learn to combine the embeddings of node and edge types in the graph.
RSHN Zhu et al. (2019) proposes a unified model that integrates both graph and its coarsened line
graph, allowing for the embedding of both nodes and edges in heterogeneous graphs, without ne-
cessitating any prior knowledge such as meta-path. HetSANN Hong et al. (2020) directly leverages
and explores the structures in the heterogeneous graph to achieve more informative representations
without pre-defined meta-paths. Besides, it employs a multi-layer GAT network with type-specific
score functions to generate attention for different relations. HGT Hu et al. (2020) combines node
and edge types using a transformer model and employs the relative temporal encoding (RTE) tech-
nique to model the dynamic dependencies. Furthermore, a mini-Batch graph sampling algorithm
has been designed to support large-scale datasets. Lv et al. (2021) proposes HGB, which presents
a systematical reproduction of recent HGNNs and identifies some neglected issues. Furthermore, it
adopts a multi-layer GAT network as the backbone and incorporates both node features and learn-
able edge-type embeddings for attention generation. These methods exhibit promising outcomes
for graph embedding with heterogeneous information and have the potential to advance the field of
graph neural networks.

A.2 ADDITION TRAINING TECHNIQUES

Node embedding. Not every node type in heterogeneous graph datasets has features. For example,
in the Ogbn-mag dataset, only the “paper” type has node features. To improve prediction results,
various existing methods attempt to assign features to featureless node types. These methods include
padding with zeros, using meta-path2vec, and using unsupervised graph embedding methods to pre-
generate features. The method of padding with zeros directly adds zero elements at the end of the
feature of each node type and forcibly aligns the feature dimensions of all node types. But this ap-
proach doesn’t perform well. Some HGNNs, such as RHGNN Yu et al. (2021) and LEGNN Yu et al.
(2022), utilize the second method. Nars uses the third method to generate TransE relational graph
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embeddings, which perform better than the first two methods. Similarly, SeHGNN and GAMLP
follow the third method to generate Complex embeddings and have achieved good results.

Label propagation. To fully utilize the labels in the training set, homogeneous graph-based re-
search Shi et al. (2021); Huang et al. (2021); Sun & Wu (2021) utilize them as additional inputs
to improve model performance. Specifically, the label embedding matrix Ŷ(0) is initialized to ze-
ros and then populated with the hard training labels Yvl , converted to one-hot format Ŷ(0)

vl . This
populated matrix is propagated alongside the normalized adjacency matrix Â.

Ŷ(0)
vl

= Yvl , Ŷ
(k+1) = ÂŶ(k) (8)

where vl is the labeled node-set, and k is the number of steps for label propagation. A similar
method is used for heterogeneous graphs Yang et al. (2023), which employs meta-paths to perform
label propagation. Since the propagated labels are of the target node type, constructing a label-
based meta-path necessitates the source node and the target vertex to be of the same vertex type.
A potential problem with adopting label propagation is that the trained nodes may use their own
real labels, resulting in data leakage. To address this issue, SeHGNN removes diagonal values after
matrix multiplication. Given a meta-path p = ot, · · · , os, the formula is expressed as follows:

Yp = rm diag(Âp)Ŷ(0)
vl
, Âp = Âot,o1Âo1,o2 · · · Âok−1,os (9)

Feature projection. Due to the heterogeneity of the graph, features of different node types may have
varying dimensions. Thus, recent HGNNs utilize methods to project different feature dimensions
of various node types into the same space. In previous HGNNs, features are projected during the
training epoch. HAN Wang et al. (2019) achieves this by designing a type-specific weight matrix to
project different types of nodes’ features into the same feature space. On the other hand, HGT Hu
et al. (2020) and HGB Lv et al. (2021) use a linear layer with a bias for each node type. For scalable
HGNNs, such as Nars Yu et al. (2020), the features of different subgraphs are directly added during
the pre-processing step. Therefore, it is crucial to ensure that the feature dimensions are consistent
beforehand. To achieve this, Nars employs several uniform distribution matrices to randomly project
the features into the same dimension. However, this method lacks interpretability and fails to train
node embeddings effectively. To address this issue, SeHGNN Yang et al. (2023) generates different
meta-paths during the pre-processing step, each with varying feature dimensions. At the beginning
of each training epoch, different linear layers are utilized to project the feature dimensions into the
same space, allowing node embeddings to continuously learn better expressions during training.

Multi-stage training. Many real-world graphs often have a limited number of labels, making it chal-
lenging to effectively propagate supervision information throughout the graph. To address this issue,
recent studies Sun et al. (2020), Zhang et al. (2021) drew inspiration from self-training You et al.
(2020) and extended the method to multi-stage training. The approach involves adding nodes with
high-confidence model predictions to the labeled training set at each stage and retraining the model
in new stages, thus continuously expanding the utilization of supervised information throughout
the graph. GAMLP, SAGN, and SeHGNN have used this method on the large-scale heterogeneous
graph dataset Ogbn-mag to achieve excellent results.

B MORE DETAILS ABOUT HGAMLP

B.1 ALGORITHMS

Algorithm 1 illustrates our overall training procedure through pseudo-code. In the pre-processing
step, HGAMLP first utilizes different local knowledge extractors r to capture different local knowl-
edge for each meta-path and generates its adjacency matrix Âr

ot,··· ,os (line 1-4 in Algorithm 1).
After that, HGAMLP utilizes the de-redundancy mechanism to eliminate redundant graph structure
information for each meta-path, generating the de-redundancy matrices (lines 5-7 in Algorithm 1).
Each Âr

ot,··· ,os generated by the de-redundancy mechanism is then used to aggregate neighbor fea-
tures to generate global knowledge (line 8-9 in Algorithm 1). In the model training step, each local
knowledge extractor employs an MLP block to project each global knowledge into the same data
space during feature projection (lines 18-19 in algorithm 1). Then the node adaptive weight adjust-
ment mechanism first fuses all the global knowledge hr under each local extractor to generate Xr

local
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Algorithm 1 The overall training process of HGAMLP.

Input:
Raw features of source node type: Xos
Raw labels: Y
Meta-path list: Φ
Adjacency matrices: {Aoi,oj : oi, oj ∈ Tv}
Local knowledge extractors: R

Output: Node classification prediction results Pred of target node type ot
1: % Local Knowledge Extractor
2: for r ∈ R do
3: for each ot, · · · , os ∈ Φ do
4: Âr

ot,··· ,os = Âr
ot,o1Â

r
o1,o2 , · · · , Â

r
ok−1,os

5: %De-redundancy Mechanism
6: Âr

ot,··· ,os = De-redundancy(Âr
ot,··· ,os , Âpool)

7: Âpool.append(Â
r
ot,··· ,os)

8: %Neighbor aggregation
9: Xr

ot,··· ,os = Âr
ot,··· ,osXos

10: end for
11: %Collect all feature aggregation matrices
12: Xr = {Xr

ot,··· ,os : ot, · · · , os ∈ Φ}
13: end for
14: %Collect local multi-knowledge extractor
15: Q = {Xr : r ∈ R}
16: for each epoch do
17: for Xr ∈ Q do
18: % feature projection
19: hr = {MLP (Xr

ot,··· ,os) : for X
r
ot,··· ,os ∈ Xr}

20: %Node-adaptive Weight Adjustment Mechanism
21: %Fuse global knowledge
22: Xr

local = Adaptive-Global-Knowledge-Fusion(hr)
23: end for
24: XR

local = {Xr
local : r ∈ R}

25: %Fuse local knowledge
26: Zfinal = Adaptive-Local-Knowledge-Fusion(XR

local)
27: % Node classification task
28: Pred =MLP (Zfinal)
29: Calculate loss function L(y,Pred) = −

∑n
i=1 yi logpredi

30: back-propagation
31: end for
32: return Pred
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Algorithm 2 De-redundancy Mechanism.

Input:
Âpool :A de-redundancy adjacency matrix storage pool
Âot,··· ,os : Adjacency matrix to be de-redundant

Output: Âot,··· ,os
1: % generate sub-meta-path
2: sub-meta-path = DFS(ot, · · · , os)
3: for name ∈ sub-meta-path do
4: if name ∈ Âpool.keys() then
5: Âot,··· ,os = Âot,··· ,os\Âpool[name])
6: else
7: continue
8: end if
9: end for

10: return Âot,··· ,os
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Global attention
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Figure 9: Node-adaptive weight adjustment mechanism, where h1,...,k represents the concatenation
of features corresponding to k metapaths.

(lines 21-22 in Algorithm 1). After that, all local knowledge XR
local is further fused to generate the

node embedding (lines 25-26 in Algorithm 1) for node classification prediction.

Algorithm 2 demonstrates our de-redundancy mechanism. For every Âot,··· ,os generated through
the local multi-knowledge extractor, we consider it as the target redundant matrix and its meta-path
as the target meta-path. Specifically, we employ a de-redundancy matrix pool denoted as Âpool to
store all normalized adjacency matrices that have undergone the de-redundancy process. As the 1-
hop meta-path lacks redundancy, we initialize Âpool with the normalized adjacency matrices of the
1-hop meta-path. We initiate the process by utilizing the DFS algorithm to traverse the target meta-
path and generate all sub-meta-paths (line 2 in Algorithm 2). For each sub-meta-path, we verify its
existence in Âpool. If it exists, we extract pure information using the de-redundancy mechanism
(lines 4-5 in Algorithm 2). If not, we move on to the next sub-meta-path (line 7 in Algorithm 2). We
repeat this process until all sub-meta-paths associated with the target meta-path have been refined.
The resulting Âot,··· ,os is then stored in Âpool, and we proceed to eliminate redundancy in the next
adjacency matrix.

B.2 ILLUSTRATION OF NODE-ADAPTIVE WEIGHT ADJUSTMENT MECHANISM

The illustration of the node-adaptive weight adjustment mechanism is depicted in Figure 9.

B.3 RELATION WITH CURRENT METHODS

HGAMLP vs. SeHGNN. Both HGAMLP and SeHGNN employ general subgraph construction
methods based on meta-paths. However, SeHGNN ignores the redundancy of high-order meta-paths,
whereas HGAMLP incorporates a de-redundancy mechanism to eliminate redundancy in high-order
meta-paths. In the neighbor aggregation step, SeHGNN aggregates limited knowledge using a fixed
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Table 5: Theoretical complexity of HGAMLP, Nars, GAMLP and SeHGNN in every training
mini-batch.

Model Featrue
projection

Semantic
fusion Total

Nars - O(ND(mD)) O(ND(mD))
GAMLP - O(ND(mD)) O(ND(mD))
SeHGNN O(NKD2) O(ND(K2 +KD))O(ND(K2 +KD))

Ours O(NKrD2) O(NDrK) O(ND(rKD))

mean aggregator, while HGAMLP utilizes the local multi-knowledge fusion method to enhance the
expressive ability of each node. In terms of model selection, SeHGNN employs a transformer model,
whereas HGAMLP supports both local and global knowledge fusion through a node adaptive weight
adjustment mechanism, which is efficient and simple.

HGAMLP vs. Nars. Similar to SeHGNN, Nars also employs a general subgraph construction
method and mean aggregator. However, Nars is based on relationships rather than meta-paths, which
prevents explicit handling of heterogeneous feature types. Additionally, Nars inherits the SIGN
model Rossi et al. (2020) for model training without considering the importance of each meta-path
to each node.

HGAMLP vs. GAMLP. GAMLP is a scalable graph framework that integrates Nars to support
heterogeneous graph processing. While GAMLP allows node-level personalized combination, it is
limited by Nars and can only perform this operation at the hop level, rather than at a finer-grained
meta-path level.

C TIME COMPLEXITY ANALYSIS

Time analysis. We conduct a theoretical analysis of the time complexity for Nars, GAMLP, Se-
HGNN, and HGAMLP. To facilitate the analysis, we make the following assumptions: The max-
imum hop of the above methods is set to m to ensure the same receptive field and k meta-paths
are generated accordingly. The input feature dimension and hidden layer dimension are set to D,
and the number of target nodes is denoted as N . The parameter r indicates the number of the lo-
cal multi-knowledge aggregator. We set r = 1 for comparison because the accuracy of HGAMLP
for all datasets can already exceed the existing SOTA baselines. When r > 1, the accuracy of
our method will be further improved, while the computational overhead will increase linearly. For
the pre-processing step, Nars, GAMLP, SeHGNN, and HGAMLP all employ the parameter-free
approach for neighbor aggregation, which eliminates the computational overhead of neighbor ag-
gregation in each training epoch. For the model training step, the time complexity of HGAMLP
(as shown in Table 5) is significantly lower than SeHGNN, attributed to the node adaptive weight
adjustment mechanism. Nars has the lowest time complexity by employing feature projection in the
pre-processing step. However, this method lacks interpretability and exhibits low accuracy.

D EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTION

Four middle-scale datasets from the HGB benchmark are used in our experiments and a large-scale
dataset Ogbn-mag from OGB Challenge Hu et al. (2021). Table 6 shows the graph structure prop-
erties of these five datasets.

• Middle-scale dataset. ACM and DBLP are academic networks, the former is a citation
network, and the latter is a bibliography website of computer science. IMDB is a website
that contains movies and related media. Freebase is a large knowledge graph.

• Large-scale dataset. Ogbn-mag is a heterogeneous academic network extracted from Mi-
crosoft Academic Graph (MAG), consisting of papers (P), authors (A), fields (F), and insti-
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Table 6: Overview of the Datasets.

Dataset Nodes Nodes types Edges Classes

DBLP 26128 A,P,T,V 239566 4
ACM 10942 A,P,C,K 547872 3
IMDB 21420 A,M,D,K 86642 5

Freebase 180098 0-7 1057688 7

Ogbn-mag 1939743 P,F,A,I 21111007 349

Table 7: The maximum hops of metapaths for feature propagation and label propagation.

Max Hop Metapaths Max Hop Metapaths

DBLP 4 17 - -
ACM 5 84 - -
IMDB 5 52 - -

Freebase 2 73 - -

Ogbn-mag 2 10 2 5

tutions (I). The papers are published on 349 different venues and each paper uses word2vec
to generate corresponding features.

D.2 EXPERIMENT SETTINGS

For the medium-scale datasets, we follow the HGB benchmark that split the node labels into
24%/6%/70% for training, validation, and testing. To evaluate the effectiveness of our approach,
we compare our experimental results with the baselines reported in the HGB benchmark and Se-
HGNN paper. All results are repeated five times and report the mean performance and the standard
deviations. For the large-scale dataset Ogbn-mag, we follow the Ogb division method according to
the years, employing data before 2018 as the training set, data from 2018 as the validation set, and
data after 2019 as the test set. We use the Ogb model evaluator to get validation and test accuracy
(micro-F1). To ensure fairness, we follow the rules of the Ogbn-mag leaderboard run HGAMLP 10
times, and report the average performance. Considering that the SOTA methods on the Ogbn-mag
leaderboard utilize additional techniques such as generative features (TransE, ComplexE) and multi-
stage training Yang et al. (2023); Yu et al. (2020); Zhang et al. (2021); Sun et al. (2020); Hu et al.
(2020).

We train our models using Adam optimizer Kingma & Ba (2015) during training. The learning rate
is 0.001 for all middle-scale datasets and 0.002 for the large-scale dataset. HGAMLP adopts two-
layer MLPs for each meta-path in feature projection, and another two-layer MLP for the outputs.
The dimension of hidden vectors is 64 for ACM and DBLP, 512 for IMDB, Freebase, and Ogbn-
mag. Table 7 shows the number of hops and meta-paths we use for feature propagation and label
propagation on each dataset.

For the training budget, we train every middle-scale dataset with 200 epochs and we terminate the
training process if the validation accuracy does not improve for 20 consecutive steps. For large-
scale datasets, i.e., Ogbn-mag, we use multi-stage training techniques, and the training budget of
each stage is set to 400, 400, 400, and 500 and we terminate the training process if the validation
accuracy does not improve for 100 consecutive steps.

The experiments are conducted on a machine with Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
and a single TITAN RTX GPU with 24GB GPU memory. The operating system of the machine is
Ubuntu 16.04. As for software versions, we use Python 3.7, Pytorch 1.12.1, and CUDA 10.1.
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Figure 10: The box plots of the redundancy ratio for different meta-paths ranges from 1 to 7 hops
on the ACM and DBLP datasets.

D.3 MORE ABLATION STUDY

In order to facilitate the redundancy problem more intuitively, we calculate the proportion of re-
dundancy for all meta-paths generated by each hop in the ACM and DBLP datasets and illustrate
it with box plots. Specifically, we generate all meta-paths ranging from 1 to 7 hops and record the
redundancy ratio for each meta-path. For the ACM dataset, the number of meta-paths generated
by each hop is [1,3,3,9,9,27,27], while for the DBLP dataset, the number of meta-paths generated
by each hop is [3,5,11,21,43,85,171]. As illustrated in Figure 10, it is evident that the redundancy
of meta-paths increases significantly with the number of hops. Notably, in the ACM and DBLP
datasets, the redundancy of most meta-paths reaches 100% when the hop value is set to 7.
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