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ABSTRACT

In the evolving fields of computer vision and image process-
ing, Image Quality Assessment (IQA) has become essential
due to the prevalence of digital images in today’s applica-
tions. Our comprehensive study underscores that current IQA
models demonstrate varied learning aptitudes towards differ-
ent image distortions. Notably, these models, employing a
uniform learning rate, often yield suboptimal results for cer-
tain challenging distortions, affecting the overall evaluation
precision. Addressing this challenge, we present an innova-
tive online knowledge distillation strategy named Multi-Rate
Knowledge Distillation (MRKD). Our approach fosters the
student model to assimilate diverse features from the teacher
model, leveraging self-distillation regularization to enhance
its generalization capability while enabling the student model
to circumvent the pitfalls of local optima. This approach
leverages two models with varying learning rates, wherein
a high learning rate teacher model mentors a student model
with a lower rate. Extensive testing on the TID2013, KADID-
10k, and LIVEC datasets has validated the efficacy of our
MRKD approach, demonstrating its potential in enhancing
performance for challenging distortion types.

Index Terms— Blind image quality assessment, Knowl-
edge Distillation, Learning Rate, Hard Distortions

1. INTRODUCTION

With the rise in digital media, Image Quality Assessment
(IQA) [1, 2, 3, 4, 5, 6, 7, 8, 9] has become pivotal. As digital
images play an indispensable role in numerous applications,
ensuring their quality is paramount for reliable interpretations
and applications. IQA has emerged as a central research topic
in the fields of computer vision and image processing.

Our observations, illustrated in Figure 1, indicate that
there exists a pronounced variance in performance for dif-
ferent distortion types when models are trained at distinct
learning rates, highlighting an underexplored area in IQA
research. Through a series of experiments, we delved deeply
into this phenomenon. A key discovery was that distinct dis-
tortion types manifest differential learning outcomes under
different learning rates.
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Fig. 1: Performances’ violin plot of models trained with large
learning rates 1e-2 and models trained with small learning
rates 6e-1 at certain distortion types on TID2013. w.r.t each
epoch.

Fig. 2: Pictures of similar MOS in different distortion cate-
gories on TID dataset.

While traditional IQA models often employ a uniform
learning rate, our approach challenges this norm, hypothe-
sizing that different learning rates can be tailored for opti-
mal performance across various distortion types. This raised
a question: Why do most existing IQA models adopt a uni-
form learning rate, overlooking the potential and necessity for
targeted learning? In fact, when models process various dis-
tortion types under a unified learning rate, the learning out-
comes for some challenging distortion types are suboptimal,
leading to limited evaluation accuracy.

Building upon these observations, we introduce a novel
knowledge distillation [10, 11] method for IQA named Multi-
Rate Knowledge Distillation (MRKD). In our proposed
methodology, we initialize two distinct models. The teacher
model, trained with a higher learning rate, is designed to ex-



Fig. 3: Framework of our Multi-Rate Knowledge Distillation
(MRKD) method

plore a more extensive range of parameter spaces, capturing
a wide spectrum of features. In contrast, the student model,
optimized with a more conservative learning rate, focuses on
achieving consistent and stable performance. By doing so, we
aim to blend the robustness of a model trained with a smaller
learning rate with the expansive feature understanding of a
model trained with a larger one.

Our method offers two significant advantages. First, it en-
ables the student model to learn diverse features [12] from the
teacher model by using high learning rates that can accentuate
the tiny features that are difficult for models trained with low
learning rates to acquire. Second, it employs self-distillation
regularization terms to assist the model in escaping local min-
ima and enhancing generalization performance [13, 14].

As shown in Fig. 2, Non-eccentric mode noise presents
more subtle distortion characteristics than additive Gaussian
noise, even when both manifest similar MOS scores. Given
that these models provide complementary insights, our pro-
posed method combines the strengths of both, producing a
more comprehensive IQA model through a distillation pro-
cess.

To validate the effectiveness of our proposed strategy,
we conducted extensive experiments on the widely recog-
nized TID2013 [15], KADID-10k [16] and LIVEC [17]
datasets. Experimental results reveal that, when compared
to the DBCNN [18], HyperIQA [19] and ResNet50 [20]
models, our MRKD not only achieves superior performance
on challenging distortion types but also significantly elevates
the overall evaluation accuracy.

2. METHOD

The general framework of Multi-Rate Knowledge Distillation
(MRKD) method is shown in Figure 3. Given a natural image
I , a distortion category d and a distortion level s, we can use

a function fd(I, s) to generate a distorted image x:

x = fd(I, s). (1)

Repeat the process by giving different pictures, we get a train-
ing dataset D = {xi, yi}ni=1, where n is the number of train-
ing samples and (xi, yi) are labeled data pairs. xi is a dis-
torted picture, and yi is the corresponding picture mean opin-
ion score (MOS), which can be obtained by human ratings or
objective metrics.

The goal of training is to learn a model Pw(y|x). Gener-
ally speaking, d has a large number of distortion categories,
and the processing function f makes the distorted picture pro-
duce different image features. One might naturally question
potential biases in the accuracy of a single network across
different distortion categories. We use Pearman’s Rank Order
Correlation Coefficient (SROCC) as a measure of distortion
category accuracy:

SROCCd
w = SROCC({gw(fd(I, si)), y(d,si)}nd

i=1), (2)

where gw is the network with parameter w, si is the de-
gree of distortion of the d-type distortion category, and nd is
the number of d-type distortion categories. We can observe
the result shown in Fig. 1, by minimizing the negative log-
likelihood loss function, which is as follows:

Lnll =
1

n

n∑
i=1

− logPw (yi | xi) , (3)

where the probability distribution of the mapping function
is denoted as Pw(y|x). We can obtain two distributions of the
model predictions, denoted as Pw1(yi|xi) and Pw2(yi|xi).
As depicted in Fig. 1, when minimizing the negative log-
likelihood loss function, significant patterns emerge that
elucidate our approach’s effectiveness, models Pw

1 (yi|xi)
trained with large learning rates and models Pw

2 (yi|xi)
trained with small learning rates have significant performance
differences on certain distortion types, even though they are
both trained on the same data D = {xi, yi}ni=1. To be precise,
there exists distortion d on each epoch with a high probability
such that

SROCCd
w1 > SROCCd

w2. (4)

Based on above observations, we propose our Multi-Rate
Knowledge Distillation (MRKD) to regularize the output pre-
dictions of sub-models. At each iteration of the training step,
our method attempts to regularize the model predictions by
minimizing the mean squared error (MSE):

D(Pw1(yi|xi), Pw2(yi|xi)) =
1

n

n∑
i=1

(y1i − y2i )
2, (5)

where y1i and y2i are the outputs of the two models respec-
tively. Since it is difficult to ensure the convergence of the
network when training with a large learning rate, we adopt



Table 1: Model performance improvements with MRKD
across different models such as DBCNN and ResNet50 on
TID2013 and KADID-10K datasets.

Method TID2013 KADID-10k
SRCC PLCC SRCC PLCC

DBCNN 0.8043 0.8303 0.8148 0.8077
w/ URKD 0.8074 0.8331 0.8152 0.8085
w/ MRKD 0.8397 0.8633 0.8258 0.8231

+0.0354 +0.0332 +0.0110 +0.0154
ResNet50 0.7278 0.7725 0.7117 0.7139
w/ URKD 0.7284 0.7726 0.7188 0.7218
w/ MRKD 0.7700 0.8063 0.7447 0.7530

+0.0422 +0.0338 +0.0330 +0.0391
HyperIQA 0.7764 0.8081 0.7818 0.7595
w/ URKD 0.7608 0.8062 0.7862 0.7626
w/ MRKD 0.7974 0.8296 0.8011 0.7875

+0.0210 +0.0215 +0.0193 +0.0280

Table 2: Model performance improvements with MRKD of
DBCNN on the two hardest distortions (eg. Non eccentric-
ity pattern noise and Mean shift) and two easy distortions
(eg. Additive Gaussian and JPEG transmission errors) of the
TID2013 dataset.

Hard Non eccentricity Mean shift
SRCC PLCC SRCC PLCC

DBCNN 0.0969 0.0328 0.1523 0.1274
w/ URKD 0.0869 0.0385 0.1546 0.1332
w/ MKRD 0.4277 0.4014 0.2285 0.1550

+0.3308 +0.3686 +0.0762 +0.0276

Easy Additive Gaussian JPEG transmission
SRCC PLCC SRCC PLCC

DBCNN 0.8892 0.8806 0.9423 0.9385
w/ URKD 0.8900 0.8817 0.9423 0.9387
w/ MKRD 0.9069 0.8934 0.9700 0.9582

+0.0177 +0.0128 +0.0277 +0.0197

a learning rate decay strategy to simultaneously decay the
learning rates of the two networks. Specifically, cosine an-
nealing rule [21] is used as a learning rate scheduling method
that sets the learning rate for each parameter group according
to the following formula:


ηtw1 = ηmin

w1 +
1

2
(ηmax

w1 − ηmin
w1 )(1 + cos(

T

Tmax
w1

π))

ηtw2 = ηmin
w1 +

1

2
(ηmax

w2 − ηmin
w1 )(1 + cos(

T

Tmax
w2

π))

,

(6)
where ηmax is the initial learning rate, ηmin is the minimum
learning rate and T is the number of iterations since the last
restart.

3. EXPERIMENTS

3.1. Experimental Settings

Datasets and Evaluation Metrics. We evaluated various
NR-IQA models and MRKD on two commonly used IQA
datasets, TID2013, KADID-10k and LIVEC datasets. The

Table 3: Model performance improvements with MRKD of
DBCNN on the two hardest distortions (eg. Non-eccentricity
patch and Color saturation 1) and two easy distortions (eg.
Gaussian blur and Lens blur) of the KADID-10k dataset.

Hard Non eccentricity Color saturation
SRCC PLCC SRCC PLCC

DBCNN 0.2430 0.2082 0.3333 0.3505
w/ URKD 0.2456 0.2088 0.3400 0.3581
w/ MKRD 0.3024 0.2796 0.4208 0.4661

+0.0594 +0.0714 +0.0875 +0.1156

Easy Gaussian blur Lens blur
SRCC PLCC SRCC PLCC

DBCNN 0.8710 0.8795 0.7697 0.8069
w/ URKD 0.8726 0.8808 0.7736 0.8093
w/ MKRD 0.8830 0.8905 0.8776 0.8505

+0.0120 +0.0110 +0.1079 +0.0436

Table 4: Model performance improvements with MRKD of
ResNet50 on the two hardest distortions (eg. Non eccentricity
pattern noise and Mean shift) and two easy distortions (eg.
Gaussian blur and JPEG2000 compression) of the TID2013
dataset.

Hard Non eccentricity Mean shift
SRCC PLCC SRCC PLCC

ResNet50 0.3838 0.4561 0.1008 0.0495
w/ URKD 0.3646 0.4583 0.1100 0.0625
w/ MKRD 0.4262 0.4603 0.4000 0.3245

+0.0424 +0.0042 +0.2992 +0.2750

Easy Gaussian blur JPEG2000 comp
SRCC PLCC SRCC PLCC

ResNet50 0.8585 0.8588 0.9346 0.9335
w/ URKD 0.8608 0.8595 0.9285 0.9320
w/ MKRD 0.8946 0.8817 0.9485 0.9450

+0.0361 +0.0229 +0.0139 +0.0115

performance of the NR-IQA models was assessed using two
standard evaluation metrics: Spearman Rank Order Corre-
lation Coefficient (SRCC) [22] and Pearson Linear Correla-
tion Coefficient (PLCC) [23]. The datasets were randomly
divided, allocating 80% of the images for training and 20%
for testing. We selected the results from the final epoch after
the model had converged during training as the definitive out-
comes. Additionally, we conducted multiple experiments on
the models and reported the average results for consistency.
Models and Implementation Details. To evaluate the pro-
posed multi-rate knowledge distillation approach, we applied
the MRKD method on three representative NR-IQA models,
including DBCNN, HyperIQA, and ResNet50, thereby as-
sessing the effectiveness of the MRKD. For the model train-
ing configuration, the batch size was set to 16, with a cosine
decay schedule, and optimization was carried out using SGD.
The original learning rate (small lr) for DBCNN was set at 1e-
2, while the large learning rate teacher model was designated
at 7e-1. The learning rate for ResNet50 and HyperIQA was
set at 5e-2 and the large lr was set at 2e-1 and 1e-1. The dis-
tillation loss coefficient between the large and small learning
rate models, relative to their MSE loss, is 1.



Table 5: Performances of ORI, URKD, and MRKD models
on the LIVEC dataset.

Method ORI URKD MRKD
SRCC PLCC SRCC PLCC SRCC PLCC

ResNet-50 0.7814 0.8215 0.7834 0.8235 0.8312 0.8552
DBCNN 0.7812 0.8296 0.7780 0.8325 0.8199 0.8491

HyperIQA 0.7875 0.8015 0.7813 0.8075 0.8297 0.8671

Table 6: Results of cross dataset evaluations trained on dif-
ferent fractions of datasets adopting the state-of-the-art model
DBCNN.

Training Testing Method SRCC PLCC

TID2013 KADID-10k
DBCNN 0.5347 0.5678
w/ MRKD 0.6013 0.6140

+0.0666 +0.0462

KADID-10k TID2013
DBCNN 0.6240 0.6423
w/ MRKD 0.6433 0.6670

+0.0193 +0.0247

3.2. Enhancing IQA Models with Multi-Rate Knowledge
Distillation

In the NR-IQA task, we trained three representative mod-
els, namely DBCNN, HyperIQA, and ResNet50, to investi-
gate whether MRKD can enhance the performance of models
on two IQA benchmark datasets (TID2013 and KADID-10k),
especially towards challenging distortion types.

As shown in Table 1, the MRKD method led to a sig-
nificant improvement over the baseline model performances.
Specifically, for the overall SRCC and PLCC, MRKD en-
abled DBCNN to achieve a performance gain of +0.0354
in SRCC and +0.0332 in PLCC on the TID2013 dataset,
and a gain of +0.011 in SRCC and +0.0154 in PLCC on
the KADID-10K dataset. The comparative method URKD
(Uniform Rate Knowledge Distillation), which maintains
consistent learning rates for both models, indicates that the
performance gain introduced by our proposed approach does
not merely arise from direct consistent knowledge distilla-
tion between two models, but rather necessitates multi-rate
knowledge distillation.

Furthermore, to highlight the capability of addressing
more challenging distortion types, Tables 2, 3 and 4 display
our evaluations on the TID2013 and KADID-10k datasets.
We selected two distortion types with the poorest perfor-
mance and two with relatively better performance to assess
the impact of MRKD on model performance. Experimen-
tal results demonstrated that MRKD effectively enhances
the model’s capability towards challenging samples. For
instance, in the Non-eccentricity type, DBCNN achieved a
performance gain of +0.3308 in SRCC. For the Mean shift
type, ResNet50 attained a performance gain of +0.2992 in
SRCC. Additionally, for distortion types where the perfor-
mance was already commendable, MRKD still rendered
significant performance improvements.

We extended our experiments to the LIVEC dataset. Un-
like TID2013 and KADID-10k, LIVEC doesn’t categorize

Table 7: Ablation studies on MRKD models with different
learning rates on the DBCNN on TID2013 dataset.

Model (Learning Rate) Large LR Model Small LR Model
SRCC PLCC SRCC PLCC

DBCNN-URKD (1e-2) 0.8074 0.8331 0.8074 0.8331
w/ MRKD (3e-2) 0.8292 0.8558 0.8119 0.8415
w/ MRKD (5e-2) 0.8159 0.8394 0.8239 0.8519
w/ MRKD (7e-2) 0.7942 0.8196 0.8241 0.8528
w/ MRKD (1e-1) 0.7711 0.8022 0.8265 0.8547
w/ MRKD (3e-1) 0.7070 0.7549 0.8299 0.8589
w/ MRKD (5e-1) 0.7410 0.7904 0.8309 0.8585
w/ MRKD (7e-1) 0.7728 0.8166 0.8397 0.8633

specific distortion types, thus detailed performance metrics
for each distortion aren’t provided. However, our compre-
hensive results on the LIVEC dataset are presented in Table
5, underscoring the effectiveness of our proposed method in
real-world scenarios.

3.3. Multi-Rate Knowledge Distillation improves gener-
alization ability

To demonstrate the generalization capability of the proposed
MRKD method, we conducted a cross-dataset evaluation. We
trained the DBCNN on the TID2013 dataset and tested it on
the KADID-10K dataset. Table 6 attests to the effectiveness
of MRKD in enhancing the generalization performance of
NR-IQA models.

3.4. Ablation Study

To examine the proposed MRKD method’s impact, we con-
ducted ablation studies on the adoption of models with vary-
ing learning rates and the large learning rate teacher model.
The results, presented in Table 7, reveal that models with
a smaller learning rate outperform those with a larger one.
This supports our hypothesis that smaller learning rate mod-
els learn more robustly, while larger ones guide knowledge
transfer for challenging distortions and assist in avoiding lo-
cal optima. Additionally, Table 7 indicates that 7e-1 is the
optimal parameter for the DBCNN model on the TID2013.

4. CONCLUSION

Our research highlights that standard IQA models often
struggle with certain challenging distortions when using a
consistent learning rate. Addressing this gap, we introduced
the Multi-Rate Knowledge Distillation (MRKD) strategy,
employing dual models with varying learning rates. This
method promotes a thorough understanding of diverse dis-
tortion features, and tests on TID and KADID datasets have
showcased its superiority over conventional models. Our
work provides a modest contribution to the community by
suggesting a nuanced model training strategy. We anticipate
that future refinements of MRKD could further enhance IQA
systems.
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