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Abstract

This paper proposes a novel interpretable model called explanation bottleneck
models (XBMs), which are based on vision-language foundation models. XBMs
generate a text explanation from the input and then predict a final task predic-
tion based on the generated explanation by leveraging pre-trained vision-language
encoder-decoder models. To achieve both the target task performance and the expla-
nation quality, we train XBMs through the target task loss with the regularization
penalizing the explanation decoder via the distillation from the frozen pre-trained
decoder. Our experiments confirm that XBMs provide accurate and fluent natural
language explanations, and the explanation can be intervened by human feedback.

1 Introduction

Although deep learning models can achieve remarkable performance on many applications, they
are black-box, i.e., their output predictions are not interpretable for humans. Introducing concept
bottleneck models (CBMs, [1]) is a promising approach to interpreting the output of deep models. In
contrast to black-box models that directly predict output labels from input in an end-to-end fashion,
CBMs first predict concept labels from input and then predict final target class labels from the
predicted concepts. However, the existing CBMs depend on the fixed pre-defined concept sets to
predict final labels; they can not provide interpretability to any other than the pre-defined concepts.
We argue that this limitation presents a fundamental challenge for CBMs in achieving interpretable
deep models. Although recent CBM variants leveraging foundation large language models [2, 3]
enable to express concepts of arbitrary target classes, the interpretability is still restricted to a fixed
and small number of concepts in order to guarantee the concept learnability and the final performance
by limiting the number [4, 3, 5].

This paper tackles a research problem where we do not assume pre-defined concept sets for con-
structing interpretable deep neural networks. To this end, we propose a novel family of interpretable
models called explanation bottleneck models (XBMs), which leverage pre-trained multi-modal
encoder-decoder models that can generate text descriptions from input data (e.g., BLIP [6, 7]). Lever-
aging pre-trained multi-modal encoder-decoder enables capturing concepts that actually appeared in
the input beyond pre-defined concept sets. Our key idea is to decode concepts as text explanations
from input and then predict the final label with a classifier that takes the decoded explanations (Fig. 1).
In contrast to CBMs, which make predictions based on pre-defined concepts, XBMs make predictions
based on concepts actually appeared in the input data through the decoded explanations and can
provide an intuitive interpretation of the final prediction tied to the input. Through end-to-end training,
XBMs aim to generate explanations focusing on the textual features for solving the target task.

A major challenge for XBMs is forgetting the text generation capability during training on target
tasks. Since target datasets usually lack ground-truth text labels, it is challenging to avoid catastrophic
forgetting. To generate high-quality explanations, we introduce a training technique called explanation
distillation, which penalizes the text decoders by the reference explanations generated by frozen
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Figure 1: Explanation bottleneck models (XBMs). We propose an interpretable model that generates
text explanations for the input embedding with respect to target tasks and then predicts final task
labels from the explanations.

pre-trained text decoders. Solving target tasks with explanation distillation enables XBMs to decode
explanations from input data in natural sentences without corruption.

We conduct experiments to evaluate XBMs on multiple datasets by comparing them to existing CBMs
and black-box baselines regarding interpretability and target task performance. Our experiments
show that XBMs can provide a more relevant explanation to input than the pre-defined concepts
of existing CBMs while achieving competitive performance to black-box baselines and largely
outperforming CBMs in target test accuracy. Further, we confirm the reliability and practicality of the
XBMs’ explanations through the experiments intervening with the random texts and the ground-truth
explanations.

2 Explanation Bottleneck Models

This section introduces the principle of explanation bottleneck models (XBMs). XBMs are
interpretable deep learning models that predict a final label from the generated explanation text
from XBMs themselves. Since the predicted final labels are based on the generated explanation of
input images, we can naturally interpret the explanation as the reason for the prediction of XBMs.
Figure 2 illustrates the overview of training an XBM. An XBM consists of a visual encoder hψ,
an explanation decoder gϕ, and a classifier fθ for predicting final target labels. Among them, hψ
and gϕ are initialized by an arbitrary pre-trained multi-modal encoder-decoder like BLIP [6]. fθ
is a multi-modal classifier built on a transformer that takes the generated explanations as input
and conditions the cross-attention layers with image embeddings; this design is inspired by hybrid
post-hoc CBMs [2] that uses input embeddings to complement missing concepts not in the predicted
concepts. We also confirm the practicality when using a text classifier in Section E.1. In this section,
we mainly describe XBMs with a multi-modal classifier. XBMs are trained by the target classification
loss in an end-to-end manner. Since naïve training leads to collapse in generated text explanation,
we avoid the collapse by explanation distillation. Explanation distillation penalizes the explanation
decoder with a reference text generated from a frozen pre-trained text decoder gp to prevent the
decoders from forgetting the text generation capability.

2.1 Problem Setting

We consider a K-class image classification task as the target task. We train neural network mod-
els hψ : X → RdX , gϕ : RdX → E , and fθ : (RdX , E) → Y on a labeled target dataset
D = {(xi, yi) ∈ X × Y}Ni=1, where X , E , and Y are the input, text explanation, and output
label spaces, respectively. The text explanation space consists of token sequences of the length L
with token vocabulary V , i.e., E = VL. hψ is a vision encoder, which embeds an input x into dX
dimensional space, gϕ is an auto-regressive text decoder that generates a text explanation e ∈ E from
an input embedding hψ(x), and fθ is a classifier that predicts a final target task label y. We assume
that hψ and gϕ are initialized by pre-trained multi-modal model’s parameters ψp and ϕp, which are
pre-trained on large-scale text-image paired datasets with an existing method such as BLIP [6] and
LLaVA [8]. Note that we do not assume ground truth text explanation set {ei}Ni=1 in D for training gϕ.

This setting is similar to that of concept bottleneck models (CBMs, [1]), where a model predicts
a final label y from a set of concepts {cj ∈ C}Mj=1 decoded from input x instead of using e. The
major difference is in the assumption of pre-defined concept sets: our setting does not explicitly
specify the words and phrases for the explanations, whereas CBMs explain the model’s output based
on the words and phrases in a pre-defined concept set {cj}.
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2.2 Objective Function

XBMs aim to achieve high target classification accuracy while providing interpretable explanations of
the predictions. To this end, XBMs solve an optimization problem with a regularization term defined
by the following objective function.

min
θ,ϕ,ψ

Lcls(θ, ϕ, ψ) + λRint(ϕ, ψ), (1)

Lcls(θ, ϕ, ψ) = E(x,y)∈D ℓCE(fθ ◦ gϕ ◦ hψ(x), y), (2)

where Rint(·) is a regularization term that guarantees the fluency of the explanations generated from
gϕ, λ is a hyperparameter for balancing Lcls and Rint, and ℓCE is cross-entropy loss. Through this
objective, the text decoder gϕ is trained to focus on the textual features that are useful for minimizing
Lcls while keeping the interpretability by Rint. We found that gϕ easily collapses their output
without Rint. Thus, the design of Rint is crucial for training XBMs. However, since we often do not
have the ground truth explanation sets in a real-world target dataset D, we can not directly penalize
gϕ with supervised losses as Rint. To overcome this challenge, we introduce a distillation-based
approach using pre-trained text decoders in the next section.

2.3 Explanation Distillation

XBMs utilize pre-trained multi-modal models as the initial parameters of the text (explanation)
decoder gϕ. As an auto-regressive sequence model, the pre-trained text decoder gp can learn a
conditional distribution q(e|x) as

q(e|x) =
L∏
l=1

q(el|x, e<l), (3)

where L is the maximum token length, el is the l-th token, and e<l is the text sequence before el.
Since gp is trained on large-scale text-image pairs, q(e|x) is expected to be able to generate a token
sequence describing important information of various inputs x.

Our key idea is to leverage q(e|x) as the reference distribution for maintaining the interpretability of
the generated explanation ê ∼ pϕ(e|x), where pϕ(e|x) is the model distribution of gϕ. If pϕ(e|x) and
q(e|x) are sufficiently close, it can be guaranteed that the interpretability of the sequence generated
by pϕ(e|x) approximate to that by q(e|x). Concretely, we compute the KL divergence between
pϕ(e|x) and q(e|x) as the regularization term Rint in Eq. (1).

Rint(ϕ, ψ) = DKL(q∥pϕ) =
∑

e∈E q(e|x) log
(
q(e|x)
pϕ(e|x)

)
= Ee∼q(e|x) log

(
q(e|x)
pϕ(e|x)

)
. (4)

However, DKL(q∥pϕ) is computationally intractable because it requires multiple sequential sampling
over E = VL from q(e|x) and the back-propagation through all sampling processes of pϕ(el|x, e<l).
To approximate Eq. (4), we focus on the connection to knowledge distillation [9]. That is, minimizing
Eq. (4) can be seen as a knowledge distillation from gp to gϕ. In such a sense, the approximation is

Rint(ϕ, ψ) ≈ −
∑
e∈E

Ie=ep
log pϕ(e|x) = − log pϕ(e = ep|x), (5)

where ep is the sample from q(e|x) and I is the indicator function returning one when e equals to ep
or returning zero otherwise; we omit the constant terms from the approximation for the simplicity. As
a concrete procedure, we first generate ep from gp and then penalize the output logits of gϕ through
the cross-entropy loss for each output token in a next token prediction task. This approximation
technique is well-known as sequence-level knowledge distillation [10] in the field of neural machine
translation, and it works well in the knowledge distillation of auto-regressive sequence models.
Sequence-level knowledge distillation corresponds to matching the modes of p and q and omits to
transfer the uncertainty represented by the entropy H(q) [10]. Nevertheless, we consider that this is
sufficient for XBMs because the goal of XBMs is to provide interpretable explanations for target task
predictions, not to replicate the pre-trained models perfectly. We call the regularization with Eq. (5)
explanation distillation, and introduce it in training XBMs to maintain the text generation capability.
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Figure 2: Training of XBMs. An XBM is opti-
mized by the target task loss with explanation
distillation. Explanation distillation leverages a
reference explanation ep generated from a pre-
trained text decoder gp for penalizing the out-
put distribution of an explanation decoder gϕ to
maintain the interpretable text generation capa-
bility of gϕ.

Algorithm 1 Training of XBMs
Require: Training datasetD, vision encoder hψ , text

decoder gϕ, classifier fθ , pre-trained parameters
(ϕp, θp), training batchsize B, step size η, trade-
off parameter λ

Ensure: Trained models (hψ, gϕ, fθ)
1: # Initialize parameters
2: ϕ← ϕp, ψ ← ψp

3: while not converged do
4: {(xi, yi)}Bi=1 ∼ D
5: # Generating reference explanation
6: {eip}Bi ← {generate(gp, hp(x

i))}Bi
7: # Gumbel-softmax sampling
8: {êi}Bi ← {g_sampling(gϕ, hψ(x

i))}Bi
9: # Computing batch-mean losses

10: LBcls ← 1
B

∑B
i=1 ℓCE(fθ(hψ(x

i), êi), yi)

11: RBint ← 1
B

∑B
i=1 ℓCE(gϕ ◦ hψ(xi), eip)

12: # Updating parameters via backprop.

13: θ ← θ − η∇θ(LBcls + λRBint), ϕ ← ϕ −
η∇ϕ(LBcls + λRBint), ψ ← θ − η∇ψ(LBcls +
λRBint)

14: end while

Table 1: Performance and Interpretability Evaluation of XBMs on multiple target datasets.
Bird ImageNet

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓) Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Fine-tuned BLIP-ViT 83.48 N/A N/A 65.21 N/A N/A

Label-free CBM (ConceptNet) 15.37 0.5356 N/A 60.07 0.6826 N/A
Label-free CBM (GPT-3) 77.74 0.6904 N/A 64.28 0.7026 N/A

Frozen BLIP + fθ(hψ(x), ê) 68.03 0.7535 173.5 56.04 0.7732 199.5
XBM w/o Rint 61.94 0.5137 431.0 66.58 0.5020 517.1
XBM (Ours) 80.99 0.7942 166.8 67.83 0.7920 122.8

2.4 Algorithm

Training We show the training procedure in Algorithm 1. In the training loop, we first generate the
reference and predicted explanations ep and ê by generate(·) and g_sampling(·), respectively (line
4 and 5). To approximate the mode of q(e|x) and ensure the quality as the reference, we generate
ep from frozen gp by beam search following the previous work [10]. For sampling ê, we introduce
the Gumbel-softmax trick [11] to retain the computation graph for the end-to-end training with
back-propagation. The l-th token can be approximately sampled by

el = softmax((log(gϕ(hψ(x))) + g)/τ), (6)

where g = {g1, ..., g|V|} is a vector of length |V| where each element is sampled from Gumbel(0, 1)
and τ is the temperature parameter. Intuitively, the temperature τ controls the diversity of the token
outputs from gϕ; larger τ stimulates more diverse outputs. To obtain diverse and accurate tokens for
describing input, we apply exponential annealing to the temperature values according to the training
steps, i.e., τ (i+1) = τ (0) exp (−rai), where i and ra are training step and annealing rate. This allows
XBMs to focus on the diversity of the output tokens in the early training steps and on the quality in
the later steps. We evaluate this design choice in Appendix C. After sampling ep and ê, we update all
trainable parameters according to the objective function Eq. (1).

3 Experiment

We evaluate XBMs on multiple visual classification tasks. We conduct qualitative and quantita-
tive experiments on the explanation outputs of XBMs to evaluate the target performance and the
interpretability. We provide the experimental setting in Appendix B.
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Table 2: Qualitative evaluation of explanation outputs.
Bird ImageNet

(Yellow Bellied Flycatcher) (Lynx)

Pre-trained BLIP (Caption) A bird perched on a wire fence with leaves
on the ground and a blurry background.

Cat walking through the grass in
the woods at night with it’s eyes open.

Label-free CBMs (Top-3 Concept)
olive-colored sides (0.77)

green head (0.55)
a small, green body (0.52)

feline (0.98)
long, sharp claws (0.53)

mau (0.17)

XBMs w/o Rint (Text Explanation) 2222222222222
2222222222

when when when when when
when when when when when

XBMs (Text Explanation) A small green and yellow bird perched on
a wire fence with leaves on the side.

Furry feline walking in the woods at night
with its eyes open and one paw on the ground.

3.1 Design Evaluation of XBMs

Quantitative Evaluation Table 4 demonstrates the quantitative performance and interpretability of
XBM-BLIP on Bird [12] and ImageNet [13]. For the target performance, our XBMs outperformed
the Label-free CBM baselines [3] and achieved competitive performance with the black-box baseline
in the test accuracy. In particular, XBM achieved high performance on datasets where label-free
CBM did not perform well. This can be caused by insufficient pre-defined concepts due to the limited
vocabulary in ConceptNet and GPT-3 about describing objects in these datasets, whereas XBMs
promote multi-modal understanding by training the explanation decoder to describe arbitrary objects
useful for the target dataset with unlimited vocabulary. For interpretability, XBMs outperformed
CBMs in CLIP-Score (i.e., the similarity between the input image and explanation in the CLIP feature
space). This indicates that the explanations from XBMs are more factual to the input images than the
concept outputs of CBMs, which are in pre-defined concept sets.

Furthermore, the ablation study in the bottom rows of Table 4 shows that the objective function in
Eq. (1) works effectively as we expected. Compared to the frozen BLIP baselines, which simply
apply fixed pre-trained BLIP to generate text captions, our XBM significantly improved all of the
test accuracy, CLIP-Score, and GPT-2 Perplexity (a text-fluency metric measured on GPT-2). This
suggests that optimizing text decoders with respect to target tasks guides the generated explanation to
be informative and target-related for solving the task. We also confirm that the regularization term
Rint by explanation distillation (Eq. (5)) is crucial to generate meaningful explanation; XBM w/o
Rint catastrophically degraded CLIP-Score and GPT-2 Perplexity.

Qualitative Evaluation Table 2 shows the qualitative studies of explanations generated from
XBMs; we also show the other examples in Appendix 5. For comparison, we also show the top-3
concept outputs of CBMs and the generated captions of pre-trained BLIP, i.e., the initial states of
XBMs. The text explanations of XBMs contain more detailed information than pre-trained BLIP. This
is because the target classification loss Lcls forces the text decoders to describe target-related visual
information to solve the task. Importantly, XBMs without explanation distillation Rint generate
totally broken explanations, indicating the objective function of XBMs succeed in training the models
to focus on the tokens related to the target task without the collapse of explanations. In contrast to
CBM’s concepts, the explanations from XBMs tend to be aligned with visual features appearing
in input images rather than describing input by pre-defined knowledge. This is easy for humans to
understand when interpreting the output of the models.

We also analyze the transition of the generated explanations in Fig. 3. We print the text explanation
of XBMs and the top-10 word occurrence for the input class at 0, 20, and 40 epochs. According
to the training epoch, the explanations and words progressively focus on detailed and target-related
information in images. Concretely, in this example, the XBM is optimized to describe “yellow beak
(mouth)”, a key feature of California Gull. These suggest that XBMs can provide interpretable and
useful explanations for humans.

3.2 Reliability Evaluation via Human Intervention

CBMs allow the debugging of the model behavior through human intervention in the predicted
concepts [1]. Similarly, we can debug the behavior of XBMs by intervening in the generated
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Figure 3: Transition of XBM’s explanation outputs during training (please zoom in).

Table 3: Evaluation of Intervened XBMs on Bird.
Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

XBM-BLIP 80.99 0.7942 166.8
Intervened XBM-BLIP (Randomized) 44.42 0.4497 4631.1
Intervened XBM-BLIP (Ground-Truth) 82.21 0.8179 104.5

explanations. Here, we show examples of an intervention in which all explanations are replaced
to check the effect of the explanation quality on the final classification results. At inference, we
replace the generated explanations from the explanation decoder with modified explanations. We
tested two types of interventions: (i) randomized and (ii) ground-truth explanations. For randomized
explanation, we used a token sequence uniformly sampled from the vocabulary space for the length of
the originally generated explanation. For ground-truth explanation, we used the extended annotation
set for Bird proposed by [14]. Table 3 shows the performance of the intervened XBM-BLIP models.
The intervened explanations with randomized explanations significantly degraded the performance of
XBM-BLIP, indicating that the generated explanations are essential to achieving high performance.
In contrast, the intervention with ground-truth explanations largely improved the performance. This
suggests that higher-quality explanations can yield higher performance, and intervening with human
explanations is helpful for XBMs to improve their performance. In other words, the final prediction
of XBMs largely depends on the content of the generated explanation ê, indicating that ê is a reliable
explanation for the final prediction. To conclude, these results support the debuggability of XBMs
and the reliability of the generated explanations.

4 Conclusion

In this paper, we presented a novel interpretable deep neural networks called explanation bottleneck
models (XBMs). By leveraging foundation vision-language models, XBMs generate explanations
corresponding to input and output in the forms of natural language description. To ensure both
the target task performance and the explanation quality, XBMs are optimized by the target task
loss with explanation distillation, which penalizes the divergence between the distributions of the
training and pre-trained text decoders. Experiments show that XBMs can achieve both high target
task performance and accurate and fluent explanations; they achieve competitive performance to
black-box baselines and largely outperform CBMs in target test accuracy. We believe that this work
introduces a new perspective on natural language explanations and advances the study of interpretable
foudation models to the next paradigm.
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Appendix

A Related Work

The main research directions of the interpretability of black-box deep neural networks are briefly
divided into attribution-based and concept-based methods. Attribution-based methods such as
CAM [15] and GradCAM [16] generate a localization map representing important regions for the
model predictions for specific classes. However, since the maps generated by attribution-based
methods do not have information other than that they responded to the predictions, they are less
interpretable regarding what semantic input features contribute to the output. In contrast to these
methods, our XBMs can generate semantically interpretable heatmaps via cross-attention between
image and text explanations, which can be decomposed at the level of noun phrases.

On the other hand, concept-based methods such as TCAV [17] and CBMs [1] compute contribution
scores for pre-defined concepts on intermediate outputs of models. Among them, CBMs are highly
relevant to our XBMs since both have interpretable intermediate layers in models. CBMs predict
concept labels and then predict final class labels from the predicted concepts. The original CBMs have
the challenge of requiring human annotations of concept labels [18, 19, 20]. Post-hoc CBMs [2] and
Label-free CBMs [3] addressed this challenge by automatically collecting concepts corresponding to
target task labels by querying large language models (e.g., GPT-3 [21]) or existing concept banks
(e.g., ConceptNet [22]). However, CBMs’ explanations are still restricted to pre-defined concepts,
and they are not necessarily reliable because CBMs often predict the concepts without mapping to
corresponding input regions [23]. On the contrary, our XBMs directly generate natural language
explanations to interpret the model outputs without pre-defined concepts.

Similar to our work, a few works attempted to generate linguistic explanations for target classifica-
tion models [24, 25]. However, these methods require ground truth text explanations for training
models, which are expensive and restrict applications. Our XBMs address this limitation by learning
explanation generation by the classification loss and explanation distillation using a pre-trained text
decoder.

B Setting

Implementation Our basic implementation of XBMs is based on BLIP [6] because of its simplicity;
we denote this model as XBM-BLIP. That is, as the visual encoder hψ, we used the ViT-B/32 [26].
For the classifier fθ, we used a BERT-base transformer [27]; we input hψ(x) into the cross-attention
layers when using a multi-modal classifier inspired by BLIP [6]. We initialized ϕ and ψ by the BLIP
model pre-trained on image captioning tasks in the official repository2. We also report the results
using larger pre-trained multi-modal models of LLaVA [8]. We used v1.5 and v1.6 of LLaVA with
multiple language model backbones (LLaMA2-7B [28], Vicuna-7B [29], and Mistral-7B [30]); we
denote these models as XBM-LLaVA.

Baselines We compare XBMs to black-box and interpretable baselines in performance and inter-
pretability. Fine-tuned BLIP-ViT is the black-box baseline, which directly optimizes the visual
encoder of BLIP via fine-tuning. Label-free CBM [3] is a state-of-the-art concept bottleneck model,
which automatically constructs pre-defined concept sets from ConceptNet [22] or GPT-3 [31] and
then constructs concept embedding matrix via CLIP vision and text encoder. We used BLIP-ViT
as the backbone vision encoder of label-free CBMs. Frozen BLIP baselines use frozen BLIP to
generate text explanations and predict final labels by a multi-modal fθ(hψ(x), ê) or text classifier
fθ(ê). We also show the results of XBM w/o Rint, which updates gϕ only on the classification loss
Eq. (2).

Datasets We used four image datasets for classification tasks in various domains: Aircraft [32],
Bird [12], Car [33], and ImageNet [13]. Aircraft, Bird, and Car are fine-grained image datasets, and
ImageNet is a large-scale general image dataset. For datasets other than ImageNet, we randomly split
a dataset into 9 : 1 and used the former as the training set and the latter as the validation set. For
ImageNet, we set the split ratio 99 : 1 and used the official validation set as the test dataset.

2model_base_caption_capfilt_large.pth in https://github.com/salesforce/BLIP
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Table 4: Performance and Interpretability Evaluation of XBMs on multiple target datasets.
Aircraft Car

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓) Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Fine-tuned BLIP-ViT 77.86 N/A N/A 90.08 N/A N/A

Label-free CBM (ConceptNet) 15.27 0.5561 N/A 17.67 0.6025 N/A
Label-free CBM (GPT-3) 44.47 0.6153 N/A 77.91 0.6091 N/A

Frozen BLIP + fθ(hψ(x), ê) 45.23 0.6824 155.8 80.53 0.6555 168.8
XBM w/o Rint 70.78 0.4730 322.6 86.59 0.4792 415.3
XBM (Ours) 74.09 0.7151 129.8 89.47 0.7173 131.8

Bird ImageNet

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓) Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Fine-tuned BLIP-ViT 83.48 N/A N/A 65.21 N/A N/A

Label-free CBM (ConceptNet) 15.37 0.5356 N/A 60.07 0.6826 N/A
Label-free CBM (GPT-3) 77.74 0.6904 N/A 64.28 0.7026 N/A

Frozen BLIP + fθ(hψ(x), ê) 68.03 0.7535 173.5 56.04 0.7732 199.5
XBM w/o Rint 61.94 0.5137 431.0 66.58 0.5020 517.1
XBM (Ours) 80.99 0.7942 166.8 67.83 0.7920 122.8

Training We trained the models by the AdamW [34] optimizer with the initial learning rate of
3.0×10−5 that decayed by cosine annealing. The training epochs were 100 on the Aircraft/Bird/Car
datasets and 5 on the ImageNet dataset. We used mini-batch sizes of 32. The input samples were
resized into resolutions of 384 × 384 for XBM-BLIP and 336 × 336 for XBM-LLaVA according
to the setting of vision encoders. We used λ of 0.1 and τ of 10 with exponential annealing by
ra = 1.0 × 10−4 if not otherwise noted; we discuss the effect of λ and τ in Section G. For the
experiments on XBM-LLaVA, we fine-tuned the LoRA adapter parameters [35] of backbone language
models instead of the entire parameters. We selected the final model by checking the validation
accuracy for each epoch. We implemented the training and evaluation with PyTorch-1.13. We ran the
experiments three times on a 24-core Intel Xeon CPU with eight NVIDIA A100 GPUs with 80GB
VRAM and recorded the average evaluated on the final models; we omit the standard deviations for
saving spaces, but we have confirmed the statistical significance of our method with a p-value < 0.05
toward baselines.

Evaluation Metrics We report test accuracy as the target task performance. For the interpretability
evaluations, we introduce CLIP-Score [36, 37], which is based on the cosine similarity between
image embeddings and text embeddings on CLIP, i.e., higher is better. CLIP-score was originally
used to evaluate image captioning based on the relevance of the output captions to the input images.
Since it is highly sensitive to the hallucinations in the captions as reported in [37], CLIP-score can be
used to assess the factuality of explanations. For XBMs, we measured averaged CLIP-Scores between
test inputs and the output explanations. For Label-free CBMs, we measured averaged CLIP-Scores
between test inputs and the output concept texts with the binary output of the concept bottleneck
layer greater than 0.05; this threshold follows [3]. We also introduce GPT-2 Perplexity as a measure
of fluency in XBM’s output explanations. In general, perplexity scores on language models are
calculated by the averaged cross-entropy of the next token probabilities and thus represent the fluency
of the generated texts because the lower perplexity means that the sentence is composed of words that
are likely to occur probabilistically. Inspired by [38], we computed perplexity scores of explanations
on GPT-2 [39]. That is, the generated explanations are unbiasedly evaluated by an external language
model. GPT-2 perplexity is helpful as a metric of the fluency of explanations because it shows
the proximity to the natural text distribution learned by GPT-2. We used open-sourced GPT-2 in
huggingface transformers [40] to maintain reproducibility.

C Additional Quantitative Experiments

Table 5 shows the quantitative evaluation results on the Aircraft and Car datasets, which are omitted
in the main paper due to the page constraint. The evaluation protocol is the same as Section 3.1.

D Additional Qualitative Experiments

Table 5 shows the qualitative evaluation results on the Aircraft and Car datasets, which are omitted in
the main paper due to the page constraint. The evaluation protocol is the same as Section 3.1. Similar
to Table 2, our method succeeded in capturing the semantic concepts of input images in the text
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Table 5: Qualitative evaluation of explanation outputs.

Aircraft Car
(ATR-42) (Hummer)

Pre-trained BLIP (Caption) These two planes are parked
on the tarmac at an airport run way.

Someone is driving a red jeep on a snowy
road with trees in the background.

Label-free CBMs (Top-3 Concept)
canard foreplanes (0.70)

a single-engine propeller (0.64)
fixed landing gear (0.58)

2500HD model designation (0.63)
off-road tires (0.40)

distinct Suzuki grille (0.39)

XBMs (Text Explanation) A small white and blue airplane on a runway at
an airport with another plane in the background.

A truck with off-road tires driving through the snow
in the wintertime with trees in the background.

XBMs (Top-3 Concept Phrase)
another plane in the background (0.34)
a small white and blue airplane (0.31)

a runway at an airport (0.22)

a truck with off-road tires (0.36)
trees in the background (0.26)

the wintertime (0.23)

XBMs (Cross-Attn. Heatmap)

explanation. Also, the concept phrases and cross-attention heatmaps show that the captured semantic
concepts contribute to the final output and the main focus of models is on the target objects.

E XBMs with Large Vision-Language Models

Here, we evaluate the scalability and practicality of XBMs by combining them with larger vision-
language models than BLIP. Instead of BLIP, we used the LLaVA models with various language
model backbones [8]. Table 6 shows that leveraging the high-performance vision-language model in
XBMs yields better performance and interpretability scores, suggesting that the XBM’s objective
function can enhance the multi-modal understanding ability even if using the large vision-language
models pre-trained on massive image-text pairs. This emphasizes the flexibility of XBM, consisting
of arbitrary vision-language models.

E.1 XBMs with Text Classifier

Table 6 also evaluates XBMs with a text classifier fθ(ê), which relies only on text information
for the final predictions. Although XBM-BLIP with fθ(ê) drops the performance from one with
a multi-modal classifier fθ(hψ(x), ê), switching the backbone from BLIP to LLaVA [8] resolves
the performance gap. This indicates that more sophisticated vision-language models make XBMs
generate informative text explanations, and they can achieve practical performance even when not
using input features hψ(x).

F Additional Results of ImageNet Segmentation

We additionally compare our method with existing attribution methods on BLIP-ViT. Note that
we omit this result from the main paper because, strictly speaking, BLIP-ViT and XBM-BLIP
are different models and thus this evaluation is not a direct comparison. By following Chefer et
al. [41], we tried LRP [42], partial-LRP [43], rollout [44], raw attention output from BLIP-ViT,
GradCAM [16], and the method of [41]. Table 7 shows the results of ImageNet Segmentation
with the same setting of Table 8. Surprisingly, the cross-attention output of the classifier fθ (i.e.,
Pre-trained BLIP and XBM-BLIP) significantly outperformed the conventional visualization methods
in the segmentation metric. This indicates that visualization explanation outputs of XBMs are quite
accurate and reliable as the interpretation of model outputs.
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Table 6: Evaluation of XBMs with large vision-language models

Aircraft Text Classifier fθ(e) Multi-modal Classifier fθ(hψ(x), e)

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓) Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Frozen BLIP 3.95 0.6824 155.8 45.23 0.6824 155.8
XBM-BLIP 24.36 0.7084 145.9 74.09 0.7151 129.8
Frozen LLaVA-v1.5-LLaMA-7B 59.21 0.7500 227.4 73.03 0.7514 227.3
XBM-LLaVA-v1.5-LLaMA-7B 64.11 0.7515 179.5 78.77 0.7595 184.8
XBM-LLaVA-v1.6-Vicuna-7B 68.64 0.7842 22.9 82.08 0.7758 34.7
XBM-LLaVA-v1.6-Mistral-7B 67.06 0.7769 39.9 81.55 0.7851 21.9

Bird Text Classifier fθ(e) Multi-modal Classifier fθ(hψ(x), e)

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓) Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Frozen BLIP 5.53 0.7535 173.5 68.03 0.7535 173.5
XBM-BLIP 19.52 0.7910 168.5 80.99 0.7942 166.9
Frozen LLaVA-v1.5-LLaMA-7B 75.20 0.7788 140.8 75.67 0.7788 107.3
XBM-LLaVA-v1.5-LLaMA-7B 80.87 0.7981 107.3 83.07 0.8037 21.8
XBM-LLaVA-v1.6-Vicuna-7B 82.33 0.8130 21.0 84.93 0.8154 21.6
XBM-LLaVA-v1.6-Mistral-7B 81.53 0.8101 16.7 84.73 0.8110 16.7

Car Text Classifier fθ(e) Multi-modal Classifier fθ(hψ(x), e)

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓) Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Frozen BLIP 7.98 0.6091 168.8 77.91 0.6091 168.8
XBM-BLIP 27.57 0.7127 168.5 89.47 0.7173 131.8
Frozen LLaVA-v1.5-LLaMA-7B 83.50 0.7236 99.8 91.19 0.7300 97.2
XBM-LLaVA-v1.5-LLaMA-7B 86.18 0.7300 97.2 92.82 0.7322 83.8
XBM-LLaVA-v1.6-Vicuna-7B 86.70 0.8081 35.7 93.85 0.8032 41.4
XBM-LLaVA-v1.6-Mistral-7B 86.75 0.8086 25.8 92.41 0.8071 27.9

ImageNet Text Classifier fθ(e) Multi-modal Classifier fθ(hψ(x), e)

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓) Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Frozen BLIP 9.97 0.7732 199.5 56.04 0.7732 199.5
XBM-BLIP 18.26 0.8007 148.1 67.83 0.7920 122.8
Frozen LLaVA-v1.5-LLaMA-7B 64.01 0.7773 236.8 70.21 0.7773 100.8
XBM-LLaVA-v1.5-LLaMA-7B 71.41 0.8008 127.2 72.95 0.7998 82.6
XBM-LLaVA-v1.6-Vicuna-7B 73.73 0.8140 36.74 74.42 0.8037 32.3
XBM-LLaVA-v1.6-Mistral-7B 72.14 0.8037 20.67 74.04 0.8130 21.7

Table 7: Evaluation of cross-attention map of XBMs on ImageNet Segmentation.

Pixel Acc. (↑) mIoU (↑) mAP (↑)

LRP [42](BLIP-ViT) 46.25 29.69 48.51
partial-LRP [43] (BLIP-ViT) 53.59 36.29 65.06
rollout [44] (BLIP-ViT) 52.73 35.81 66.78
Raw Attention (BLIP-ViT) 57.12 39.00 67.92
GradCAM [16] (BLIP-ViT) 61.84 39.68 63.48
Chefer et al. [41] (BLIP-ViT) 59.92 42.30 69.51

XBM-BLIP w/ Fixed Decoder 78.67 57.90 79.72
XBM-BLIP 80.90 60.80 80.18

G Detailed Analysis

In this section, we provide detailed analyses of XBMs. In particular, we assess temperature annealing
in the Gumbel softmax sampling (Eq. (6)), the hyperparameter λ in Eq. (1), and the localization
ability of the cross-attention heatmaps introduced in Section 2.4.

G.1 Evaluations of Cross-Attention Heatmap

The cross-attention heatmap explanation of XBMs visualizes the local input space regions correlated
to the text explanation in the classifier. To assess the validity of XBMs on improving multi-modal
understanding, we evaluate the generated heatmaps on the ImageNet segmentation task by following
[41] and [45]. That is, we generate the heatmaps on the test set of ImageNet Segmentation [46]
and compute the pixel accuracy, mean IoU (mIoU), and mean average precision (mAP) with the
ground truth segmentation masks. Through this evaluation, we can evaluate how heatmaps cover the
object of target classes in the pixel spaces. Table 8 shows the results. Compared to the frozen BLIP,
XBM-BLIP improved all of the segmentation metrics. This means that the training objective of XBMs
encourages the multi-modal understanding of target class objects on the models. In Appendix F, we
further compare the XBM’s heat maps with existing attribution methods, such as GradCAM [16].
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Table 8: Evaluation of cross-attention map of XBMs on ImageNet Segmentation.
Pixel Acc. (↑) mIoU (↑) mAP (↑)

Frozen BLIP + Multi-modal Classifier 78.67 57.90 79.72
XBM-BLIP 80.90 60.80 80.18

Table 9: Effects of temperature τ and annealing for Gumbel softmax sampling of XBMs (Car).

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

τ (0) = 1 86.60 0.7138 140.8
+ Annealing 87.12 0.7258 127.3

τ (0) = 10 86.71 0.7148 143.9
+ Annealing 88.65 0.7253 133.0

τ (0) = 100 88.03 0.7168 146.2
+ Annealing 88.56 0.7272 143.6

G.2 Evaluations of Temperature Annealing

We introduce the temperature annealing strategy for determining τ in Eq. (6). Here, we evaluate the
effects by varying the initial temperature τ (0) in {1, 10, 100}. Table 9 shows the test performance
and interpretability scores. We tested the cases leveraging a constant temperature τ (0) and applying
exponential temperature annealing, i.e., + Annealing. In the cases of constant temperatures, we
confirm that the larger temperatures tend to achieve better target performance but degrade perplexity
scores. This is because using a larger temperature increases the entropy of the generative distribution
of tokens in the Gumbel softmax sampling, and thus, it slightly loses the naturalness of the generated
sentences. On the other hand, applying the temperature annealing improved all scores in all initial
temperatures. This implies that, by gradually reducing the temperature, XBMs can try to generate
diverse tokens in the early stages of learning, and it narrows down only vocabulary with high
likelihood in the later stages while the sentence naturalness is maintained.

G.3 Effects of Hyperparameter λ

The hyperparameter λ in Eq (1) balances the target task training and the regularization to avoid the
collapse of text explanations. Table 10 shows the results when varying λ. It demonstrates that the
cases of λ > 0 can avoid the collapse of the interpretability and improve target performance. We see
that there is a trade-off between the target test accuracy and the GPT-2 Perplexity scores. In contrast,
fortunately, CLIP-Score was less sensitive to the value of λ > 0, suggesting high-performance XBMs
can still generate explanations well-related to inputs. Therefore, we recommend determining λ based
on whether fluency or accuracy is a priority according to the application’s requirements.

G.4 Explanation Distillation vs. Other Regularization

Here, we evaluate our explanation distillation regularization Rint through a comparison to another
regularization method. We compare our explanation distillation to L2SP [47], which penalizes the
model parameters by minimizing the l2 distance from the pre-trained parameters. Table 11 shows
the results on the Car dataset. We confirm that our explanation distillation outperforms L2SP in all
performance metrics. Our method largely improves clip score, while L2SP degrades it from frozen
BLIP. These results suggest that directly regularizing the decoder’s output helps XBMs explore
the vocabulary needed for a task through classification loss while preserving natural sentences and
minimizing the gap in the parameter space, which is harmful to this purpose.

H Broader Impacts

A potential negative effect introduced by our work is that XBMs may output biased explanations if
the backbone language model is extremely biased. This can be avoided by purifying the language
model with existing debiasing methods such as [48] before training XBMs. Since the target tasks
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Table 10: Effects of hyperparameter λ of XBMs (Car).

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

λ = 0 86.59 0.4792 415.3

λ = 0.01 89.18 0.7158 163.4
λ = 0.1 89.47 0.7172 145.4
λ = 0.3 89.09 0.7148 138.9
λ = 0.5 88.62 0.7167 132.6
λ = 0.7 87.58 0.7158 131.7
λ = 1.0 87.59 0.7138 127.3

Table 11: Effects of Regularization in XBMs (Car).

Test Acc. (↑) CLIP-Score (↑) GPT-2 Perplexity (↓)

Frozen BLIP 77.91 0.6091 168.8
Explanation Distillation (Ours) 90.48 0.7173 131.8
L2SP [47] 87.47 0.5059 159.4

handled by XBMs are no different from those in general models, off-the-shelf defence methods may
be directly applicable to other risks such as adversarial attacks.
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