
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

The OMG dataset: An Open MetaGenomic
corpus for mixed-modality genomic language
modeling

Anonymous authors
Paper under double-blind review

Abstract

Biological language model performance depends heavily on pretraining data
quality, diversity, and size. While metagenomic datasets feature enor-
mous biological diversity, their utilization as pretraining data has been
limited due to challenges in data accessibility, quality filtering and dedu-
plication. Here, we present the Open MetaGenomic (OMG) corpus, a ge-
nomic pretraining dataset totalling 3.1T base pairs and 3.3B protein cod-
ing sequences, obtained by combining two largest metagenomic dataset
repositories (JGI’s IMG and EMBL’s MGnify). We first document the
composition of the dataset and describe the quality filtering steps taken
to remove poor quality data. We make the OMG corpus available as a
mixed-modality genomic sequence dataset that represents multi-gene en-
coding genomic sequences with translated amino acids for protein cod-
ing sequences, and nucleic acids for intergenic sequences. We train the
first mixed-modality genomic language model (gLM2) that leverages ge-
nomic context information to learn robust functional representations, as
well as coevolutionary signals in protein-protein interfaces and genomic
regulatory syntax. Furthermore, we show that deduplication in embedding
space can be used to balance the corpus, demonstrating improved perfor-
mance on downstream tasks. The OMG dataset is publicly hosted on the
Hugging Face Hub at UrlHiddenForAnonymity and gLM2 is available at
UrlHiddenForAnonymity.

1 Introduction

Biological language models present an effective avenue for leveraging large amounts of un-
structured sequence data and learn functionally meaningful representations. Similar to
natural language processing (NLP) models (Touvron et al., 2023; Dodge et al., 2021), the
quality and diversity of pretraining data dictate the behavior and performance of biolog-
ical language models (Ding & Steinhardt, 2024). To date, the most widely used datasets
for biological language models (Hayes et al., 2024; Lin et al., 2023; Madani et al., 2023;
Nguyen et al., 2024) are derived from curated data repositories such as UniProt (UniProt
Consortium, 2019), UniRef (Suzek et al., 2007) and GTDB (Parks et al., 2022). However,
biological sequence diversity is immense and the above-mentioned data repositories cover
only a small fraction of the full sequence diversity found in nature. In order for biological
language models to improve, the size and diversity of pretraining data must also scale with
the size of the model.
Metagenomic sequences are partial genomic sequences derived from direct sequencing of
environmental (e.g. soil, ocean) or biological samples (e.g. human skin, gut). Because
metagenomic sequencing circumvents the need for cultivation and isolation of biological
organisms, metagenomes typically feature sequences derived from uncultivated and novel
microorganisms (Tyson et al., 2004). These microbial genomes encode high levels of molec-
ular diversity and span previously unexplored branches of the tree of life (Hug et al., 2016).
Metagenomic datasets are unstructured by nature and a large fraction of the data is not
included in curated databases due to poor functional interpretability of these sequences. To

1

UrlHiddenForAnonymity
UrlHiddenForAnonymity


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

date, metagenomic sequences have not been fully utilized in biological language models due
to following limitations:

1. Metagenomic sequences are not readily downloadable in a single archive.
To date, the download of raw contigs (assembled genomic segments) from the two
main public repositories, Joint Genome Institute (JGI)’s IMG (Markowitz et al.,
2012) and European Molecular Biological Laboratory (EMBL)’s MGnify (Richard-
son et al., 2023), requires a large number of database queries and/or rate-limited
web API calls, as well as ad hoc approaches to robustly aggregate the results of
these queries into a single dataset.

2. Metagenomic sequences require extensive pre-processing. Raw metage-
nomically assembled contigs first undergo gene calling in order to identify protein
coding sequences and extract translated sequences. Additional quality filtering is
critical, as many metagenomes include poor or mis-assembled contigs.

3. Metagenomic sequences are difficult to deduplicate and balance. Like
most biological sequence datasets, metagenomes feature sampling biases (e.g. over-
representation of human gut microbiomes). Additionally, due to the lack of central-
ized databases for metagenomes, submissions of identical metagenomes to different
repositories result in duplicates. Unlike protein databases that can be deduplicated
and balanced using computationally efficient clustering algorithms (e.g. MMseqs2
(Steinegger & Söding, 2017)), clustering of a large dataset comprising genomic se-
quences of arbitrary region and length is computationally costly. Furthermore,
while curated genomic databases (e.g., GTDB (Parks et al., 2022) or BV-BRC (Ol-
son et al., 2023)) can be balanced with taxonomic labels, metagenomic sequences
rarely have taxonomic assignment, and ad-hoc assignment (e.g. Kraken (Wood &
Salzberg, 2014)) is computationally expensive and not always reliable.

Here, we document the collection and preprocessing steps of the OpenMetaGenome (OMG)
corpus. We then train the first mixed-modality genomic language model (gLM2) trained
on OMG, that leverages genomic context information to learn contextualized functional
representations of genomic elements. By training on mixed-modality data, gLM2 can per-
form both protein and DNA downstream tasks, and outperforms ESM2 (Lin et al., 2023)
on most protein tasks. Additionally, training on multi-protein contexts enables gLM2 to
predict protein-protein interfaces through co-evolutionary signal. Finally, we show that
embedding-based deduplication of the OMG dataset leads to improved functional represen-
tations, especially for underrepresented sequences.

2 Related Works

Pretraining corpora preprocessing in NLP. A number of previous studies have de-
veloped methods to improve the diversity and quality of pretraining corpora in NLP. For
instance, raw snapshots of Common Crawl (collection of webtext crawls) contain undesirable
data (e.g. hate speech, placeholder text). Studies have demonstrated that careful deduplica-
tion and rule-based filtering of Common Crawl (Dodge et al., 2021) improves overall model
performance (Penedo et al., 2024). More recently, efforts have been made to prune and bal-
ance pre-training data in semantic embedding space to achieve increased training efficiency
(Sorscher et al., 2022; Tirumala et al., 2023; Abbas et al., 2023). Dataset preprocessing
presents an important opportunity to minimize training resources, given the power-law na-
ture of LLM scaling (i.e. exponentially increasing compute requirement for diminishing
returns in performance improvement) (Hestness et al., 2017; Kaplan et al., 2020).

Biological sequence language models and their training datasets. Biological se-
quence language models are self-supervised models trained on discrete protein sequences or
genomic segments. Protein language models (pLMs) (Lin et al., 2023; Madani et al., 2023;
Elnaggar et al., 2022) are typically trained on high quality and curated publicly available
datasets such as UniRef (Suzek et al., 2007). UniRef is convenient for pLM training be-
cause it has been deduplicated using sequence similarity-based clustering (i.e. UniRef50
is deduplicated using 50% sequence identity). Previous efforts to increase the diversity of
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Figure 1: (A) UMAP visualization of the OG dataset examples, colored by taxonomic
phylum, using embeddings from the 150M parameter gLM2 model. Distinct clusters form
for different phyla in embedding space. (B) Semantic deduplication of the OG dataset, with
pruned points highlighted in blue. Deduplication primarily removes samples from dense
clusters corresponding to overrepresented phyla. We visualize the semantic deduplication
on OG dataset to highlight taxonomic phyla most heavily pruned, and apply the same
pruning process to the OMG dataset for model training. (C) Comparison of the OG and
OMG datasets using a random 0.1% subset of each. Notably, the metagenomic data (OMG)
exhibits higher diversity.

the pretraining data includes cluster-balanced sampling (e.g. UniRef50/D for ESM models
(Rives et al., 2021) and sequence identity-based clustering of compiled protein databases
beyond curated databases (e.g. BFD (Steinegger et al., 2019; Elnaggar et al., 2022)). Ge-
nomic language models (gLMs) are trained on genomic sequences chunked at predefined
length thresholds. Diversification efforts for genomic datasets include pretraining on MG-
nify’s metagenomic contigs (Hwang et al., 2024) and balancing efforts in genomic pretraining
datasets include taxonomy-aware sampling (Dalla-Torre et al., 2023; Nguyen et al., 2024) of
curated genomic databases such as RefSeq (Pruitt et al., 2014), IMG/VR (Camargo et al.,
2022), IMG/PR (Camargo et al., 2024) and GTDB (Parks et al., 2022).

Metagenomic datasets. In this study, we define metagenomic datasets as collections
of genomic contigs (contiguous genomic segments) computationally assembled from either
short-read or long-read raw sequence libraries. Typically, metagenomic datasets are se-
quenced from mixed community samples, which consist of multiple species, ranging from
hundreds to thousands of distinct species (Bahram et al., 2021). Complete genomes are
rarely obtained from metagenomic assemblies. Therefore, metagenomic assemblies require
extensive taxonomic profiling (Parks et al., 2021) and partial genome reconstruction through
contig clustering (i.e. binning). Because metagenomes are sequenced from diverse environ-
ments without the need for cultivation, their sequences feature the highest level of molecular
diversity amongst publicly available sequence datasets (Pavlopoulos et al., 2023). Metage-
nomic datasets also vary in quality depending on sequencing depth and sample type, where
low quality metagenomes feature computational assembly errors, short contig lengths, and
truncated protein sequences (Mende et al., 2012; Lai et al., 2022). Furthermore, while most
metagenomic datasets are predominantly analyzed with a focus on microbial (archaea, bac-
teria, viruses) communities, eukaryotic genomic material can comprise a substantial portion
of the raw library (West et al., 2018). Many standard metagenomic post-processing steps
(e.g. gene calling) fail on eukaryotic sequences, resulting in poor quality protein sequence
predictions. Critically, quality filtering and dataset deduplication of metagenomes require
domain-specific knowledge, yet there is little documentation of preprocessing steps needed
to make these datasets suitable for biological language model pretraining. While pretraining
on metagenomic datasets allows models to leverage rich molecular diversity and genomic
context, these models are most suitable for microbial genomes and may result in out-of-
distribution effects on eukaryotic sequences.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 The Open MetaGenome corpus

Here, we document the construction of the OMG corpus. The OMG is a 3.1T base pair (bp)
pretraining dataset comprising EMBL’s MGnify database1 and JGI’s IMG database2. We
utilize the gene predictions conducted by the databases; the gene calling protocols for IMG
and MGnify are detailed in Huntemann et al. (2016) and Richardson et al. (2023) respec-
tively. The combined dataset is pre-processed into a mixed-modality dataset upon sequential
element-by-element quality-filtering (described in Section 3.1) . The mixed-modality dataset
of Open Metagenomes is made available as the OMG dataset (Fig. 1) containing 3.3 billion
protein coding sequences (CDS) (Tab. 1). We also make available a 10x smaller subset
of OMG that only consists of prokaryotic and viral genomes from INSDC3 as the Open
Genome mixed-modality dataset OG (Fig. 1, Appendix B). Finally, we make available a
protein-only dataset OMG_prot50, consisting of protein sequences derived from the OMG
dataset, clustered at 50% sequence identity (Appendix E). OMG_prot50 contains 207M
representative sequences from clusters with at least two members, representing >3-fold in-
crease in sequence diversity compared to UniRef50 (Suzek et al., 2007). All three datasets
are available for download from the Hugging Face Hub, and all dataset processing scripts
are available at UrlHiddenForAnonymity. As more metagenomic data becomes available,
we plan on regular updated releases of the corpus in the future.

Table 1: Statistics for the datasets made available in this study. CDS: Coding
sequences, IGS: Intergenic sequences. For reference, UniRef50 consists of 66M proteins.

# CDS # IGS Total # Contig Size Description
(bps) (TB)

OMG 3.3B 2.8B 3.1T 271M 1.25

Filtered mixed-modality ge-
nomic sequences featuring mul-
tiple protein coding genes (rep-
resented in AAs) interleaved
with intergenic sequences (rep-
resented in NAs).

OG 0.4B 0.3B 0.4T 6.2M 0.16
Fraction of the IMG data
that consist of prokaryotic
genomes and associated taxo-
nomic metadata.

OMG_prot50 207M – – – 0.05

Protein coding sequences in
AA, clustered at 50% se-
quence identity. Singleton clus-
ters were removed from the
database. Clustering detail is
found in Appendix E

3.1 Dataset preprocessing

Multi-modal data processing. Metagenomic contigs often encode multiple genes on
either strand of the sequence. A genomic language model can be trained on raw nucleic
acid sequences (e.g. Evo (Nguyen et al., 2024), Nucleotide Transformers (Dalla-Torre et al.,
2023)) or by representing each genomic sequence as an order- and orientation-preserved list
of translated coding sequences in amino acids (e.g. (Hwang et al., 2024)). For the former
method, the context length needed to encode genomic sequences in nucleic acids can result

1Snapshot date 2022-11-23 (excluding all embargoed/restricted metagenomic samples, see
database statistics in Appendix A)

2Snapshot date 2023-08-27 (excluding all embargoed/restricted metagenomic samples and in-
cluding IMG genomes dataset derived from NCBI.)

3https://www.insdc.org, retrieved from IMG/M, metadata available in Appendix P

4

UrlHiddenForAnonymity
https://www.insdc.org


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

in unfeasibly large compute requirements. Furthermore, a recent study comparing nucleic
acid (NA) models against amino acid (AA) models on protein functional representations
demonstrated that NA may not be the most efficient input format for learning translated
protein functions (West-Roberts et al., 2024). The latter method, while benefiting from the
compressed sequence length and more expressive AA sequences for proteins, does not lever-
age the information stored in intergenic regions. These intergenic regions contain important,
yet, lesser characterized sequence patterns involved in transcription regulation and cellular
function such as ncRNA, microRNA, promoters, and transcription factor binding sites. We
developed a mixed-modality dataset that represents a genomic contig as a list of elements
where an element is either a coding sequence (CDS) or an intergenic sequence (IGS) (see
Fig. 2). CDS elements are represented in translated AA sequences and IGS elements are
represented in NA sequences. We also store the strand information (+/-) of CDS elements
and the order of all elements in the contig.

Edge-element removal. Metagenomic contigs are not complete genomic sequences,
therefore, both edges of the sequences are more likely to contain gene-calling errors. In
our pre-processing, we remove edge CDS elements to address miscalled open reading frames
(ORFs) and fragmented protein sequences at the beginning and end of the metagenomic
contigs (Steinegger & Salzberg, 2020). Specifically, if a scaffold starts/ends with an inter-
rupted CDS, we remove that CDS element. If a scaffold starts/ends with a non-coding
region, we remove the IGS element and the CDS adjacent to the IGS element. This filtering
step removes ~1.4B genomic elements likely to be poor quality, partial sequences with high
likelihood of assembly errors.

Contig length-based filtering and preprocessing. Assembly of shotgun metagenomic
libraries results in many short contigs that are often low in quality. To limit the impact of the
fragmented nature of metagenome assemblies, we first remove all metagenomic contigs that
are shorter than 2kb from the raw databases. Secondly, we enrich the corpus with contigs
that contain multiple genes by removing contigs that contain less than seven elements in total
or less than three CDS elements. Only contigs that meet the length requirement are added to
the dataset. In preprocessing these contigs into Hugging Face datasets (Lhoest et al., 2021),
we found that extremely large contigs resulted in process hanging errors and inefficient
storage. To address this issue, we chunk large contigs into 1000 elements. Appendix C
visualizes the distribution of contig length, as well as CDS and IGS element lengths.

Assembly quality (N/X-frequency) filtering. Due to the computational nature of
the metagenomic assembly, misassembled contigs comprise a nontrivial fraction of the data.
The quality of the assembly differs significantly across samples, depending on the biological
community composition, sample type, and sequencing depth (Vollmers et al., 2017; Lapidus
& Korobeynikov, 2021). Notably, the quality of assembly may vary across the contig, where
a section of the contig may contain assembly gaps due to shallow sequencing depth. One
way to determine poorly assembled sequences is by identifying the fraction of Ns (gaps or
ambiguous bases) in the raw DNA sequence (or Xs in the translated AA sequence). For
OMG, we process each contig sequentially element-by-element, and if an element comprises
>20% in invalid characters, we discard the element and start a new contig (Appendix. D).
Importantly, only contigs that meet the length requirement above are added to the dataset.
This sequential processing allows high quality regions of the contigs to be preserved, while
low quality stretches are discarded.

Element length-based filtering. A nontrivial portion of the metagenome can be eukary-
otic, however, most metagenomic gene-calling software tools are not optimized for eukaryotic
ORF prediction (Bruna et al., 2024). Additionally, metagenomes can contain sequences from
organisms that utilize alternative genetic codes (Borges et al., 2022; Cook et al., 2024), which
may not all be correctly predicted by common tools. A salient pattern observed for poor
gene prediction is low coding density, (i.e. long stretches of IGS) or presence of very long
CDS sequences. To identify these, we process each contig sequentially element-by-element
and remove any CDS element >15,000 AAs or IGS element >4000 bps in length, and start
a new contig. These thresholds are designed to exclude regions of questionable gene calls,
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such as long intergenic regions where no genes are predicted, and giant protein sequences,
which are prone to assembly errors and require careful curation to verify (West-Roberts
et al., 2023). This filtering step removes 2.5e-5% of CDS , and 1e-4% of IGS elements from
OMG.

Figure 2: Mixed-modality sequence processing and gLM2 masked language mod-
eling. A gene-called metagenomic contig is first preprocessed into a mixed-modality se-
quence consisting of CDS elements (blue) and IGS elements (grey). The mixed-modality
sequence then undergoes masking at 30% and gLM2 is trained with a masked token recon-
struction objective.

4 Experiments

4.1 GLM2: A Mixed-modality genomic language model

To showcase the efficacy of the OMG dataset for pretraining, we introduce gLM2: a
mixed-modality genomic language model pretrained on OMG. gLM2 learns contextualized
representations of genomic contigs, which are represented as sequences of CDS and IGS
elements. In order to tokenize the mixed-modality sequence, CDS elements are tokenized
using per-amino acid tokens, and IGS elements are tokenized using per-nucleotide tokens.
To distinguish strand orientation for CDS elements, we introduce two special tokens: <+>
and <->, which are prepended to each genomic element to indicate the positive and negative
strands, respectively. gLM2 is trained using the masked language modeling objective,
where 30% of both CDS and IGS tokens are masked. Cross-entropy loss is applied only
on the masked tokens. gLM2 is trained at two scales: 150M and 650M parameters. Both
models are trained on the semantically deduplicated OMG dataset (Section 4.2) for 600k
steps. We train gLM2 using a context window of 4096 tokens to allow for multiple (9.7
± 3.3) CDS and IGS elements to appear in each example. For model architecture and
training hyperparameters, refer to Appendix F.

We benchmark gLM2 on the Diverse Genomic Embedding Benchmark (DGEB) (West-
Roberts et al., 2024). DGEB is a comprehensive benchmark that evaluates model represen-
tations across diverse taxa and 18 tasks representing multiple axes of biological function,
such as evolutionary distance similarity, remote homology prediction, enzyme classification,
and retrieval sensitivity.

6
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4.2 OMG corpus balancing with genomic Semantic Deduplication

Biological datasets exhibit significant biases that can influence the performance and gener-
alizability of trained models (Ding & Steinhardt, 2024; West-Roberts et al., 2024). Unlike
protein databases, where short sequence lengths allow for clustering-based deduplication,
(meta)genomic sequences have highly variable lengths (Appendix C), making sequence-based
clustering challenging. To address this challenge, we perform deduplication in embedding
space by pruning examples with small cosine distance, following Semantic Deduplication
(SemDeDup) (Abbas et al., 2023). SemDeDup previously showed efficacy in removing se-
mantically similar examples over web-scale text and image datasets, demonstrating signifi-
cant speed up in convergence for downstream tasks.
For genomic semantic deduplication, we first trained a 150M gLM2 on the tokenized OMG
dataset for 600k steps. We then embed the entire OMG dataset, by extracting a mean-
pooled, per-example representation from the model’s last hidden layer. The example-level
embeddings correspond closely to the taxonomic classification available for the OG dataset
(Fig. 1A). This motivates embedding-based deduplication as a method for removing near
duplicates while balancing taxonomic bias. We prune the OMG dataset at 49% (i.e. 49%
of the original data is removed) at the deduplication threshold 2e-3 (where examples with
embeddings <2e-3 in cosine distance are deduplicated) (Appendix G). The pruned exam-
ples are saturated in highly dense clusters (Fig. 1B) which results in taxonomic balancing
(Appendix H) , measured by increased entropies of distribution across taxonomic levels (Ap-
pendix I). We then trained a 150M gLM2 on the pruned OMG dataset for an equal number of
steps, and compared its performance against the un-pruned version on DGEB. While prun-
ing results in a modest increase in the aggregate DGEB score (0.48 vs 0.47), we observe
improvements in tasks that feature underrepresented taxa (e.g. ArchRetrieval, RpoB Arch
phylogeny) (Appendix J). This improved performance for underrepresented taxa appears
to come at the cost of small regressions on tasks that are biased towards overrepresented
taxa. Genomic SemDeDup presents a tunable method for effectively pruning unstructured
genomic data without reliance on taxonomic labels.

Figure 3: Scaling performance on DGEB amino acid tasks for gLM2 and ESM2,
relative to pretraining floating point operations (FLOPs). gLM2_150M trained
with no data pruning is shown in black.

7
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4.3 GLM2 performance on DGEB

We compare the performance of the 150M and 650M gLM2 models trained on the pruned
OMG dataset against the ESM2 series trained on the UniRef50/D dataset (Fig. 3). gLM2
outperforms ESM2 on the overall DGEB score at each parameter scale. In particular,
gLM2’s performance scales with pretraining floating point operations (FLOPs) on protein
tasks where ESM2 plateaus in performance with scaling (i.e. Operon pair classification tasks,
ModAC paralogy task) (Appendix K). Such improved functional representation learning is
likely due to gLM2’s ability to leverage genomic context information, and thereby learn
relationships between genomic elements. gLM2, being a mixed-modality model, also learns
intergenic sequence representations. We compare gLM2’s performance on DGEB nucleic
acid (NA) tasks against the Nucleotide Transformer series (Appendix L). gLM2 performs
similarly on NA tasks when compared to Nucleotide Transformers, despite only a small
fraction of the training tokens consisting of DNA sequences.

Figure 4: gLM2 learns protein-protein interface co-evolutionary signal in the
2ONK (ModAC) complex. (A) ModA and ModC forms a structural complex with co-
evolutionary signal between residues (in yellow). (B) Co-evolutionary signal extracted from
multiple sequence alignment of 2ONK4(Ovchinnikov et al., 2014), calculated and visualized
using GREMLIN (PDB_benchmark_alignments/2ONK_A2ONK_C.fas). The region of inter-
protein co-evolutionary signals are highlighted with a red box. (C) Zoomed-in region of
inter-protein coevolutionary signal in B. (D) Categorical Jacobian calculated for Evo on
the DNA sequence encoding 2ONK_A and 2ONK_C (from 89,891 to 91,376 of genomic
sequence NC_000917.1). The L2 norm was computed over the (3,4,3,4) tensor for every
pair of codon positions to generate the contact map. (E) Categorical Jacobian calculated
for ESM2 650M on the concatenated 2ONK_A_2ONK_C sequence. No inter-protein co-
evolutionary signal is detected. (F) Categorical Jacobian calculated for gLM2_650M on
the concatenated 2ONK_A_2ONK_C sequence. (G) Zoomed-in region of inter-protein
coevolutionary signal in F.

4.4 GLM2 learns protein-protein interaction interfaces

We test gLM2’s ability to learn coevolutionary signals between proteins in protein-protein
interaction interfaces (Ovchinnikov et al., 2014). Previous studies have shown that pLMs
learn within-protein co-evolutionary information that can be extracted with a supervised
contact prediction head (Lin et al., 2023) using an unsupervised "categorical Jacobian" cal-
culation (Zhang et al., 2024). However, pLMs trained on individual proteins or protein
families cannot learn co-evolutionary information across proteins. We calculate the categor-
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ical jacobian values from gLM2_650M on the concatenated sequence of 2ONK_A (ModA)
and 2ONK_C (ModC) (Appendix N). We demonstrate that gLM2 leverages multi-protein
context to learn protein-protein interfaces from a single concatenated sequence that closely
matches the co-evolutionary signal that can be learned from multiple sequence alignment
(MSA) based Potts model (GREMLIN (Kamisetty et al., 2013)) (Fig. 4). Such protein-
protein interface signals cannot be extracted in existing language model methods such as
ESM2 650M and Evo-1-8k-base (Fig. 4E and F). We validate the gLM2-predicted contacts
directly with the ground truth contacts from 2ONK PDB structure (Fig. 5), as well as 31
complexes previously described in (Ovchinnikov et al., 2014) (Appendix ??). The ability to
extract interacting residues without supervision nor MSA presents an opportunity to predict
novel protein-protein interactions from sequence information alone.

Figure 5: Ground truth comparisons of Jacobian-detected contacts against PDB
structures. (A) Left: Ground truth contacts derived from PDB structure (PDB: 2ONK;
ModAC complex) shown in Fig. 4, where contact is defined as residues that are within
<8Å. Middle: gLM2-predicted contacts using Categorical Jacobian. Right: Inter-protein
region highlighting top n highest scoring predicted contacts (red for true positive, blue for
false positive) overlaying ground truth contacts (gray), where n is the number of inter-
protein contacts identified in the ground truth. (B) Left: Ground truth contacts derived
from tRNA-Asp (PDB: 6UGG) shown in Fig. 6. Middle: gLM2-predicted contacts using
Categorical Jacobian. Right: Top n highest scoring contacts in gLM2 (red for true positive,
blue for false positive) overlaying ground truth contacts (gray), where n is the number of
contacts within tRNA identified in the PDB ground truth excluding the diagonal.

4.5 GLM2 learns regulatory syntax in intergenic DNA

We demonstrate gLM2’s ability to identify regulatory syntax and non protein-coding ele-
ments in IGS regions. We first validate gLM2’s ability to predict contacts in tRNA-Asp
against the ground truth 6UGG PDB structure (Fig. 5) We further demonstrate gLM2’s
ability to identify regulatory regions (sigma factor binding and terminator) in the genomic
context of tRNA-Asp (Fig. 6). We additionally observe a signal downstream of aspV and

4https://colab.research.google.com/github/sokrypton/GREMLIN_CPP/blob/master/
GREMLIN_TF.ipynb
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uptream of the terminator region. This region lacks annotation in EcoCyc (Karp et al., 2023)
and presents the potential for gLM2-based unsupervised discovery of novel regulatory se-
quence motifs. We examined 23 additional intergenic regions in the E. coli K-12 genome that
contain at least one terminator and one promoter regions according to EcoCyc annotations.
We show conserved Categorical Jacobian patterns corresponding to previously validated
annotations across diverse regions of the genome (Appendix P). We further conducted a
similar analysis on B. subtilis 168 genomic region 119,848-120,978bp (5’->3’) containing a
L10 leader RNA gene and two ribosomal protein coding genes rplJ and rplL (Appendix O).
We observe putative contacts between the L10 leader RNA and ribosomal protein RplL,
an experimentally evidenced interaction (Johnsen et al., 1982). We also observe contacts
between RplJ and RplL, a known ribosomal protein complex. Furthermore, our analysis
highlights co-evolutionary signal between the Shine-Dalgarno sequences (ribosomal binding
site) upstream of rplJ and rplL, suggesting gLM2 understanding of genome-specific regula-
tory motifs.

Figure 6: gLM2 learns intergenic regulatory syntax and tRNA structure. We vi-
sualize co-evolutionary signal in E. coli K-12 substr. MG1655 chromosomal region 236,866-
237,087bp (5’->3’) containing aspV (tRNA-Asp encoding gene) using the Categorical Ja-
cobian. Structural signatures in tRNA-Asp sequence are visible. Other signals correspond
to known regulatory syntax including sigma factor binding sites (-35 and -10), transcription
initiation site (σ70 binding region), and rho-independent terminator sequence.

5 Conclusion

The OMG dataset is a large-scale mixed-modality biological pretraining corpus that lever-
ages the immense volume and diversity of unstructured metagenomic (primarily prokaryotic
and viral) sequences. We quality-filter and preprocess the raw metagenomic sequences into
a mixed-modality format ready for language model training. We showcase the efficacy of
mixed-modality input for genomic language modeling with gLM2. With genomic SemD-
eDup, we present an efficient method for reducing the bias and duplication in genomic
datasets. The gLM2 models trained on pruned OMG learn contextualized representations
for both CDS and IGS, and demonstrate efficient scaling and improved performance across
downstream tasks compared to uncontextualized protein language models trained on curated
databases. We further demonstrate the gLM2’s ability to learn protein-protein interfaces
at residue-level, paving the path towards unsupervised protein-protein complex prediction.
Finally, we show that gLM2 learns evolutionary couplings of regulatory motifs in the in-
tergenic DNA, indicating model understanding of both modalities of the data. The OMG
dataset and gLM2 models as well as the supporting code are publicly available for download.
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Ethics Statement

This study aims to advance open science for genomics, by making the OMG corpus and gLM2
model publicly available on the HuggingFace Hub. The OMG corpus is constructed from
publicly available data within JGI’s IMG and EMBL’s MGnify repositories. We exclude
all embargoed and restricted data from the OMG corpus. As the data originates from
environmental samples, no personally identifiable information is associated with the dataset.
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Appendix A Data sources

Type Snapshot date # Samples # contigs* Total bps # CDS

IMG Metagenomes 2023-08-27 36,273 182M 1.70T 1.84B
Genomes 2023-08-27 131,744 6.2M 0.4T 0.4B

MGnify Metagenomes 2022-11-23 33,531 82M 1.03T 1.03B

*Number of contigs after filtering and preprocessing.

Appendix B Dataset Preprocessing

Sequences (purple) undergo filtering steps (green), yielding three Hugging Face datasets
(yellow) made available with this paper. ‘NA’ and ‘AA’ refer to nucleic acid and amino acid
data modalities respectively.

Appendix C Dataset Length Distributions

Length distributions of the OMG corpus. (A) Distribution of contig lengths in the number
of genomic elements (CDS and IGS). (B) Distribution of contig lengths in base pairs. (C)
Distribution of CDS lengths in amino acids. (D) Distribution of IGS lengths in base pairs.
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Appendix D Invalid Character Distributions

Distribution of the percent of characters per genomic element considered as invalid ("X"
for amino acids and "N" for nucleotides) prior to applying the assembly quality filter from
Section 3.1. The assembly quality filter removes elements containing more than 20% invalid
characters, resulting in 0.004% of CDS and 0.2% of IGS being filtered from OMG. We show
the distribution for the subset of genomic elements containing at least 1 invalid character.

Appendix E OMG_prot50 clustering method

A total of 4.2B protein sequences were first clustered to remove fragments using MMseqs2
linclust (Steinegger & Söding, 2018) (commit f6c98, parameters:–min-seq-id 0.9 -c 0.9 –cov-
mode 1). Subsequently, the resulting sequences were clustered at 50% sequence id and 90%
sequence coverage using MMseqs2 linclust –min-seq-id 0.5 -c 0.9. Singleton clusters
(only one sequence in the cluster across the full dataset) were removed and remaining 207M
cluster representatives were uploaded as the Hugging Face dataset.
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Appendix F GLM2 model parameters

gLM2 is a transformer encoder optimized using AdamW (Loshchilov & Hutter, 2019) and
trained in mixed precision bfloat16. We set the AdamW betas to (0.9, 0.95) and weight
decay of 0.1. We disable dropout throughout training. The learning rate is warmed up
for 1k steps, followed by a cosine decay to 10% of the maximum learning rate. gLM2 uses
RoPE (Su et al., 2023) position encoding, SwiGLU (Shazeer, 2020) feed-forward layers, and
RMS normalization (Zhang & Sennrich, 2019). We leverage Flash Attention 2 (Dao, 2023)
to speed up attention computation over the sequence length of 4096.

Dim Num
heads

Num
layers

Context
length

Learning
rate

Batch
size

Pretraining
tokens

gLM2-150M 640 10 30 4096 1e-3 128 315B

gLM2-650M 1280 20 33 4096 1e-3 128 315B
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Appendix G Semantic deduplication distance threshold

The percentage of remaining training examples as a function of the embedding distance
threshold. Examples within the distance threshold in embedding space are deduplicated.

Appendix H Taxonomic distribution of the OG dataset before
and after pruning

Data pruning through semantic deduplication reduces dataset bias toward overrepresented
phyla and orders.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Appendix I Taxonomic entropy of the OG dataset before and
after pruning

Semantic deduplication of the OG dataset consistently increases the taxonomic entropy
across all taxonomic ranks, indicating a more even distribution.
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Appendix K Per task DGEB scaling with FLOPs for ESM2
and gLM2 models in amino acid tasks

Primary metric from the best scoring layer (between mid, and last) is reported for each
task. To account for model-specific patterns in learning task-relevant functional information
across different layers in the network (West-Roberts et al., 2024), DGEB calculates model
performance for both mid and last layer and reports the best score between the two.
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Appendix L Per task DGEB scaling with FLOPs for
Nucleotide Transformers and gLM2 models in
nucleic acid tasks.

Primary metric from the best scoring layer (between mid, and last) is reported for each
task. To account for model-specific patterns in learning task-relevant functional information
across different layers in the network (West-Roberts et al., 2024), DGEB calculates model
performance for both mid and last layer and reports the best score between the two.

Appendix M GLM2 performance on ProteinGym

Model name Avg Activity Binding Expression Organismal Stability
Spearman Fitness

ESM2_650M 0.414 0.425 0.337 0.415 0.369 0.523
gLM2_650M_prot 0.384 0.406 0.327 0.412 0.311 0.466

We evaluate gLM2 on the ProteinGym (Notin et al., 2023) Deep Mutational Scanning
(DMS) substitutions task. Because the DMS task is strictly a single-protein task (without
context), we benchmark gLM2_650M after finetuning for one epoch of OMG_prot50, the
single-protein dataset introduced in Table 1. While gLM2_650M_prot performs slightly
worse than ESM2_650M, we note that the ProteinGym benchmark includes eukaryotic
sequences, which are poorly represented in the OMG dataset.

Appendix N ModA and ModC sequence concatenation

This concatenated sequence was derived from the 2ONK_A_2ONK_C alignment used in
(Ovchinnikov et al., 2014).
MFLKVRAEKRLGNFRLNVDFEMGRDYCVLLGPTGAGKSVFLELIAGIVKPDRGEVRLNGADITPLPPERGIGFV
PQDYALFPHLSVYRNIAYGLRNVERVERDRRVREMAEKLGIAHLLDRKPARLSGGERQRVALARALVIQPRLLLLDEPLSAV
DLKTKGVLMEELRFVQREFDVPILHVTHDLIEAAMLADEVAVMLNGRIVEKGKLKELFSAKNGEVAEFLSARNLLLKVSKIL
DMRLLFSALLALLSSIILLFVLLPVAATVTLQLFNFDEFLKAASDPAVWKVVLTTYYAALISTLIAVIFGTPLAYILARKSF
PGKSVVEGIVDLPVVIPHTVAGIALLVVFGSSGLIGSFSPLKFVDALPGIVVAMLFVSVPIYINQAKEGFASVDVRLEHVAR
TLGSSPLRVFFTVSLPLSVRHIVAGAIMSWARGISEFGAVVVIAYYPMIAPTLIYERYLSEGLSAAMPVAAILILLSLAVFV
ALRIIVGREDVSEGQG
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Appendix O Putative RNA-Protein-Protein interactions

We visualize a contiguous stretch (119,848-120,978bp, 5’->3’) of the B. sutilis 168 reference
genome. Putative residue-level interactions between L10 leader RNA (ldlJ ), proteins RplJ
and RplL are highlighted in gray boxes. Shine-Dalgarno sequences upstream of the two
protein-coding genes are highlighted and co-evolve.

Appendix P Additional Files

Additional Files are found in https://zenodo.org/records/14198868
Additional File 1. OG sample ID to original NCBI metadata. A JSON file mapping OG
sample ID (taxon_oid) to NCBI metadata (accessions, collection dates).
Additional File 2. DOIs for MGnify samples. DOIs for MGnify samples that were included
in this study, where available.
Additional File 3. DOIs for IMG samples, DOIs for IMG samples that were included in
this study, where available. Additional File 4. Comparison of gLM2 Jacobian Contacts
on 2ONK with (A) and without (B) the 2 basepair IGS sequence flanking ModA and ModC.
We show that the addition of IGS sequence does not change the results. Additional File 5.
A zip file containing all 32 evolutionary conserved complexes in PDB previously identified
in (Ovchinnikov et al., 2014), https://openseq.org/cplx.php?sort=prob&order=DESC&
mode=pdb. PDB contacts and gLM2 Jacobian Contacts are compared.
Additional File 6. A zip file containing Categorical Jacobian maps of 26 IGS regions in
E.coli K-12 str. MG1655 (Genome ID: U00096) with at least one promoter (highlighted in
red) and one terminator (highlighted in green) sites annotated in EcoCyc. File names and
figure title correspond to the start and end positions in the U00096 genome.

25

 https://openseq.org/cplx.php?sort=prob&order=DESC&mode=pdb
 https://openseq.org/cplx.php?sort=prob&order=DESC&mode=pdb

	Introduction
	Related Works
	The Open MetaGenome corpus
	Dataset preprocessing

	Experiments
	GLM2: A Mixed-modality genomic language model
	OMG corpus balancing with genomic Semantic Deduplication
	GLM2 performance on DGEB
	GLM2 learns protein-protein interaction interfaces
	GLM2 learns regulatory syntax in intergenic DNA

	Conclusion
	Data sources
	Dataset Preprocessing
	Dataset Length Distributions
	Invalid Character Distributions
	OMG_prot50 clustering method
	GLM2 model parameters
	Semantic deduplication distance threshold
	Taxonomic distribution of the OG dataset before and after pruning
	Taxonomic entropy of the OG dataset before and after pruning
	Ablation of semantic deduplication
	Per task DGEB scaling with FLOPs for ESM2 and gLM2 models in amino acid tasks
	Per task DGEB scaling with FLOPs for Nucleotide Transformers and gLM2 models in nucleic acid tasks.
	GLM2 performance on ProteinGym 
	ModA and ModC sequence concatenation
	Putative RNA-Protein-Protein interactions
	Additional Files

