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Abstract

Recent efforts to employ large language models (LLMs) as agents have demon-
strated promising results in a wide range of multi-step agent tasks. However,
existing agents lack an effective experience reuse approach to leverage historical
completed tasks. In this paper, we propose a novel experience reuse framework
MetaFlowLLLM, which constructs a hierarchical experience tree from historically
completed tasks. Each node in this experience tree is presented as a MetaFlow
which contains static execution workflow and subtask required by agents to com-
plete dynamically. Then, we propose a Hierarchical MetaFlow Merging algorithm
to construct the hierarchical experience tree. When accomplishing a new task,
MetaFlowLLM can first retrieve the most relevant MetaFlow node from the experi-
ence tree and then execute it accordingly. To effectively generate valid MetaFlows
from historical data, we further propose a reinforcement learning pipeline to train
the MetaFlowGen. Extensive experimental results on AppWorld and WorkBench
demonstrate that integrating with MetaFlowLLM, existing agents (e.g., ReAct,
Reflexion) can gain substantial performance improvement with reducing execution
costs. Notably, MetaFlowLLM achieves an average success rate improvement of
32.3% on AppWorld and 6.2% on WorkBench, respectively. The code is available
athttps://github.com/RUCBM/MetaFlowLLM.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in a wide range of
multi-step agent tasks, including interactive coding [39, 132]], web browsing [40, 46], and embodied
housework [30, 20]. Existing work leveraging LLMs as autonomous agents that can iteratively take
actions based on the execution feedback, enabling dynamic adaptation throughout the task execution
process [41} 29]. Despite its effectiveness, when handling a large volume of tasks, earlier work
tends to deal with each task independently, lacking the ability to summarize prior completed tasks
to accumulate experience and enhance future task execution. As a result, the inability to learn from
prior experiences results in the repetition of unnecessary steps (e.g., redundant trial-and-error) even
when performing similar or identical tasks, thereby leading to ineffective and inefficient execution.

To address this limitation, two primary approaches are commonly employed: (1) Trajectory-based
Experience, which involves constructing a database of historical task completion trajectories and
retrieving the most relevant examples as in-context demonstrations to assist in executing new tasks [J3}
435]); and (2) Guideline-based Experience, which involves summarizing prior experiences into
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Figure 1: Illustration of three experience reuse approaches.

abstract natural language guidelines and using these guidelines to inform the execution of future
tasks [44} [12]. However, trajectory-based experience often introduces fine-grained but task-irrelevant
details, as even ostensibly similar tasks may exhibit divergent execution pathways, leading to reduced
robustness when task contexts or environmental conditions change. Conversely, guideline-based
experience typically presents experience in a coarse-grained form, which may omit critical procedural
nuances, lacking the precision, structure, and robustness needed for reliable execution.

Humans do not learn experience by directly reusing specific procedures or merely summarizing
abstract guidelines. A more effective approach is to construct an experience hierarchy based on
the similarity between tasks: the more similar the tasks are, the more concrete procedures can be
directly reused; the less similar they are, the more dynamic execution is needed [4} [7]]. For instance,
consider the following two tasks: (1) Send an email to attendees of the November 30 event with
the title 'Remember to attend this event.” (2) Remind attendees of the December 1 event via email
titled ’Remember to attend this event.” As humans, we can recognize that many steps in these two
tasks can be reused, including searching for the event using calendar.search_events, extracting
participant emails, and sending emails via the email.send_email tool. For those differences (e.g.,
extracting the event date from the user query), adjustments can be made based on the specifics of each
task. Motivated by this human ability, we propose MetaFlowLLM, a novel framework that builds
a hierarchical experience tree from historical task execution data to improve the effectiveness and
efficiency of LLMs. Specifically, as illustrated in panel (c) of Figure[T] each node in the experience
tree represents an abstracted workflow named MetaFlow, which contains both concrete execution
workflow (i.e., the static step) and subtasks (i.e., the dynamic step) that need LLMs to execute
dynamically. The closer to the leaf nodes, the more static steps are in the MetaFlow; the closer to the
root node, the more dynamic steps it contains. When confronted with a new task, MetaFlowLLM
retrieves from the hierarchical experience tree to identify the most appopriate MetaFlow node and
initiates its execution. For components corresponding to concrete workflows, it executes them directly.
For components requiring dynamic execution, an autonomous agent is responsible for interpreting
the subtask description and completing it accordingly.

Implementing MetaFlowLLM presents two key challenges: (1) how to abstract MetaFlows given
arbitrary two task execution trajectories: considering that manually summarizing MetaFlows is both
time-consuming and labor-intensive, and that directly prompting powerful LLMs such as GPT-40 or
DeepSeek R1 does not yield satisfactory results, we propose a reinforcement learning pipeline based
on verifiable rewards to train an effective MetaFlow generator, called MetaFlowGen. Specifically, we
introduce two distinct rewards: i) a correctness reward, which quantifies the proportion of queries for
which the generated MetaFlow yields correct results, and ii) an efficiency reward, which incentivizes
the preservation of static steps while minimizing unnecessary invocations of LLMs. Leveraging these
rewards, we initially construct a high-quality supervised fine-tuning dataset via rejection sampling
to enable effective cold-start. Subsequently, we directly optimize the MetaFlow generator using
reinforcement learning to maximize the defined rewards. (2) how to construct an experience tree
from existing historical data: we draw inspiration from hierarchical clustering techniques [24} [25]
and propose a Hierarchical MetaFlow Merging algorithm. This algorithm iteratively merges the most



similar nodes using the MetaFlowGen until the tree is fully constructed. To ensure the usability of
the experience tree, we incorporate a pruning algorithm based on the reward of the merged nodes,
which helps maintain its efficiency and effectiveness.

To validate the effectiveness of our proposed method, we conduct extensive experiments on two
distinct scenarios including AppWorld [32]] and WorkBench [31]]. Experimental results demonstrate
that integrating MetaFlow into existing LLM-based agents leads to substantial performance improve-
ments while simultaneously reducing execution costs. Notably, MetaFlowLLM achieves an average
improvement of 32.3% on AppWorld and 6.2% on WorkBench, surpassing both trajectory-based and
guideline-based experience reuse approaches.

Our contributions are as follows:

* We introduce MetaFlowLLM as a novel mechanism for experience reuse in LLM-based agents,
enabling them to generalize structured workflows across similar tasks.

* We propose a reinforcement learning-based training pipeline for the MetaFlow generator to improve
the MetaFlow generation capabilities of LLMs.

* Through comprehensive experiments on AppWorld [32] and WorkBench [31]], we demonstrate
that our method produces high-quality workflows that significantly improve LLM performance
and reduce computational overhead.

2 Related Work

LLM-based Agents With advances in the instruction-following and reasoning capabilities of LLMs
(L1177, 38 [13], their applications have expanded beyond traditional natural language processing tasks
such as question answering [27]] and information extraction [[10} 9]]. Researchers have begun to use
LLMs as autonomous agents for tasks such as code generation [26} 32], travel planning [37], web
browsing [40, 46l, and embodied housework [30,20]. Currently, the two most representative LLM
agent frameworks are ReAct [41]] and Reflexion [29]. However, these two vanilla agents are incapable
of utilizing historical data to form experience to promote future tasks. To address this limitation, we
propose the MetaFlowLLM framework, which enables agents to accumulate, retrieve, and leverage
past experiences to enhance reasoning, decision-making, and generalization across tasks.

Experience Reuse in LLM-based Agents Current approaches to experience reuse in LLM agents
primarily follow two paradigms: (1) trajectory-based experience: direct utilization of complete or
abstracted trajectories as contextual examples [3} 145l [34]], which often suffer from overfitting to
specific instances, and (2) guideline-based experience: manual or LLM-generated summarization of
experiences into natural language instructions that are incorporated into the agent’s prompt [44, [12].
For the former one, they retain excessive task-specific details and not sufficiently generalizable.
For the latter one, the abstract guideline in natural language may lacking the precision, structure,
and robustness needed for reliable execution. To address these limitations, we propose a novel
experience reuse framework, MetaFlowLLLM, that constructs a hierarchical experience tree covering
experiences at different levels. Compared to AWM [34], which extracts reusable workflows from
historical trajectories and still relies on prompt-based experience reuse driven by the LLM’s reasoning
capability, MetaFlowLLM explicitly models reusable workflows as structured graphs with static and
dynamic nodes, and further optimizes their granularity through reinforcement learning.

Workflow Generation Process Automation [5] has long been a key goal in technology, aiming to
automate repetitive tasks and improve operational efficiency. Traditional Robotic Process Automation
relies on manually annotated workflows to abstract such tasks [19, 15,135, 12, [11]. With the advent
of LLMs, many efforts have focused on leveraging their capabilities to replace manual labor in
workflow generation [42 143,16} 13621]]. However, generating large-scale workflows with complex
logical structures based solely on queries and available tool lists remains a significant challenge
for current LLMs [8l 42]], primarily due to the lack of intermediate execution feedback. To address
this limitation, our work takes a more pragmatic approach by refraining from generating all specific
execution steps. Instead, we abstract similar workflows into a unified MetaFlow, where shared steps
are fixed and sample-specific components are delegated to sub-tasks handled by dynamic agents.
In this way, MetaFlowLLM provides a balanced framework for automation—capturing common
workflow patterns while maintaining the flexibility to adapt to diverse tasks.
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Figure 2: Illustration of the MetaFlowLLM framework. On the left, the task and corresponding
MetaFlow (since the example in this figure is from the leaf node, it is referred to as a trajectory)
serve as inputs to the generator. The middle section depicts the meta node (comprising the meta task
and MetaFlow) generated by the MetaFlow generator. On the right, the process of MetaFlowLLM
framework is outlined, including: 1) the training process, where a rejection sampling approach
constructs the cold-start dataset, followed by SFT and RL to train the MetaFlowGen; and 2) the
deployment process, which involves constructing the hierarchical experience tree and performing
deep matching traversal to find the most appropriate MetaFlow node.

3 Methodology

In this section, we introduce the MetaFlowLLM framework, which constructs a hierarchical expe-
rience tree containing different level MetaFlows to leverage historical completed tasks. We first
formally define the MetaFlow structure and its operational rules in Section 3.1} Then, we propose
a reinforcement learning pipeline to derive a dedicated MetaFlowGen to generate MetaFlows, as
detailed in Section[3.2] Finally, we present the hierarchical experience tree construction and deep
matching traversal algorithms in Section 3.3

3.1 MetaFlow Definition

As illustrated in part (c) of Figure [T} MetaFlow is a hybrid execution framework composed of static
procedural steps and dynamic LLM-based agent steps, all operating over a shared and mutable context
C. Formally, a MetaFlow M = {s1, sa, ..., s, } is defined as a sequence of steps, each of which can
be either a static step s or a dynamic step s”. The shared context C is initialized with the user task.
As the MetaFlow progresses, C is iteratively updated by both static steps and the outputs of online
planning agents. In practice, C may be an implicit variable scope (e.g., in Python), or an explicit
key-value store tracking agent decisions and tool outputs.

At runtime, given a task g, MetaFlowLLM executes each step sequentially in the order defined by M.
For each step s;, the framework checks the step type:

 If s; is a static step, consisting of operations such as tool calls or code execution, it is directly
executed, and the context is subsequently updated as C; = s (C;_1).

 If s5; is a dynamic agent step, MetaFlowLLM adapts the subtask of s; based on the task ¢ and
the current context C;_1, producing a state-specific prompt p; as subtask prompt. p; is then used
to initialize an LLLM-based agent A, such as ReAct or Reflexion [29]. The LLM agent A
interacts with the environment over multiple turns, each comprising an action and the subsequent

observation. Formally, the agent A produces an action sequence {a},aZ, ..., a*} = A(p;), where
each action a? is executed and the context is updated accordingly:

¢l =sPcl™tal), C)=Ciy.



The process continues until the agent determines that the subtask is complete. The final context
after executing all actions is denoted as C; = CF.

3.2 Training MetaFlowGen with Reinforcement Learning

To generate effective MetaFlows, we adopt a reinforcement learning pipeline to train a MetaFlow
generator named MetaFlowGen. As illustrated by the right part of Figure [2] the pipeline follows a
two-stage approach: supervised fine-tuning (SFT) to initialize the model for cold-start, and rule-based
reinforcement learning using GRPO [28]] to enhance the MetaFlow generation capability.

As illustrated in the left part of Figure 2] the MetaFlow generator is designed to take two samples as
input: each consisting of tasks with the corresponding MetaFlows and the relevant tool documentation.
The goal is to generate a high-level MetaFlow M that captures their common patterns through static
steps and handles their different procedures using dynamic agents. Formally, the MetaFlow generation
process can be expressed as:

M7Q:7T9 (q17q27m17m27-’4)7 (1)

where 6 is the parameter of the MetaFlowGen, ¢, g2 are the input tasks respectively, m1, mq are their
corresponding MetaFlows, and the tool documentation A provides necessary background knowledge.
As illustrated in the middle part of Figure[2] the output of the MetaFlowGen consists of the MetaFlow
M and its associated meta task Q.

Supervised Fine-Tuning for Cold-Start. Following previous work [14], we use SFT as a cold-

start method. The SFT training dataset, denoted as Dspr = {(q1, g2, m1, m2, M, Q)W}LQS;T', is
constructed through rejection sampling [6]. Specifically, we maintain a list of golden nodes, initialized
with the samples from the training set (referred to as leaf nodes). In each iteration, we sample two
golden nodes and pair them with manually crafted in-context learning samples to form an input
prompt. This prompt is then used to generate the corresponding meta task and MetaFlow via an LLM
as a MetaFlow generator. We execute this MetaFlow on all its leaf nodes, and if it passes all the
test cases associated with these nodes (i.e., its correctness reward equals 1.0 defined in Equation [3),
it is deemed correct and added to the golden nodes list. This iterative process continues until the
dataset reaches the desired scale. It effectively expands both the dataset size and the complexity of
the hierarchical structures, facilitating the subsequent construction of the hierarchical experience tree.

Formally, the objective function for supervised fine-tuning is defined as:

Lsrr(0) = —E(q, 40,m1,ma,M,Q)~Dger 10870 (M, Q | q1, g2, m1, M2, A)]. 2

Rule-based Reinforcement Learning. After completing the SFT phase, we further enhance the
model using the reinforcement learning approach. In this phase, the training dataset is constructed
by sampling from the list of golden nodes produced during SFT. To guide the learning process, we
design a reward function that integrates two key objectives: correctness and efficiency.

* Correctness Reward. This term evaluates whether initializing the MetaFlow correctly solves the
leaf nodes’ tasks. The correctness reward is defined as the ratio of correctly solved leaf nodes:

N
Reorrect (M) = % Z]I(execute(qi,./\/l) = expected,), 3)

1=1

where NN is the number of leaf nodes, and I is the indicator function that checks whether the
generated result matches the expected output.

* Efficiency Reward. This component evaluates the preservation of static actions and runtime
efficiency. The efficiency reward is defined as the ratio of static operations to the minimum number
of static operations between the two input workflows:

NumStaticOps(M)

R -
eif(M) min(NumStaticOps(m1), NumStaticOps(mz))’

C)

This encourages workflows that maximize static step reuse and minimize redundant dynamic calls,
improving both reusability and efficiency.



Algorithm 1 Hierarchical MetaFlow Merging

Require: Leaf nodes D = {(g;, m;)}, distance metric d(-, -), MetaFlowGen 6, correctness threshold 7
Ensure: Hierarchical experience Tree 7

1: Initialize: Initialize the set of nodes A < D

2: while |[V] > 1do

3: Select the most similar node pair: From A/, select two most similar nodes 11, n2 based on the distance

metric d(-, -)
4:  Generate candidate MetaFlow: Merge n; and n, using the MetaFlowGen 6 to produce a candidate
MetaFlow M
5 Evaluate its correctness: Compute the correctness reward Reorrect for M
6 if Reorrect >= 7 then
7 Use M as the new parent node to merge n; and ns
8 Remove 11, n2 from A/ and add M to N/
9: else
10: Use pure-agent node as the new parent node to merge n; and na
11 Remove n1, ns from A/
12 end if
13: end while
14: Final merge: If there are more than one pure-agent nodes, merge them into a single top-level pure-agent
node

15: return The complete experience Tree T

The total reward is the weighted sum of the above two rewardﬂ guiding the generator to produce
MetaFlows that are both accurate and efficient.

R(M; Q) = A Reorreet (M) + (1 = A) - Regr(M), (5)

where ) is a scaling factor for controlling the trade-off between accuracy and efficiency.

3.3 Hierarchical Experience Tree Construction and Utilization

For efficient inference, we begin by constructing a hierarchical experience tree from the leaf nodes
in the historical completed tasks. This approach is detailed in Algorithm[I] As shown in the right
part of Figure[2] the set of nodes to be merged, denoted as NV, is initialized as the set of leaf nodes
D. N is progressively merged and updated based on semantic similarity. Each merger results in
an intermediate meta node M. To ensure the effectiveness of the experience tree, we calculate the
correctness reward of M using Equation 3] If the reward exceeds a threshold 7, the meta node is
added to V. Otherwise, the two nodes are directly merged into a pure agent node.

At inference time, the goal is to efficiently identify the most appropriate MetaFlow to solve the task.
As shown in Algorithm 2]and Figure[2] the deep matching traversal process begins by matching the
test task g5 With the experience tree T, starting from the root node and moving downwards. The
node-level matching is performed using a discriminative model P(q|Q, M), which prompts an LLM
to determine whether the task g can be classified as an instance of a Q and can be solved by the M.
The search continues recursively through child nodes until the deepest matching node is found.

4 Experiments

4.1 Experimental Settings

Datasets and Metrics. We conduct experiments on two representative agent datasets: AppWorld
[31] and WorkBench [32]. AppWorld serves as a representative dataset for interactive coding tasks,
while WorkBench serves as a representative dataset for tool learning tasks in workplace settings. The
evaluation metric in AppWorld is the Task Goal Completion (TGC) Rate, which is defined as the
percentage of tasks where the agent passes all evaluation tests. We use two evaluation metrics in
WorkBench: (1) Accuracy, which is defined as the percentage of tasks where the outcome from
the agent’s actions matches the expected outcome of the ground truth; and (2) Side Effects, which
quantitatively evaluate unintended changes caused by tool calls. We conduct experiments under two

We also incorporate a format-based penalty [14] in the reward design: a reward of —1 is assigned when the
M fails to meet the required format constraints.



Table 1: TGC rate comparison of various models with different methods on AppWorld(%).

Model Agent Type Configuration

Base w/Traj. w/Guideline w/MetaFLow
Qwen2.5-7B EZZ??OH 22 ;,%:Z 38 i;g
Qwen2.5-32B Eggﬁ;ion ;;g ﬁ géz ggg
GPT-40-mini Eziﬁ;}iion 17305 % 2795 ggg

conditions: one where only the required tools are provided to LLMs, and another where all the tools
are available. The dataset statistics can be found in Appendix [D]

Baselines. To evaluate the performance of MetaFlow, we consider four base LLMs during the
inference stage: two state-of-the-art open-source models, Qwen2.5-7B-Instruct [38] and Qwen2.5-
32B-Instruct, and two proprietary models, GPT-40-mini [18]] and GPT-40. In order to assess the
generalizability of MetaFlow, we consider two agent frameworks as the backbone for dynamic nodes:
(1) ReAct [41]], which combines reasoning and acting, and (2) Reflexion [29], which enables the
agent to leverage environmental feedback to reflect on mistakes and perform subsequent actions. We
consider the following three baselines: (1) LLM agent without experience reuse, (2) Trajectory-based
Experience reuse method (Denoted as Traj.), and (3) Guideline-based Experience reuse method
(Denoted as Guideline). Further implementation details of the trajectory-based experience reuse and
guideline-based experience methods can be found in Appendix

Implementation Details. We set 7 to 1.0 in all experiments to ensure the quality of the experience
tree. The value of ) is set to 0.7. We use the all-MiniLM-L6—V model to encode the task, and the
cosine similarity of the task embeddings is utilized as the distance metric.

In the SFT stage, we fine-tune the MetaFlowGen on Qwen2.5-7B-Instruct for 3 epochs using the
AdamW optimizer [23]] and a linear learning rate scheduler with a peak learning rate of 2 x 1072,
Each mini-batch contains 32 examples, and the maximum sequence length is set as 8, 192 tokens. In
RL stage, we adopt TRL [33] as our training framework. We set the training epochs to 2, batch size
to 28, learning rate to 1 x 1076, KL coefficient to 0 [22]], rollout number to 14. All experiments are
conducted on 8 NVIDIA A800 40G GPUs.

4.2 Main Results

Results on AppWorld. Following [32], we evaluate the performance of LLMs using the ReAct
and Reflexion prompting methods. The results are placed in Table[I] from which we derive that:

1. The improvement of the guideline methods on the challenging AppWorld is significantly smaller
than that of trajectory-based methods. This suggests that, when faced with difficult tasks, the
natural language guideline method may omit critical procedural details, lacking the precision,
structure, and robustness required for reliable execution.

2. The proposed MetaFlowLLM method can effectively adapt to both the Reflexion and ReAct agent
frameworks, leading to substantial performance improvements. Notably, MetaFlow increases TGC
by 33.1% and 31.6% compared to the base Reflexion and ReAct agents, consistently outperforming
the trajectory-based and guideline-based experience reuse methods. The results demonstrate the
effectiveness of breaking down complex tasks into distinct sub-tasks, with clear and reusable
transition logic between them. This decomposition allows to reuse static code and agent’s plan
from historically similar tasks, thereby increasing both execution stability and reliability.

Results on WorkBench. Following [31], we assess the performance of LLM agents using the
ReAct [41] framework. Since the WorkBench dataset lacks pre-defined “golden” trajectories, we

*https://huggingface.co/sentence-transformers/all-MinilM-L6-v2
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Table 2: Accuracy and side effects comparison of various models with different methods on Work-
Bench(%). The best results are marked in bold and the second-best results are marked with underline.
Abbreviations are defined as follows. CRM: Customer Relationship Manager, PM: Project Manage-
ment, MD: Multi-Domain.

Model Analytics Calendar CRM Email PM MD Avg
Yoacct  %ose]  Joacct  Yosel  Yacct  %sel  YaccT  Ysel  YaccT  Yosel  Joacct  Yosel  Joacct  Yosel
GPT-40 30.8 53.8 53.0 19.7 30.9 14.5 32.8 25.9 8.16 0.0 16.3 48.9 27.2 33.1
w/ Traj. 48.5 474 48.5 10.6 54.5 10.9 41.3 259 20.4 4.13 25.1 55.1 353 32.7
w/ Guideline 34.6 449 53.0 21.2 40.0 23.6 31.0 27.6 8.16 0.0 15.6 524 28.5 342
w/ MetaFlow 449 37.2 63.7 12.1 60.0 14.5 46.6 24.1 24.5 6.12 24.5 40.8 40.8 26.9
Qwen2.5-7B 18.2 60.3 27.6 35.5 16.0 30.5 9.31 43.8 8.57 6.12 9.39 53.9 14.3 43.0
w/ Traj. 30.8 46.2 18.2 48.5 18.2 327 15.5 46.6 14.3 12.2 8.16 57.1 16.3 44.8
w/ Guideline 21.8 51.3 379 47.0 20.0 52.7 15.5 55.2 10.2 6.12 8.16 60.5 174 49.5
w/ MetaFlow 269 43.6 25.8 50.0 23.6 34.5 10.3 552 14.3 18.4 9.52 57.8 17.2 46.8
Qwen2.5-32B 6.41 88.5 57.6 242 12.7 43.6 27.6 24.1 6.12 0.0 12.2 61.9 19.2 47.2
w/ Traj. 25.6 70.5 37.9 40.9 41.8 20.0 8.62 58.6 20.4 12.2 15.0 60.5 232 49.0
w/ Guideline 19.2 79.5 59.1 21.2 27.3 23.6 31.0 36.2 10.2 20 15.0 57.8 252 433
w/ MetaFlow 244 69.2 59.1 19.7 27.3 23.6 379 32.8 12.2 4.1 184 55.8 28.3 40.4
GPT-40-mini 11.5 449 48.5 30.3 21.8 36.4 24.1 58.6 8.16 6.12 12.2 56.5 19.6 43.0
w/ Traj. 12.8 449 39.4 25.8 273 36.4 20.7 48.3 12.2 12.2 14.3 57.1 19.9 419

w/ Guideline 12.8 43.6 47.0 37.9 27.3 30.9 31.0 517 12.2 4.10 12.9 60.5 219 43.5
w/ MetaFlow 19.2 30.8 53.0 15.2 16.4 23.6 31.0 46.6 16.3 4.08 22.4 51.7 26.1 33.6

construct an experience pool via rejection sampling from previously collected trajectories. The results
are shown in Table[2] from which we draw three observations:

1.

All three methods result in improvements in the model’s overall performance. However, the
MetaFlow method demonstrates the most significant enhancement. Specifically, when employing
MetaFlow, the average increase in accuracy is 6.16%, accompanied by a 4.13% reduction in side
effects. Furthermore, when using GPT-40-mini as the backbone LLM, MetaFlow outperforms both
trajectory-based and guideline-based experience methods across the six domains and evaluation
metrics, with only one exception. This demonstrates the effectiveness of MetaFlowLLM in
tool-calling tasks, as it can reuse experience more efficiently.

MetaFlow shows greater performance improvements with more powerful LLMs. For example, the
accuracy of Qwen2.5-32B-Instruct improves by 9.1%, while Qwen2.5-7B-Instruct only increases
by 2.9%, which is slightly lower than the performance of the guideline method at the same
scale. Manual inspection reveals two key reasons: (1) low-capacity models exhibit insufficient
discriminative capability to identify appropriate MetaFlows; (2) their weak instruction-following
performance impedes the successful execution of MetaFlow sub-tasks.

4.3 Analysis

Scalability Analysis. Theoretically, both MetaFlowGen training and tree construction are per-
formed offline, while online retrieval operates with sublinear time complexity relative to the number
of nodes. The most computationally intensive operation—correctness reward computation—formally
scales as O(NN) with the number of leaf nodes but can be fully parallelized across GPUs. Empirically,
the runtime of both RL training and tree construction grows approximately linearly with the number
of experiences (see Figure[3)).

MetaFlow can reduce the impact of noisy context

from more available tools. Selecting inappropriate
MetaFlow nodes can hinder performance. To in-
vestigate the significance of the discriminative model
P(q|Q, M), we evaluate MetaFlowLLLM’s performance
under hierarchical level shifts. For each test task, we

Accuracy (%)
b H

employ GPT-4o0 as the discriminative model to identify
appropriate MetaFlow nodes. Subsequently, we evalu-
ate performance deviations when accessing either parent
nodes (with negative level shifts) or child nodes (with pos-
itive level shifts). As shown in Figure[d] both upward and
downward shifts lead to degradation in model accuracy,

2

1

[
Level Shift

i

3

Figure 4: Comparison of accuracy with
varying level shifts on WorkBench.
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Figure 3: Empirical runtime scaling of MetaFlowLLM. Both curves exhibit approximately linear

scaling as the sampling ratio increases.

indicating that the originally selected node is better than others. This demonstrates the importance of

the discriminative model in the inference.

In our main experiments, we only provide the necessary
tools to the ReAct agent. In this study, we evaluate the
performance of MetaFlowLLM in a more real-world set-
ting where all 26 tools are provided. As shown in Table
[l MetaFlowLLM results in a more considerable improve-
ment in accuracy, while concurrently reducing side effects.
For example, Qwen2.5-7B-Instruct achieves an accuracy
improvement from 9.05% to 15.7%. This indicates that
MetaFlowLLM mitigates the effect of noisy context by

Table 3: Accuracy and side effects com-
parison with all tools on WorkBench
(%).

Model Accuracy (%) Side Effect (%)
Qwen2.5-7B 9.05 479

w/ MetaFlow 15.7 41.7
Qwen2.5-32B 13.8 523

w/ MetaFlow 23.2 47.7

predefining tool usage in static steps and clearer planning in dynamic steps, thereby reducing the

complexity of tool selection.

The MetaFlowGen demonstrates superior perfor-
mance over proprietary models. To validate the effec-
tiveness of the proposed training pipeline, we conduct
comparative experiments involving GPT-40, DeepSeek-
R1, and our MetaFlowGen. We provided three in-context
learning examples for GPT-40 and DeepSeek-R1, while
the trained models utilize a zero-shot prompt. The ex-
perimental results (Table ) reveal two findings: (1) The
trained MetaFlowGen achieves significantly higher perfor-
mance than both GPT-40 and DeepSeek-R1 across both

Table 4: Comparison between various
MetaFlow generators on AppWorld.

Model Correct Efficiency
GPT-40 0.160 0.60
DeepSeek-R1 0.054 0.41
MetaFlowGen  0.360 0.99
w/o RL 0.160 0.80
w/o SFT -0.380 -0.14

metrics; (2) Ablation studies demonstrate consistent performance degradation when either SFT or RL
is removed, confirming the essential contribution of both proposed training stages. We also provide
the reward curves during RL training and more detailed analysis in Appendix

The proposed RL framework exhibits superior sample
efficiency compared to the SFT baseline. To evaluate the
cost-effectiveness of our reinforcement learning pipeline,
we vary the sampling ratio of the RL training set and an-
alyzed the resulting correctness and efficiency metrics, as
shown in Figure 5] We observe a consistent improvement
in both metrics as the sampling ratio increases. Notably,
the model attains near-optimal performance at a full sam-
pling ratio (1.0), achieving a peak efficiency of 0.991.
Although the correctness slightly declines at this point, the
overall gain in efficiency highlights the inherent trade-off
between accuracy and computational cost—an expected
characteristic in RL optimization. These results demon-
strate that the RL training method can achieve competitive
performance with substantially fewer training samples,
underscoring its strong sample efficiency.

Efficiency

Correct Rate
o
-
~

015 —e— Correct Rate  0-80
—m - Efficiency

01960 02 04 0.6 08 107

Sampling Ratio

Figure 5: Sample efficiency of the pro-
posed RL framework.
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Figure 6: Efficiency comparison between ReAct and ReAct+MetaFlow, based on the average number
of LLM API calls and tool calls.

Meta Task
| need to perform an action on my Venmo payment
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or rejecting pending payment requests from my

The last Venmo payment request | sent to Martin was an accident and they approved it. Send them the
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Figure 7: Case Study of Executing MetaFlows from AppWorld.

MetaFlowLLLM can enhance the efficiency of sequential decision-making. We evaluate the
performance of different models using ReAct and ReAct+MetaFlow based on three key metrics: the
number of LLM API calls, the average number of tool calls by LLMs, and the average number of
tool calls overall. As shown in Figure[6] all models demonstrate a consistent reduction in both the
number of LLM API calls and the number of tool calls by LLMs when MetaFlow is applied. This
indicates that the introduced static steps effectively address subproblems. In addition, we find that
MetaFlowLLM helps reduce the overall number of tool calls, particularly when the base LLMs are
relatively weak. Manual inspection indicates that the elevated tool call frequency is primarily due to
the model’s dependence on repeated trial and error during execution. More efficiency comparison
results can be found in Appendix

Case Study of Executing MetaFlows. Figure[7|presents a MetaFlow execution example in AppWorld.
The meta task and its corresponding MetaFlow are shown in the left part of the figure. Static steps are
executed as-is, while dynamic steps are adapted according to the input task and context (transition
from the left to the center part of Figure[7). The resulting subtasks are then used to prompt the agent,
which generates and executes code accordingly (center to right part of Figure[7).

5 Conclusion

In this paper, we present MetaFlowLLM, a novel framework that enables structured experience reuse
for LLM-based agents through a hierarchical experience tree. By abstracting past task trajectories into
a tree of MetaFlows, our approach facilitates effective and efficient task execution for new-coming
tasks. In future work, we plan to extend MetaFlowLLM to multimodal domains and beyond.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction do accurately reflect
our paper’s contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: See Appendix [A]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not contain theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Sections {f]and Appendix Hyperparameters.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include our source code and data in the supplemental material submission,
and we outline the data generation procedure, the evaluation protocol, the training regime,
and everything else necessary for reproduction either in the main body of the paper or in the
appendix.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[#.1]and Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The results we report are the average of multiple runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 4.1
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully checked the NeurIPS Code of Ethics and ensure our code
aligns with the request.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the broader impacts of our work in Appendix [A]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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12.

13.

14.

Justification: Our paper does not have high risk PLMs or datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all the corresponding papers.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have provided comprehensive and detailed documentation.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: In our research, the LLMs are used solely for writing, editing, and formatting
purposes. It does not impact the core methodology, scientific rigor, or originality of the

research. Therefore, we declare that the usage of the LLM does not affect the main
contributions of the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitation and Broader Impacts

Limitation. While the framework proposed in this paper represents a notable advancement in LLM
agents, it also has certain limitations that warrant discussion. First, the proposed framework requires
offline data in order to organize hierarchical MetaFlows. Second, the rejection sampling method and
reinforcement learning approach employed in this paper rely on verifiable rewards, which limits their
applicability in some open-ended evaluation tasks. Therefore, further exploration of these methods’
applicability in such tasks is required.

Broader Impact. This paper introduces research aimed at enhancing LLLM agent capabilities
through experience reuse. From a societal impact perspective, while we have developed a generic
LLM-based autonomous agent, the presence of biased offline datasets may lead to decisions with
suboptimal outcomes. Additionally, there is potential for autonomous agents to be misused in
malicious applications. In response to these concerns, all data used in this paper is publicly available
and does not involve private information. Moreover, the proposed framework should not be used for
any malicious purposes.

B Reward Dynamics During RL Training
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Figure 8: Reward Progression Across RL Training Steps.

As shown in Figure [8] despite variations in difficulty across different samples and the inherent
uncertainty in the operation of the LLM agent leading to fluctuations in reward, the model’s reward
demonstrates a consistent improvement over the course of the three epochs in RL training.

Intuitively, during the RL process, the model generates various MetaFlows through rollouts. We
calculate the reward by executing the MetaFlows at the leaf nodes, which is based on test case
matching. This reward avoids the risk of reward hacking and is identical to the calculation process
used during actual deployment. These rewards are then involved in the calculation of fitting weights
for different trajectories. MetaFlows with higher rewards receive greater fitting weights, which steers
the model’s optimization towards these samples. On the other hand, MetaFlows with lower rewards
are trained to avoid generating such samples.

For example, during the MetaFlowGen’s rollout, two MetaFlows may be generated: one that does
not meet the format specifications (resulting in a reward of -1) and another that adheres to the
specifications, featuring more static steps and more detailed dynamic step instructions (resulting in a
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Algorithm 2 Deep Matching Traversal

Require: Hierarchical Experience Tree 7T, task ¢, matching model P(¢|Q, M)
Ensure: Best matching MetaFlow instance
1: function FindBestMatch(node, q, depth)
2: if P(q|Qnode; Mhnode) = False then
3:  return None
4: end if
5: best_node < node, max_depth < depth
6: for each child c of node do
7 match < FindBestMatch(c, q, depth + 1)
8 if match # None then
9: child_depth < Depth of match
10: if child_depth > max_depth then

11: best_node < match, max_depth < child_depth
12: end if

13: end if

14: end for

15: return best_node
16: Start from root: best_node <+ FindBestMatch(7o0t, g, 0)
17: return execute(q, Mpest node)

reward of 1). The GRPO algorithm adjusts the probabilities accordingly—reducing the likelihood of
generating non-compliant samples and increasing the probability of generating valid samples.

C Deep Matching Traversal

Algorithm 2] illustrates the Deep Matching Traversal process, which recursively searches the hierar-
chical experience tree to find the deepest node whose experience best matches the query.

D Dataset Statistics

For WorkBench, since the original repository only provided golden solutions without complete
workflows, we first prompted Qwen-32B-Instruct and filtered responses that matched the golden
solutions to obtain offline data. For AppWorld, we used the officially partitioned training set as the
offline data. The dataset statistics are summarized in Table[3

Table 5: Data statistics.

Metric WorkBench AppWorld
Offline Data Size 237 90
Test Data Size 353 57
SFT Data Size 1,102 1,092
RL Data Size 121 247

E Implementation of Baseline Methods

The implementation details of the baseline methods are as follows.

Trajectory-based baseline. For each input task, we first encode its description using all-MiniLM-
L6-v2 to obtain a task embedding. Cosine similarity is then computed between this embedding and
all task embeddings in the offline dataset. The most similar task is selected, and its description and
solution trajectory are used as in-context learning (ICL) examples in the LLM agent’s prompt.

Guideline-based baseline. We first prompt the same LLM to summarize guidelines from offline
trajectories. For a given task, we again encode its description using all-MiniLM-L6-v2 and find the
most similar task via cosine similarity. The retrieved task’s guideline and randomly selected ICL
examples are then incorporated into the LLM agent’s prompt.
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The guideline summarization prompt is:

Please summarize the experience in natural language from the following examples so that
you can use this experience in subsequent similar tasks. Please don’t rehash the code or
discuss code details. query: {query} solution: {trajectory}

F Effect of Distance Metric on Experience Tree Quality

MetaFlowLLM is a general-purpose framework not tied to a specific distance metric. While our main
experiments use task embeddings from all-MiniLM-L6-v2 with cosine similarity, the framework also
supports alternatives such as trajectory embeddings, Jaccard similarity, or rule-based measures.

As shown in Table[6] both trajectory- and task-based embeddings improve model performance over
baselines. The slight gap between them likely arises from noise in trajectory representations caused
by tool call responses.

Table 6: Impact of Distance Metric in MetaFlowLLM.

Model % Acc T %SE |
Qwen2.5-7B 14.3 43.0
+ Trajectory Embedding 15.2 40.8
+ Task Embedding 17.2 46.8
Qwen2.5-32B 19.2 47.2
+ Trajectory Embedding 24.9 46.5
+ Task Embedding 28.3 40.4
GPT-40-mini 19.6 43.0
+ Trajectory Embedding 25.1 37.1
+ Task Embedding 26.1 33.6

G Case Study of MetaFlows

In this section, we present a typical MetaFlow example on WorkBench.

L
{
"type": "dynamic",
"instruction": "Extract the comparison operator, threshold,
and time period from the user query and calculate the
start and end date. The time period is natural language
like 'l week' or '2 weeks'. Output the start and end
dates as ISO 8601 format.",
"outputs": [
"time_min",
"time_max",
"comparison_operator",
"threshold"
]
}’
{
"type": "static",
"action": "amalytics.total_visits_count",
"params": {
"time_min": "${time_minl}t",
"time_max": "${time_max}"
}’
"output": "total_visits_data"
},
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"type": "dynamic",

"instruction": "Check if the total visits data meets the
condition specified by the comparison operator and
threshold. If so, generate a line chart using the
analytics.create_plot function with the value_to_plot
set to total_visits.",

"outputs": [

"plot_file_path"

]

X

H Inference Time Comparison

Table[/|presents the inference time comparison between the standard ReAct agent and the proposed
ReAct+MetaFlowLLM framework on the WorkBench benchmark. From the results, we observe that
incorporating MetaFlowLLM incurs only a minor increase in total inference time (approximately 9%)
compared to the vanilla ReAct agent, while achieving a substantial improvement in accuracy. This
demonstrates that MetaFlowLLM offers a favorable trade-off between efficiency and performance,
making it a practical enhancement for real-world multi-step reasoning systems.

Table 7: Inference time comparison on WorkBench. Both methods use Qwen2.5-32B-Instruct as
the underlying model.

Method Avg. Retrieval Time (s) Avg. Running Time (s) Accuracy (%)
ReAct 0.0 12.1 19.2
ReAct + MetaFlow 1.7 11.5 28.3

I Comparison with AWM

We conduct experiments using application type as the categories in AWM [34]], and the experimental
results on AppWorld are presented in the Table [§] These results demonstrate that AWM indeed
provides improvements over the trajectory-based and guideline-based baselines in this paper. Notably,
MetaFlowLLM consistently outperforms AWM across all backbones.

Table 8: Performance comparison of various models and agent types on AppWorld (%).

Model Agent Type Configuration

Base w/Traj. w/ Guideline w/MetaFlow w/AWM
Qwen2.5-7B EZQ‘?O" ;Z 251 3(5) i;:; ﬁ
Qwen2.5-32B EZTC’?O“ gg % §§2 :3:3 ;i;
GPT-40-mini EzﬂAtzion 173. 05 % 270_65 :gg %

J Prompt Design

The MetaFlow generation prompt was manually designed through iterative refinement during prelimi-
nary experiments, while agent prompts were adapted from the official prompts of their respective
source benchmarks.
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J.1 MetaFlow Generation Prompt

SYSTEM:

You are tasked with analyzing two provided examples, each
consisting of a user query and its corresponding workflow.
Based on these examples, your objective is to generalize a
meta workflow that can solve similar problems using a
combination of static executable code and dynamic LLM agent

configurations. The meta workflow you generalize should
not only summarize the given samples, but it should be as
general as possible so that it can solve similar problems
by reusing static code and utilizing dynamic agents.

The meta workflow runs sequentially. When encountering static
code, it is executed directly. When encountering a dynamic
agent 's JSON configuration file, an LLM agent is triggered
to generate Python code to solve the specific task. The
Python code generated by the LLM agent and the static code
will operate within the same compilation environment,
allowing them to reference and interact with each other.

# Key Requirements:
## Static Code:

The static code segments must be fully executable and should
not contain any placeholders or dynamic interpolation logic
(e.g., query-specific formatted strings).

These segments should perform reusable tasks that are common
across similar problems.

Considering that the examples provided may vary significantly,
making it impossible to reuse any static code, static code
can be omitted. However , please avoid generating static
code filled with comments, as this lacks practical
significance. The explanatory text can be placed entirely
in the configuration file of the dynamic agent.

## Dynamic Configurations:

The dynamic agent should complete task-specific tasks and be
able to link the static code before and after, ensuring
that they run without errors. The dynamic portions of the
meta workflow should be defined in a JSON configuration
file.

The JSON configuration must include:

- The “task_description” that clearly defines the query-
specific logic using placeholders (e.g., {criterial}) to
represent components of the user's query.

- The “expected_final_state  upon task completion, such as how
variables are updated to enable integration with subsequent

static code. For example, if a later static Python code
requires variables to be defined during a dynamic agent's
execution, this should be clearly indicated.

## Meta Query:
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The meta query should describe the type of problem that the
meta workflow can solve, without including all specific
details from the input queries. It should use placeholders
(e.g., [criterial]) to generalize the problem.

## Meta Workflow Structure:

The meta workflow should alternate between static code blocks
and dynamic JSON configurations.

- Static code blocks must be self-contained and executable
without modification. Code consisting entirely of comments
is not acceptable.

- Dynamic JSON configurations should only contain placeholders
for query-specific logic and should not interfere with the
execution of static code.

USER:

**Now Summary the Following Examples:*x*
% APT Documentation**:

{api_docs}

**Samplel **:
**xQuery *x*:
{query1}
*kxWorkflowx**:
{workflowl}

**xSample2**:
**x Query *x*:
{query2}
**xWorkflow**:
{workflow2}

Output:

**Meta Queryx*x*:
[Provide the generalized meta query here]

*x*Meta Workflowx*x*:

[Provide the generalized meta workflow, which should include
the static code enclosed appropriately and a dynamic agent
configuration in JSON format. The configuration should be

clearly separated by "---" and enclosed within triple
backticks (") to maintain structure and clarity.]

J.2  Agent Prompt Design in WorkBench

SYSTEM:

You are a step-by-step task-solving assistant. At each stage,
you are only allowed to complete the current subtask based
on the available variables, tools and instructions.

Today 's date is Thursday, November 30, 2023 and the current
time is 00:00.

Please remember the current date and time. Please use today's
date for all dates unless otherwise specified. Meetings
must not start before 9am or end after 6pm.

Please respond helpfully and accurately to the user.
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All the information is in the given query or you can get it
using the given tools. Please do not assume or will ask for
my help.

USER:

You are solving a multi-step query within a pre-defined
workflow. The full user query is:

{total_task}

And the pre-defined workflow is:
{workflow}

But you should now focus **only** on the following subtask:
{step['instruction ']}

Here are the historical Logs prior to the completion of this
sub_task:

{history_logs}

Use the current variables: {context}

Do not perform any part of the full task beyond this subtask.
Do not call other tools or add outputs unless explicitly
instructed.

J.3 Agent Prompt in AppWorld.

SYSTEM:

You are a super intelligent AI Assistant whose job is to
complete day-to-day tasks by writing code to interact with
apps on behalf of your supervisor. Use API documentation to

understand how to interact with the apps.

You will undertake a *multi-step conversation* using a python
REPL environment. That is, you will write the python code
and the environment will execute it and show you the result
, based on which, you will write python code for the next
step and so on, until you've achieved the goal. This
environment will let you interact with app/s using their
associated APIs on my behalf.

Currently, you need to address the final sub-task of a total
task while ensuring the variables used are consistent with
previous interactions. We have executed some history code
in previous steps; that history code is provided here, and
you may assume that any relevant state or variables from it

are in memory. Proceed under the assumption that you can
use or refer to prior variables as needed.

USER:

# App-wise API Documentation:
ST yaml
{api_documentation_string}

ASSISTANT:
Understood.
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USER:

You have access to the following imports already available in
your coding environment.

“python

{available_imports}

These APIs should be called as python functions through the
apis™ object. E.g., “apis.supervisor.show_profile(...)~ for
the “show_profile™ API of the ~supervisor”  app. Note that
you already have the “apis”™ object available in the
execution environment, so do NOT to create it yourself.

You can also import anything from the Python *standard* library
via code. However, you cannot use any systems-related
packages, like os, shutils, etc, as they are disabled.

Let's say you want to obtain supervisors' app account passwords
and get login access_token for one of their apps, let's

say Spotify. You can write the following snippet as part of
your code:

" "python

# I should use supervisor.show_profile to get the supervisor's
account name and password,

# then pass it to spotify.login API in terms of username and
password

supervisor_profile = apis.supervisor.show_profile()

supervisor_passwords = __CURLY_OPEN__
account_password["account_name"]: account_password["

password"]
for account_password in apis.supervisor.
show_account_passwords ()

__CURLY_CLOSE__

spotify_access_token = apis.spotify.login(
username=supervisor_profile["email"],
password=supervisor_passwords ["spotify"],

)["access_token"]

# ... remaining code uses spotify_access_token variable as
required.

Notice how the arguments passed to the APIs and outputs parsed
from their outputs are as per the API documentation.

After you have completed the total task, you must call "apis.
supervisor.complete_task .

If the task is a question (e.g., "How many songs are in the
Spotify queue?"), it must be called with an ~answer’
argument with an appropriate value. Use words or numbers
only as answers, not full sentences, e.g., "10" in this
case.

If the task is not a question, "Start my Spotify music player
.", the “answer ~ argument should not be passed, or its

values should be ~None .

ASSISTANT:
Got it.

29



USER:
# History Code and Feedback
{history}

# Total Instruction
{task_instruction}

# Subtask Instruction
{subtask_instruction}

Write the code to complete this subtask. Only generate valid
Python code. It must be within markdown-styled ("~ ") code
blocks.

Do NOT say or explain ANYTHING else.

# APIs allowed to Use
{{required_apis | join(", ")1}}

Remember you:

- must only use APIs from the above list passing arguments and
parsing outputs as per the provided documentation.

- must make all decisions autonomously on your own, and not
wait or ask for anything external.

- must call “apis.supervisor.complete_task” ™ at the end as per
the above instruction.

- do not have access to any other packages except what is
provided above and is part of the Python standard library.

- You shouldn't write all the code at once. Write small chunks
of code and only one chunk of code in every step to make
full use of the environment feedback. Make sure everything
is working correctly before making any irreversible change.

- Before each time you write a specific code, you should think
about the current situation in the form of a code comment
and put it in the code blocks.
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