
Under review as a conference paper at ICLR 2023

SOFT DIFFUSION
SCORE MATCHING FOR GENERAL CORRUPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We define a broader family of corruption processes that generalizes previously
known diffusion models. To reverse these general diffusions, we propose a new
objective called Soft Score Matching that provably learns the score function for
any linear corruption process and yields state of the art results for CelebA. Soft
Score Matching incorporates the degradation process in the network. Our new
loss trains the model to predict a clean image, that after corruption, matches the
diffused observation. We show that our objective learns the gradient of the likeli-
hood under suitable regularity conditions for a family of corruption processes. We
further develop a principled way to select the corruption levels for general diffu-
sion processes and a novel sampling method that we call Momentum Sampler. We
show experimentally that our framework works for general linear corruption pro-
cesses, such as Gaussian blur and masking. We achieve state-of-the-art FID score
1.85 on CelebA-64, outperforming all previous linear diffusion models. We also
show significant computational benefits compared to vanilla denoising diffusion.

1 INTRODUCTION

Score-based models (Song & Ermon, 2019; 2020; Song et al., 2021b) and Denoising Diffusion
Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a) are
two powerful classes of generative models that produce samples by inverting a diffusion process.
These two classes have been unified under a single framework (Song et al., 2021b) and are widely
known as diffusion models. Diffusion modeling has found great success in a wide range of appli-
cations (Croitoru et al., 2022; Yang et al., 2022), including image (Saharia et al., 2022a; Ramesh
et al., 2022; Rombach et al., 2022; Dhariwal & Nichol, 2021), audio (Kong et al., 2021; Richter
et al., 2022; Serrà et al., 2022), video generation (Ho et al., 2022b), as well as solving inverse prob-
lems (Daras et al., 2022; Kadkhodaie & Simoncelli, 2021; Kawar et al., 2022; 2021; Jalal et al.,
2021; Saharia et al., 2022b; Laumont et al., 2022; Whang et al., 2022; Chung et al., 2022).

Karras et al. (2022) analyze the design space of diffusion models. The authors identify three stages:
i) the noise scheduling, ii) the network parametrization (each one leads to a different loss function),
iii) the sampling algorithm. We argue that there is one more important step: choosing how to corrupt.
Typically, the diffusion is additive noise of different magnitudes (and sometimes input rescalings).
There have been a few recent attempts to use different corruptions (Deasy et al., 2021; Hoogeboom
et al., 2022a;b; Avrahami et al., 2022; Nachmani et al., 2021; Johnson et al., 2021; Lee et al., 2022;
Ye et al., 2022), but the results are usually inferior to diffusion with additive noise. Also, a common
framework on how to properly design general corruption processes is missing.

We present such a principled framework for learning to invert a general class of corruption processes.
We propose a new objective called Soft Score Matching that provably learns the score for any regular
linear corruption process. Soft Score Matching incorporates the filtering process in the network and
trains the model to predict a clean image that after corruption matches the diffused observation.

Our theoretical results show that Soft Score Matching learns the score (i.e. likelihood gradients) for
corruption processes that satisfy a regularity condition that we identify: the diffusion must transform
any image into any other image with nonzero likelihood. Using our method and Gaussian Blur paired
with little noise as the diffusion mechanism, we achieve state-of-the-art FID on CelebA (FID 1.85)
for linear diffusion models. We also show that our corruption process leads to generative models
that are faster compared to vanilla Gaussian denoising diffusion.

1

Under review as a conference paper at ICLR 2023
Reverse Process

Blur + Noise Forward Process

Uncurated Samples (Blur+Noise)

t=0 t=1

t=0t=1

Masking + Noise Forward Process

Generated

Reverse Process Reverse Process

Figure 1: Top two rows: Demonstration of our generalized diffusion method. Instead of corrupting by only
adding noise, we propose a framework to provably learn the score function to reverse any linear diffusion (left:
blur and noise, right: masking and noise). Our (blur and noise) models achieve state-of-the-art FID score 1.85
for linear diffusion models on CelebA-64. Uncurated samples shown in the last three rows.

Our contributions: a) We propose a learning objective that: i) provably learns the score for a
wide family of regular diffusion processes and ii) enables learning under limited randomness in
the diffusion. b) We present a principled way to select the intermediate distributions. Our method
minimizes the Wasserstein distance along the path from the initial to the final distribution. c) We
propose a novel sampling method that we call Momentum Sampler: our sampler uses a convex
combination of corruptions at different diffusion levels and is inspired by momentum methods in
optimization. d) We train models on CelebA and CIFAR-10. Our trained models on CelebA achieve
a new state-of-the-art FID score of 1.85 for linear diffusion models while being significantly faster
compared to models trained with vanilla Gaussian denoising diffusion.

2 BACKGROUND

Diffusion models are generative models that produce samples by inverting a corruption process. The
corruption level is typically indexed by a time t, with t = 0 corresponding to clean and t = 1 to
fully corrupted images. The diffusion process can be discrete or continuous. The two general classes
of diffusion models are Score-Based Models (Song & Ermon, 2019; 2020; Song et al., 2021b) and
Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020).

The typical diffusion in score-based modeling is additive noise of increasing magnitude. The pertur-
bation kernel at time t is: qt(xt|x0) = N (xt|µ = x0,Σ = σ2

t I), where x0 ∼ q0 is a clean image.
Score models are trained with the Denoising Score Matching (DSM) objective:

min
θ

Et∼U [0,1]wt

[
E(x0,xt)∼q0(x0)qt(xt|x0) ||sθ(xt|t)−∇xt log qt(xt|x0)||2

]
, (1)

where wt scales differently the weights of the inner objectives. If we train for each noise level
t independently, given enough data and model capacity, the network is guaranteed to recover the
gradient of the log likelihood (Vincent, 2011), known as the score function. In other words, the
model sθ(xt|t) is trained such that: sθ(xt|t) ≈ ∇xt log qt(xt). In practice, we use parameter
sharing and conditioning on time t to learn all the scores. Once the model is trained, we start from
a sample of the final distribution, q1, and then use the learned score to gradually denoise it (Song &
Ermon, 2019; 2020). The final variance σ2

1 is selected to be very large such that the distribution q1

is approximately Gaussian, i.e. the signal to noise ratio tends to 0.

DDPMs corrupt by rescaling the input images and by adding noise. The corruption can be modelled
with a Markov chain with perturbation kernel qt(xt|xt−∆t) = N (xt|µ =

√
1− βtxt−∆t,Σ =

2

Under review as a conference paper at ICLR 2023

βtI). Typically, β1 = 1 and hence q1 = N (0, I). DDPMs are also trained with the DSM objective
which is derived by minimizing an evidence lower bound (ELBO) (Ho et al., 2020).

In their seminal work, Song et al. (2021b) observe that the diffusions of both Score-Based models
and DDPMs can be expressed as solutions of Stochastic Differential Equations (SDEs) of the form:

dx = f(x, t)dt+ g(t)dw, (2)

wherew is the standard Wiener process. Particularly, Score-Based models use: f(x, t) = 0, g(t) =√
dσ2
t

dt and DDPMs use: f(x, t) = − 1
2βtx, g(t) =

√
βt. As explained earlier, for Score-Based

models we need large noise at the end for the final distribution to approximate a normal distribu-
tion. Hence, the corresponding SDE is named Variance Exploding (VE) SDE (Song et al., 2021b).
DDPMs usually have a final distribution of unit variance and hence their SDE is known as the
Variance Preserving (VP) SDE (Song et al., 2021b). Song et al. (2021b) also propose another SDE
with bounded variance, the subVP-SDE, that experimentally yields better likelihoods.

For both Score-Based models and DDPMs, Eq. (2) is known as the Forward SDE. This SDE is
reversible Anderson (1982) and the Reverse SDE is given below:

dx =
[
f(x, t)− g2(t)∇x log qt(x)

]
dt+ g(t)dw̄, (3)

where w̄ is the reverse time standard Wiener process. Typically, ∇x log qt(x) is approximated by
sθ(xt|t) and samples are generated by solving the Reverse SDE (Song et al., 2021b).

3 METHOD

Our framework for training diffusion models with more general corruptions includes three compo-
nents: i) the training objective, ii) the sampling, iii) the scheduling of the corruption mechanism.

3.1 TRAINING OBJECTIVE

We study corruption processes of the form:

xt = Ctx0 + stηt, (4)

where Ct : Rn → Rn is a deterministic linear operator, ηt is a Wiener process, and st is a non-
negative scalar controlling the noise level at time t, and x0 ∼ q0(x). We further denote with σ2

t the
variance of the noise at level t and we assume that it is a non-decreasing function of t. Unless stated
otherwise, we assume that time is continuous and runs from t = 0 to t = 1. Additionally, we assume
that at t = 0, we have C0 = In×n and σ0 = 0, i.e. t = 0 corresponds to natural images. We also
assume that recovering x0 from xt is harder as t gets larger (i.e., entropy of qt(x0 | xt) increases
with t). Eq. (4) defines a general class of diffusion processes, that includes (as special cases) the VE,
VP and subVP SDEs used in Song et al. (2021b). Our diffusion is the sum of a deterministic linear
corruption of x0 and a stochastic part that progressively adds noise. For any corruption process of
this family, we are interested in learning the scores, i.e. ∇xt log qt(xt) for all t.

For the vanilla Gaussian denoising diffusion, the celebrated result of Vincent (2011) shows that
we only need access to the gradient of the conditional log-likelihood, ∇xt log qt(xt|x0), in order
to learn the score, ∇xt log qt(xt). By revisiting the proof of Vincent (2011), we find that this is
actually true for a wide set of corruption processes, as long as some mild technical conditions are
satisfied. In fact, the following general Theorem holds:

Theorem 3.1. Let q0, qt be two distributions in Rn. Assume that all conditional distributions,
qt(xt|x0), are fully supported and differentiable in Rn. Let:

J1(θ) =
1

2
Ext∼qt

[
||sθ(xt)−∇xt log qt(xt)||2

]
, (5)

J2(θ) =
1

2
E(x0,xt)∼q0(x0)qt(xt|x0)

[
||sθ(xt)−∇xt log qt(xt|x0)||2

]
. (6)

Then, there is a universal constant C (that does not depend on θ) such that: J1(θ) = J2(θ) + C.

3

Under review as a conference paper at ICLR 2023

Theorem 3.1 implies that minimizing the second function is equivalent to minimizing the first one.
The second function is nothing else than the DSM objective. Our main observation is that noise is
not always necessary for learning the score using the DSM objective. A necessary condition is that
the corruption process gives non-zero probability to all xt for any image x0. This is easily achieved
by adding Gaussian noise, but this is not the only option. The proof of this Theorem is deferred in
the Appendix and it is following the calculations of Vincent (2011).

Network parametrization. For the class of diffusion processes given by Eq. (4), we have that:
qt(xt|x0) = N

(
xt;µ = Ctx0,Σ = σ2

t I
)

and hence the objective becomes:

L(t) =
1

2
E(x0,xt)∼q0(x0)qt(xt|x0)

[∣∣∣∣∣∣∣∣sθ(xt|t)− Ctx0 − xt
σ2
t

∣∣∣∣∣∣∣∣2
]
. (7)

As shown, the objective of the model is to predict the (normalized) difference, Ctx0 − xt, which is
actually the noise, ηt. We argue that even though this objective is theoretically grounded, in many
cases, it would not work in practice because we would need infinite samples to actually learn the
vector-field∇xt log qt(xt) in a way that would allow sampling.

Assume that the corruption process is blurring (at different levels) paired with additive noise of
small magnitude. The objective written in Eq. (7) learns the distributions of blurry (and slightly
noisy images) by just removing noise. Hence, in practice we might only learn these distributions
locally (around the blurry images) and hence we might not be able to reduce the blurriness. This
point might be better understood after we present our Sampling Method in Section 3.2.

To account for this problem, we propose a network reparametrization which leverages that we know
the linear corruption mechanism, Ct. Specifically, we propose the following parametrization:

sθ(xt|t) =
Cthθ(xt|t)− xt

σ2
t

. (8)

Crucially, the network incorporates the corruption process. The loss becomes:

L(t) =
1

2
E(x0,xt)∼q0(x0)qt(xt|x0)

1

σ4
t

[
||Ct(hθ(xt|t)− x0)||2

]
. (9)

When Ct is a blurring matrix, this loss function is the MSE between the blurred prediction of hθ and
the blurred clean image. Finally, as observed in previous works (Song & Ermon, 2019; Ho et al.,
2020; Karras et al., 2022), the optimization landscape becomes smoother when we are predicting the
residual, instead of the clean image directly. This corresponds to the additional reparametrization:

hθ(xt|t) = φθ(xt|t) + xt, (10)
which leads to the final form of our loss function:

L(t) =
1

2
E(x0,xt)∼q0(x0)qt(xt|x0)

1

σ4
t

[
||Ct (φθ(xt|t)− rt)||2

]
, (11)

where rt is the residual with respect to the clean image, i.e. rt = x0 − xt. Following prior work,
we use a single network conditioned on time t that is optimized for all L(t). Hence, the total loss is:

L = Et∼U [0,1]w(t)

[
E(x0,xt)∼q0(x0)qt(xt|x0)

[
||Ct (φθ(xt|t)− rt)||2

]]
, (12)

where the weights are usually chosen to be 1 or 1/σ2
t (Karras et al., 2022; Kingma et al., 2021).

We call our training objective Soft Score Matching. The name is inspired from “soft filtering” a
term used in photography to denote an image filter that removes fine details (e.g., blur, fading, etc).
As in the Denoising Score Matching, the network is essentially trained to predict the residual to the
clean image, but in our case, the loss is in the filtered space. When there is no filtering matrix, i.e.
Ct = I , we recover the DSM objective used in (Song & Ermon, 2019; 2020; Song et al., 2021b).

Comparison with objectives used in other works. Previous (Anonymous, 2022) or concur-
rent (Bansal et al., 2022; Rissanen et al., 2022; Hoogeboom & Salimans, 2022) works that con-
sider different degradations than Gaussian Diffusion, use the heuristic objective of predicting the
clean image, i.e. they minimize: ||φθ(xt|t)− rt||. This is actually an upper-bound on our loss,
i.e. ||Ct (φθ(xt|t)− rt) || ≤ ||Ct||||φθ(xt|t) − rt||. Since the spectral norm, ||Ct||, is fixed, one
can optimize for the upper-bound by minimizing ||φθ(xt|t) − rt||. Instead, Soft Score Matching
optimizes directly for learning the score. Experimentally, Soft Score Matching outperforms (ours
FID: 1.85, theirs: 5.91), under the exact same setting, this simple baseline (see Experiments).

4

Under review as a conference paper at ICLR 2023

3.2 SAMPLING

Algorithm 1 Naive Sampler
Require: p1,φθ,Ct, σt,∆t
x1 ∼ p1(x)
for t = 1 to 0 with step −∆t do
x̂0 = φθ(xt|t) + xt
ηt ∼ N (0, I)
xt−∆t ← Ct−∆tx̂0 + σt−∆tηt

end for
return x0

Naive Sampler. Once the model is trained, we need a
way to generate samples. The simplest idea is to use
recursively our model, φθ(xt|t), to get estimates of the
clean image, x̂0. To move from corruption level t to cor-
ruption level t−∆t, we feed the image xt to the model to
get an estimate of the clean image, x̂0, and then corrupt
back to level t−∆t. This idea is shown in Algorithm 1.

Momentum Sampler. As we will show in the Exper-
iments section, the naive sampler we presented above
leads to generated images that lack diversity. We propose an simple, yet novel, alternative method
for sampling from the general linear diffusion model presented in Eq. (4). Our method is inspired
by the continuous formulation of diffusion models that is introduced in Song et al. (2021b).

The first step is to find a Markovian stochastic process that is “close” to the non-Markovian corrup-
tion process of Eq. (4). Consider the following SDE:

dxt = ĊtE[x0|xt]dt+

√
d(σ2

t)

dt
dw, (13)

where w is the standard Wiener process. This is a special case of the Itô SDE: dx = f(x, t)dt +

g(t)dw, that appears in Song et al. (2021b), i.e. f(x, t) = ĊtE[x0|xt] and g(t) =

√
d(σ2

t)
dt .

Crucially, E[x0|xt] does not depend on previous values of xt and our SDE is indeed an Ito SDE.

To build some intuition, it is useful to think of the toy setting where the dataset contains one image,
α ∈ Rn. Under this setting, the Markovian corruption described by the SDE of Eq. (13) has the
same marginal distributions as the process of Eq. (4). As we explain in the Appendix (Section E),
in the general case, the SDE (13) introduces an approximation error with respect to the corruption
process of Eq. (4) – the former uses the conditional expectation, E[x0|xt], while the latter corrupts
directly x0. Nevertheless, the approximation error for the considered corruptions seems to be small,
given the experimental success of the derived sampler. Intuitively, this is because for low corruption
levels, the conditional expectation and x0 are close, while for high corruption levels, the distance is
contracted by the multiplication with the corruption matrix Ct (see also Appendix, Section E).

Eq. (13) describes a reversible diffusion process (Anderson, 1982). The reverse is also an Ito SDE:

dxt =

[
ĊtE[x0|xt]−

d(σ2
t)

dt
∇xt log qt(xt)

]
dt+

√
d(σ2

t)

dt
dw̄. (14)

where w̄ is a standard Wiener process when time flows backwards from t = 1 to t = 0. In practice,
to solve Eq. (14), we discretize the SDE (i.e., apply Euler-Maruyama, and approximate the function
derivatives with finite differences). The Euler-Maruyama discretization is given below:

xt−∆t − xt = (Ct−∆t −Ct)E[x0|xt]− (σ2
t−∆t − σ2

t)∇xt log qt(xt) +
√
σ2
t − σ2

t−∆tη, (15)

where η ∼ N(0, I). In this update Equation, there are two unknowns: the conditional expecta-
tion, E[x0|xt], and the score function, ∇xt log qt(xt). We show that these are actually connected,
through the Tweedie’s (Efron, 2011; Robbins, 1956; Stein, 1981) formula. Specifically, it holds that:

CtE[x0|xt] = xt + σ2
t∇xt log qt(xt). (16)

The proof is given for completeness in the Appendix, Lemma A.1. To estimate ∇xt log qt(xt) we
use our model that provably learns the score according to Theorem 3.1. Putting everything together:

∆xt = xt−∆t − xt = (17)

= (Ct−∆t −Ct)
(
φθ(xt|t) + xt

)
−
(
σ2
t−∆t−σ

2
t

σ2
t

)(
Ct

(
φθ(xt|t) + xt

)
− xt

)
+
√
σ2
t − σ2

t−∆tη.
x̂0

Our sampler is summarized in Algorithm 2. Essentially, there is one update for deblurring and one
for denoising. At the core of this update equation, is the prediction of the clean image, x̂0. Once

5

Under review as a conference paper at ICLR 2023

Algorithm 2 Momentum Sampler
Require: p1,φθ,Ct, σt,∆t
x1 ∼ p1(x)
for t = 1 to 0 with step −∆t do
x̂0 = φθ(xt|t) + xt . Coarse prediction of the clean image.
ŷt ← Ctx̂0 . Coarse prediction of filtered image at t.
ηt ∼ N (0, I)
ε̂t ← ŷt − xt . Estimate of noise at t.

zt−∆t ← xt −
(σ2
t−∆t−σ

2
t)

σ2
t

ε̂t +
√
σ2
t − σ2

t−∆tηt . Filtered image at t with noise at t−∆t.
ŷt−∆t ← Ct−∆tx̂0 . Coarse prediction of filtered image at t−∆t.
xt−∆t ← zt−∆t + (ŷt−∆t − ŷt) . Filtered image at t−∆t with noise at t−∆t.

end for
return x0

the clean image is predicted, we blur it back to two different corruption levels, t and t − ∆t. The
deblurring gradient is the residual between the blurred images at levels t −∆t and t. Interestingly,
the denoising update is the same as the one used in typical score-based models (that only use additive
noise). In fact, if there is no blur (Ct = I), our sampler becomes exactly the sampler used for the
Variance Exploding (VE) SDE in Song et al. (2021b).

We call our sampler Momentum Sampler because we can think of it as a generalization of the
update of the Naive Sampler, where there is a momentum term. To understand this better, we look
at the setting where there is no noise. Then, the update rule of the Momentum Sampler is:

∆xt = Ct−∆tx̂0 −Ctx̂0. (18)
As seen, the first term is what the Naive Sampler would use to update the image at level t and the
second term is what the Naive Sampler would use to update the image at level t − ∆t. If these
two directions are aligned, then the gradient ∆xt is small. Hence, there is a notion of momentum,
analogous to how the term is used in classical optimization. In the Appendix, Section B.2, we also
present a DDIM-type (Song et al., 2021a) sampler for which the momentum term also appears.

Probability Flow Momentum Sampler. The update rule of our sampler was derived using the
discretization of the backward SDE of our corruption, given in Eq. (14). Similarly to Song et al.
(2021b), we can also consider the Ordinary Differential Equation (ODE) associated with this SDE:

dxt =

[
ĊtE[x0|xt]−

1

2

d(σ2
t)

dt
∇xt log qt(xt)

]
dt. (19)

Again, we can approximate ĊtE[x0|xt],∇xt log qt(xt) with our trained network and get a deter-
ministic version of the Momentum Sampler, which we call Probability Flow Momentum Sampler,
as in Song et al. (2021b). We detail our derivations in the Appendix, Section B.1.

3.3 SCHEDULING

The last piece of our framework is how to choose the corruption levels, i.e. the scheduling of the
diffusion. For example, for Gaussian Blur, the scheduling decides how much time is spent in the
diffusion in the very blurry, somewhat blurry and almost no blurry regimes. We provide a principled
way of choosing the corruption levels for arbitrary corruption processes.

Let D0 the distribution of real images and D1 be a known distribution that we know how to sample
from, e.g. a Normal Distribution. In the design phase of score-based modeling, the goal is to choose
a set of intermediate distributions, {Dt}, that smoothly transform images from D0 to samples from
the distribution D1. Let Θ = {θ1, θ2, ..., θk, ...} be the space of diffusion parameters, i.e. each θi
corresponds to a distribution Dθi . In the case of blur for example, θi controls how much we blur the
image. Let alsoM : X × X → R be a metric that measures distances between distributions, e.g.
M might be the Wasserstein Distance of distributions with support X .

We construct a weighted graph Gε with the nodes being the distributions and the weights given by:

w
(
Dθi ,Dθj

)
=

{
M
(
Dθi ,Dθj

)
, if M

(
Dθi ,Dθj

)
≤ ε,

∞, otherwise.
(20)

6

Under review as a conference paper at ICLR 2023

For a fixed ε, we choose the distributions that minimize the cost of the path between D0 and D1.
The parameter ε expresses the power of the best neural network we can train to reverse one step of
the diffusion. If ε = ∞, then for any metric M , the shortest path is to go directly from D0 to D1.
However, it is impossible to denoise in one step a super noisy image. Hence, we need to go through
many intermediate steps, which is forced by setting ε to a smaller value. As we increase the number
of the candidate distributions we are getting closer to finding the geodesic between D0 and D1.
However, the computational cost of the method increases since we need to estimate all the pairwise
distances M(Dθi , Dθj). In practice, we use a relatively small number of candidate distributions,
e.g. T = 256 and once the path is found, we do linear interpolation to extend to the continuous case.

4 EXPERIMENTS

We evaluate our method in CelebA-64 and CIFAR-10. We show that by just changing the corrup-
tion mechanism (and using our framework for scheduling, learning and sampling) we significantly
improve the FID score and reduce the sampling time. We use the architecture and the training
hyperparameters from Song et al. (2021b) (full details can be found in the Appendix).

For most of our experiments, we use Gaussian Blur as our primary corruption mechanism. To illus-
trate that our method works more generally, we also show results with masking which is discussed
separately later. Consistent with the description of our method, our deterministic corruptions are
also paired with additive low magnitude noise. This is required by our theoretical results, otherwise
the conditional log-likelihood, log q(xt|x0) would be undefined. We also find the addition of noise
beneficial in practice (see Appendix F.1.1 for ablation studies on the role of noise).
Scheduling. We use the standard geometric scheduling for the noise (Song & Ermon, 2019; 2020;
Song et al., 2021b) and use the methodology described in Section 3.3 to select the blur levels. We
use the Wasserstein distance as the metricM to measure how close are the different distributions. To
clearly illustrate the switch to a different corruption, our diffusion has an initial stage that increases
the noise (with no blur) and then we fix the noise (to a small value, e.g. σ = 0.1) and change (using
our scheduling framework) the amount of blur. Our diffusion spends less than 20% of the total time
in the initial stage that increases the noise. We ablate those choices in Section F.1 of the Appendix.

One important property of our framework is that the scheduling is dataset specific. Intuitively, the
way we corrupt depends on the nature of the data we are modelling. The interested reader can find
the found schedulings for each dataset in Figure 6 of the Appendix.
Results. We train our networks on CelebA-64 and CIFAR-10 using the found schedulings and the
training objective of Eq. (12). We start by showing uncurated samples of our models in Figure 2.

Figure 2: Uncurated samples from our trained models on CIFAR-10 (left) and CelebA (right).

The generated images have high diversity and fidelity in both datasets. We compare the FID (Heusel
et al., 2017) obtained by our method on CelebA with many natural baselines that use any of the VE,
VP or subVP SDEs. Specifically, we compare against DDPM (Ho et al., 2020) that uses the VP SDE,
DDIM (Song et al., 2021a) that uses the same model but with a different sampler, DDPM++ (Kim
et al., 2022b) that is the state-of-the-art model for VP-SDE and the NCSN++ models (Song et al.,
2021b) trained with the VE and subVP-SDEs. For a fair comparison, we only use reported num-
bers in published papers for the baselines and we do not rerun them ourselves. Our model achieves
state-of-the-art FID score, 1.85, in CelebA, outperforming all the other methods. The results are
summarized in Table 1. For CIFAR-10, we obtain FID score 3.86 with our Probability Flow Mo-
mentum Sampler and 3.91 with our Momentum Sampler. We summarize the results in Table 2. Our

7

Under review as a conference paper at ICLR 2023

best FID is competitive with similar samplers to similar methods, e.g. with NCSN++ (VE SDE) with
Reverse SDE sampling. However, it is behind other state-of-the-art models such as LSGM (Vahdat
et al., 2021) and DDPM (Ho et al., 2020). We believe that this performance gap can be decreased in
the future by further research in the area of diffusion models with general corruptions.

Our method is superior in sampling time, for both CIFAR-10 and CelebA. Figure 3 shows how FID
changes based on the Number of Function Evaluations (NFEs). Our method requires significant less
steps to achieve the same or better quality than NCSN++ (VE SDE) (Song et al., 2021b), using the
same architecture and training hyperparameters (FID values taken from (Ma et al., 2022)).

Model FID

DDPM (VP SDE) (Ho et al., 2020) 3.26
DDIM (VP SDE) (Song et al., 2021a) 3.51
DDPM++ (VP SDE) (Kim et al., 2022b) 1.90
NCSN++ (subVP-SDE) (Song et al., 2021b) 3.95
NCSN++ (VE SDE) (Song et al., 2021b) 3.25
Ours (VE SDE + Blur) 1.85

Table 1: FID results on CelebA-64.

200 400 600 800 1000
Number of Function Evaluations (NFEs)

2

8

32

128

512

FI
D

CelebA
ncsn++
ours

Figure 3: FID versus NFEs (CelebA-64).

Ablation Study for Sampling. For all the results we presented so far, we used the Momentum
Sampler that we introduced in Section 3.2 and Algorithm 2. In this section, we ablate the choice
of the sampler. Specifically, we compare with the intuitive Naive Sampler described in Algorithm
1. We show that the choice of the sampler has a dramatic effect in the quality and the diversity of
the generated images. Results are shown in Figure 4. The images from the Naive Sampler seem
repetitive and lack details. This is reflected in the poor FID score. The Momentum Sampler leads to
images with greater variety and detail, dramatically improving FID from 27.82 to 1.85.

(a) Naive Sampler (uncurated). FID: 27.82. (b) Momentum Sampler (uncurated). FID: 1.85.

Figure 4: Effect of sampling method on the quality of the samples. Naive Sampler (4a) gives repetitive images
that lack details. Momentum Sampler (4b) dramatically improves the sampling quality and the FID score.

Training Objective. Concurrent works (Hoogeboom & Salimans, 2022; Bansal et al., 2022) that
also consider different corruption processes have used as their loss a simple objective: given an
input image, they predict the residual to the clean. As explained in Section 3.1, this is equivalent
to optimizing for an upper-bound of the Soft Score Matching objective (which is minimizing the
error to the score-function, see Theorem 3.1). We show that if we use our exact pipeline (model,
scheduling, sampler, training hyperparameters and so on) and we replace our Soft Score matching
Loss with the loss introduced in Bansal et al. (2022), FID score increases from 1.85 to 5.91. This
experiment shows the effectiveness of the Soft Score Matching objective.

Ablation Studies for Scheduling. We perform extensive ablations on the scheduling to understand
the role of noise in the framework and whether our scheme outperforms other natural baselines. The
results are detailed in the Appendix, Section F.1. Our main findings are: i) the Momentum Sampler
works even if noise and blur are changing simultaneously (i.e. for schedulings with non-fixed noise),
ii) lowering the maximum value of noise leads to important performance degradation – for very
small noise the method completely fails and iii) our found scheduling outperforms significantly
(baseline FID: 8.35, ours: 1.85) a natural baseline that sets blur parameters such that MSE between
the corrupted and the clean image decays in the same rate for Gaussian Denoising and Soft Diffusion.

8

Under review as a conference paper at ICLR 2023

Masking Diffusion Models. To show the generality of our framework, we also train models with
(discrete) masking diffusion paired with noise. Figure 1 (top 2 rows) shows the forward and the
(learned) reverse process for blur on the left and masking on the right. We train the model with
our Soft Score Matching objective on CelebA. Unconditional samples from the model trained with
masking can be found in Figure 13 of the Appendix. In Figure 5, we show the predictions of
our two trained models (blur and masking) for the conditional mean, E[x0|xt], at different times
of the diffusion. Soft Score Matching trains the model to make a prediction that matches the real
images in the filtered space. Hence, given masked images the masking model is incentived to predict
right only the observed noisy region. As diffusion time t becomes smaller (cleaner images), the
observed region grows and the model predicts bigger windows. Although it is interesting that we
can train Masking Diffusion models, there are several limitations compared to Blur Diffusion (and
even Gaussian Diffusion). We observe that these models are very slow to sample from: with 1024
sampling steps, FID is 30.92 while with 4096, FID improves to 12.37.

5 RELATED WORK

We showed that by just changing the corruption mechanism, we observe important computational
benefits. Reducing the number of function evaluations for sample generation with diffusion models
is an active area of research. Jolicoeur-Martineau et al. (2021); Liu et al. (2022); Song et al. (2021a)
propose more efficient samplers for diffusion models. Rombach et al. (2022); Daras et al. (2022)
train diffusion models on low-dimensional latent spaces. Xiao et al. (2022) combine diffusion mod-
els with Generative Adversarial Networks (GANs) to allow for bigger denoising steps. Ryu & Ye
(2022); Ho et al. (2022a) generate high-resolution images progressively, from coarse to fine quality.
Salimans & Ho (2022) train progressively a student network that mimics the teacher diffusion model
with fewer sampling steps. We note that all these works are orthogonal to ours and therefore can be
used in combination with our framework for even faster sampling.

On scheduling, there is closely related work by Bao et al. (2022). The authors find a closed form
solution (w.r.t. the score function) for the variance of the reverse SDE for Gaussian Diffusion. Then,
they select a noise scheduling that minimizes the KL along the path from the initial to the final
distribution. In our work, we use Wasserstein distances and consider general corruption processes
for which it is unclear whether such a closed form solution exists. Instead, we estimate the distances
in a data-driven way. This allows us to schedule arbitrary diffusion processes in a principled way.

There is significant recent (Anonymous, 2022) and concurrent work (Rissanen et al., 2022; Bansal
et al., 2022; Hoogeboom & Salimans, 2022) that proposes diffusion with other degradations. These
works have significant differences since they use different loss functions and sampling methods. Soft
Score Matching experimentally outperforms (under the exact same setting) the loss functions used in
the concurrent works (ours FID: 1.85, theirs: 5.91). Our (blur) models obtain state-of-the-art FID for
linear diffusion models on CelebA (FID 1.85). For CIFAR10, we outperform (FID: 3.86) Gaussian
diffusion with Variance Exploding SDE (Song et al., 2021b). Hoogeboom & Salimans (2022) also
use blurring (but with Variance Preserving SDE) to further push the CIFAR-10 performance to FID
3.17. These advancements show that there are multiple diffusions with promising potential.

6 CONCLUSIONS AND FUTURE WORK

We presented a framework to train and sample from diffusion models that reverse general linear cor-
ruptions. We showed that by changing the corruption process, we can get significant sample quality
improvements and computational benefits. This work opens several future research directions. For
example, it is possible to optimize or learn the corruption process for solving a specific type of
inverse problem. It is also worth exploring if mixing different corruptions (blur, noise, masking,
etc.) improves performance. Our work could also be extended to the non-linear case, leveraging the
techniques introduced in (Rombach et al., 2022; Kim et al., 2022a; Wang et al., 2022). Finally, it is
important to understand the role of noise, from both a theoretical and practical standpoint.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Anonymous. Diffusion models in space and time via the discretized heat equation. In Submitted to
ICLR Workshop on Deep Generative Models for Highly Structured Data, 2022. URL https:
//openreview.net/forum?id=BrlGyp4uDbc.

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
natural images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18208–18218, 2022.

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S Li, Hamid Kazemi, Furong Huang, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Cold Diffusion: Inverting arbitrary image transforms
without noise. arXiv preprint arXiv:2208.09392, 2022.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an Analytic Estimate of the
Optimal Reverse Variance in Diffusion Probabilistic Models. arXiv preprint arXiv:2201.06503,
2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
inverse problems using manifold constraints. arXiv preprint arXiv:2206.00941, 2022.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion Models
in Vision: A Survey. arXiv preprint arXiv:2209.04747, 2022.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Giannis Daras, Yuval Dagan, Alexandros G Dimakis, and Constantinos Daskalakis. Score-guided
intermediate layer optimization: Fast langevin mixing for inverse problem. arXiv preprint
arXiv:2206.09104, 2022.

Jacob Deasy, Nikola Simidjievski, and Pietro Liò. Heavy-tailed denoising score matching. arXiv
preprint arXiv:2112.09788, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Associa-
tion, 106(496):1602–1614, 2011.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

10

https://openreview.net/forum?id=BrlGyp4uDbc
https://openreview.net/forum?id=BrlGyp4uDbc
https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf

Under review as a conference paper at ICLR 2023

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Sali-
mans. Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res., 23:
47–1, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv:2204.03458, 2022b.

Emiel Hoogeboom and Tim Salimans. Blurring diffusion models. arXiv preprint arXiv:2209.05557,
2022.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning Rep-
resentations, 2022a.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant dif-
fusion for molecule generation in 3d. In International Conference on Machine Learning, pp.
8867–8887. PMLR, 2022b.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. Robust
compressed sensing mri with deep generative priors. Advances in Neural Information Processing
Systems, 34:14938–14954, 2021.

Daniel D Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tarlow. Beyond in-place corrup-
tion: Insertion and deletion in denoising probabilistic models. arXiv preprint arXiv:2107.07675,
2021.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

Zahra Kadkhodaie and Eero Simoncelli. Stochastic solutions for linear inverse problems using the
prior implicit in a denoiser. Advances in Neural Information Processing Systems, 34:13242–
13254, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. arXiv preprint arXiv:2206.00364, 2022.

Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochas-
tically. Advances in Neural Information Processing Systems, 34:21757–21769, 2021.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. In Advances in Neural Information Processing Systems, 2022.

Dongjun Kim, Byeonghu Na, Se Jung Kwon, Dongsoo Lee, Wanmo Kang, and Il-Chul Moon. Maxi-
mum likelihood training of implicit nonlinear diffusion model. In Advances in Neural Information
Processing Systems, 2022a.

Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft truncation:
A universal training technique of score-based diffusion model for high precision score estimation.
In International Conference on Machine Learning, pp. 11201–11228. PMLR, 2022b.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and Marcelo
Pereyra. Bayesian imaging using plug & play priors: when langevin meets tweedie. SIAM Journal
on Imaging Sciences, 15(2):701–737, 2022.

Sangyun Lee, Hyungjin Chung, Jaehyeon Kim, and Jong Chul Ye. Progressive deblurring of diffu-
sion models for coarse-to-fine image synthesis. arXiv preprint arXiv:2207.11192, 2022.

11

Under review as a conference paper at ICLR 2023

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022.

Hengyuan Ma, Li Zhang, Xiatian Zhu, Jingfeng Zhang, and Jianfeng Feng. Accelerating score-
based generative models for high-resolution image synthesis. arXiv preprint arXiv:2206.04029,
2022.

Dimitra Maoutsa, Sebastian Reich, and Manfred Opper. Interacting particle solutions of fokker–
planck equations through gradient–log–density estimation. Entropy, 22(8):802, 2020.

Eliya Nachmani, Robin San Roman, and Lior Wolf. Denoising diffusion gamma models. arXiv
preprint arXiv:2110.05948, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. 2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, and Timo Gerkmann. Speech
enhancement and dereverberation with diffusion-based generative models. arXiv preprint
arXiv:2208.05830, 2022.

Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissi-
pation. arXiv preprint arXiv:2206.13397, 2022.

H Robbins. An empirical bayes approach to statistics. In Proc. 3rd Berkeley Symp. Math. Statist.
Probab., 1956, volume 1, pp. 157–163, 1956.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Dohoon Ryu and Jong Chul Ye. Pyramidal denoising diffusion probabilistic models. arXiv preprint
arXiv:2208.01864, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022b.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Joan Serrà, Santiago Pascual, Jordi Pons, R Oguz Araz, and Davide Scaini. Universal speech en-
hancement with score-based diffusion. arXiv preprint arXiv:2206.03065, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

12

https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI

Under review as a conference paper at ICLR 2023

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, pp. 1135–1151, 1981.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In
Neural Information Processing Systems (NeurIPS), 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
gan: Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022. URL https://
arxiv.org/abs/2206.02262.

Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G Dimakis, and Pey-
man Milanfar. Deblurring via stochastic refinement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16293–16303, 2022.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. In International Conference on Learning Representations, 2022.

Ling Yang, Zhilong Zhang, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang,
Ming-Hsuan Yang, and Bin Cui. Diffusion models: A comprehensive survey of methods and
applications. arXiv preprint arXiv:2209.00796, 2022.

Mao Ye, Lemeng Wu, and Qiang Liu. First hitting diffusion models. arXiv preprint
arXiv:2209.01170, 2022.

A APPENDIX

A.1 PROOFS

Theorem 3.1. Let q0, qt be two distributions in Rn. Assume that all the conditional distributions,
qt(xt|x0), are supported and differentiable in Rn. Let:

J1(θ) =
1

2
Ext∼qt

[
||sθ(xt)−∇xt log qt(xt)||2

]
, (21)

J2(θ) =
1

2
E(x0,xt)∼q0(x0)qt(xt|x0)

[
||sθ(xt)−∇xt log qt(xt|x0)||2

]
. (22)

Then, there is a universal constant C (that does not depend on θ) such that: J1(θ) = J2(θ) + C.

The proof of this Theorem is following the calculations of Vincent (2011). We observe that as long
as the technical conditions listed are satisfied, the proof holds independent of the corruption type.
We provide the proof below for the shake of completeness.

Proof of Theorem 3.1.

J1(θ) =
1

2
Ext∼qt

[
||sθ(xt)||2 − 2sθ(xt)

T∇xt log qt(xt) + ||∇xt log qt(xt)||2
]

(23)

=
1

2
Ext∼qt

[
||sθ(xt)||2

]
− Ext∼qt

[
sθ(xt)

T∇xt log qt(xt)
]

+ C1. (24)

13

https://arxiv.org/abs/2206.02262
https://arxiv.org/abs/2206.02262

Under review as a conference paper at ICLR 2023

Similarly,

J2(θ) =
1

2
Ext∼qt

[
||sθ(xt)||2

]
− E(x0,xt)∼q0(~x0)qt(xt|x0)

[
sθ(xt)

T∇xt log qt(xt|x0)
]

+ C2.

(25)

It suffices to show that:

Ext∼qt
[
sθ(xt)

T∇xt log qt(xt)
]

= E(x0,xt)∼q0(x0)qt(xt|x0)

[
sθ(xt)

T∇xt log qt(xt|x0)
]
. (26)

We start with the second term.

E(x0,xt)∼q0(x0)qt(xt|x0)

[
sθ(xt)

T∇xt log qt(xt|x0)
]

=

∫
x0

∫
xt

q0(x0)qt(xt|x0)sθ(xt)
T∇xt log qt(xt|x0)dxtdx0 (27)

=

∫
x0

∫
xt

sTθ (xt) (q0(x0)qt(xt|x0)∇xt log qt(xt|x0)) dxtdx0 (28)

=

∫
x0

∫
xt

sTθ (xt)

(
q0(x0)qt(xt|x0)

1

qt(xt|x0)
∇xtqt(xt|x0)

)
dxtdx0 (29)

=

∫
x0

∫
xt

sTθ (xt) (q0(x0)∇xtqt(xt|x0)) dxtdx0 (30)

=

∫
xt

∫
x0

sTθ (xt) (q0(x0)∇xtqt(xt|x0)) dx0dxt (31)

=

∫
xt

sTθ (xt)

(∫
x0

q0(x0)∇xtqt(xt|x0)dx0

)
dxt (32)

=

∫
xt

sTθ (xt)

(∫
x0

∇xt (q0(x0)qt(xt|x0)) dx0

)
dxt (33)

=

∫
xt

sTθ (xt)

(
∇xt

(∫
x0

q0(x0)qt(xt|x0)dx0

))
dxt (34)

=

∫
xt

sTθ (xt)∇xtqt(xt)dxt (35)

=

∫
xt

qt(xt)s
T
θ (xt)∇xt log qt(xt)dxt (36)

= Ext∼qt(xt)
[
sTθ (xt)∇xt log qt(xt)

]
. (37)

Lemma A.1 (Tweedie’s formula). Consider the corruption process: xt = Ctx0 + σtη, where
η ∼ N (0, I). Denote with qt(xt) the density of xt and assume that log qt(xt) is differentiable
everywhere. Then, for the Minimum Mean-Square Estimation (MMSE) of x0 given xt, it holds that:

CtE[x0|xt] = xt + σ2
t∇xt log qt(xt). (38)

Proof.

qt(xt) =

∫
qt(xt|x0)q0(x0)dx0 ⇒ (39)

∇xtqt(xt) =

∫
q0(x0)∇xtqt(xt|x0)dx0 (40)

=

∫
q0(x0)qt(xt|x0)∇xt log qt(xt|x0)dx0. (41)

14

Under review as a conference paper at ICLR 2023

We know that: qt(xt|x0) = N (xt;µ = Ctx0,Σ = σ2
t I). Hence,

∇xtqt(xt) =

∫
q0(x0)qt(xt|x0)

Ctx0 − xt
σ2
t

dx0 (42)

=
1

σ2
t

(
Ct

∫
q0(x0)qt(xt|x0)x0dx0 − xt

∫
q0(x0)qt(xt|x0)dx0

)
(43)

=
1

σ2
t

(
Ct

∫
q0(x0|xt)qt(xt)x0dx0 − xtqt(xt)

)
⇒ (44)

∇xtqt(xt)

qt(xt)
=

1

σ2
t

(CtE[x0|xt]− xt)⇔ (45)

∇xt log qt(xt) =
1

σ2
t

(CtE[x0|xt]− xt) . (46)

B DETERMINISTIC SAMPLERS

B.1 PROBABILITY FLOW ODE

In the main text, we derived our Momentum Sampler by analyzing the Backward SDE associated
with our corruption process. Inspired by the works of Song et al. (2021b); Maoutsa et al. (2020),
we also consider deterministic sampling that is derived by looking at the ODE that describes our
diffusion. Particularly, the ODE:

dxt =

[
f(xt, t)−

1

2
g2(t)∇xt log qt(xt)

]
dt, (47)

has the same marginal distributions (Anderson, 1982; Maoutsa et al., 2020; Song et al., 2021b; Chen
et al., 2018) with the Backward SDE:

dxt =
[
f(xt, t)− g2(t)∇xt log qt(xt)

]
dt+ g(t)dw̄. (48)

For our case, Eq. (47) becomes:

dxt =

[
ĊtE[x0|xt]−

1

2

d(σ2
t)

dt
∇xt log qt(xt)

]
dt. (49)

The first-order discretization of this ODE is given below:

xt−∆t − xt = (Ct−∆t −Ct)E[x0|xt]−
(σ2
t−∆t − σ2

t)

2
∇xt log qt(xt). (50)

We estimate CtE[x0|xt] and ∇xt log qt(xt) with our neural network and we get the Neural
ODE (Chen et al., 2018):

∆xt = xt−∆t − xt = (51)

= (Ct−∆t −Ct)
(
φθ(xt|t) + xt

)
− 1

2

(
σ2
t−∆t − σ2

t

σ2
t

)(
Ct

(
φθ(xt|t) + xt

)
− xt

)
,

which is the update rule of our Probability Flow ODE Momentum Sampler.

We note that our simple discretization is not the only way to solve the ODE of Eq. (47). We can use
more sophisticated, e.g. see Dormand & Prince (1980).

B.2 DDIM

A popular sampling scheme is the DDIM method, introduced in Song et al. (2021a). The idea is to
use the network to predict x̂0 from xt and then use the forward model to move from x̂0 to xt−∆t.

15

Under review as a conference paper at ICLR 2023

This is same with the Naive Sampler we introduced in the main paper but the difference in DDIM is
that part of the stochasticity is replaced by “simulated” noise. The main trick to simulate the noise
is to observe that once we know x̂0 and xt, we can once again use the forward model to estimate the
noise. We can use the same idea for Soft Diffusion sampling. Specifically, we propose the following
DDIM-type sampler:

xt−∆t = Ct−∆t hθ(xt, t)︸ ︷︷ ︸
x̂0

+
√
σ2
t−∆t − k2

xt −Cthθ(xt, t)
σt︸ ︷︷ ︸

εθ(xt,t): simulated noise

+k2η. (52)

This Equation is very similar to Equation 12, page 5 in the DDIM (Song et al., 2021a) paper. The
parameter k controls the amount of stochasticity, i.e. how much of the noise is simulated. For
k = 0, we get a deterministic sampler. Experiments with the deterministic DDIM-type sampler can
be found in Section F.3.

Figure 5: Conditional means E[x0|xt] predictions of our blur/masking models, at different diffusion times.

C SCHEDULINGS

We use our framework to select the blur levels in an unsupervised way. For solving the opti-
mal transport problem, we use the Sinkhorn Distances by Cuturi (2013) that has been extensively
used for image experiments. We use the implementation of this paper from the software package
ott-jax (Cuturi et al., 2022). We experimented with both using the whole dataset and using
slices. As expected, dataset slices lead to higher estimation errors, but we observe that the found
scheduling doesn’t change much, i.e. the estimation error increases approximately uniformly for all
the pairs for reasonably sized dataset slices. For the schedules found in the paper, we used slices of
10% of the dataset. We start with 256 different blur levels and we tune ε such that the shortest path
contains 32 distributions. We then use linear interpolation to extend to the continuous case. Full
experimental details can be found in the Appendix. These choices seem to work well in practice,
but further optimization could be made in future work.

Figure 6 shows the found schedulings for the CelebA and the CIFAR-10 datasets. Notice that the
scheduling is slightly different between the two datasets – the diffusion depends on the nature of the
data we are trying to model. We underline that the parameters for the blur are selected without any
supervision, by solving the optimization problem we defined in Section 3.3.

0.0 0.2 0.4 0.6 0.8 1.0
diffusion time

0.02

0.04

0.06

0.08

0.10

No
ise

(
)

CelebA (64x64)
CIFAR10

(a) Noise Scheduling

0.0 0.2 0.4 0.6 0.8 1.0
diffusion time

0

10

20

30

40

50

60

Ga
us

sia
nB

lu
r(

)

CelebA (64x64)
CIFAR10

(b) Blur Scheduling CelebA

Figure 6: Diffusion scheduling for CelebA-64 and CIFAR-10. The blur corruption levels are se-
lected without supervision to minimize the sum of the Wasserstein distances between consecutive
distributions. Notice that the scheduling is slightly different between the two datasets – the diffusion
depends on the nature of the data we are trying to model. The support of the Gaussian blur kernel
was set to 65× 65 and 161× 161 for CIFAR-10 and CelebA-64 datasets respectively.

16

Under review as a conference paper at ICLR 2023

D TRAINING DETAILS

Hyperparameters. For our trainings, we use Adam optimizer with learning rate 2e−4, β1 = 0.9,
β2 = 0.999, ε = 1e − 8. We additionally use gradient clipping for gradient norms bigger than 1.
For the learning rate scheduling, we use 5000 steps of linear warmup. We use batch size 128 and we
train for 1− 2M iterations (based on observed FID performance).

Blur parameters. For the blurring operator, we use Gaussian blur with fixed kernel size and we
vary the variance of the kernel. For CelebA-64, we keep the kernel half size fixed to 80 and we
vary the standard deviation from 0.01 to 23. For CIFAR-10, we keep the kernel half size fixed to
32 and we vary the standard deviation from 0.01 to 18. For both datasets, we implement blur with
zero-padding. We chose the final blur level such that the final distribution is easy to sample from. In
both cases, the final distribution becomes noise on top of (almost) a single color.

Final distribution For the blurring models, the final distribution is the distribution of very blurry
images with additive Gaussian noise (we first blur, then add noise). At the limit, each blurry image
becomes a constant image having a single color (i.e., the average color of the image). Hence, to
sample from this final distribution, we first have to sample a single color (from the distribution
of average colors in the dataset), generate a constant image having that color, and then add little
noise to the constant image. The distribution of average colors for all the considered datasets is
very simple and we model it with a Gaussian distribution. Specifically, we fit a three-dimensional
gaussian distribution (one dimension for each color channel, diagonal covariance) to the average
color of the dataset. To begin the inference process, we sample one color from this distribution, we
create an image where every pixel has this color and then we add Gaussian noise.

Architecture. We use the architecture of Song et al. (2021b) without any changes.

Training Objective For all our experiments, we scale the loss at level t with w(t) = 1/σ2
t as in

Song & Ermon (2019; 2020); Song et al. (2021b).

Compute and Training Time We train our models on 16 v2-TPUs. Our blur models on CelebA
had an average speed of 6 iterations per second. For CIFAR-10, the average speed was 11 iterations
per second We note that there is no overhead over the NCSN++ paper other than projecting to the
measurements space, which can be done very efficiently for both blur and masking.

Evaluation We keep one checkpoint every 10000 steps and we keep the best model among the
kept checkpoints based on the obtained FID score. We use 50000 samples to evaluate the FID, as
it is typically done in prior work. Regarding the number of steps, we selected the best FID among
models evaluated with steps ranging from 200 to 1000 with a step size of 80 (10 experiments total).

The Momentum Sampler seems to have a U-shaped performance plot, i.e. there is a sweet spot in
the number of function evaluations that gives the lowest FID score. We observed this in both CelebA
and CIFAR-10.

However, this is not unique to our sampler – the general belief that sample quality improves with
the number of steps has been called into question by recent works. Specifically, Karras et. al. do
an extensive evaluation of the role of NFEs for different samplers and they find that many stochastic
samplers behave similarly to our Momentum Sampler. For example, we refer the interested reader to
Figure 4, page 8 of the paper Elucidating the Design Space of Diffusion-Based Generative Models
that clearly shows that for many stochastic samplers performance slightly deteriorates after a certain
threshold of function evaluations and the optimum is at some intermediate point. We emphasize,
however, that the deterioration we observed in CelebA is bigger compared to other stochastic sam-
plers and therefore selecting the correct number of NFEs is important for our method. Consistent
with the observations by Karras et al. (2022) (e.g. Figure 2, page 4), for deterministic samplers the
performance flattens (DDIM) or deteriorates slightly (Probability Flow Momentum Sampler) in the
regime of very high Number of Function Evaluations (NFEs).

We also want to note that selecting the optimal number of function evaluations for reporting FID is
not uncommon in the literature. It is done in both the landmark papers Elucidating the Design Space

17

Under review as a conference paper at ICLR 2023

of Diffusion-Based Generative Models (Karras et al., 2022) and Score-Based Generative Modeling
through Stochastic Differential Equations (Song et al., 2021b).

E LIMITATIONS AND THINGS THAT DID NOT WORK

Our method has several limitations. First, it requires the diffusion operator to be known. This is not
always the case, e.g. see Peebles et al. (2022) where diffusion is applied to checkpoints of different
models. Another limitation is that our framework does not offer any guidance on which diffusion
operators are actually more or less useful for learning the data distribution. Particularly, we already
showed that blurring is a much more powerful diffusion mechanism than masking, in the sense that
it leads to better FID scores and faster generations. It is yet to be seen whether blurring is going to
be outperformed by some other corruption method. Our method also only concerns linear diffusions
(however, the extension to non-linear is relatively straightforward).

On the theoretical side, our method has also some shortcomings. First, it only intuitively explains
why the reparametrization to the Denoising Score Matching is needed. Second, since our method
is based on the Denoising Score Matching, it only works when the conditional log-likelihood is
defined everywhere. There are distributions for which such condition is not satisfied, but still, can
be learned (to some extent) with heuristic methods (Bansal et al., 2022).

Another limitation of our work is the derivation of the Momentum Sampler and its sampling distri-
bution. Consider the forward process:

dxt = ĊtEx0∼p0
[x0|xt] + g(t)dw (53)

This process is described by an Ito SDE, i.e. an SDE of the form:

dxt = f(xt, t)dt+ g(t)dw, (54)

where f(xt, t) = ĊtEx0∼p0 [x0|xt].
The sampling process we write in the main body of the paper (that leads to the Momentum Sam-
pler) is exactly the reverse of this forward process, where Ex0∼p0

[x0|xt] is approximated by the
neural network. Hence, the Fokker-Planck equations hold and we are guaranteed that (as long as
the approximation of the conditional expectation and the approximation of the score function are
accurate), we are sampling from the correct distribution (Song et al., 2021b).

During training, we cannot use this forward process because we do not have the conditional expec-
tation. Instead, we replace the conditional expectation of x0 with x0 itself. The mismatch between
x0and the conditional expectation of x0 leads to an additional approximation error in the learning of
the score. For small t, the conditional expectation will be very close to x0 and hence this approxima-
tion error is small. For large values of t, the distance between the conditional expectation and x0 is
bigger. However, we are multiplying with the corruption matrix Ct, which is removing information
as t grows. Therefore the distance of the corrupted conditional expectation and the corrupted x0 is
also expected to be small. Our training process learns the correct score for the corruption process
applied directly to x0. Our sampler, however, assumes that we have learned the score using the
conditional expectation of x0. We intuitively expect that these two are not far away (for all t) as we
explained. However, precisely characterizing this mismatch remains open.

On the practical side, we believe that our objective, Soft Score Matching, sometimes leads to slower
sampling compared to the simpler objective of predicting the clean image. For example, for masking,
since the model is only penalized in the observed region, there is no incentive in expanding this
region. Hence, to achieve smooth transition between different masking levels we need to run many
steps.

Experimentally, we tried using our framework with even less stochasticity, but it did not work, e.g.
see 7. It would be interesting to understand better what is causing the failure and also what is the
proper amount of randomness required at each diffusion step.

18

Under review as a conference paper at ICLR 2023

(a) Images generated with model trained with
σmax = 0.025

(b) Images generated with model trained with
σmax = 0.05

Figure 7: Ablation study for the magnitude of noise.

F ADDITIONAL RESULTS

F.1 SCHEDULING ABLATIONS

F.1.1 ABLATION STUDIES FOR NOISE

In the experiments of the main paper, our diffusion involves an initial stage where only noise is
added. Then noise is fixed and the images are getting corrupted by the deterministic operator (e.g.
blur or masking). In this section, we show two ablations regarding the noise.

Magnitude of noise. In this ablation study, we still keep the noise fixed for a significant part of the
diffusion, but we ablate the magnitude of the noise. Specifically, we attempt to study to what extent
noise is needed in order to learn to reverse corruption processes with Soft Score Matching. We train
two additional models on CelebA-64 where we attempt to decrease the maximum noise to a lower
value. The corruptions for both models involves an initial stage where noise grows geometrically rate
from the initial value (0.01) to the maximum value. Then, all the models keep the noise fixed at their
maximum value for the rest of the diffusion. We use the following maximum values: i) σmax = 0.1
(model used in the paper), ii) σmax = 0.05, and iii) σmax = 0.025. Unconditional samples from
the two ablation models are shown in Figure 7. As shown, both models fail to produce realistic
samples. The quality of samples deteriorates significantly as the noise decreases – the samples from
the ablation models are significantly worse than the ones produced by our state-of-the-art model (see
Figure 2 (right)). We want to underline that this is not a conclusive study. It might be the case that
with different hyperparameters one can make Soft Score Matching work with lower values of noise.
For example, we might need to tune the weights w(t) since for the ablations (and the state-of-the-art
model), we use w(t) = 1/σ2

t (as in Song & Ermon (2019; 2020); Song et al. (2021b)) which might
be causing instabilities for low values of noise (Nichol & Dhariwal, 2021).

Noise changing throughout the diffusion. We also train a model where noise and blur are chang-
ing simultaneously throughout the diffusion. This is a sanity check to verify that our framework
(learning and sampling) still works when the model needs to deblur and denoise at the same time.
For the noise scheduling, we simply use geometric scheduling from 0.1 to 0.01. We keep the blur
parameters the same with the state-of-the-art model, i.e. we use the blur parameters shown in Fig-
ure 6. This model achieves a competitive FID score, 4.31. This score could probably be further
improved (by jointly selecting the blur and the noise scheduling with our framework), but this is
beyond the scope of this ablation.

F.1.2 ABLATION STUDY FOR BLUR

For all our experiments so far, we chose the blur corruption levels based on the scheduling method
we described in Section 3.3. We show the benefits of our approach by comparing to a natural base-
line for selecting the diffusion levels. For this natural baseline, we use the scheduling of Variance
Exploding (VE) as guidance. Specifically, we choose the blur parameters such that the MSE between
the corrupted image and the clean image decays with the same rate for the Gaussian Denoising Dif-
fusion and our Soft Diffusion (blur and low magnitude noise). Formally, let {q′t}1t=0 be the (noisy)
distributions used in Song et al. (2021b) for the Variance Exploding (VE) SDE and let {qt}1t=0 the
blurry (and noisy) distributions we want to select. At level t, we choose the blur parameters such

19

Under review as a conference paper at ICLR 2023

that:
E(x0,xt)∼qt(xt|x0)q0(x0)

[
||x0 − xt||2

]
E(x0,x1)∼q1(x1|x0)q0(x0) [||x0 − x1||2]

=
E(x0,xt)∼q′t(xt|x0)q0(x0)

[
||x0 − xt||2

]
E(x0,x1)∼q′1(x1|x0)q0(x0) [||x0 − x1||2]

. (55)

We retrain on CelebA using this natural baseline method for selecting the diffusion parameters. For
a fair comparison, we keep the architecture and all the hyperparameters the same and we only ablate
the scheduling of the blur. We measure FID for both the trained model with the baseline scheduling
and we observe it increases from 1.85 to 8.35. Apart from this large deterioration in performance,
the baseline model obtains its best FID score after 2000 steps, while with our scheduling we only
need 280 steps to obtain the best FID. This experiment shows that the choice of scheduling is really
important for the model performance but for also the computational requirements of the sampling.

F.2 CIFAR-10: ADDITIONAL RESULTS

We report how FID is changing based on the Number of Function Evaluations for CIFAR-10 with
Momentum Sampling in Figure 8. The baseline model we are comparing against is NCSN++ trained
with VE SDE, since our model also uses a VE SDE. For the baseline, we use the Reverse SDE
sampler with Euler–Maruyama discretization (similar to our Momentum Sampler). The numbers
are taken directly from Ma et al. (2022).

100 110 120 130 140 150 160
Number of Function Evaluations (NFEs)

2

4

8

16

32

FI
D

CIFAR10
ncsn++
ours

Figure 8: Demonstration of how FID changes based on Number of Function Evaluations (NFEs)
for CIFAR-10 for our (blur) model on CIFAR-10 with momentum sampling. Our model offers
significant performance benefits for low number of function evaluations.

We also show visual samples from our blurring model, NCSN++ (VE SDE) and DDPM++ (VP
SDE) in Figure 9. For all the models we fix the NFEs to 200 and we show samples generated with
the Euler-Maruyama discretization of the associated reverse ODE. As shown, the baseline models
generate samples with artifacts for low NFEs while our model leads to images of superior visual
quality. We note that different samplers can be used to accelerate sampling for all models, e.g.
samplers from Karras et al. (2022) or DDIM-type samplers (Song et al., 2021a), as we show in
Section B.2.

We also report best FID performance for different samplers for ours and competing methods in Table
2. Our best FID is competitive with similar samplers to similar methods, e.g. with NCSN++ trained
with VE SDE and using the Reverse SDE sampler. However, it is significantly behind the state-of-
the-art LSGM (Vahdat et al., 2021) model. We believe that this performance gap can be decreased
in the future by further research in the area of diffusion models with general corruptions.

F.3 SAMPLING ABLATIONS

We perform several ablations regarding the sampling method, additional to the results mentioned in
the paper.

DDIM We experiment with the deterministic DDIM-type sampler and we report our results in the
Table 3 for CelebA-64. Our DDIM-type sampler is very effective when the number of function eval-
uations is very low – it achieves FID 5.08 with only 50 steps while in comparison, the Momentum

20

Under review as a conference paper at ICLR 2023

(a) Ours (VE SDE) (b) NCSN++ (VE SDE) (c) DDPM++ (VP SDE)

Figure 9: Visual comparison of samples from our model and baselines for 200 NFEs. For all the
models, we are using the Euler-Maruyama discretization of the associated reverse ODE to generate
the samples. As shown, our model leads to superior visual quality.

Method FID

Ours (VE SDE) Naive Sampler 40.07
Ours (VE SDE) Momentum Sampler 3.91

Ours (VE SDE) Probability Flow Momentum Sampler 3.86
NCSN++ (VE SDE) Reverse SDE 4.79

NCSN++ (VE SDE) Probability Flow 10.54
DDPM (VP SDE) 3.17

LSGM (Vahdat et al., 2021) 2.10

Table 2: FID Results on CIFAR-10 for different samplers. For each of our samplers, we report the
best result obtained among 10 runs with different NFEs, ranging from 200 to 1000 with a step size
of 80. The results for competing methods are taken directly from the papers.

Sampler, achieves FID 30.31 with 50 steps. The efficiency of DDIM is consistent with what has
been observed in (Song et al., 2021a; Karras et al., 2022). DDIM’s performance is also not getting
worse as we increase the number of steps. Instead, the performance of the Momentum Sampler, as
observed in Figure 3 has a U-shape: there is an intermediate optimal number of steps to achieve
the best FID score. We believe this could be related to the fact that Momentum Sampler is not
deterministic. Specifically, in Karras et al. (2022) it is observed that for deterministic samplers per-
formance usually flattens after a point (e.g. see Figure 2, page 4) while for some stochastic samplers
performance goes again up after a certain number of function evaluations (e.g. see Figure 4, page
8).

NFEs FID

25 10.54
50 5.08

100 3.40
200 2.92
300 2.83
600 2.80
1000 2.79

Table 3: Results of DDIM (Song et al., 2021a) sampler for CelebA-64 dataset using our blurring
model. The DDIM sampler is particularly effective for low number of function evaluations and
maintains its performance as we increase the number of steps.

Probability Flow Momentum Sampler For CelebA-64, we reported results only for the (stochas-
tic) Momentum Sampler in the main body of the paper (see Figure 3). We report here results for
the deterministic counterpart of this sampler, Probability Flow Momentum Sampler, summarized
in Table 4. The deterministic version of the Momentum Sampler seems to be performing slightly

21

Under review as a conference paper at ICLR 2023

worse than the stochastic version – FID jumps from 1.85 to 2.14. However, this sampler, similar to
the DDIM-type sampler, maintains more performance as we increase the number of steps. This is
an important advantage for the deterministic sampling methods since practitioners need to put less
effort into tuning the NFEs to get the best result.

NFE FID

50 13.77
100 3.27
200 2.14
300 2.21
600 2.59
1000 2.49

Table 4: Results of the Probability Flow Momentum Sampler for Celeba-64 for our blurring models.

Predictor-Corrector Samplers Finally, we perform experiments with Predictor-Corrector sam-
plers, as proposed in Song et al. (2021b). The idea is that we are alternating at each diffusion step
between two different samplers. We experiment with a DDIM Predictor and a Probability Flow Mo-
mentum Sampler corrector. The results are summarized in Table 5. The Predictor-Corrector sampler
maintains some of the benefits of both samplers. Namely, for low number of function evaluations
it has better performance than the Probability Flow Momentum Sampler (benefit coming from the
DDIM sampler) and for higher number of function evaluations performance is better than the DDIM
sampler (benefit coming from the Probability Flow Momentum Sampler). There is a spot, at 100
NFEs, where the Predictor-Corrector sampler is better than both the Predictor and the Corrector.
We encourage future research in identifying even better pairs of Predictor-Correctors that might
outperform both the Predictor and the Corrector in some regime.

NFE FID

25 10.56
50 5.21

100 3.21
200 2.86
300 2.71
600 2.73
1000 2.73

Table 5: Results of a Predictor-Corrector (Song et al., 2021b) sampler for Celeba-64 for our blurring
models. The Predictor is the DDIM-type sampler and the corrector our Probability Flow Momentum
Sampler.

F.4 NEAREST SAMPLES IN TRAINING DATA

To verify that our model does not simply memorize the training dataset, we present generated images
from our model and their nearest neighbor (L2 pixel distance) from the dataset. The results are
shown in Figure 10.

22

Under review as a conference paper at ICLR 2023

(a) Generated images.

(b) Nearest neighbors from dataset.

Figure 10: Generated images and nearest neighbors (L2 pixel distance) from the training dataset. As
shown, the model produces new samples and does not simply memorize the training dataset.

F.5 UNCURATED SAMPLES

Figures 11 and 12 show more uncurated samples from our trained models on CelebA and CIFAR-10.

23

Under review as a conference paper at ICLR 2023

Figure 11: More uncurated samples from our blur model trained on CelebA. These samples are
obtained using our Momentum Sampler with 280 NFEs.

24

Under review as a conference paper at ICLR 2023

Figure 12: More uncurated samples from our blur model trained on CIFAR-10. These samples are
obtained using the Probabilistic Flow Momentum Sampler with 200 NFEs.

25

Under review as a conference paper at ICLR 2023

Figure 13: Uncurated samples from our masking model trained on CelebA. These samples are
obtained using the Probabilistic Flow Momentum Sampler with 1024 NFEs.

26

Under review as a conference paper at ICLR 2023

G IMPLEMENTATION OF DEGRADATION OPERATORS

Blurring. The blurring operator is implemented as a convolution with a Gaussian kernel.
The Gaussian kernel is truncated to have fixed support size (161 × 161 pixels), and normal-
ized to have area one. The standard deviation of the Gaussian kernel sigma blur (param-
eter controlling the strength of the blur) is computed using the optimal transport optimization
for the scheduling. The obtained schedule for the parameter sigma blur in CIFAR10 can
be accessed from the following anonymous url: https://drive.google.com/file/d/
192kdbj9oq1EGCm7KY52QZj--x0g5Elgs.

def generate_gaussian_kernel(sigma_blur, half_size=80):
v = np.arange(-half_size, half_size + 1)
x, y = np.meshgrid(v, v)
k = np.exp(-(x**2 + y**2) / (2*sigma_blur**2))
k = k / np.sum(k)
return k

Masking. The masking operator is implemented using a centered binary mask that sets to
zero some percentage of pixels in the image. The scheduling with the masking operators can
be accessed from the following anonymous url: https://drive.google.com/file/d/
1YjzYKgivhvbHOzTABOYDiUoHbzq60Ozy.

Noise. The noise degradation is implemented by adding to the blurred or masked image
white Gaussian noise having standard deviation sigma noise. The scheduling of the noise can
be accessed from the following anonymous url: https://drive.google.com/file/d/
17UwFlJyp4euQeKVAVmRRHg8HL52anapf.

27

https://drive.google.com/file/d/192kdbj9oq1EGCm7KY52QZj--x0g5Elgs
https://drive.google.com/file/d/192kdbj9oq1EGCm7KY52QZj--x0g5Elgs
https://drive.google.com/file/d/1YjzYKgivhvbHOzTABOYDiUoHbzq60Ozy
https://drive.google.com/file/d/1YjzYKgivhvbHOzTABOYDiUoHbzq60Ozy
https://drive.google.com/file/d/17UwFlJyp4euQeKVAVmRRHg8HL52anapf
https://drive.google.com/file/d/17UwFlJyp4euQeKVAVmRRHg8HL52anapf

	Introduction
	Background
	Method
	Training Objective
	Sampling
	Scheduling

	Experiments
	Related Work
	Conclusions and Future Work
	Appendix
	Proofs

	Deterministic Samplers
	Probability Flow ODE
	DDIM

	Schedulings
	Training Details
	Limitations and things that did not work
	Additional Results
	Scheduling Ablations
	Ablation Studies for noise
	Ablation Study for Blur

	CIFAR-10: Additional Results
	Sampling Ablations
	Nearest Samples in Training Data
	Uncurated samples

	Implementation of Degradation Operators

