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Abstract

Relational triplet extraction (RTE) is a crucial
task in information extraction and has aroused
extensive attention. Although advanced stud-
ies on RTE have achieved great progress, they
are still insufficient for supporting practical ap-
plications, such as dialogue system and infor-
mation retrieval. In this paper, we focus on
relational triplet extraction in dialogue scenar-
ios and introduce a new task named dialogue
relational triplet extraction (DRTE). Instead of
being treated as static texts like sentences or
documents, dialogues should be regarded as
dynamic ones generated with the progress of
conversations. Thus, it imposes three impor-
tant challenges, including extracting triplets in
real-time with incomplete dialogue context, dis-
covering cross-utterance relational triplets, and
perceiving the transition of dialogue topics. To
tackle these challenges, we propose a Dynamic
Entity Memory Network (DEMN). Specifically,
the key of our approach is an attentional con-
text encoder and an entity memory network.
The attentional context encoder learns dialogue
semantics utterance by utterance and dynam-
ically captures salient contexts for each utter-
ance. The entity memory network is devised
to store the entities extracted from previous ut-
terances and for cross-utterance triplets extrac-
tion. Meanwhile, it also tracks topic transitions
in real-time and forgets the semantics of triv-
ial entities. To verify the effectiveness of our
model, we manually build three datasets based
on KdConv benchmark. Extensive experimen-
tal results demonstrate that our model achieves
state-of-the-art performances.

1 Introduction

Relational triplet extraction (RTE) task is an impor-
tant task in natural language processing field, which
aims to identify entities and their relations from
unstructure text and orginize them in the form of
(subject, relation, object). As a crucial task benefi-
cial to many applications such as automatic knowl-
edge base construction and question answering, it

Dialogue
Utterance 1: Have you seen the film Se7en?
Utterance 2: Yes, I have. It was released in 1995.

Utterance 9: Who is the director of this film?

Utterance 10: David finch. Have you heard of him?

Utterance 11: Yes, he is an American. Do you know where he was born?
Utterance 12: He was born in Denver, Colorado, USA.

Utterance 17: Do you know what his representative works are?

Utterance 18: There are Fight Club, Gone Girl and Se7en. Have you seen
these films?

Utterance 19: I’ve seen Se7en. Which actor do you like best in this film?

Utterance 20: I like Kevin Spacey. Do you know where he was born?

Topic Transition

( Se7en )—{David Fincher)—'( Se7en )—{ Kevin Spacey )

Relational Triplets
Subject Relation Object
Se7en Release Date 1995
Se7en Director David Fincher
David Fincher ~ Nationality USA
David Fincher  Birth Place Denver, Colorado, USA

David Fincher ~ Masterpiece Se7en

Figure 1: An example of Dialogue Relational Triplet
Extraction (DRTE) task. The entities related to different
topics are marked in red.

has attracted widespread attention. Existing studies
deal with this task with different paradigms, includ-
ing table filling (Miwa and Sasaki, 2014; Bekoulis
et al., 2018), sequence labeling (Zheng et al., 2017;
Wei et al., 2020; Liu et al., 2020), sequence gen-
eration (Zeng et al., 2018b; Sui et al., 2020; Zeng
et al., 2020), and so on.

Although these studies have achieved great
progress, they generally focus on constructing stat-
ics knowledge bases by extracting triplets from sen-
tences or documents such as news and Wikipedia
articles, while lacking attention to dialogues. To
fill this blank, recent studies (Yu et al., 2020; Chen
et al., 2020; Xue et al., 2021) explore dialogue rela-
tion extraction task and propose graph-based mod-
els to deal with it. However, they mainly extract the
relations between pre-defined speakers and speaker-
related arguments rather than general knowledges
such as (Se7en, Director, David Fincher) shown in



Figure 1. Besides, these models still treat dialogues
as flat long texts and neglect the dynamics of them.

To solve the above problems, we introduce a
novel task named dialogue relational triplets extrac-
tion (DRTE) task, which aims to dynamically dis-
cover general knowledge triplets with the progress
of dialogues. The dynamic characteristic of dia-
logue imposes three pivotal challenges for DRTE
task. First, utterances of each dialogue are gen-
erated in real-time, hence posing a key challenge
on how to accurately identify entities and relations
with incomplete dialogue, especially when partial
components of triplets have not yet appeared. Sec-
ond, utterances are usually short and casual, which
leads to plenty of cross-utterance triplets. And
some triplets even span more than 10 utterances,
such as (Se7en, Director, David Fincher) in Figure
1. Therefore, how to properly pair the long-distance
entities and predict their relation type is an impor-
tant challenge. Third, dialogues generally have
more complex topic transitions, how to adapt to
this unique logical structure is a key challenge for
discovering triplets.

Facing the aforementioned challenges, we pro-
pose a Dynamic Entity Memory Network (DEMN).
Specifically, we first devise an attentional context
encoder to learn the semantics of dialogue utter-
ance by utterance. When our model receives a
real-time utterance, this mechanism first utilizes
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) to capture
its local semantics, and then adopts the attention
mechanism to learn its contextual semantics. Fur-
thermore, we utilize utterance-level LSTM to track
the latent topic transition, and devise an entity mem-
ory network with forgetting gate for discovering
the long-distance triplets without disturbances from
entities unrelated to the current topic. To verify the
effectiveness of our model, we make a compre-
hensive and comparative analysis on three datasets,
and the results demonstrate that our model achieves
state-of-the-art performances. In summary, our con-
tributions are three-fold:

* We introduce dialogue relational triplet extrac-
tion (DRTE) task, which is valuable and cru-
cial for downstream tasks but remains under-
investigated.

* We propose a dynamic entity memory net-
work (DEMN). By devising an attentional
context encoder and an entity memory net-
work, our model can effectively adapt to the

dynamic characteristic of dialogues and accu-
rately extract cross-utterance triplets.

* We manually build three datasets based on Kd-
Conv benchmark. Extensive experiments are
conducted to verify that our model achieves
state-of-the-art performances.

2 Related Work

Extracting relational triplets from unstructure text
is an important task in information extraction. Pre-
vious researches can be mainly categorized into
two types, including relation extraction and joint
entity and relation exraction.

Relation extraction task aims to predict the rela-
tion between any two pre-defined entities accord-
ing to the given text. Early studies (Mintz et al.,
2009; Zeng et al., 2014) effort on sentence-level
relation extraction and propose various approaches
to alleviate noisy data from distant supervision,
such as multi-instance learning (Riedel et al., 2010;
Zeng et al., 2015), reinforcement learning (Feng
et al., 2018; Zeng et al., 2018a; Qin et al., 2018b),
and adversarial training (Qin et al., 2018a; Wu
et al., 2017). Although these approaches can ef-
fectively classify relations, they fail to deal with
cross-sentence relations which limits their applica-
tion scenarios. To solve this problem, recent studies
focus on document-level relation extraction (Yao
et al., 2019) and dialogue relation extraction (Yu
et al., 2020), which aim to predict relations via se-
mantics of multiple sentences. And plenty of graph
based methods (Nan et al., 2020; Li et al., 2020;
Xue et al., 2021; Chen et al., 2020) are proposed
to adequately model interactions between entities
and the context. But these methods assum that
entities are pre-defined, which suffers from error
propagation problem in practice.

To solve this problem, some studies (Gupta et al.,
2016; Zheng et al., 2017) are dedicated to identify
entities and their relations in a joint manner. Con-
sidering complex relation structures, a variety of
neural networks are proposed to extract overlapped
triplets, including sequence-to-sequence models
(Zeng et al., 2018b; Nayak and Ng, 2020; Ye et al.,
2021), sequence labeling models Liu et al. (2020);
Wei et al. (2020), token pair linking model (Wang
et al., 2020), and reinforcement learning models
(Takanobu et al., 2019; Xiao et al., 2020).

However, recent studies generally regard sen-
tences, documents, or dialogues as static text,



which fail to adapt the dynamic characteristic of di-
alogues. To handle this issues, this paper introduce
dialogue relational triplets extraction (DRTE) task
which aims to identify entities and their relations
in real-time for constructing dynamic knowledge
graph. To achieve this goal, we propose a Dynamic
Entity Memory Network.

3 Methodology

3.1 Problem Formulation

Given a dialogue U = {u1,u,...,uy} with
|U| utterances, dialogue relational triplet extrac-
tion (DRTE) task aims to identify the collection
of triplets T' = [si,ri,oi]gll, where s;, o;, and
r; represent the subject, object, and relation type
of the i-th triplet, respectively. To deal with this
task, we need to recognize the collection of enti-
ties £ = {61, €9,y nny e|E‘} from the given dialogue
and predict the relation  between any two entities.
Note that, each entity is extracted from the dialogue
content, and the relation type r is selected from a

pre-defined set R = {Rl, Ra, s Rig| }

3.2 Framework

There are three pivotal challenges of DRTE task
should be tackle, including learning the dynamic
context semantics in real-time, discovering the
cross-utterance triplets, and tracking the topic tran-
sition. To solve these issues, we propose a dynamic
entity memory network (DEMN) mainly consisting
of an attentional context encoding layer, an entity
memory network, and a triplet extraction layer. The
overall framework of DEMN is illustrated in Figure
2. Considering the dynamic nature of dialogues, we
perform the utterance encoding, entity recognition,
triplet extraction and entity memory utterance by
utterance. Concretely, we first devise an attentional
context encoding layer to learn the isolated seman-
tics and context semantics of each utterance. Based
on the fusion of these two semantics, we utilize a
token-pair binary classifier for entity recognition.
After that, we adopt a supervised multi-head at-
tention mechanism to discovering the relations be-
tween any two entity and obtain the inter-utterance
and intra-utterance triplets. Finally, the entities
of current utterance are used to update the entity
memory network, while the semantics of current
utterance is used to track the topic transition and
weaken the trivial entities.

3.3 Attentional Context Encoding

To dynamically capture the semantics of the real-
time utterances, we divide the encoding layer into
three parts, including isolated semantics encoding,
context semantics encoding and semantics fusion.

Given the t-th utterance, we first utilize BERT
to encode the isolated semantics without consid-
ering the historical dialogue. Formally, we tok-
enize the utterance with the WordPiece vocabulary
(Wu et al., 2016) and obtain the input sequence
Uy = {x[CLS], L1,t5 T2,ts +5 Tyl t) T[SEP] }, where
[CLS], [SEP], and |u| denotes the beginning token,
the end token, and the utterance length, respectively.
The initial representation x; ; of each token, which
is fed into BERT, is constructed by summing its
word embedding, position embedding and segment
embedding. We take the output of the last Trans-
former block in BERT as the isolated semantics

Hp = {h[SCLS],hit, ...,hlsUt|7t,hfSEP]}.
Meanwhile, we adopt the scaled dot-product at-
tention mechanism to access the historical informa-
tion pool and obtain the context semantics. Con-
cretely, given the isolated semantics H; of the ¢-th
utterance and the historical information pool C}
at the ¢-th step, the context semantics Hf can be

calculated as follows:
HW, - (C,W,)T
(W (CiiV.) >Ot, 1)
Vde

where W, € R4 *de and W, € R *4e are model
parameters, d denotes the dimension of BERT,
and d.. is the middle dimension of the dot-product
attention.

Finally, we fuse the isolated semantics and the
context semantics as follows:

H] = tanh (H} + Hf). Q)

H{ = softmax (

The final semantics Htf is used to update the his-
torical information pool and extract triplets. When
encoding the first utterance, the history pool is
empty and the final semantics H { is equivalent
to the isolated semantics Hy. After each utterance
encoding, we push the final semantics Htf into the
historical information pool to update it:

Cuan = | H] |, 3)
3.4 Entity Memory Network
3.4.1 Memory Updating

Based on the semantics of the given utterances, we
first identify the entities existing in them and update
the entity memory network with these entites.
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Figure 2: The framework of Dynamic Entity Memory Network (DEMN).

To follow the dynamic nature of dialogue and
the principle that entities will not cross utterances,
we perform entity recognition utterance by utter-
ance. Furthermore, due to the existence of nested
entities, such as ‘Denver, Colorado, USA’ and
‘USA’ in Figure 1, we formalize the entity recogni-
tion task as a token pair linking task (Wang et al.,
2020). Formally, we project the final semantics
Htf = {hf;LS] , h{t, - h‘];t"t, h{SEP]} to two se-
mantic subspaces, corresponding to the start and
end of the entity respectively. And the probability
that two tokens indicate the boundary of an entity
can be calculated via a binary classifier:

s,y =h/,W,, vie=hl, W, @

aije =0 (sig (vig)"), 5)

where o () represents the sigmoid function, W €
R *de and W, € R9%*% are model parameters,
and d, represents the middle dimension of the to-
ken pair linking.

During training, we aim to maximize the likeli-
hood probability of the gold annotations as follows:

|ue| Jut|

P (ytlue) = H HP (i gt

i=1j=1

xi,t,xj,t) ) (6)

if Yigr=1
if Yij+=0

Qi gty

)
1 — a4,

P (Yijilwi x5) = {
(N
where y; j; = 1 denotes the fact that the phrase
{xit,....,z;¢} of the ¢-th utterance is an entity,
while y; ;; = 0 denotes the corresponding phrase
is not an entity. During testing, the entity
{Zit,...,xj:} is extracted if oy ;, is higher than
a given entity threshold ~.

We take the averaged hidden representation be-
tween the start and end tokens of each entity as its
semantics. And the entity memory is updated via
appending the extracted entities of each utterance
to it. When the memory slot is full, we discard
the entity with the weakest semantics so that new
entities can be added.

3.4.2 Memory Forgetting

To track the topic transition and weaken the se-
mantics of trivial entities, we devise a memory
forgetting mechanism. Since it is difficult to ob-
tain the direct supervision information of the topic
transition, we first utilize an utterance-level LSTM
to discover the latent core topic. After that, we
design a forgetting gates to attenuate the semantics
of entities that are not related to the current topic.
Formally, at the ¢-th step, the semantics h{CLS}, .
of the t-th utterance is fed into the utterance-level



LSTM, and the hidden representation a; reflect-
ing the current dialogue topic can be distilled as
follows:

—LST™ (bl g 1) ®

Afterwards, the trivial semantics of the entity
memory can be filtered via the forgetting gate:

gi+ = o ([ay; my (W, + by) , )

m; 11 = &t © My, (10)

where m,; ; denotes the hidden representation of the
t-th entity memory slot at the ¢-th step, © denotes
the element-wise multiplication, W, € R xdn
and b, € R are model parameters. The forget-
ting gate g;; € [0,1]% controls the amount of
information flowing from each entity memory slot
and updates the entity memory M; to M.

3.5 Triplet Extraction

To identify triplets accurately and avoid duplicate
entity pairing, we design an inter-utterance triplet
extraction module and an intra-utterance triplet ex-
traction module.

Formally, given the ¢-th utterance, we can obtain
the collection of entities F; = {eu, ey e|Et‘,t}
extracted from it and the entity memory M; =
{mLt, myy, ..., m\Mtl,t} consisting of the histori-
cal entities. The intra-utterance triplet extraction
module only predicts the relations between any two
entities from F;, while the inter-utterance triplet
extraction module detects the relations between the
entity from E} and the entity from M;.

For each module, we adopt the supervised multi-
head attention mechanism (Liu et al., 2020) to pre-
dict the relations. Given two entities e; and e, we
project them to different relation subspaces and
calculate their correlation intensity under each sub-
space as follows:

=e, W), k,=eWwi, (11)
Lo(khT
@l,j - u 7 (12)
’ NG
where Bf’j represents the probability that

(es, Ry, €j) is identifies as a triplet, and d, is the
dimension of each subspace. The representation qé
denotes the semantics of e; as the subject under

the relation r;, while kli is the semantics of e; as
the object under the same relation.

During training, we separately maximize the
likelihood probability of the gold inter-utterance
triplets and the gold intra-utterance triplets as fol-
lows:

|E¢| | E¢| IR
pE—E (2| Er) = HHHP(Z”J@m,@g t)
i=1j=11=1
(13)
|Be| M| R

pE—M (2| By, My) =

H H Hp (Zwt\@ttymn),

i=1 j=1[l=1
(14)

|E¢| |M¢] R
H H Hp (Zjlt‘mj t7ezt) ;

i=1 j=1 [l=1
s)

pr—E (2| My, Ey)

o
Zjae =1

. /B'f,j,u Zf
P (Zv:,j,t|*z‘,ta*j,t) = l l , (16)
1- ﬂi,j,h lf it = 0

where £ — FE denotes that both the suject and
object are from E;. Meanwhile, £ — M denotes
that the subject is from E; and the object is from
M;, and the meaning of M — FE is opposite to
that. During testing, we extract the triplet if the
corresponding B is higher than the given relation
threshold A.

3.6 Joint Learning

To synchronously learn the entity recognition and
triplet extraction and make them mutually improve,
we combine the binary cross-entropy loss functions
of the them to form the entire loss objective of our
model:

LO)=Lg+Lesg+Lesm+Lysge, (17)

[U| Jue| fue
Le==Y 3 pWije=nlzis,z51),

t=1 i=1 j=1
(18)

Ul |E¢| |E¢| IR

Lrsg = *ZZZZP (Zi}t = 77|ei,taej,t) )

t=1 i=1 j=1 I=1
(19)

[U| |Ee| IM¢] |R]
l
E E p (Zi,j,t = nlei,t,mj,t) )

t=1 i=1 j=1 I=1
(20

['Eﬁl\/[ = -



|U| |E¢| [M¢] R

Lyvoe=— Z Z Z Zp (Z;zf = n\mj,t, 6i,t) ,

t=1 i=1 j=1 I=1
21

where 7 € [0, 1] represents the gold annotation.
The optimization problem in Eq. (17) can be solved
by using any gradient descent approach. In this pa-
per, we adopt the AdamW (Loshchilov and Hutter,
2017) approach.

4 Experiments

4.1 Datasets

We construct three datasets based on KdConv
(Zhou et al., 2020) dataset, which is a Chinese
multi-topic knowledge-driven conversation dataset
and covers three domains including film, music,
and travel. Each sample in KdConv consists of
multi-turn dialogue and its corresponding knowl-
edge triplets. Since there are some problems in
the original dataset, we reconstruct it and obtain
three datasets named ‘Film’, ‘Music’, and “Travel’.
Specifically, we first merge the relation types with
the same meaning, such as ‘F 2= 1E 54’ (major
works) and ‘“fCEE (representative works). Af-
ter that, we correct the triplets whose subject or
object could not be extracted from utterances. Fi-
nally, we supplement some triplets missing from
the original dataset. The statistics of the corrected
datasets are shown in Table 1. Particularly, the
number of topics in each sample is more than 2 on
average, and even up to 13. Meanwhile, 93% of
triplets span multiple sentences, which increases
the difficulty of dialogue triplet extraction.

4.2 Experimental Settings

We adopt the BERT-base model (Devlin et al.,
2019) with the hidden size of 768 for the isolated
semantics encoding. The essential hyperparame-
ters of our model and the range of values tried per
hyperparameterthe are listed in Table 2. We select
these hyperparameters according to the F1-score of
triplet extraction on the development sets. During
training, we use AdamW for optimization with the
weight decay of 0.01 and the warmup rate of 0.1.
The fine-tuning rate for BERT and the learning rate
for training other parameters are set to le-5 and
Se-4, respectively. Meanwhile, we set the number
of epochs, batch size, and dropout rate to 100, 8,
and 0.2, respectively. Based on the above setting,
we run our model on a RTX 3090Ti GPU.

Dataset Film | Music | Travel
# Dialogues 1500 1500 1500
# Triplets 34475 | 19342 | 14280
# Intra-Utters Triplets 2217 1529 630
# Inter-Utters Triplets 32258 | 17813 | 13650
Avg. # Tokens per Dialogue | 474.7 | 304.6 | 3474

Max. # Tokens per Dialogue 901 628 812

Avg. # Utters 244 16.6 16.1
Avg. # Entities 20.0 12.8 10.4
Avg. # Topics 29 24 2.1
Max. # Topics 13 8 4
Avg. Dist 5.0 4.0 4.1
Max. Dist 29 19 14
# Relations 196 230

Table 1: Statistics of datasets. ‘#’, ‘Avg. #, ‘Max. #
and ‘Utters’ denotes the number, average number, maxi-
mum, and utterances, respectively. ‘Dist’ is the number
of utterances between subject and object in triplet. Fol-
lowing Zhou et al. (2020), we treat the distinct subjects
as topics.

Datasets
Music

Hyper-
parameters | Film

Travel Range of values

de 384 | 384 384 | [64, 128,256, 384, 512]
de 256 | 256 128 | [64, 128, 256, 384, 512]
d 256 | 256 256 | [64, 128, 256, 384, 512]
d, 128 64 64 [32, 64, 128, 256]

v 0.5 0.5 0.8 [0.1,0.2,...,0.9]

A 0.9 0.8 0.9 [0.1,0.2,...,0.9]

Table 2: Configurations of DEMN. d., d., d;, d,., v, and
A denote the dimenisions of the scaled dot-product atten-
tion, token pair linking, utterance-level LSTM, relation
subspace, entity threshold, relation threshold, respec-
tively.

4.3 Evaluation

We utilize precision, recall, and F1-score to evalu-
ate the performances on dialogue relational triplet
extraction. Specifically, a predicted triplet is cor-
rect only if the relation type and the whole spans
of two entities are all the same as the golden anno-
tation. For reproducibility, we report the average
and standard deviation of testing results over 5 runs
with different random seeds. At each run, we select
the testing result corresponding to the best perfor-
mance on development set.

4.4 Comparison Methods

To comprehensively analyze the advantages of our
model, we compare it with joint methods and
pipeline methods. It is worth noting that each com-
parison method adopts BERT as the encoder for
ensuring the fairness.

First, three advanced joint entity and relation
extraction models are selected as the comparison
methods. We concatenate all the utterances as a
long sequence and feed it into these methods.



Methods Film Music Travel
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
CasRel 7123 £1.41 73.56 £0.61 72.36 £0.44 | 74.91 £2.29 69.48 £1.52 72.06 +0.24 | 64.73 £4.55 56.65 +£0.89 60.34 +1.48
TPLinker 68.25 £1.02 70.82 £0.29 69.51 £0.67 | 66.89 £0.93 69.86 £0.87 68.33 £0.07 | 81.46 +0.63 91.27 +£1.44 86.08 £0.29
SPN 69.63 £0.51 73.27 £1.06 71.40 £0.77 | 77.21 £1.18 69.25 +£0.34 73.01 £0.34 | 85.02 £1.35 87.51 £0.30 86.23 £0.87
TPBC + ATLOP | 71.13 £1.31 72.74 £1.55 71.91 £0.09 | 70.31 +1.54 54.04 £0.54 61.10 £0.23 | 84.41 +1.94 68.62 +1.99 75.66 +0.43
TPBC + SSAN | 76.05 £0.37 61.12 £0.08 67.77 £0.18 | 66.70 £2.48 76.23 +2.31 71.09 £0.41 | 85.76 +0.38 67.13 £0.27 75.31 +0.03
DEMN (ours) 73.75 +0.24 77.79 +£0.23 75.72 £0.23 | 74.72 £0.65 81.65 +£0.41 78.03 +0.54 | 85.20 +0.76 90.72 +0.82 87.87 +0.02
Table 3: Experimental results.
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Figure 3: Results on ablation study.

¢ CasRel (Wei et al., 2020) first identfies sub-
jects from text, and then devises multiple
relation-specific taggers to extract objects for
each subject under each relation type.

TPLinker (Wang et al., 2020) formulates
triplet extraction task as a token pair linking
problem. For each possible token pairs, this
model utilizes a handshaking tagging scheme
to predict whether they indicate the boundary
of an entity or the association between subject
and object.

* SPN (Sui et al., 2020) transforms triplet ex-
traction task into a set prediction problem and
proposed a non-autoregressive decoder with
bipartite matching loss function to generate
all triplets.

Besides, we also select two document-level re-
lation extraction models for conducting pipeline
methods. In the first stage, we utilize the token-pair
binary classifier (TPBC) of our model to obtain the
collection of entities. In the second stage, we adopt
relation extraction models to predict the relation
between any two entites. The details are described
as follows:

e ATLOP (Zhou et al., 2021) is a document-
level relation extraction model. It designs a
localized context pooling technique which uti-
lizes the pre-trained attention to discover rele-
vant context for entity pairs.

e SSAN (Xu et al., 2021) utilizes an exten-
sion of self-attention mechanism to model co-
occurrence and coreference entity structure
exhibited in document-level texts.

4.5 Results

The results on dialogue relational triplet extraction
are shown in Table 3. According to the results, our
model consistently obtains state-of-the-art perfor-
mances on three datasets. Compared with the best
baseline model, our model outperforms CaseRel
by 3.36% F1-score on Film dataset and is higher
than SPN by 5.01% and 2.64% F1-score on Music
and Travel datasets, respectively. Besides, the joint
extraction models achieves better performance than
pipeline models, which verifiess that joint learning
can make the entity extraction and relation classifi-
cation mutual promotion.

Specially, all the comparison methods concate-
nate utterances into a long text and feed it into
BERT for encoding, which can fully exploit the
semantics of previous utterances and subsequent
utterances for entity extraction and relation detec-
tion. However, they does not consider the effect of
topic transition between utterances, which leads to
mismatch and omission of triplets and harms their
performances. Conversely, although our model
can only use historical information to encodes se-
mantics utterance by utterance, the entity memory
network of our model can effectively track dia-
logue topics and accurately discover triplets. It is
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Figure 5: Results on intra-utterance and inter-utterance triplet extraction.

worth noting that our model can flexibly adapt the
dynamic characteristic of dialogues and process
utterances generated in real-time.

4.6 Ablation Study

To further investigate the origination of the im-
provement of DEMN, we conduct three ablation ex-
periments, including ‘DEMN w/o C’, ‘DEMN w/o
F’, and ‘DEMN w/o ALL’. Specifically, ‘DEMN
w/o C’ does not use context semantics captured by
dot-product attention mechanism, while ‘DEMN
w/o F’ discards utterance-level topic tracking mech-
anism and forgetting gate. And ‘DEMN w/o ALL’
abandons these two parts.

According to Figure 3-5, we can analyze the ab-
lation results from three perspectives. First, we
display the overall performances in Figure 3. Com-
pared with ‘DEMN w/o C’, our model achieves
significant improvements on precision, which ver-
ify the importance of context semantics in reducing
mismatch. Besides, First,

5 Conclusion

In this paper, we introduced a novel task named di-
alogue relational triplet extraction (DRTE) and pro-
posed a dynamic entity memory network (DEMN).
To adapt the dynamic characteristic of dialogue, we

mainly devised an attentional context encoder and
an entity memory network. Specifically, the atten-
tional context encoder learn the semantics of the
given dialogue utterance by utterance, which can
flexibly and efficiently understand the utterances
generated in real time. Furthermore, the entity
memory network with a forgetting gate mechanism
maintains the entities extracted from previous ut-
terances for discovering the long-distance triplets
without disturbances from entities unrelated to the
current topic. To verify the effectiveness of our
model, we constructed three datasets. Extensive
experiments show that our model achieves state-of-
the-art performances.
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