
Dynamic Entity Memory Network for
Dialogue Relational Triplet Extraction

Anonymous ACL submission

Abstract
Relational triplet extraction (RTE) is a crucial001
task in information extraction and has aroused002
extensive attention. Although advanced stud-003
ies on RTE have achieved great progress, they004
are still insufficient for supporting practical ap-005
plications, such as dialogue system and infor-006
mation retrieval. In this paper, we focus on007
relational triplet extraction in dialogue scenar-008
ios and introduce a new task named dialogue009
relational triplet extraction (DRTE). Instead of010
being treated as static texts like sentences or011
documents, dialogues should be regarded as012
dynamic ones generated with the progress of013
conversations. Thus, it imposes three impor-014
tant challenges, including extracting triplets in015
real-time with incomplete dialogue context, dis-016
covering cross-utterance relational triplets, and017
perceiving the transition of dialogue topics. To018
tackle these challenges, we propose a Dynamic019
Entity Memory Network (DEMN). Specifically,020
the key of our approach is an attentional con-021
text encoder and an entity memory network.022
The attentional context encoder learns dialogue023
semantics utterance by utterance and dynam-024
ically captures salient contexts for each utter-025
ance. The entity memory network is devised026
to store the entities extracted from previous ut-027
terances and for cross-utterance triplets extrac-028
tion. Meanwhile, it also tracks topic transitions029
in real-time and forgets the semantics of triv-030
ial entities. To verify the effectiveness of our031
model, we manually build three datasets based032
on KdConv benchmark. Extensive experimen-033
tal results demonstrate that our model achieves034
state-of-the-art performances.035

1 Introduction036

Relational triplet extraction (RTE) task is an impor-037

tant task in natural language processing field, which038

aims to identify entities and their relations from039

unstructure text and orginize them in the form of040

〈subject, relation, object〉. As a crucial task benefi-041

cial to many applications such as automatic knowl-042

edge base construction and question answering, it043

Figure 1: An example of Dialogue Relational Triplet
Extraction (DRTE) task. The entities related to different
topics are marked in red.

.

has attracted widespread attention. Existing studies 044

deal with this task with different paradigms, includ- 045

ing table filling (Miwa and Sasaki, 2014; Bekoulis 046

et al., 2018), sequence labeling (Zheng et al., 2017; 047

Wei et al., 2020; Liu et al., 2020), sequence gen- 048

eration (Zeng et al., 2018b; Sui et al., 2020; Zeng 049

et al., 2020), and so on. 050

Although these studies have achieved great 051

progress, they generally focus on constructing stat- 052

ics knowledge bases by extracting triplets from sen- 053

tences or documents such as news and Wikipedia 054

articles, while lacking attention to dialogues. To 055

fill this blank, recent studies (Yu et al., 2020; Chen 056

et al., 2020; Xue et al., 2021) explore dialogue rela- 057

tion extraction task and propose graph-based mod- 058

els to deal with it. However, they mainly extract the 059

relations between pre-defined speakers and speaker- 060

related arguments rather than general knowledges 061

such as 〈Se7en,Director,David Fincher〉 shown in 062
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Figure 1. Besides, these models still treat dialogues063

as flat long texts and neglect the dynamics of them.064

To solve the above problems, we introduce a065

novel task named dialogue relational triplets extrac-066

tion (DRTE) task, which aims to dynamically dis-067

cover general knowledge triplets with the progress068

of dialogues. The dynamic characteristic of dia-069

logue imposes three pivotal challenges for DRTE070

task. First, utterances of each dialogue are gen-071

erated in real-time, hence posing a key challenge072

on how to accurately identify entities and relations073

with incomplete dialogue, especially when partial074

components of triplets have not yet appeared. Sec-075

ond, utterances are usually short and casual, which076

leads to plenty of cross-utterance triplets. And077

some triplets even span more than 10 utterances,078

such as 〈Se7en,Director,David Fincher〉 in Figure079

1. Therefore, how to properly pair the long-distance080

entities and predict their relation type is an impor-081

tant challenge. Third, dialogues generally have082

more complex topic transitions, how to adapt to083

this unique logical structure is a key challenge for084

discovering triplets.085

Facing the aforementioned challenges, we pro-086

pose a Dynamic Entity Memory Network (DEMN).087

Specifically, we first devise an attentional context088

encoder to learn the semantics of dialogue utter-089

ance by utterance. When our model receives a090

real-time utterance, this mechanism first utilizes091

Bidirectional Encoder Representations from Trans-092

formers (BERT) (Devlin et al., 2019) to capture093

its local semantics, and then adopts the attention094

mechanism to learn its contextual semantics. Fur-095

thermore, we utilize utterance-level LSTM to track096

the latent topic transition, and devise an entity mem-097

ory network with forgetting gate for discovering098

the long-distance triplets without disturbances from099

entities unrelated to the current topic. To verify the100

effectiveness of our model, we make a compre-101

hensive and comparative analysis on three datasets,102

and the results demonstrate that our model achieves103

state-of-the-art performances. In summary, our con-104

tributions are three-fold:105

• We introduce dialogue relational triplet extrac-106

tion (DRTE) task, which is valuable and cru-107

cial for downstream tasks but remains under-108

investigated.109

• We propose a dynamic entity memory net-110

work (DEMN). By devising an attentional111

context encoder and an entity memory net-112

work, our model can effectively adapt to the113

dynamic characteristic of dialogues and accu- 114

rately extract cross-utterance triplets. 115

• We manually build three datasets based on Kd- 116

Conv benchmark. Extensive experiments are 117

conducted to verify that our model achieves 118

state-of-the-art performances. 119

2 Related Work 120

Extracting relational triplets from unstructure text 121

is an important task in information extraction. Pre- 122

vious researches can be mainly categorized into 123

two types, including relation extraction and joint 124

entity and relation exraction. 125

Relation extraction task aims to predict the rela- 126

tion between any two pre-defined entities accord- 127

ing to the given text. Early studies (Mintz et al., 128

2009; Zeng et al., 2014) effort on sentence-level 129

relation extraction and propose various approaches 130

to alleviate noisy data from distant supervision, 131

such as multi-instance learning (Riedel et al., 2010; 132

Zeng et al., 2015), reinforcement learning (Feng 133

et al., 2018; Zeng et al., 2018a; Qin et al., 2018b), 134

and adversarial training (Qin et al., 2018a; Wu 135

et al., 2017). Although these approaches can ef- 136

fectively classify relations, they fail to deal with 137

cross-sentence relations which limits their applica- 138

tion scenarios. To solve this problem, recent studies 139

focus on document-level relation extraction (Yao 140

et al., 2019) and dialogue relation extraction (Yu 141

et al., 2020), which aim to predict relations via se- 142

mantics of multiple sentences. And plenty of graph 143

based methods (Nan et al., 2020; Li et al., 2020; 144

Xue et al., 2021; Chen et al., 2020) are proposed 145

to adequately model interactions between entities 146

and the context. But these methods assum that 147

entities are pre-defined, which suffers from error 148

propagation problem in practice. 149

To solve this problem, some studies (Gupta et al., 150

2016; Zheng et al., 2017) are dedicated to identify 151

entities and their relations in a joint manner. Con- 152

sidering complex relation structures, a variety of 153

neural networks are proposed to extract overlapped 154

triplets, including sequence-to-sequence models 155

(Zeng et al., 2018b; Nayak and Ng, 2020; Ye et al., 156

2021), sequence labeling models Liu et al. (2020); 157

Wei et al. (2020), token pair linking model (Wang 158

et al., 2020), and reinforcement learning models 159

(Takanobu et al., 2019; Xiao et al., 2020). 160

However, recent studies generally regard sen- 161

tences, documents, or dialogues as static text, 162
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which fail to adapt the dynamic characteristic of di-163

alogues. To handle this issues, this paper introduce164

dialogue relational triplets extraction (DRTE) task165

which aims to identify entities and their relations166

in real-time for constructing dynamic knowledge167

graph. To achieve this goal, we propose a Dynamic168

Entity Memory Network.169

3 Methodology170

3.1 Problem Formulation171

Given a dialogue U =
{
u1, u2, ..., u|U |

}
with172

|U | utterances, dialogue relational triplet extrac-173

tion (DRTE) task aims to identify the collection174

of triplets T = [si, ri, oi]
|T |
i=1, where si, oi, and175

ri represent the subject, object, and relation type176

of the i-th triplet, respectively. To deal with this177

task, we need to recognize the collection of enti-178

ties E =
{
e1, e2, ..., e|E|

}
from the given dialogue179

and predict the relation r between any two entities.180

Note that, each entity is extracted from the dialogue181

content, and the relation type r is selected from a182

pre-defined setR =
{
R1,R2, ...,R|R|

}
.183

3.2 Framework184

There are three pivotal challenges of DRTE task185

should be tackle, including learning the dynamic186

context semantics in real-time, discovering the187

cross-utterance triplets, and tracking the topic tran-188

sition. To solve these issues, we propose a dynamic189

entity memory network (DEMN) mainly consisting190

of an attentional context encoding layer, an entity191

memory network, and a triplet extraction layer. The192

overall framework of DEMN is illustrated in Figure193

2. Considering the dynamic nature of dialogues, we194

perform the utterance encoding, entity recognition,195

triplet extraction and entity memory utterance by196

utterance. Concretely, we first devise an attentional197

context encoding layer to learn the isolated seman-198

tics and context semantics of each utterance. Based199

on the fusion of these two semantics, we utilize a200

token-pair binary classifier for entity recognition.201

After that, we adopt a supervised multi-head at-202

tention mechanism to discovering the relations be-203

tween any two entity and obtain the inter-utterance204

and intra-utterance triplets. Finally, the entities205

of current utterance are used to update the entity206

memory network, while the semantics of current207

utterance is used to track the topic transition and208

weaken the trivial entities.209

3.3 Attentional Context Encoding 210

To dynamically capture the semantics of the real- 211

time utterances, we divide the encoding layer into 212

three parts, including isolated semantics encoding, 213

context semantics encoding and semantics fusion. 214

Given the t-th utterance, we first utilize BERT 215

to encode the isolated semantics without consid- 216

ering the historical dialogue. Formally, we tok- 217

enize the utterance with the WordPiece vocabulary 218

(Wu et al., 2016) and obtain the input sequence 219

ut =
{
x[CLS], x1,t, x2,t, ..., x|ut|,t, x[SEP]

}
, where 220

[CLS], [SEP], and |ut| denotes the beginning token, 221

the end token, and the utterance length, respectively. 222

The initial representation xi,t of each token, which 223

is fed into BERT, is constructed by summing its 224

word embedding, position embedding and segment 225

embedding. We take the output of the last Trans- 226

former block in BERT as the isolated semantics 227

Hs
t =

{
hs
[CLS],h

s
1,t, ...,h

s
|ut|,t,h

s
[SEP]

}
. 228

Meanwhile, we adopt the scaled dot-product at- 229

tention mechanism to access the historical informa- 230

tion pool and obtain the context semantics. Con- 231

cretely, given the isolated semantics Hs
t of the t-th 232

utterance and the historical information pool Ct 233

at the t-th step, the context semantics Hc
t can be 234

calculated as follows: 235

Hc
t = softmax

(
Hs

tWs · (CtWc)
T

√
dc

)
Ct, (1) 236

where Ws ∈ Rdh×dc and Wt ∈ Rdh×dc are model 237

parameters, dh denotes the dimension of BERT, 238

and dc is the middle dimension of the dot-product 239

attention. 240

Finally, we fuse the isolated semantics and the 241

context semantics as follows: 242

Hf
t = tanh (Hs

t +Hc
t ) . (2) 243

The final semantics Hf
t is used to update the his- 244

torical information pool and extract triplets. When 245

encoding the first utterance, the history pool is 246

empty and the final semantics Hf
1 is equivalent 247

to the isolated semantics Hc
1 . After each utterance 248

encoding, we push the final semantics Hf
t into the 249

historical information pool to update it: 250

Ct+1 =
[
Ct;H

f
t

]
. (3) 251

3.4 Entity Memory Network 252

3.4.1 Memory Updating 253

Based on the semantics of the given utterances, we 254

first identify the entities existing in them and update 255

the entity memory network with these entites. 256
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Figure 2: The framework of Dynamic Entity Memory Network (DEMN).

To follow the dynamic nature of dialogue and257

the principle that entities will not cross utterances,258

we perform entity recognition utterance by utter-259

ance. Furthermore, due to the existence of nested260

entities, such as ‘Denver, Colorado, USA’ and261

‘USA’ in Figure 1, we formalize the entity recogni-262

tion task as a token pair linking task (Wang et al.,263

2020). Formally, we project the final semantics264

Hf
t =

{
hf
[CLS],h

f
1,t, ...,h

f
|ut|,t,h

f
[SEP]

}
to two se-265

mantic subspaces, corresponding to the start and266

end of the entity respectively. And the probability267

that two tokens indicate the boundary of an entity268

can be calculated via a binary classifier:269

si,t = hf
i,tWs, vi,t = hf

i,tWg, (4)270

271

αi,j,t = σ
(
si,t · (vj,t)

T
)
, (5)272

where σ (∗) represents the sigmoid function, Ws ∈273

Rdh×de and Wv ∈ Rdh×de are model parameters,274

and de represents the middle dimension of the to-275

ken pair linking.276

During training, we aim to maximize the likeli-277

hood probability of the gold annotations as follows:278

279

p (yt|ut) =
|ut|∏
i=1

|ut|∏
j=1

p (yi,j,t|xi,t, xj,t) , (6)280

281

p (yi,j,t|xi, xj) =
{

αi,j,t, if yi,j,t = 1
1− αi,j,t, if yi,j,t = 0

,

(7) 282

where yi,j,t = 1 denotes the fact that the phrase 283

{xi,t, ..., xj,t} of the t-th utterance is an entity, 284

while yi,j,t = 0 denotes the corresponding phrase 285

is not an entity. During testing, the entity 286

{xi,t, ..., xj,t} is extracted if αi,j,t is higher than 287

a given entity threshold γ. 288

We take the averaged hidden representation be- 289

tween the start and end tokens of each entity as its 290

semantics. And the entity memory is updated via 291

appending the extracted entities of each utterance 292

to it. When the memory slot is full, we discard 293

the entity with the weakest semantics so that new 294

entities can be added. 295

3.4.2 Memory Forgetting 296

To track the topic transition and weaken the se- 297

mantics of trivial entities, we devise a memory 298

forgetting mechanism. Since it is difficult to ob- 299

tain the direct supervision information of the topic 300

transition, we first utilize an utterance-level LSTM 301

to discover the latent core topic. After that, we 302

design a forgetting gates to attenuate the semantics 303

of entities that are not related to the current topic. 304

Formally, at the t-th step, the semantics hf
[CLS],t 305

of the t-th utterance is fed into the utterance-level 306
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LSTM, and the hidden representation at reflect-307

ing the current dialogue topic can be distilled as308

follows:309

at = LSTM
(
hf
[CLS],t,at−1

)
. (8)310

Afterwards, the trivial semantics of the entity311

memory can be filtered via the forgetting gate:312

gi,t = σ ([at;mi,t]Wg + bg) , (9)313

314

mi,t+1 = gi,t �mi,t, (10)315

where mi,t denotes the hidden representation of the316

i-th entity memory slot at the t-th step, � denotes317

the element-wise multiplication, Wg ∈ Rdh×dh318

and bg ∈ Rdh are model parameters. The forget-319

ting gate gi,t ∈ [0, 1]dh controls the amount of320

information flowing from each entity memory slot321

and updates the entity memory Mt to Mt+1.322

3.5 Triplet Extraction323

To identify triplets accurately and avoid duplicate324

entity pairing, we design an inter-utterance triplet325

extraction module and an intra-utterance triplet ex-326

traction module.327

Formally, given the t-th utterance, we can obtain328

the collection of entities Et =
{
e1,t, ..., e|Et|,t

}
329

extracted from it and the entity memory Mt =330 {
m1,t,m2,t, ...,m|Mt|,t

}
consisting of the histori-331

cal entities. The intra-utterance triplet extraction332

module only predicts the relations between any two333

entities from Et, while the inter-utterance triplet334

extraction module detects the relations between the335

entity from Et and the entity from Mt.336

For each module, we adopt the supervised multi-337

head attention mechanism (Liu et al., 2020) to pre-338

dict the relations. Given two entities ei and ej , we339

project them to different relation subspaces and340

calculate their correlation intensity under each sub-341

space as follows:342

ql
i = eiW

l
q, kl

j = eljW
l
k, (11)343

344

βli,j = σ

(
ql
i · (kl

j)
T

√
dr

)
, (12)345

where βli,j represents the probability that346

(ei,Rl, ej) is identifies as a triplet, and dr is the347

dimension of each subspace. The representation ql
i348

denotes the semantics of ei as the subject under349

the relation rl, while kl
i is the semantics of ej as 350

the object under the same relation. 351

During training, we separately maximize the 352

likelihood probability of the gold inter-utterance 353

triplets and the gold intra-utterance triplets as fol- 354

lows: 355

pE→E (zt|Et) =

|Et|∏
i=1

|Et|∏
j=1

|R|∏
l=1

p
(
zli,j,t|ei,t, ej,t

)
,

(13) 356

pE→M (zt|Et,Mt) =

|Et|∏
i=1

|Mt|∏
j=1

|R|∏
l=1

p
(
zli,j,t|ei,t,mj,t

)
,

(14) 357
358

pM→E (zt|Mt, Et) =

|Et|∏
i=1

|Mt|∏
j=1

|R|∏
l=1

p
(
zlj,i,t|mj,t, ei,t

)
,

(15) 359
360

p
(
zli,j,t|∗i,t, ∗j,t

)
=

 βl
i,j,t, if zlj,i,t = 1

1− βl
i,j,t, if zlj,i,t = 0

, (16) 361

where E → E denotes that both the suject and 362

object are from Et. Meanwhile, E →M denotes 363

that the subject is from Et and the object is from 364

Mt, and the meaning of M → E is opposite to 365

that. During testing, we extract the triplet if the 366

corresponding βli,j is higher than the given relation 367

threshold λ. 368

3.6 Joint Learning 369

To synchronously learn the entity recognition and 370

triplet extraction and make them mutually improve, 371

we combine the binary cross-entropy loss functions 372

of the them to form the entire loss objective of our 373

model: 374

L (θ) = LE + LE→E + LE→M + LM→E , (17) 375

376

LE = −
|U |∑
t=1

|ut|∑
i=1

|ut|∑
j=1

p (yi,j,t = η|xi,t, xj,t) ,

(18) 377
378

LE→E = −
|U|∑
t=1

|Et|∑
i=1

|Et|∑
j=1

|R|∑
l=1

p
(
zli,j,t = η|ei,t, ej,t

)
,

(19) 379
380

LE→M = −
|U|∑
t=1

|Et|∑
i=1

|Mt|∑
j=1

|R|∑
l=1

p
(
zli,j,t = η|ei,t,mj,t

)
,

(20) 381
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382

LM→E = −
|U|∑
t=1

|Et|∑
i=1

|Mt|∑
j=1

|R|∑
l=1

p
(
zlj,i,t = η|mj,t, ei,t

)
,

(21)383

where η ∈ [0, 1] represents the gold annotation.384

The optimization problem in Eq. (17) can be solved385

by using any gradient descent approach. In this pa-386

per, we adopt the AdamW (Loshchilov and Hutter,387

2017) approach.388

4 Experiments389

4.1 Datasets390

We construct three datasets based on KdConv391

(Zhou et al., 2020) dataset, which is a Chinese392

multi-topic knowledge-driven conversation dataset393

and covers three domains including film, music,394

and travel. Each sample in KdConv consists of395

multi-turn dialogue and its corresponding knowl-396

edge triplets. Since there are some problems in397

the original dataset, we reconstruct it and obtain398

three datasets named ‘Film’, ‘Music’, and ‘Travel’.399

Specifically, we first merge the relation types with400

the same meaning, such as ‘主要作品’ (major401

works) and ‘代表作品’ (representative works). Af-402

ter that, we correct the triplets whose subject or403

object could not be extracted from utterances. Fi-404

nally, we supplement some triplets missing from405

the original dataset. The statistics of the corrected406

datasets are shown in Table 1. Particularly, the407

number of topics in each sample is more than 2 on408

average, and even up to 13. Meanwhile, 93% of409

triplets span multiple sentences, which increases410

the difficulty of dialogue triplet extraction.411

4.2 Experimental Settings412

We adopt the BERT-base model (Devlin et al.,413

2019) with the hidden size of 768 for the isolated414

semantics encoding. The essential hyperparame-415

ters of our model and the range of values tried per416

hyperparameterthe are listed in Table 2. We select417

these hyperparameters according to the F1-score of418

triplet extraction on the development sets. During419

training, we use AdamW for optimization with the420

weight decay of 0.01 and the warmup rate of 0.1.421

The fine-tuning rate for BERT and the learning rate422

for training other parameters are set to 1e-5 and423

5e-4, respectively. Meanwhile, we set the number424

of epochs, batch size, and dropout rate to 100, 8,425

and 0.2, respectively. Based on the above setting,426

we run our model on a RTX 3090Ti GPU.427

Dataset Film Music Travel
# Dialogues 1500 1500 1500
# Triplets 34475 19342 14280

# Intra-Utters Triplets 2217 1529 630
# Inter-Utters Triplets 32258 17813 13650

Avg. # Tokens per Dialogue 474.7 304.6 347.4
Max. # Tokens per Dialogue 901 628 812

Avg. # Utters 24.4 16.6 16.1
Avg. # Entities 20.0 12.8 10.4
Avg. # Topics 2.9 2.4 2.1
Max. # Topics 13 8 4

Avg. Dist 5.0 4.0 4.1
Max. Dist 29 19 14
# Relations 196 230 6

Table 1: Statistics of datasets. ‘#’, ‘Avg. #’, ‘Max. #’
and ‘Utters’ denotes the number, average number, maxi-
mum, and utterances, respectively. ‘Dist’ is the number
of utterances between subject and object in triplet. Fol-
lowing Zhou et al. (2020), we treat the distinct subjects
as topics.

Hyper- Datasets
Range of values

parameters Film Music Travel
dc 384 384 384 [64, 128, 256, 384, 512]
de 256 256 128 [64, 128, 256, 384, 512]
dl 256 256 256 [64, 128, 256, 384, 512]
dr 128 64 64 [32, 64, 128, 256]
γ 0.5 0.5 0.8 [0.1, 0.2,..., 0.9]
λ 0.9 0.8 0.9 [0.1, 0.2,..., 0.9]

Table 2: Configurations of DEMN. dc, de, dl, dr, γ, and
λ denote the dimenisions of the scaled dot-product atten-
tion, token pair linking, utterance-level LSTM, relation
subspace, entity threshold, relation threshold, respec-
tively.

4.3 Evaluation 428

We utilize precision, recall, and F1-score to evalu- 429

ate the performances on dialogue relational triplet 430

extraction. Specifically, a predicted triplet is cor- 431

rect only if the relation type and the whole spans 432

of two entities are all the same as the golden anno- 433

tation. For reproducibility, we report the average 434

and standard deviation of testing results over 5 runs 435

with different random seeds. At each run, we select 436

the testing result corresponding to the best perfor- 437

mance on development set. 438

4.4 Comparison Methods 439

To comprehensively analyze the advantages of our 440

model, we compare it with joint methods and 441

pipeline methods. It is worth noting that each com- 442

parison method adopts BERT as the encoder for 443

ensuring the fairness. 444

First, three advanced joint entity and relation 445

extraction models are selected as the comparison 446

methods. We concatenate all the utterances as a 447

long sequence and feed it into these methods. 448
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Methods
Film Music Travel

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
CasRel 71.23 ±1.41 73.56 ±0.61 72.36 ±0.44 74.91 ±2.29 69.48 ±1.52 72.06 ±0.24 64.73 ±4.55 56.65 ±0.89 60.34 ±1.48
TPLinker 68.25 ±1.02 70.82 ±0.29 69.51 ±0.67 66.89 ±0.93 69.86 ±0.87 68.33 ±0.07 81.46 ±0.63 91.27 ±1.44 86.08 ±0.29
SPN 69.63 ±0.51 73.27 ±1.06 71.40 ±0.77 77.21 ±1.18 69.25 ±0.34 73.01 ±0.34 85.02 ±1.35 87.51 ±0.30 86.23 ±0.87
TPBC + ATLOP 71.13 ±1.31 72.74 ±1.55 71.91 ±0.09 70.31 ±1.54 54.04 ±0.54 61.10 ±0.23 84.41 ±1.94 68.62 ±1.99 75.66 ±0.43
TPBC + SSAN 76.05 ±0.37 61.12 ±0.08 67.77 ±0.18 66.70 ±2.48 76.23 ±2.31 71.09 ±0.41 85.76 ±0.38 67.13 ±0.27 75.31 ±0.03
DEMN (ours) 73.75 ±0.24 77.79 ±0.23 75.72 ±0.23 74.72 ±0.65 81.65 ±0.41 78.03 ±0.54 85.20 ±0.76 90.72 ±0.82 87.87 ±0.02

Table 3: Experimental results.

(a) Film (b) Music (c) Travel

Figure 3: Results on ablation study.

• CasRel (Wei et al., 2020) first identfies sub-449

jects from text, and then devises multiple450

relation-specific taggers to extract objects for451

each subject under each relation type.452

• TPLinker (Wang et al., 2020) formulates453

triplet extraction task as a token pair linking454

problem. For each possible token pairs, this455

model utilizes a handshaking tagging scheme456

to predict whether they indicate the boundary457

of an entity or the association between subject458

and object.459

• SPN (Sui et al., 2020) transforms triplet ex-460

traction task into a set prediction problem and461

proposed a non-autoregressive decoder with462

bipartite matching loss function to generate463

all triplets.464

Besides, we also select two document-level re-465

lation extraction models for conducting pipeline466

methods. In the first stage, we utilize the token-pair467

binary classifier (TPBC) of our model to obtain the468

collection of entities. In the second stage, we adopt469

relation extraction models to predict the relation470

between any two entites. The details are described471

as follows:472

• ATLOP (Zhou et al., 2021) is a document-473

level relation extraction model. It designs a474

localized context pooling technique which uti-475

lizes the pre-trained attention to discover rele-476

vant context for entity pairs.477

• SSAN (Xu et al., 2021) utilizes an exten- 478

sion of self-attention mechanism to model co- 479

occurrence and coreference entity structure 480

exhibited in document-level texts. 481

4.5 Results 482

The results on dialogue relational triplet extraction 483

are shown in Table 3. According to the results, our 484

model consistently obtains state-of-the-art perfor- 485

mances on three datasets. Compared with the best 486

baseline model, our model outperforms CaseRel 487

by 3.36% F1-score on Film dataset and is higher 488

than SPN by 5.01% and 2.64% F1-score on Music 489

and Travel datasets, respectively. Besides, the joint 490

extraction models achieves better performance than 491

pipeline models, which verifiess that joint learning 492

can make the entity extraction and relation classifi- 493

cation mutual promotion. 494

Specially, all the comparison methods concate- 495

nate utterances into a long text and feed it into 496

BERT for encoding, which can fully exploit the 497

semantics of previous utterances and subsequent 498

utterances for entity extraction and relation detec- 499

tion. However, they does not consider the effect of 500

topic transition between utterances, which leads to 501

mismatch and omission of triplets and harms their 502

performances. Conversely, although our model 503

can only use historical information to encodes se- 504

mantics utterance by utterance, the entity memory 505

network of our model can effectively track dia- 506

logue topics and accurately discover triplets. It is 507
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(a) Film (b) Music (c) Film

Figure 4: Results on different dialogue types according to the number of topics.

(a) Film (b) Music (c) Travel

Figure 5: Results on intra-utterance and inter-utterance triplet extraction.

worth noting that our model can flexibly adapt the508

dynamic characteristic of dialogues and process509

utterances generated in real-time.510

4.6 Ablation Study511

To further investigate the origination of the im-512

provement of DEMN, we conduct three ablation ex-513

periments, including ‘DEMN w/o C’, ‘DEMN w/o514

F’, and ‘DEMN w/o ALL’. Specifically, ‘DEMN515

w/o C’ does not use context semantics captured by516

dot-product attention mechanism, while ‘DEMN517

w/o F’ discards utterance-level topic tracking mech-518

anism and forgetting gate. And ‘DEMN w/o ALL’519

abandons these two parts.520

According to Figure 3-5, we can analyze the ab-521

lation results from three perspectives. First, we522

display the overall performances in Figure 3. Com-523

pared with ‘DEMN w/o C’, our model achieves524

significant improvements on precision, which ver-525

ify the importance of context semantics in reducing526

mismatch. Besides, First,527

5 Conclusion528

In this paper, we introduced a novel task named di-529

alogue relational triplet extraction (DRTE) and pro-530

posed a dynamic entity memory network (DEMN).531

To adapt the dynamic characteristic of dialogue, we532

mainly devised an attentional context encoder and 533

an entity memory network. Specifically, the atten- 534

tional context encoder learn the semantics of the 535

given dialogue utterance by utterance, which can 536

flexibly and efficiently understand the utterances 537

generated in real time. Furthermore, the entity 538

memory network with a forgetting gate mechanism 539

maintains the entities extracted from previous ut- 540

terances for discovering the long-distance triplets 541

without disturbances from entities unrelated to the 542

current topic. To verify the effectiveness of our 543

model, we constructed three datasets. Extensive 544

experiments show that our model achieves state-of- 545

the-art performances. 546
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